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Abstract

In constrained Markov decision processes, enforcing constraints during training1

is often thought of as decreasing the final return. Recently, it was shown that2

constraints can be incorporated directly in the policy geometry, yielding an opti-3

mization trajectory close to the central path of a barrier method, which does not4

compromise final return. Building on this idea, we introduce Central Path Proximal5

Policy Optimization (C3PO), a simple modification of the PPO loss that produces6

policy iterates, which stay close to the central path of the constrained optimization7

problem. Compared to existing on-policy methods, C3PO delivers improved per-8

formance with tighter constraint enforcement, suggesting that central path-guided9

updates offer a promising direction for constrained policy optimization.10

1 Introduction11

Reinforcement learning (RL) has demonstrated impressive capabilities across a wide range of12

domains, yet real-world applications increasingly demand more than just reward maximization. In13

many real-world high-stakes environments—such as autonomous vehicles, healthcare, or robotic14

manipulation—agents must also avoid violating domain-specific safety or resource constraints.15

This motivates the study of constrained Markov decision processes (CMDPs), an extension of16

the standard RL framework that imposes expected cost constraints alongside the goal of reward17

maximization Altman [1999]. By treating feasibility and reward objectives separately, CMDPs18

provide a principled framework for specifying agent behavior in complex environments.19

CMDPs are especially relevant in deep reinforcement learning, where designing reward functions20

that reliably encode which states to avoid is notoriously difficult. Prior work has emphasized the21

importance of explicit constraint modeling for safe behavior. For instance, Ray et al. [2019] argue22

that CMDPs offer a natural formalism for benchmarking safe exploration in deep RL and introduce23

the Safety Gym suite to evaluate algorithms based on both task performance and cumulative safety24

cost. Similarly, Roy et al. [2022] demonstrate that task specifications expressed via constraints are25

often more natural and easier to design, especially as tasks increase in complexity, e.g. in finetuning26

LLMs Dai et al. [2023].27

Despite their relatively low sample efficiency, model-free on-policy algorithms continue to play28

a foundational role in constrained RL. They offer conceptual clarity, support rigorous theoretical29

analysis, and provide strong baselines for studying the balance between performance and constraint30

satisfaction. As the field moves toward more scalable and sample-efficient approaches, insights31

developed in the on-policy setting remain central to both algorithm design and our broader under-32

standing of safe learning, such as the policy improvement guarantees and constraint violation bounds33

introduced by Achiam et al. [2017].34

In this context, there is a growing need for simple, scalable, and effective algorithms for solving35

CMDPs—ideally with properties similar to widely used algorithms such as proximal policy optimiza-36

tion (PPO; Schulman et al. [2017b]). PPO’s robustness, ease of implementation, and scalability have37

Submitted to the First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025). Do not distribute.



made it the method of choice in many deep RL and RLHF pipelines Ouyang et al. [2022]. We aim38

to extend these strengths to the constrained setting by developing an algorithm that shares PPO’s39

practical benefits while enforcing constraints in a principled CMDP framework. Specifically, we seek40

to achieve high final reward while approximately satisfying constraints, at least at convergence.41

To frame this problem, we distinguish between two commonly conflated settings in con-42

strained RL: (i) safe exploration, where constraints must be satisfied throughout train-43

ing, and (ii) safe convergence, where only the final policy is required to satisfy the con-44

straints. Much of the literature has focused on the former, motivated by safety-critical ap-45

plications in the real world. In contrast, safe convergence—where exploration may be un-46

safe—better reflects settings like simulation-based training or alignment finetuning Dai et al.47

[2023].Typically, ensuring safety during training is considered to decrease the final perfor-48

mance achieved by an algorithm. We show the contrary and present an algorithm that exhibits49

strict feasibility during training as well as reliable feasibility and high return at convergence.50
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Figure 1: Pictorial visualization of the central path
argument from the main text. While a wide range
of methods technically converge to an optimal fea-
sible solution in the linear programming formula-
tion of finite CMDPs (left), in the function approx-
imation setting (right), approaching the constraint
surface too early may result in higher sensitivity to
local optima.

51

In nonlinear CMDPs, the constraint surface is52

typically curved and nonconvex in policy pa-53

rameter space. Converging prematurely or os-54

cillating near the constraint boundary during55

training—as is often the case with Lagrangian56

or most trust region methods—can lead to un-57

reliable constraint satisfaction at convergence.58

Furthermore, it can lead the optimizer to local59

optima that satisfy the constraints but fail to60

achieve high reward, see Figure 1. Penalty and61

barrier methods avoid this by maintaining a fea-62

sible trajectory toward the constraint surface,63

yielding feasible solutions more reliably. How-64

ever, barrier methods introduce bias [Müller and65

Cayci, 2024], meaning the optimization prob-66

lem obtained by adding a barrier penalty does67

not have the same solution set as the original68

problem, which can lead to degraded reward in69

policy optimization Milosevic et al. [2025]. Bar-70

rier methods either require careful tuning or an71

interior point approach Liu et al. [2020] to avoid harming reward performance.72

The recently proposed C-TRPO [Milosevic et al., 2025] addresses these challenges by combining the73

strengths of trust-region and barrier methods by deriving a barrier-inspired trust-region formulation74

using strictly feasible trust regions. This results in an algorithm that acts like a barrier method with an75

adaptively receding barrier. This introduces no bias in the optimal feasible solution but still produces76

strictly feasible policies just like a barrier method. Further, C-TRPO produces policies, which are77

close to the regularization path obtained by altering the regularization strength, which is commonly78

known as the central path Boyd and Vandenberghe [2004], Müller and Cayci [2024]. This nicely79

illustrates how the constraints are incorporated in the algorithm’s geometry and ensures that C-TRPO80

and variants thereof produce policies which don’t prematurely approach the constraint surface.81

However, C-TRPO’s scalability remains limited due to computational overhead and sensitivity to82

large network architectures or batch sizes introduced by the TRPO-inspired update, and the update83

is defined only in the feasible set. To address the need for a simple and scalable CMDP solver,84

we propose a proximal version of C-TRPO. It also follows the central path, which we therefore85

call Central Path Proximal Policy Optimization (C3PO). C3PO is a minibatch-based method that86

approximates the C-TRPO update using an exact penalty formulation, combining the simplicity and87

efficiency of PPO-style updates with the feasible geometry of central path methods. At its core,88

C3PO leverages the central path property of natural policy gradients to gradually guide the policy89

toward the constraint surface without inducing oscillations or premature convergence. The result is a90

practical algorithm that retains high reward performance while satisfying constraints at convergence,91

and which has the potential to scale well to large neural networks and modern deep RL settings.92
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2 Background93

We consider the infinite-horizon discounted constrained Markov decision process (CMDP) and refer94

the reader to Altman [1999] for a general treatment. The CMDP is given by the tuple M ∪ C,95

consisting of a finite MDP M and a set of constraints C. The finite MDP M = {S,A, P, r, µ, γ} is96

defined by a finite state-space S, a finite action-space A, a transition kernel P : S × A → ∆S , an97

extrinsic reward function r : S ×A → R, an initial state distribution µ ∈ ∆S , and a discount factor98

γ ∈ [0, 1). The space ∆S is the set of categorical distributions over S . Further, C = {(ci, bi)}mi=1 is a99

set of m constraints, where ci : S ×A → R are the cost functions and di ∈ R are the cost thresholds.100

An agent interacts with the CMDP by selecting a policy π ∈ Π. Given π, the value function101

V π
r : S → R, action-value function Qπ

r : S × A → R, and advantage function Aπ
r : S × A → R102

associated with the reward function r are defined as103

V π
r (s) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s

]
,

104

Qπ
r (s, a) := (1− γ)Eπ

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a

]
,

and105

Aπ
r (s, a) := Qπ

r (s, a)− V π
r (s).

The expectations are taken over trajectories of the Markov process, meaning with respect to the initial106

distribution s0 ∼ µ, the policy at ∼ π(·|st) and the state transition st+1 ∼ P (·|st, at). They are107

defined analogously for the i-th cost and denoted as V π
ci (s), Q

π
ci(s, a) and Aπ

ci(s, a).108

Constrained Reinforcement Learning addresses the optimization problem109

maximizeπ∈Π R(π) subject to Ci(π) ≤ di (1)

for all i = 1, . . . ,m, where R(π) is the expected value under the initial state distribution R(π) :=110

Es∼µ[V
π
r (s)] and Ci(π) := Es∼µ[V

π
ci (s)].111

Every stationary policy π induces a discounted state-action occupancy measure ρπ ∈ K ⊂ ∆S×A,112

which indicates the relative frequencies of visiting a state-action pair, discounted by how far the event113

lies in the future. We will refer to this measure as the state-action occupancy for short.114

Definition 2.1. The state-action occupancy ρπ is defined as115

ρπ(s, a) := (1− γ)

∞∑
t=0

γtPπ(st = s)π(a|s), (2)

where Pπ(st = s) is the probability of observing the environment in state s at time t given π.116

Note that similar measures can be introduced for the average-reward setting Zahavy et al. [2021], and117

for continuous state-action spaces Laroche and Des Combes [2023]. For any state-action measure ρ118

we obtain the associated policy via conditioning, meaning119

π(a|s) := ρ(s, a)∑
a′ ρ(s, a′)

. (3)

Assumption 2.2 (State Exploration). For any policy π ∈ int(∆S
A) we have ρπ(s) > 0 for all s ∈ S.120

Under Assumption 2.2, this provides a one-to-one correspondence between the space of policies Π and121

the space of state-action occupancies K, which forms a convex polytope inside of R|S||A| Kallenberg122

[1994], Mei et al. [2020]. These properties justify the linear programming (LP) approach to solving123

finite CMDPs Altman [1999], where problem 1 is reformulated as124

maximizeρ∈K
∑
s,a

ρ(s, a)r(s, a) subject to
∑
s,a

ρ(s, a)ci(s, a) ≤ di (4)

which can be solved to obtain an optimal occupancy ρ∗ using LP solution methods. The optimal125

policy can be extracted using relation 3.126
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In the function approximation setting, approach 4 is not applicable, which has prompted a large body127

of research in on-policy policy optimization methods. In the analysis of on-policy methods–including128

for standard MDPs–the policy advantage plays an important role. The policy (reward) advantage and129

policy cost advantage are defined as130

Aπk
r (π) =

∑
s,a

ρπk
(s)π(a|s)Aπk

r (s, a) and Aπk
c (π) =

∑
s,a

ρπk
(s)π(a|s)Aπk

c (s, a). (5)

It features prominently in policy optimization methods, as it approximates the performance difference131

between two nearby policies, i.e. Aπk
r (π) ≈ R(π) − R(πk) if πk ≈ π, and for the policy cost132

advantage analogously.133

2.1 Policy Optimization Methods for Constrained Reinforcement Learning134

In the following, we review relevant prior constrained policy optimization methods, thereby focusing135

on a single constraint to reduce notational clutter. However, all mentioned methods are trivial to136

extend to multiple constraints.137

Constrained Policy Optimization (CPO) Constrained policy optimization (CPO) is a modification138

of trust region policy optimization (TRPO; Schulman et al. [2017a]), where the classic trust region is139

intersected with the set of safe policies Achiam et al. [2017]. At each iteration k, the policy of the140

next iteration πk+1 is obtained through the solution of141

max
π∈Π

Aπk
r (π) s.t. D̄KL(π, πk) ≤ δ and C(πk) + Aπk

c (π) ≤ d. (6)

where D̄KL(π, πk) =
∑

s,a ρπk
(s)DKL[π(·|s)|πk(·|s)] and C(πk)+Aπk

c (π) is an estimate for C(π),142

see Kakade and Langford [2002], Schulman et al. [2017a], Achiam et al. [2017].143

Penalized Proximal Policy Optimization (P3O/P2BPO) Solving the constrained optimization144

problem equation 8 is difficult to scale up to more challenging tasks and larger model sizes, as it relies145

on the arguably sample inefficient TRPO update. To circumvent this Zhang et al. [2022] proposed a146

Constrained RL algorithm derived from the relaxed penalized problem147

max
π∈Π

Aπk
r (π)− λmax{0, C(πk) + Aπk

c (π)− d}, s.t. D̄KL(π, πk) ≤ δ. (7)

The appeal of this reformulation is that one can obtain an unconstrained problem that gives the same148

solution set for λ chosen large enough Zhang et al. [2022] and by employing a PPO-like loss. A149

similar approach is taken by Dey et al. [2024], where max{0, ·} is replaced by a softplus.150

Constrained Trust Region Policy Optimization (C-TRPO) Where equation 8 incorporates the151

safety by intersecting the trust region with the set of safe policies, an alternative approach was taken152

in Milosevic et al. [2025] where the geometry was modified such that the resulting trust region153

automatically consists of safe policies. To this end, C-TRPO proceeds as TRPO but with the usual154

divergence augmented by a barrier term, meaning155

max
π∈Π

Aπk
r (π) s.t. D̄KL(π, πk) + βDB(π, πk) ≤ δ. (8)

where we’ll refer to156

DB(π, πk) =
b− Aπk

c (π)

b
− log

(
b− Aπk

c (π)

b

)
− 1, for b > 0, else ∞ (9)

as the barrier divergence1, β is a positive safety parameter, and b = d− C(πk) is its cost budget.157

This update is justified by the general theory of Bregman divergences and the theory of convex158

programs. It has desirable theoretical properties and results in state-of-the-art performance compared159

to other on-policy CMDP algorithms. We refer the reader to Milosevic et al. [2025] and Appendix A160

for detailed discussions.161

1Note the similarity to the unbiased KL-Divergence estimator D̂KL = π(a|s)
πk(a|s)

− log π(a|s)
πk(a|s)

− 1
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Figure 2: The working principle behind C3PO’s exact penalty approach: As the iterate moves
closer towards the constraint (A-C), C3PO’s ReLU-penalty pulls away at a slower rate 0 < w < 1,
mimicking C-TRPO’s barrier divergence. This rate is defined as a function of δB (D), see main
text. While C-TRPO’s barrier penalty is undefined if either d ≤ C(πk) or d ≤ C(πk+1), C3PO’s
ReLU-penalty is defined everywhere.

3 Central Path Proximal Policy Optimization162

C-TRPO has desirable properties but the practical algorithm 1) scales poorly and is sample-inefficient163

due to its reliance on the TRPO algorithm and 2) relies on a recovery mechanism (reward-free cost164

minimization + hysteresis), since the update is not defined if πk is outside the feasible set.165

We propose a first-order approximation of C-TRPO that approximates its central path by solving166

surrogate optimization problems with the same solution set as C-TRPO’s update on every iteration.167

In addition, by employing an exact penalty approach, it allows unsafe policies during training, also168

enabling less strict exploration strategies within the safe convergence regime.169

C3PO Update Let us consider a slight modification of C-TRPO’s update, which is constrained with170

the KL and Barrier constraints separately, since they can be approximated using different methods171

which result in different precisions, i.e. we consider172

max
π∈Π

Aπk
r (π) s.t. DB(π, πk) ≤ δB and D̄KL(π, πk) ≤ δKL. (10)

Note that this is a subtly different problem than that posed by C-TRPO, but δKL and δB can always be173

chosen to include the feasible set entirely in C-TRPO’s feasible set for a given δ. Instead of solving174

this constrained problem directly, we consider the penalized problem given by175

max
π∈Π

Aπk
r (π)− κmax{0, DB(π, πk)− δB} s.t. D̄KL(π, πk) ≤ δKL. (11)

Theorem 3.1 (Exactness). Let λ be the Lagrange multiplier vector for the optimizer of Equation 10.176

Then for κ ≥ |λ| the solution sets of problem Equation 10 and problem Equation 11 agree.177

Proof. Note that the problem Equation 10 is concave-convex in π. Hence, this is a special case of the178

general exactness result Theorem B.1.179

C3PO Algorithm The update Equation 11 is still undefined outside the feasible set of the barrier180

divergence constraint. Since we use the barrier divergence only to define the feasible solution set of181

the update, we can replace it with another function, as long as it defines the same feasible set. More182

precisely, this can be achieved with an equivalent linear constraint that is zero where DB(π, πk) = δB183

for positive cost advantages. The C3PO algorithm approximates update 11 as184

max
π∈Π

Aπk
r (π)− κmax{0,Aπk

c (π)−min{b, w · b}} s.t. D̄KL(π, πk) ≤ δKL. (12)

where 0 < w < 1.185
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Proposition 3.2 (Positive Exactness). For 0 ≤ Aπk
c (π) < d−C(πk), there exist w and δB for which186

the solution sets of problems 10, 11 and 12 agree.187

The new update expresses the same constraint using a linear ReLU-penalty. The rate w is a new188

hyper-parameter and we refer to Appendix B for a proof of Proposition 3.2. Since the original189

problem’s penalty function is not defined outside the interior of the feasible set, we must handle190

the case C(πk) ≥ d differently, which is taken care of by the min(b, ·) term: For b < 0, problem191

12 reduces to the P3O Zhang et al. [2022] objective Eq. 7. Finally, the additional KL-constraint is192

approximated as in PPO Schulman et al. [2017b]. The resulting loss only consists of the PPO loss and193

an additional loss term which is a function of the policy cost advantage estimate. Let r(θ) = πθ(a|s)
πk(a|s)194

denote the likelihood ratio of the optimized and last behavior policies and let195

αclipped(θ) = Es,a∼ρk

[
max

(
r(θ)Âc(s, a), clip(r(θ), 1− ϵ, 1 + ϵ)Âc(s, a)

)]
. (13)

The C3PO loss is196

LC3PO(θ) = ReLU (αclipped(θ)−min{b, w · b}) . (14)

The penalty coefficient remains a hyperparameter, which can be flexibly scheduled to solve either197

setting (i) or (ii), as we demonstrate in Section 4, where we use a linear schedule to achieve high final198

performance across multiple tasks. The final method is summarized in Algorithm 1.199

Algorithm 1 C3PO (deviation from PPO in green)

Require: Initial policy π0 and value functions V̂r, V̂ci , thresholds di, scheduled penalty κk, rate w
1: for k = 0, 1, 2, . . . do
2: Collect trajectory data D = {s0, a0, r0, c0, . . .} by running πk

3: Estimate reward advantage Âr
t and cost advantages Âci

t using GAE-λ Schulman et al. [2018]
4: Update policy πk+1 by minimizing LPPO+κkL

C3PO (Equation 14)
5: Update value function estimates V̂ πk+1

r and V̂
πk+1
ci by regression

6: end for

Relation to other PPO-Penalty methods C3PO is a superset of P3O Zhang et al. [2020]. More200

precisely, if we set w = 1 in C3PO, we obtain the P3O loss exactly. Further, C3PO is conceptually201

similar to P2BPO Dey et al. [2024], in using a more conservative version of the P3O loss, but C3PO202

does not use a penalty with a fixed location at the constraint, but a moving penalty which recedes as203

the iterate gets closer to the constraint. This allows C3PO to approach the optimal feasible solution204

without regularization bias.205

4 Computational Experiments206

To evaluate our approach, we conduct experiments aimed at testing the benefits of using central path207

approximation as a design principle for constrained policy optimization algorithms. We benchmark208

C3PO against a range of representative constrained reinforcement learning baselines. We include209

methods from three major algorithmic families: penalty-based methods (P3O, P2BPO), Lagrangian210

methods (PPO-Lag, CPPO-PID), and trust-region methods (CPO, C-TRPO).211

Conceptually, penalty-based methods, especially algorithms that augment the PPO loss with a penalty,212

like P3O Zhang et al. [2022] and P2BPO Dey et al. [2024], are closest to our approach. Like213

C3PO, those penalize constraint violations directly in the policy gradient loss using a ReLU-penalty.214

Lagrangian methods maintain dual variables to enforce constraints adaptively. PPO-Lagrangian Ray215

et al. [2019] applies this principle to the PPO algorithm, forming a loss which is similar to C3PO’s.216

For completeness, we consider CPPO-PID Stooke et al. [2020] as a more recent Lagrangian baseline.217

Finally, trust region methods, such as CPO Achiam et al. [2017] and C-TRPO Milosevic et al. [2025],218

use trust regions and constrained updates to maintain stable reward improvement and feasibility219

throughout training. They do not aim for scalability, but form strong baselines on the considered220

benchmark.221

We benchmark the algorithms on 4 locomotion tasks and 4 navigation tasks from Safety Gymnasium222

Ji et al. [2023], as in Milosevic et al. [2025]. For the baseline algorithms, we use the hyper-parameters223
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Figure 4: Example of improved performance through approximating the central path: Lagrangian
methods tend to converge less reliably towards a safe policy and oscillate around the constraint. This
does not yield a higher final reward. Instead, staying feasible from early on in training seems to have
a positive effect on final reward.

reported in Ji et al. [2023], and for P3O and C-TRPO the recommended parameters in Zhang224

et al. [2022] and Milosevic et al. [2025] respectively. For C3PO we use κ = 30.0 and w = 0.05.225

Each algorithm is trained on each task for 10 million steps with a cost threshold of 25.0. Final226

iterate performance is measured by aggregating over 5 seeds using rliable Agarwal et al. [2021].227
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Figure 3: Aggregated performance using the inter quartile
mean (IQM) across 8 tasks from Safety Gymansium for a
subset of algorithms. The algorithms were chosen as the
feasible representatives of their respective group.

228

The results provide confirmatory evi-229

dence for the usefulness of the central230

path approach: policies trained with231

C3PO exhibit a stable progression to-232

ward the constrained optimum, main-233

taining feasibility for most training it-234

erations, see Figure 4. Furthermore,235

C3PO consistently outperforms prior236

PPO-style penalty methods in terms237

of achieved reward, while also adher-238

ing more strictly to the specified con-239

straints, see Figure 3. This improved240

trade-off between reward and feasibil-241

ity offers additional support for the242

effectiveness of the central path ap-243

proach. While C3PO does not outper-244

form trust-region methods across all245

tasks in the benchmark, it performs well consistently, resulting in high aggregated performance. The246

full benchmark results table and more examples like Figure 4 are presented in Appendix C.247

5 Conclusion248

In this work, we use central path approximation as a guiding principle for designing policy optimiza-249

tion methods for constrained RL. We propose C3PO, an algorithm which is obtained through a simple250

augmentation of the original PPO-loss inspired by the central path approach. Our experimental results251

support this design principle: Compared to existing PPO-style penalty and Lagrangian methods,252

C3PO exhibits improved performance with tighter constraint satisfaction, highlighting the benefits253

of a central path approach in constrained policy optimization. While the current results are limited254

to small-scale simulations and simplified settings, such as a single constraint per task, they suggest255

that the central path-approximation is a promising design principle for constrained RL algorithms.256

We hope this early-stage contribution encourages further discussion and refinement of on-policy257

safe policy optimization algorithms and other methods that solve constrained MDPs. Future work258

will explore extensions to high-dimensional tasks, theoretical guarantees, and applications such as259

safety-critical control and LLM fine-tuning. We hope this early-stage contribution encourages further260

dialogue on improving constrained RL algorithms using insights from constrained optimization.261
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A Extended Background334

A.1 The Geometry of Policy Optimization335

Neu et al. [2017] have shown that the policy divergence used to define the trust-region in TRPO Schul-336

man et al. [2017a] can be derived as the Bregman divergence generated by a mirror function on the337

state-action polytope. TRPO’s mirror function is the negative conditional entropy338

ΦK(ρ) =
∑
s,a

ρ(s, a) log πρ(a|s) (15)

which generates339

DK(πk||π) =
∑
s,a

ρk(s, a)[log π(a|s)− log πk(a|s)] (16)

via the operator340

DΦ(x||y) := Φ(x)− Φ(y)−∇Φ(y)⊤(x− y). (17)

In general, a trust region update is defined as341

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DΦ(ρπk

||ρπ) ≤ δ, (18)

where DΦ : K × K → R is the Bregman divergence induced by a suitably convex function342

Φ: int(K) → R.343
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A.2 The Safe Geometry Approach344

Milosevic et al. [2025] consider mirror functions of the form345

ΦC(ρ) := ΦK(ρ) +
∑
i

βiΦB(ρ) (19)

:=
∑
s,a

ρ(s, a) log πρ(a|s) +
m∑
i=1

βiϕ

(
bi −

∑
s,a

ρ(s, a)c(s, a)

)
, (20)

where ρ ∈ Ksafe is a feasible state-action occupancy, ΦK is the negative conditional entropy, and ϕ346

is convex. Further, ϕ : R>0 → R with ϕ′(x) → +∞ for x ↘ 0. The log-barrier ϕ(x) = − log(x)347

considered in this work is a possible candidate. In general, the induced divergence takes the form348

DC(ρ1||ρ2) = DK(ρ1||ρ2) +
m∑
i=1

βiDB(ρ1||ρ2) (21)

= DK(ρ1||ρ2) +
m∑
i=1

βi[Φ(b1;i)− Φ(b2;i) + Φ′(b2;i)Ci(π1)− Φ′(b2;i)Ci(π2))],

(22)

where bπ;i = di − Ci(π). The corresponding trust-region scheme is349

πk+1 ∈ argmax
π∈Π

Aπk
r (π) sbj. to DC(ρπk

||ρπ) ≤ δ. (23)

Analogously to the case of unconstrained TRPO, there is a corresponding natural policy gradient350

scheme:351

θk+1 = θk + ϵkGC(θk)
+∇R(θk), (24)

where GC(θ)
+ denotes an arbitrary pseudo-inverse of the Gramian352

GC(θ)ij = ∂θiρ
⊤
θ ∇2ΦC(ρθ)∂θjρθ.

The authors discuss that, under suitable parametrizations of θ 7→ π, this gradient preconditioner is a353

Riemannian metric on Θsafe and natural policy gradient flows based on GC(θk) leave Θsafe invariant.354

Further, GC(θk)
+ is equivalent to the Hessian of DC:355

HC(θ) = Es∼ρθ
F (θ) +

∑
i

βiΦ
′′(bi − Ci(θ))∇2

θCi(θ)
∣∣∣
θ=θk

.

where F is the fisher information of the policy. Unlike in TRPO, the divergence itself is not easy356

to estimate, however, the authors demonstrate that another divergence has the same Hessian, i.e. is357

equivalent up to second order in the policy parameters. It is derived using a “surrogate advantage358

trick” for Ci and results in the divergence359

D̄KL(π, πk) + βD̄Φ(π, πk) = D̄KL(π, πk) + β · [ϕ(bk − Aπk
c (π))− ϕ(bk)− ϕ′(bk) · Aπk

c (π)],
(25)

which is ultimately used as a drop-in replacement for the conventional divergence in TRPO.360

A.3 Central Paths361

In the small step size limit, the trajectories induced by trust region methods converge to the corre-362

sponding natural policy gradient (NPG) flow on the state-action polytope K. The space of state-action363

occupancies ρ ∈ K forms not only a polytope, but a Hessian manifold Müller and Montúfar [2023].364

C-TRPO induces such a gradient flow on the LP Equation 4 w.r.t the Hessian geometry induced by365

the convex function366

Φ(ρ) =
∑
s,a

ρ(s, a) log π(a|s)− β log(ρ−
∑
s,a

ρ(s, a)c(s, a)). (26)
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It is well known that Hessian gradient flows (ρt) of linear programs follow the central path, meaning367

that they are characterized as the optimizers of regularized linear programs with regularization368

strength t−1. In policy space, we obtain for a single constraint369

πt = argmax{R(π) + t−1DΦ(π, π0) : π,C(π) ≤ d}. (27)

Since Φ curves infinitely towards the boundary of the feasible set of LP Equation 4, solving the370

problem posed by C-TRPO corresponds to solving LP Equation 4 using an interior point / barrier371

method with barrier DΦ(·, π0). For a more detailed discussion of Hessian geometries and natural372

policy gradients see Alvarez et al. [2004], Müller and Montúfar [2023], Müller and Cayci [2024].373

B Proofs of Section 3374

B.1 Exact Penalty Methods375

We provide a general result for the exactness of the penalties considered here for general discussions376

of exact penalty methods, we refer to the standard textbooks in optimization Bertsekas [1997],377

Nocedal and Wright [1999]. Here, we consider a compact subset X ⊂ Rn with non-empty interior a378

differentiable functions f, g ∈ C1(X) and the constrained optimization problem379

max f(x) subject to g(x) ≤ b, (28)

where we impose Slater’s condition {x ∈ X : g(x) < b} ̸= ∅ to be non-empty and f to be concave380

and g to be convex. We denote the penalized functions by381

Pκ(x) := f(x)− κmax{0, g(x)− b}. (29)

Recall the definition of the Lagrangian382

L(x, λ) = f(x)− λ(g(x)− b). (30)

Theorem B.1 (Exactness for convex programs). Assume that there exists a solution x⋆ ∈ X of383

equation 28 and denote the corresponding dual variable by λ⋆ ≥ 0. For κ > λ⋆ we have384

argmax{f(x) : x ∈ X, g(x) ≤ b} = argmax{Pκ(x) : x ∈ X}. (31)

Proof. Consider an infeasible point x̄ ∈ X of Pκ, meaning that g(x̄) > b. Note by convexity x⋆385

maximizes the Lagrangian L(·, λ⋆). Then386

Pκ(x̄) = f(x̄)− κ (g(x̄)− b) < f(x̄)− λ⋆(g(x̄)− b) = L(x̄, λ⋆) ≤ L(x⋆, λ⋆) = Pκ(x
⋆).

Hence, every maximizer of Pκ is feasible and thus a solution of the regularized problem, showing the387

inclusion ⊇. As Pκ agrees with f for feasible points, we also obtain that every maximizer of f over388

the feasible set is a maximizer of Pκ.389

390

B.2 C3PO Exact Penalty391

Proposition 3.2 (Positive Exactness). For 0 ≤ Aπk
c (π) < d−C(πk), there exist w and δB for which392

the solution sets of problems 10, 11 and 12 agree.393

Proof. Let
PBarrier := {π : DB(π, πk) ≤ δB , Aπk

c (π) ≥ 0}
and

PLin := {π : Aπk
c (π)− w · b ≤ 0, Aπk

c (π) ≥ 0}.
Note that394

DB(π, πk) =
b− Aπk

c (π)

b
− log

(
b− Aπk

c (π)

b

)
− 1 (32)

is a strictly convex increasing function of Aπk
c for Aπk

c ≥ 0 (see Figure 2). This means that there395

exists a unique AB > 0 that solves396

b− AB

b
− log

(
b− AB

b

)
− 1 = δB (33)
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and for AB ≥ Aπk
c (π) > 0 it holds that δB ≥ DB(π, πk) > 0. To solve for AB, we rewrite 33 as397 (

AB − b

b

)
exp

(
AB − b

b

)
= − exp(−δB − 1). (34)

and use the definition of Lambert’s W-Function Corless et al. [1996] to invert the left hand side as398

follows399
AB − b

b
= W (− exp(−δB − 1)), (35)

where W is the real part of the principle branch of the W-Function. Finally, rearranging yields400

AB = b · (W (− exp(−δB − 1)) + 1). (36)

Note that b > AB > 0 must still hold. With this result,401

PBarrier = {π : Aπk
c (π)− AB < 0, Aπk

c (π) ≥ 0}, (37)
= {π : Aπk

c (π)− b (W (− exp(−δB − 1)) + 1) < 0, Aπk
c (π) ≥ 0}, (38)

= {π : Aπk
c (π)− b w < 0, Aπk

c (π) ≥ 0}, (39)

showing that PBarrier = PLin for a unique w.402

Further, since min(b, w · b) = w · b for b > 0, the solution sets of403

max
π∈Π

Aπk
r (π) s.t. Aπk

c (π)− AB < 0 and D̄KL(π, πk) < δKL (40)

max
π∈Π

Aπk
r (π) s.t. DB(π, πk) < δB and D̄KL(π, πk) < δKL (41)

agree for Aπk
c (π) ≥ 0 and w = W (− exp(−δB − 1)) + 1.404

Finally, by theorem B.1, they must also agree with the solutions of405

max
π∈Π

Aπk
r (π)− κk max{0,Aπk

c (π)−min(b, w · b)} s.t. D̄KL(π, πk) < δKL, (42)

max
π∈Π

Aπk
r (π)− κk max{0, DB(π, πk)− δB} s.t. D̄KL(π, πk) < δKL, (43)

under the same conditions and for large enough κ.406

Note that the cost budget b = d−C(πk) is multiplied with a fixed function of δB. Hence, we can use407

w as the hyper-parameter immediately instead of defining it through δB.408
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Gymansium for all algorithms (except P2BPO) across 8 tasks. P2BPO has been excluded, since
the final cost (right) was off the charts. This may be due to the missing penalty coefficient in the
algorithm.
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Table 1: Performance of 8 representative safe policy optimization algorithms on 8 tasks from Safety
Gymnasium for 10 million steps and a cost threshold of 25.0 aggregated over 5 seeds each. Bold
marks the algorithm with the highest mean cumulative reward among the admissible ones. An
algorithm is admissible, if its average cumulative cost achieved at the end of training is below the
threshold.

Ant HalfCheetah Humanoid Hopper CarButton PointGoal RacecarCircle PointPush

C3PO R 3043 ± 44 2458 ± 436 5389 ± 93 1674 ± 35 2.3 ± 0.7 23.8 ± 0.9 25.9 ± 5.1 4.5 ± 2.6
C 15.0 ± 4.7 13.3 ± 6.4 1.2 ± 0.9 9.9 ± 1.7 53.4 ± 22.3 37.9 ± 1.7 5.0 ± 1.7 20.2 ± 10.0

C-TRPO R 3019 ± 149 2841 ± 41 5746 ± 248 1621 ± 82 1.1 ± 0.2 19.3 ± 0.9 29.5 ± 3.1 1.0 ± 6.6
C 13.2 ± 9.2 12.1 ± 7.6 12.2 ± 5.9 17.7 ± 8.0 34.0 ± 10.2 23.3 ± 3.6 20.2 ± 4.0 25.3 ± 7.0

CPO R 3106 ± 21 2824 ± 104 5569 ± 349 1696 ± 19 1.1 ± 0.2 20.4 ± 2.0 29.8 ± 1.9 0.7 ± 2.9
C 25.1 ± 11.3 23.1 ± 8.0 16.2 ± 8.6 25.7 ± 4.4 33.5 ± 8.7 28.2 ± 4.1 23.1 ± 4.5 28.9 ± 20.0

PPO-LAG R 3210 ± 85 3033 ± 1 5814 ± 122 240 ± 159 0.3 ± 0.8 9.4 ± 1.8 30.9 ± 1.8 0.6 ± 0.0
C 28.9 ± 8.7 23.2 ± 1.9 12.7 ± 31.0 38.8 ± 36.4 39.2 ± 41.1 22.5 ± 10.1 31.7 ± 2.7 18.2 ± 9.5

CPPO-PID R 3205 ± 76 3036 ± 10 5877 ± 84 1657 ± 61 -1.2 ± 0.6 6.1 ± 4.8 8.1 ± 4.3 1.0 ± 1.1
C 26.2 ± 4.4 26.5 ± 7.2 20.3 ± 6.0 18.6 ± 8.1 23.8 ± 6.0 21.8 ± 6.8 33.3 ± 5.9 22.8 ± 9.9

P2BPO R 3269 ± 18 2928 ± 46 5293 ± 171 1573 ± 85 6.1 ± 0.9 25.9 ± 0.2 15.7 ± 7.5 1.1 ± 0.5
C 32.3 ± 8.9 26.0 ± 19.7 1.5 ± 1.1 13.2 ± 11.7 125 ± 14 39.6 ± 5.7 5.5 ± 8.0 43.8 ± 28.9

P3O R 3122 ± 24 3020 ± 12 5492 ± 118 1633 ± 49 0.2 ± 0.3 5.7 ± 0.3 0.9 ± 0.1 0.7 ± 0.6
C 21.2 ± 2.5 27.0 ± 1.1 4.2 ± 2.2 14.6 ± 1.6 40.9 ± 18.2 17.1 ± 6.2 13.1 ± 4.6 14.1 ± 9.4

PPO R 5402 ± 274 6583 ± 954 6138 ± 699 1810 ± 390 18.2 ± 1.2 26.6 ± 0.2 40.8 ± 0.5 0.9 ± 0.7
C 887 ± 27 976 ± 1 783 ± 60 435 ± 85 378 ± 18 50.7 ± 3.3 200 ± 4 42.9 ± 24.0
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