
Under review as submission to TMLR

Joint Generative Modeling of Scene Graphs and Images via
Diffusion Models

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we introduce a novel framework for joint scene graph - image generation,
a challenging task involving high-dimensional, multi-modal structured data. To effectively
model this complex joint distribution, we adopt a factorized approach: first generating a
scene graph, followed by image generation conditioned on the generated scene graph. While
conditional image generation has been widely explored in the literature, our primary fo-
cus is on the unconditional generation of scene graphs from noise, which provides efficient
and interpretable control over the image generation process. This task requires generating
plausible scene graphs with heterogeneous attributes for both nodes (objects) and edges (re-
lations between objects), encompassing continuous attributes (e.g., object bounding boxes)
and discrete attributes (e.g., object and relation categories). To address this challenge, we
introduce DiffuseSG, a novel diffusion model that jointly models the heterogeneous node and
edge attributes. We explore different encoding strategies to effectively handle the categorical
data. Leveraging a graph transformer as the denoiser, DiffuseSG progressively refines scene
graph representations in a continuous space before discretizing them to generate structured
outputs. Additionally, we introduce an IoU-based regularization term to enhance empirical
performance. Our model outperforms existing methods in scene graph generation on the
Visual Genome and COCO-Stuff datasets, excelling in both standard and newly introduced
metrics that more accurately capture the task’s complexity. Furthermore, we demonstrate
the broader applicability of DiffuseSG in two important downstream tasks: (1) achieving
superior results in a range of scene graph completion tasks, and (2) enhancing scene graph
detection models by leveraging additional training samples generated by DiffuseSG.

1 Introduction

Scene graph is a graph-based representation that captures semantics of the visual scene, where nodes cor-
respond to the objects (including their identity/labels and spatial locations) and directed edges correspond
to the spatial and functional relations between pairs of objects. Scene graphs have been widely adopted in
a variety of high-level tasks, including image captioning (Yang et al., 2019; Zhong et al., 2020) and visual
question answering (Damodaran et al., 2021; Qian et al., 2022). Various models (Kundu & Aakur, 2023;
Jung et al., 2023; Zheng et al., 2023a; Jin et al., 2023; Biswas & Ji, 2023; Li et al., 2024; Hayder & He, 2024)
have been proposed to detect scene graphs from images. Such models require supervised training with image
- scene graph pairs, which is costly to annotate.

Motivated by this and the recent successes of generative models, in this paper, we tackle the problem of joint
generative modeling of scene graphs and corresponding images. The benefits of such generative modeling
would be multifaceted. First, it can be used to generate synthetic training data to augment training of
discriminative scene graph detection approaches discussed above. Second, it can serve as a generative scene
prior which can be tasked with visualizing likely configurations of objects in the scene conditioned on partial
observations. For example, where is the likely position of the chair given placement of the table and sofa.
Third, it can be used for controlled image generation, by allowing users to automatically sample and edit
scene graphs and, conditioned on them, generate corresponding images.

1

Under review as submission to TMLR

Scene Graph Generation Image Generation

cat

bowl ear-1

near

paw-2paw-1

ear-2

hasof

jean

man

has

skate-
boardhair

shoe

wearing on

paw-1

man

hair

jean

shoe

skateboard

cat

paw-2

bowl
ear-1

ear-2

,,

Scene Graph Generation Image Generation

Figure 1: Joint scene graph and image modeling. We model the joint distribution of scene graph -
image pairs via two steps: first training our proposed DiffuseSG model to produce scene graphs and then
utilizing a conditional image generation model to generate images. LayoutDiffusion (Zheng et al., 2023b) is
used to generate images in these examples. Results shown are sampled from models trained on the Visual
Genome dataset (Krishna et al., 2017).

Generative models, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021) in
particular, have been shown to excel at modeling complex distributions, generating realistic high-resolution
images (Saharia et al., 2022; Rombach et al., 2022; Nair et al., 2023; Ruiz et al., 2023; Epstein et al., 2023)
and graphs (Jo et al., 2022; Vignac et al., 2022; Yan et al., 2023). However, joint generation of an image
and the corresponding graph representation is challenging. To simplify the task, we factorize the joint
distribution as a product of a scene graph prior and a conditional distribution of images given a scene graph.
The conditional distribution has been widely studied in the form of layout-to-image generation (Zhao et al.,
2019; Sun & Wu, 2019; 2021; Zheng et al., 2023b), a task of generating images based on spatial layouts
that can be constructed from scene graphs1. Therefore, in this paper we mainly focus on modeling the first
term, i.e., building a generative scene graph model. This task in itself is challenging as it requires generation
of graphs with heterogeneous attributes, e.g., real-valued node attributes like object bounding boxes and
categorical edge attributes like relation types.

To generate scene graphs, we propose DiffuseSG which is a diffusion-based generative model capable of
generating plausible scene graphs. To deal with heterogeneous attributes, we explore various encodings of
categorical node/edge representations. We also design a graph transformer architecture that successively
denoises the continuous graph representation which in the end produces clean scene graph samples via
simple discretization. Moreover, we introduce an intersection-over-union (IoU)-based training loss to better
capture the distribution of bounding box locations and sizes. To generate images conditioned on scene graphs,
besides using one existing layout-to-image generation model, we also experiment with a relation-aware image
generator built upon ControlNet (Zhang et al., 2023b).

In summary, our contributions are as follows. (1) We propose a novel joint scene graph - image generation
framework, by factorizing the joint distribution into a scene graph prior and a conditional distribution of
images given the scene graph. In this context, we propose a diffusion-based model, named DiffuseSG, for
scene graph generation, which jointly models node attributes like object classes and bounding boxes, and edge
attributes like object relations. (2) We show that our model significantly outperforms existing unconditional
scene graph generation models, layout generation models, and general-purpose graph generative models
on both standard and newly introduced metrics that better measure the similarity between observed and
generated scene graphs. (3) We show that our model performs well on various scene graph completion tasks
using diffusion guidance. Moreover, paired with a conditional image generation model, our model generates
scene graph - image pairs which serve as extra training data for the downstream scene graph detection task.
The observed performance improvement highlights the practical significance of our joint modeling framework
in real-world applications.

1Though, notably, in the process, edge information is often not utilized.

2

Under review as submission to TMLR

2 Related Work

Diffusion Models. Diffusion models achieve great success in a variety of generation tasks nowadays, ranging
from image generation (Kumari et al., 2023; Kim & Kim, 2024; Miao et al., 2024; Zeng et al., 2024b; Qu et al.,
2024; Lin et al., 2024; Wei et al., 2024), video generation (Sun et al., 2023; Zeng et al., 2024a; Qing et al.,
2024; Wang et al., 2024a; Skorokhodov et al., 2024; Liang et al., 2024; Gupta et al., 2024; Melnik et al., 2024;
Liu et al., 2024b), text generation (Li et al., 2022b; Gong et al., 2022; Yuan et al., 2022; Dieleman et al., 2022;
Ye et al., 2023; Lin et al., 2023; Wu et al., 2023), to simple graph generation (Jo et al., 2022; Vignac et al.,
2022; Jo et al., 2023; Yan et al., 2023; Cho et al., 2024; Xu et al., 2024), e.g., on molecule datasets (Irwin
et al., 2012; Ramakrishnan et al., 2014), which usually have less than 10 node types and less than 5 edge
types. These models contain two key processes: a forward process, which typically involves adding Gaussian
noise to clean data, and a reverse denoising process that is often implemented using architectures such as U-
Net (Ronneberger et al., 2015) or transformer (Vaswani et al., 2017). Since the scene graph is fundamentally
a graph structure, our proposed scene graph generation model is conceptually similar to the ones for simple
graph generation. However, our model goes beyond merely generating the graph structure of node (object)
and edge (relation) labels. It also generates the object locations, in the form of bounding boxes. Also, our
scene graph data is more complex than the molecule data in terms of the numbers of node and edge types,
e.g., the Visual Genome dataset (Krishna et al., 2017) contains 150 node and 50 edge types. This diversity
necessitates a re-evaluation of many design choices traditionally made in graph generation models.

Layout Generation. Layout generation focuses on creating image layouts, which comprise object labels
and their corresponding bounding box locations. In contrast, our proposed scene graph generation goes
a step further by also generating the relations among these objects. Existing layout generation models
typically take the form of VAE (Jyothi et al., 2019; Lee et al., 2020; Arroyo et al., 2021), GAN (Li et al.,
2020a;b), transformer or BERT type language models (Gupta et al., 2021; Kikuchi et al., 2021; Kong et al.,
2022; Jiang et al., 2023), or diffusion models (Inoue et al., 2023; Chai et al., 2023; Hui et al., 2023; Levi
et al., 2023; Zhang et al., 2023a; Shabani et al., 2024). These layout generation models usually work on
graphical layout generation problems, e.g., designing layouts for mobile applications (Deka et al., 2017; Liu
et al., 2018), documents (Zhong et al., 2019), or magazines (Zheng et al., 2019). The object bounding boxes
of these layouts are expected to be well-aligned and not overlapping with each other. Thus, the layout
generation models are usually measured on the alignment and intersection area of the generated bounding
boxes. However, the object bounding boxes in our scene graphs are naturally not aligned and usually
occlusions occur. Therefore, we replace the evaluation metrics used in the layout generation literature with
new ones that better capture characteristics of scene graphs.

Unconditional Scene Graph Generation. Garg et al. (2021) introduce the task of unconditional scene
graph generation, where a scene graph is generated from noise. They propose an autoregressive model for
the generation, first sampling an initial object, then generating the scene graph in a sequence of steps. Each
step generates one object node, followed by a sequence of edges connecting to the existing nodes. A follow-up
work (Verma et al., 2022) proposes a variational autoencoder for this task, where a scene graph is viewed as
a collection of star graphs. During generation, it first samples the pivot graph, and keeps adding star graphs
to an existing set. The scene graph in these works is defined to only have object and relation category labels;
object bounding box locations are omitted. Compared with these works, we use a diffusion-based model for
unconditional scene graph generation, where node and edge attributes are generated at the same time. We
also include the object bounding box location in our scene graph representation.

Image Generation from Layouts or Scene Graphs. There exist two conditional image generation
tasks in the literature: layout-to-image (Zhao et al., 2019) and scene graph-to-image (Johnson et al., 2018).
The conditions in the layout-to-image task are object labels and their bounding box locations, while the
conditions in the task of scene graph-to-image are the object labels and relation labels. These tasks were
initially widely explored within the GAN framework (Li et al., 2019; Ashual & Wolf, 2019; Sun & Wu, 2019;
Dhamo et al., 2020; Li et al., 2021b; Sun & Wu, 2021; He et al., 2021; Sylvain et al., 2021). With the
increasing popularity of diffusion models and their excellence at modeling complex distributions, diffusion
models now become the default choice to accomplish these tasks (Yang et al., 2022; Cheng et al., 2023;
Zheng et al., 2023b; Farshad et al., 2023; Liu & Liu, 2024; Liu et al., 2024a; Wang et al., 2024b). However,

3

Under review as submission to TMLR

the scene graphs considered in our task contain object labels, object locations, and relation labels. These
attributes can not be encoded altogether into any of the existing image generation models. This motivates
us to build and explore diffusion-based relation-aware layout-to-image model.

3 Joint Scene Graph - Image Pair Modeling

We propose to model the joint distribution of scene graphs and their corresponding images by modeling it
as a product of two distributions. Denote the scene graph by S and the image by I2. The joint distribution
of scene graph and image pairs can be factorized as p(S, I) = p(S)p(I|S), from which one can easily draw
samples in a two-step manner; first from the prior p(S) and then from the conditional p(I|S). Hence, we
first build a scene graph generation model to learn p(S), i.e., the underlying prior of scene graphs. Second,
we employ a conditional image generation model to capture p(I|S), the conditional image distribution.

3.1 Scene Graph Generation

In this section, we first formally define our proposed scene graph generation task. We then present our
DiffuseSG model specifically designed for the task. DiffuseSG is a continuous diffusion model, whose training
and sampling utilize the stochastic differential equation (SDE) formulation. We begin by providing some
background on the SDE-based diffusion modeling, followed by an in-depth explanation of DiffuseSG.

3.1.1 Scene Graph Generation Task

A scene graph S, consisting of n nodes, can be described using node and edge tensors, denoted as (V , E). We
denote the space of node features by V and the space of edge features by E , and the space of scene graphs by
S = V ×E . The node tensor V = [v1; v2; . . . ; vn] ∈ Rn×dv , captures the node labels and their bounding box
locations, where dv represents the dimension of the node feature. Each node feature vi = [ci, bi] combines
a discrete node label, ci ∈ {1, 2, . . . , Zv}, with a normalized bounding box position, bi ∈ [0, 1]4. The
bounding box bi is represented by (centerx, centery, width, height) and normalized w.r.t. the image canvas
size. The edge tensor E ∈ Rn×n, details the directed edge relationships among the nodes. Each edge entry
ei,j corresponds to a discrete relation label, ei,j ∈ {0, 1, . . . , Ze}, clarifying the connections between nodes.
The symbols Zv and Ze represent the total numbers of semantic object categories and relation categories of
interest, respectively. Notably, ei,j = 0 indicates the absence of a relation between nodes i and j. The task
is to generate such scene graphs from noise.

3.1.2 Diffusion Model Basics

Preliminaries. Diffusion models (Ho et al., 2020; Song et al., 2021) learn a probabilistic distribution
pθ(x)3 through matching the score functions of the Gaussian noise perturbed data distribution ∇x log pσ(x)
at various noise levels σ ∈ {σi}T

i=1. Following Song et al. (2021); Karras et al. (2022), we use the SDE-based
diffusion model for training and sampling, which comes with a continuous time t ∈ [0, T] specified by the
following dynamics:

dx+ = f(x, t)dt + g(t)dw, (1)
dx− = [f(x, t)dt− g(t)2∇x log pt(x)]dt + g(t)dw, (2)

where Eq. (1) and Eq. (2) denote forward and reverse SDEs, f(x, t) and g(t) are the drift and diffusion
coefficients, and w is the standard Wiener process. The SDEs govern how the probabilistic distribution
pt(x) evolves w.r.t. time t. Specifically, p0(x) is the data distribution, from which we observe a set of i.i.d.
samples X = {xi}m

i=1. pT (x) models a tractable prior distribution, i.e., Gaussian, from which we can draw
samples efficiently. In our formulation, we choose linear noise schedule σ(t) = t, and let f(x, t) = 0 and g(t) =√

2σ̇(t)σ(t). The SDEs solution yields that pt in Eq. (2) becomes pσ(x) = pt(x) = 1
m

∑m
i=1N (x; xi, σ2Id),

2In what follows, we use Id for identity matrix and I for image data.
3We use symbols x, x̃ in this section to introduce preliminaries of diffusion model in general, regardless of the type of data

being modeled.

4

Under review as submission to TMLR

Node

Edge

Graph
Transformer

Noise

MLP

MLP

Node

Edge

DiffuseSG

Graph
Transformer

MLP

MLP

Node

Edge

DiffuseSG

Graph
Transformer

MLP

MLP

Node

Edge

DiffuseSG Data

 Node and Edge Labels Bounding Box Locations Node and Edge Labels Bounding Box Locations Node and Edge Labels Bounding Box Locations

n: Node
e: Edge

n: Node
e: Edge

n: Node

Figure 2: Sampling process illustration. Starting from Gaussian noise, our DiffuseSG gradually generates
scene graphs with node (object) labels and bounding box locations, and edge (relation) labels. Our diffusion
process is defined in the continuous space and we conduct discretization to obtain the categorical labels.

xi ∈ X . Let pX (x) = 1
m

∑m
i=1 δ(x − xi) be the Dirac delta distribution for X . We can rewrite pσ as

pσ(x̃) =
∫

pX (x)pσ(x̃|x)dx with a Gaussian perturbation kernel pσ(x̃|x) = N (x̃; x, σ2Id).

Training. We train a neural network to learn the score function of pσ (i.e., ∇x̃ log pσ(x̃)). Following Karras
et al. (2022), we reparameterize the score function by denoising function D(x̃, σ) which maps the noise-
corrupted data x̃ back to the clean data x. They are connected by Tweedie’s formula (Efron, 2011),
∇x̃ log pσ(x̃) = (D(x̃, σ) − x̃)/σ2. In practice, we train a denoiser Dθ(x̃, σ) to implicitly capture the score
function. Given a specified distribution over the noise level, denoted as p(σ), which also corresponds to the
distribution of forward time t since σ(t) = t, the overall training objective can be formulated as follows,

Ep(σ)pX (x)pσ(x̃|x)
[
∥Dθ(x̃, σ)− x∥2

2
]

. (3)

Sampling. To draw samples using the learned diffusion model, we discretize the reverse-time SDE in Eq. (2)
and conduct numerical integration, which gradually transitions samples from prior distribution pT to data
distribution p0. We choose a set of discrete time steps {ti}T

i=1, at which the score function is evaluated using
the trained model for numerical reverse-SDE solution. We employ a second-order solver based on Heun’s
method (Süli & Mayers, 2003; Karras et al., 2022).

3.1.3 DiffuseSG for Scene Graph Generation

We model the scene graph distribution p(S) with a continuous state diffusion model. Our model captures
the distribution of scene graph topology along with node and edge attributes simultaneously.

Denoising Objective. During training, we draw noisy scene graph samples from the perturbed distribution
pσ(S̃) =

∫
pS(S)pσ(S̃|S)dS and train a denoiser Dθ(S̃, σ) to output the associated noise-free samples S.

We relax node and edge label distributions to continuous space, enabling SDE-based diffusion modeling with
smooth Gaussian noise on all attributes. Various methods for encoding discrete labels will be introduced
in Section “Encoding Discrete Data” below. Specifically, S̃ = (Ṽ , Ẽ) denotes the noisy scene graph and
pS(S) = 1

m

∑m
i=1 δ(S − Si) is the Dirac delta distribution based on training data {Si}m

i=1. We implement
the scene graph Gaussian perturbation kernel pσ(S̃|S) by independently injecting noise to node and edge
attributes, i.e., pσ(S̃) =

∫
pS(S)pσ(Ṽ |V)pσ(Ẽ|E)dS. The decomposed kernels are both simple Gaussians:

pσ(Ṽ |V) = N (Ṽ ; V , σ2Id), pσ(Ẽ|E) = N (Ẽ; E, σ2Id). Further, we design a denoising network Dθ with
two prediction heads DV

θ and DE
θ dedicated to node and edge attributes respectively (detailed in Section

“Network Design” below). Our scene graph denoising loss now becomes:

Ld = Ep(σ)pS (S)pσ(S̃|S)[∥D
V
θ (S̃, σ)− V ∥2

2 + ∥DE
θ (S̃, σ)−E∥2

2]. (4)

5

Under review as submission to TMLR

Network Design. To effectively capture the complex distribution of scene graphs, we develop a transformer
architecture, named graph transformer, as the denoiser Dθ. Given a noisy scene graph S̃ = (Ṽ , Ẽ) as input,
we construct triplet representations (i.e., generalized edge representations) by concatenating the subject
node, object node, and relation information Q̃[i, j] = [ṽi, ṽj , ẽi,j],∀i, j ∈ [n], where n is the number of
nodes in the scene graph. The denoising task is essentially node and edge regression in continuous space,
trained with stochasticity. For expressive graph representation learning in this context, we consider message
passing among all O(n2) triplets as suggested in Morris et al. (2019; 2021). Here, each triplet becomes
a unit of message passing. However, a naive triplet-to-triplet message passing implementation is space-
consuming (O(n4) messages). Inspired by Liu et al. (2021), we employ an approximate triplet-to-triplet
message passing using shifted-window attention layers with a window size M , which reduces the space
complexity to O(n2M2). When window-partitioning is repeated adequately, e.g., at least O(n/M) times, all
triplet-to-triplet interactions can be effectively approximated. We tokenize the noisy triplets using a linear
layer on each entry in Q̃, resulting in n×n triplet tokens of dimension dt, represented as Q̃d ∈ Rn×n×dt . Our
graph transformer then employs repeated shifted-window attention and downsampling/upsampling layers to
update the dense triplet-token representations, for predicting the noise-free node and edge attributes. To
generate node and edge attribute predictions of distinct shapes, we employ two MLPs as readout layers to
construct node and edge denoisers DV

θ and DE
θ respectively. These components share identical intermediate

feature maps and have the same parameters up to the final prediction heads.

Encoding Discrete Data. To find an appropriate representation for the categorical labels, denoting the
node label representation as c′

i ∈ Rdc and the edge label representation as e′
i,j ∈ Rde , we explore three distinct

encoding methods. (1) Scalar: both node and edge labels are expressed as scalar values, with dc = de = 1.
(2) Binary-Bit Encoding: the discrete type indices of node and edge labels are converted into their binary
format, represented as a sequence of 0s and 1s. Here, dc = ⌈log2(Zv)⌉ and de = ⌈log2(Ze + 1)⌉. (3) One-Hot
Encoding: the scalar labels are transformed into their one-hot representations, resulting in dc = Zv and
de = Ze + 1. The impact of these different encoding methods is further analyzed and compared in Sec. 4.2.3.
During training, after encoding the node and edge labels, along with the bounding box positions, we inject
noise and form the noisy Q̃. During sampling, we start with a Gaussian noised Q̃, where the node number
can either be specified or drawn from some given distribution. After the denoising process, we discretize
the continuous-valued representations of node and edge types, e.g., through thresholding for the binary-
bit encoding. Detailed explanations of these categorical encodings and discretizations during sampling are
in Appendix A.1. Note that the bounding box positions bi are naturally continuous and there is no need for
discretization while sampling. The sampling pipeline is illustrated in Fig. 2.

Additional Bounding Box IoU Loss. To enhance bounding box generation quality, we integrate an
intersection-over-union (IoU)-based loss, Liou, into the denoising objective. This IoU loss aims to align the
denoised bounding boxes B̂ ∈ Rn×4 (a partial output of DV

θ) closely with the ground-truth B ∈ Rn×4. The
IoU loss is formulated as:

Liou = 1− 1
n

n∑
i=1

GIoU(B̂i, Bi), (5)

where n is the number of objects in the scene graph, and GIoU is the generalized IoU, proposed in Rezatofighi
et al. (2019), of the corresponding boxes. The final training loss then becomes:

L = Ld + λLiou, (6)

where λ is a hyperparameter that adjusts the balance between these two loss components. Note, Ld is given
in Eq. (4). We use λ = 1 in our experiments.

3.2 Conditional Image Generation

We use two diffusion-based conditional image generators to model the conditional image distribution p(I|S)
given generated scene graphs: one existing layout-to-image generator named LayoutDiffusion (Zheng et al.,
2023b), and one relation-aware image generator which is built upon ControlNet (Zhang et al., 2023b) by
ourselves, termed as Relation-ControlNet.

6

Under review as submission to TMLR

3.2.1 LayoutDiffusion

LayoutDiffusion (Zheng et al., 2023b), is a diffusion-based layout-to-image generation model. It uses a U-Net
architecture for the denoising process, with the layout condition enforced on the hidden features of the U-Net.
It first employs a transformer-based layout fusion module to capture the information in the given layout, and
then utilizes a cross-attention mechanism to fuse the image features and the layout representations inside the
denoising U-Net. The whole diffusion process is applied on the image pixel space. Following Ho et al. (2020);
Ho & Salimans (2022), LayoutDiffusion utilizes a standard mean-squared error loss to train the diffusion
model and the classifier-free guidance technique to support the layout condition.

LayoutDiffusion is trained and evaluated on the Visual Genome (Krishna et al., 2017) and COCO-Stuff (Cae-
sar et al., 2018) datasets, which is aligned with our dataset settings as described in Sec. 4.1. Given the superior
performance of LayoutDiffusion on these two datasets, we decide to adopt it as one of our conditional image
generator candidates. Specifically, we take the model checkpoints provided by the authors4 which generate
images of resolution 256× 256.

3.2.2 Relation-Aware Layout-to-Image Generation (Relation-ControlNet)

As discussed in Sec. 2, the existing conditional image generators are either conditioned only on object labels
and their locations (layout-to-image models), or object labels and relation labels but no object locations
(scene graph-to-image models). To fully utilize the data information generated by our DiffuseSG, we build a
relation-aware layout-to-image generator, which generates images conditioned on object labels, locations and
relation labels. We call the model, which is based on ControlNet (Zhang et al., 2023b), Relation-ControlNet.

ControlNet. ControlNet (Zhang et al., 2023b) is a neural network architecture which can add spatial
conditioning controls to large pre-trained text-to-image diffusion models. When it is instantiated on the
pre-trained Stable Diffusion (Rombach et al., 2022) model, the encoder part of the U-Net is first cloned.
The image feature is inputted to both the original U-Net encoder and the cloned counterpart, while the
cloned network blocks receive an additional control input. The output of the cloned U-Net encoder is then
injected into the original U-Net decoder via zero convolution layers. The control input has the same spatial
dimension as the input/output image. Since the U-Net in Stable Diffusion works on the latent image features,
the control input is also transformed by convolution layers to match the input dimension of the diffusion
U-Net. The original training loss in Stable Diffusion is used. During training, only the weights of the
cloned U-Net encoder and the newly introduced convolution layers get updated. We utilize ControlNet with
Stable Diffusion V1.5 to build our relation-aware layout-to-image generation model. Specifically, we tailor
the control input and the text prompt of ControlNet to encode the object label, object location, relation
label, and relation location information. We train the ControlNet to produce images of resolution 256×256.

Control Input. The control input to the ControlNet is to specify the spacial information. We utilize this
to provide the spacial information of both objects and relations given a scene graph. Specifically, assuming
there are Co object categories and Cr relation classes given a dataset, we construct a control input of size
(256, 256, Co + Cr) to encode the object and relation locations, where we use one channel to represent
one specific object/relation category. That is, the channel Ci is to provide the location information of
object/relation class Ci, and all objects or relations having the same class are encoded in the same channel.
The first Co channels are for object classes while the last Cr channels are for relation categories. The relation
location is determined via the “between” operation given the subject and object bounding boxes as defined
in Hoe et al. (2024). The bounding box positions are mapped from [0, 1] in continuous space to [0, 1, ..., 255]
discrete grids to form the control input.

Text Prompt. Given the specific version of Stable Diffusion (V1.5) used, the text prompt encoder can
only encode 77 tokens. Therefore, we let the text prompt only include the relation information. We define a
relation sentence as a concatenation of the subject label, the relation label, and the object label for a relation
triplet, ending with a period, e.g., “cat under chair.”. Given the limited capability of the text encoder, we
decide to only encode the unique relation sentences given a scene graph. Same as in Zhang et al. (2023b),
during training, the text prompt is replaced with an empty string at a probability of 50%.

4https://github.com/ZGCTroy/LayoutDiffusion

7

https://github.com/ZGCTroy/LayoutDiffusion

Under review as submission to TMLR

4 Experiments

We conduct all experiments on the Visual Genome (Krishna et al., 2017) and COCO-Stuff (Caesar et al.,
2018) datasets. The network architecture and implementation details of DiffuseSG, and the training details
of Relation-ControlNet are in Appendices A.2 to A.4. Our experiments mainly focus on the scene graph
generation part since this is the main contribution of this work. All code, data, and pre-trained models will
be made available after acceptance.

4.1 Datasets

Visual Genome (VG). We use the same pre-processing procedure and train/val splits as previous scene
graph detection works (Xu et al., 2017; Zellers et al., 2018; Tang et al., 2020; Li et al., 2022a), but only the
scene graph annotations are used. This pre-processed dataset contains 57, 723 training and 5, 000 validation
scene graphs with 150 object and 50 relation categories. For each scene graph, we ensure that there will be
only one edge label if there exists a directed edge (relation) between two nodes (objects). Each scene graph
has node numbers between 2 and 62, with an average of 5.15 relations per instance.

COCO-Stuff. COCO-Stuff contains 171 object types (including 80 thing and 91 stuff categories). It comes
with object label and bounding box annotations, but no relation labels. Following Johnson et al. (2018),
we manually assign a relation label between two bounding boxes based on their relative positions, with a
relation set of 6 labels: left of, right of, above, below, inside, and surrounding. Same as in Kong et al.
(2022), we remove small bounding boxes (≤ 2% image area) and instances tagged as “iscrowd”, resulting in
118, 262 training and 4, 999 validation scene graphs. Each scene graph is a fully-connected graph without
self-loop, with node numbers between 1 and 33.

4.2 Scene Graph Generation Experiments

4.2.1 Evaluation Metrics

We use maximum mean discrepancy (MMD), triplet label total variation difference (Triplet TV), and our
proposed novel object detection-based F1 scores to measure the model performance on the scene graph
generation task.

MMD. Inspired by the relevant graph generation literature (You et al., 2018; Liao et al., 2019), we use
MMDs to measure the similarities between the generated scene graphs and the ground-truth ones on the
node degree, node label, and edge label distributions respectively. Empirically, let {xi}n

i=1 be the generated
samples and {yj}m

j=1 be the ground-truth ones. The MMD value is calculated as 1
n2

∑n
i=1

∑n
j=1 k(xi, xj) +

1
m2

∑m
i=1

∑m
j=1 k(yi, yj) − 2

nm

∑n
i=1

∑m
j=1 k(xi, yj), where n and m are the numbers of generated samples

and ground-truth ones respectively, and we use the Gaussian kernel as the kernel function k(·, ·). The lower
MMD value means the closer to the ground-truth distribution.

Triplet TV. As the labels of the <subject, relation, object> triplets lie in a very high dimension (the
cross product of potential subject, relation, and object types), it is computationally infeasible to calculate
the triplet label MMD. As a compromise, we use the total variation difference (TV) to measure the marginal
distribution difference between the generated triplet label set and the ground-truth one. Specifically, assum-
ing that the generated empirical distribution is p̂(x) with the ground-truth being q̂(x) for a triplet x in the
union X of the generated and ground-truth triplet label sets, the TV is calculated as 1

2
∑

x∈X |p̂(x)− q̂(x)|.
The lower the TV value, the better.

Detection-based F1 Scores. We propose a set of novel object detection-based F1 scores to evaluate
the generated bounding box layout quality (including both the location and node label). Specifically, for a
generated layout, we calculate a F1 score between this generated layout and every ground-truth layout, and
take the maximum one as the final score. Assume there are N node categories. Given a pair of generated
and ground-truth layouts, the F1 score is calculated as F1 =

∑
c∈N (wc · F1c), where F1c is the F1 score for

a node category c and wc is its weighting coefficient. Calculating F1c needs to decide whether two bounding
boxes match or not. We use 10 different bounding box IoU thresholds ranging from 0.05 to 0.5 with a

8

Under review as submission to TMLR

step size of 0.05 to decide the bounding box match. That is, F1c = 1
10

∑
iou∈[0.05:0.05:0.5] F1(iou|c), where

F1(iou|c) means a F1 score between two layouts given a specific node category c and a IoU threshold iou.
We calculate 4 different types of F1 scores: (1) F1-Vanilla (F1-V), where wc is set to 1

|N | for every node
category; (2) F1-Area (F1-A), where wc is set to Area(c)∑

c∈N
Area(c)

and Area(c) is the average bounding box area

in the validation set for the node category c; (3) F1-Frequency (F1-F), where wc is set to Freq(c)∑
c∈N

Freq(c)
and

Freq(c) is the frequency of the node category c in the validation set; (4) F1-BBox Only (F1-BO), where the
F1 calculation is purely based on the bounding box locations, that is, we treat all bounding boxes as having
a single node category (|N | = 1 and wc = 1). The motivation of having F1-Area and F1-Frequency is that
we want some metrics to be slightly biased to those salient objects (appearing either in a large size in general
or more frequently). The higher the F1 scores, the better.

4.2.2 Baselines

We consider the following six baselines to compare to our DiffuseSG model.

(1) SceneGraphGen (Garg et al., 2021) is a scene graph generative model based on recurrent networks. It
is an autoregressive model where one object label or one relation label is generated at a time. This model
is not capable of producing object bounding boxes, and we can not specify the number of objects in a scene
graph to be generated during inference.

(2) VarScene (Verma et al., 2022) is a variational autoencoder-based generative model for scene graphs.
Similar to SceneGraphGen, it generates scene graphs without bounding boxes and can not accept number
of objects as parameter during inference. Using the released code5, we successfully replicate the results on
the VG dataset but encounter issues with COCO-Stuff, as its symmetric modeling of edges between nodes
prevents VarScene from generating directed graphs. Consequently, we report directed graph results on VG
but undirected graph results on COCO-Stuff.

(3) D3PM (Austin et al., 2021) is a discrete denoising diffusion probabilistic framework designed for discrete
data generation. We adopt its image generation model for the scene graph generation task; details are
in Appendix B. This model only generates node and edge labels.

(4) BLT (Kong et al., 2022) is a transformer-based layout generation model where only object labels and
bounding boxes are generated. The transformer is non-autoregressive, where all the attributes of the layout
are generated at the same time as discrete tokens. Bounding box locations are quantized into integers.

(5) LayoutDM (Inoue et al., 2023) is a discrete state-space diffusion model for layout generation. Similar
to BLT, this model is also not able to model relation labels and the bounding box locations are discretized.

(6) DiGress (Vignac et al., 2022) is a discrete denoising diffusion model for generating graphs with cate-
gorical node and edge labels. We add an additional input of discrete bounding box representation, same as
the one used in LayoutDM, to incorporate bounding box generation.

Among the six baselines, SceneGraphGen, VarScene, and LayoutDM can not deal with specification on
the number of objects for the scene graphs to be generated during sampling, while the other three can.
Comparing to those diffusion-based baselines (D3PM, LayoutDM, and DiGress), DiffuseSG performs the
diffusion process in the continuous space. For all the baselines, we train them from scratch using the
authors’ released code, with slight adaptation to the datasets.

4.2.3 Scene Graph Generation Results

Our DiffuseSG is trained with Eq. (6) and uses the binary-bit input representation. We also conduct ex-
periments with different input representations (binary-bit, scalar, one-hot) without the IoU loss Eq. (5):
DiffuseSG− (bit), DiffuseSG− (scalar), and DiffuseSG− (one-hot); as an ablation. To compare with Scene-
GraphGen, VarScene, and LayoutDM, while sampling with DiffuseSG, we do not fix the object numbers
but draw the number of objects from its empirical distribution on the validation set. This line of results

5https://github.com/structlearning/varscene/tree/main

9

https://github.com/structlearning/varscene/tree/main

Under review as submission to TMLR

Table 1: Scene graph generation results on the Visual Genome and COCO-Stuff validation sets. In each
column, the best value is bolded. N-MMD, D-MMD, and E-MMD are the MMD values calculated based
on node label distribution, node degree distribution, and edge label distribution respectively. T-TV (val) /
(train) is the Triplet TV calculated against validation / training triplet statistics. The training set has a
larger set of triplets than the validation, giving a more comprehensive evaluation.

Visual Genome (VG)
Method N-MMD↓ F1-V↑ F1-A↑ F1-F↑ F1-BO↑ D-MMD↓ E-MMD↓ T-TV (val)↓ T-TV (train)↓
LayoutDM 9.44e-3 0.161 0.291 0.368 0.766 - - - -
SceneGraphGen 8.77e-3 - - - - 3.79e-2 2.29e-2 0.987 0.979
VarScene 2.58e-2 - - - - 1.04e-2 3.91e-2 0.988 0.981
DiffuseSG∗ 9.52e-3 0.188 0.331 0.369 0.749 6.35e-3 3.25e-2 0.735 0.566
BLT 2.70e-2 0.181 0.300 0.376 0.708 - - - -
D3PM 7.69e-3 - - - - 3.07e-2 2.00e-2 0.816 0.772
DiGress 7.94e-3 0.157 0.263 0.282 0.732 8.89e-3 8.02e-3 0.718 0.706
DiffuseSG 6.64e-3 0.184 0.308 0.292 0.747 5.26e-3 3.46e-2 0.702 0.685
DiffuseSG− (bit) 6.57e-3 0.173 0.285 0.283 0.736 7.85e-3 3.40e-2 0.709 0.692
DiffuseSG− (scalar) 8.65e-3 0.168 0.267 0.276 0.712 7.69e-3 4.77e-2 0.729 0.713
DiffuseSG− (one-hot) 3.05e-3 0.142 0.249 0.253 0.689 8.94e-3 5.77e-2 0.795 0.751

COCO-Stuff
Method N-MMD↓ F1-V↑ F1-A↑ F1-F↑ F1-BO↑ D-MMD↓ E-MMD↓ T-TV (val)↓ T-TV (train)↓
LayoutDM 3.40e-4 0.274 0.330 0.508 0.824 - - - -
SceneGraphGen 3.79e-4 - - - - 2.59e-3 7.24e-4 0.904 0.895
VarScene 2.60e-2 - - - - 3.07e-1 9.32e-2 0.949 0.949
DiffuseSG∗ 1.22e-3 0.439 0.500 0.639 0.822 1.44e-4 1.59e-4 0.229 0.287
BLT 1.09e-1 0.322 0.389 0.526 0.807 - - - -
D3PM 4.92e-4 - - - - 0 1.29e-4 0.341 0.305
DiGress 1.06e-3 0.342 0.387 0.570 0.782 0 4.44e-3 0.515 0.398
DiffuseSG 5.53e-4 0.421 0.485 0.637 0.830 0 7.25e-5 0.270 0.219
DiffuseSG− (bit) 5.63e-4 0.422 0.481 0.634 0.821 0 7.94e-5 0.272 0.225
DiffuseSG− (scalar) 8.72e-4 0.380 0.432 0.605 0.788 0 4.65e-4 0.312 0.282
DiffuseSG− (one-hot) 2.35e-3 0.365 0.372 0.553 0.762 0 1.82e-3 0.439 0.332

is denoted as DiffuseSG∗. Since the other three models (D3PM, BLT, and DiGress) can specify the object
numbers during inference, when comparing with these three models, the ground-truth object numbers are
used for scene graph generation. For all our models and baselines, we consistently randomly sample a fixed
set of 1, 000 training samples to do model selection.

Tab. 1 shows the quantitative results. For each model, we generate 3 sets of layout or scene graph samples,
where the size of one set samples is equal to the number of instances in the respective validation set. Reported
results are the averaged results over the 3 sample sets. From the table, we can see that our DiffuseSG∗ and
DiffuseSG achieves the best results on most evaluation metrics. Comparing DiffuseSG∗ with LayoutDM,
SceneGraphGen, and VarScene, DiffuseSG∗ is better than these baselines on F1-V, F1-A, and F1-F scores
(describing both object labels and bounding box locations), D-MMD (measuring the graph connectivity), and
Triplet-TV (capturing the co-occurrence between objects and their relevant edge labels). Notably, DiffuseSG∗

is better than the second best model SceneGraphGen by 83.25% (VG) and 94.44% (COCO-Stuff) regarding
D-MMD, and by 25.53% (VG) and 74.67% with respect to T-TV (val). DiffuseSG∗ is only worse than
SceneGraphGen on N-MMD (VG) and E-MMD (VG), and LayoutDM on N-MMD (COCO-Stuff) and F1-
BO (VG and COCO-Stuff); but the differences are marginal. Comparing DiffuseSG with BLT, D3PM, and
DiGress, DiffuseSG is better than these baselines on all F1 scores (except F1-F on VG), and Triplet-TV.
Remarkably, on COCO-Stuff, DiffuseSG is 23.10%, 25.32%, and 11.75% better than DiGress with regard to
F1-V, F1-A, and F1-F respectively. DiffuseSG is only worse than D3PM on N-MMD (COCO-Stuff), BLT
on F1-F (VG), and DiGress on E-MMD (VG); but all the gaps are small.

10

Under review as submission to TMLR

Scene Graph Generation Image Generation Scene Graph Generation Image Generation

cat window
other

wall
wood

wall
concrete

inside
surrounding

left
of

right of

left
of

right
of

left of

right
of

left
of

right
ofright

of

left
of

person

seasurf-
board surrounding

below

above

inside

inside

surrounding

light-1

pillow-
2bed

above

above

has

light-2pillow-
1

person

door

train

has

rooflogo

windowof

near
has near

person

surfboard

sea

cat

wall
wood

wall
concrete

window other

door
logo person

roof

train
window

pillow-1

bed

light-1light-2
pillow-2

Visual Genome COCO-Stuff

Figure 3: Scene graph - image pair generation qualitative results. Scene graphs are generated by
DiffuseSG and the corresponding 256× 256 images are produced by LayoutDiffusion (Zheng et al., 2023b).

Qualitative Results. Some qualitative results of DiffuseSG are shown in Fig. 3 (more in Appendix D.1).
As can be seen, the generated scene graphs are reasonable. On VG, DiffuseSG learns the sparsity of the
semantic edges. While on COCO-Stuff, DiffuseSG captures the fully-connected graph pattern.

Ablations. Comparing DiffuseSG with DiffuseSG− (bit) on the F1 scores, we can see the effectiveness of
our proposed IoU loss. Because it measures area instead of just distances in individual dimensions, resulting
in a better bounding box generation quality. Comparing among the three different input encoding methods
on DiffuseSG−, the binary-bit representation works the best on both datasets.

4.2.4 Scene Graph Completion

Our DiffuseSG is versatile; besides doing the pure scene graph generation, it can also achieve a variety of
scene graph completion tasks. We mainly follow Lugmayr et al. (2022) for all the completions. All completion
tasks are conducted on VG.

Single Node Label Completion. In this setting, we randomly masked out one node label per scene graph
in the validation set. For each scene graph, we keep all the bounding box locations and edge labels, and let
the model complete one node label given the remaining ones. The node whose label is masked out has degree
(sum of in-degree and out-degree) at least 1. This random masking is only done once, that is, it is fixed when
evaluating the models. For each validation scene graph, we conduct the completion 200 times, and report
the Hit Rate @ K (HR@K) and mean accuracy (mA) values. For each masked scene graph, to calculate
the HR@K, we first build a node label histogram from the 200 completions over the 150 object categories,
and then keep the predictions from the K most frequently predicted node categories. We assign a score of 1
if there is one prediction from the kept prediction set matches the ground-truth node label, and a score of 0
otherwise. If there are multiple categories on the boundary when selecting the top K predicted categories,
we randomly select some of them to make it exact K categories. Accuracy is defined as the ratio of the
correct predictions (matched to the ground-truth) among the 200 predictions. We then respectively take the
average value of HR@K and accuracy over the whole validation set to get the final validation HR@K and mA
scores. Tab. 2 shows the HR@1/10/50/100 and mA results on the single node label completion task. As the
results suggested, on all evaluation metrics, our DiffuseSG is consistently better than the DiGress (Vignac
et al., 2022) baseline.

Single Edge Label Completion. Similar to the above single node label completion task, we conduct
another single edge label completion task, where one edge label is masked out per validation scene graph.
The experiment setting and evaluation metrics are the same as the single node label completion setting. For

11

Under review as submission to TMLR

Table 2: Scene graph completion results on VG validation set.
Single Node Label Completion Single Edge Label Completion

Method HR@1 HR@10 HR@50 HR@100 mA HR@1 HR@10 HR@25 HR@50 mA
DiGress 12.4 21.2 65.3 91.2 20.7 9.8 30.9 41.4 63.2 15.8
DiffuseSG 13.9 25.7 73.2 94.5 23.6 10.1 35.7 46.2 65.3 19.4

shirt handleg

man head

has has

has

has

arm

wearing

bird-3 wing-3

bird-2

bird-1 wing-1

of

of

of

wing-2

Figure 4: Single bounding box completion. The left figure shows the input scene graph, where only
the edges and corresponding node labels are shown. The blue node’s bounding box has been masked out.
The middle figure shows the untouched (input) bounding boxes with labels in red, the one masked out in
blue, along with the corresponding ground-truth image. The right figure shows our generated bounding box
heatmap in white along with the target ground-truth bounding box (to be completed) in blue. The heatmap
is obtained via generating the bounding box 100 times; the whiter the area, the more overlap at the location.

each partially masked scene graph, we predict the edge label 200 times. Tab. 2 shows the HR@1/10/25/50
and mA results. Again, our DiffuseSG is consistently better than DiGress on all evaluation metrics.

Single Bounding Box Completion. Some qualitative examples from DiffuseSG on the single bounding
box completion task are shown in Fig. 4 (more in Appendix D.2), where one bounding box location is masked
out given a validation scene graph, with all other information untouched. The node whose bounding box is
masked out has degree at least 1. Note that neither the image nor any image feature is given to the model
for the completion task; the image is only for visualization. As seen, DiffuseSG can complete the bounding
box in reasonable locations.

4.3 Conditional Image Generator Discussion

As described in Sec. 3.2, we have two conditional image generators: a layout-to-image model LayoutDiffu-
sion (Zheng et al., 2023b) and a relation-aware model Relation-ControlNet. In this section, we are going
to compare the image generation quality between these two generators. The COCO-Stuff dataset only has
spatial relation types, which are less semantically meaningful because these relations can be simply decided
from relative object bounding box locations. Thus we only use the VG dataset for the comparison.

4.3.1 Scene Graph Classification Evaluation

The scene graph classification evaluation is to measure whether the generated images follow the condition
control, that is, the object labels and locations, and the relation labels. For each generated image, we use
trained scene graph classification models to classify scene graphs under two settings: (1) PredCls, where
given the ground-truth object labels and bounding box locations, to classify the relation labels; and (2)
SGCls, where given the object bounding box locations, to classify both object labels and relation labels.
The PredCls setting is to evaluate whether the generated images contain the input relations at appropriate
locations, while the SGCls setting is to check whether the objects and relations are generated properly as a
whole at the given locations.

We use classification accuracies as the evaluation metrics. We calculate two types of accuracies: one for
object labels, and one for triplet labels (the subject, relation, object labels in the <subject, relation,
object> triplets). Given the long-tailed nature of the relation labels in the VG dataset, while calculating

12

Under review as submission to TMLR

Table 3: Scene graph classification evaluation results under the PredCls and SGCls settings.
PredCls SGCls

Method Mean Triplet Acc ↑ Object Acc ↑ Mean Triplet Acc ↑ FID ↓
Ground-Truth Images 30.65 70.31 15.77 0.0
LayoutDiffusion 27.85 56.79 10.04 15.73
Object-ControlNet 26.68 55.05 8.35 15.32
Relation-ControlNet 27.08 47.94 9.07 15.99

Table 4: Relation control evaluation results under the PredCls and SGCls settings.
PredCls SGCls

Method Mean Triplet Acc ↑ Object Acc ↑ Mean Triplet Acc ↑
LayoutDiffusion 21.10 58.32 9.10
Object-ControlNet 17.88 56.28 7.95
Relation-ControlNet 24.23 55.21 10.95

the triplet label accuracy, we first take the average of the accuracies for each relation category, and then
average across all relation categories, which weighs each relation category equally. The triplet accuracy is
calculated under both the PredCls and SGCls settings while the object accuracy is calculated only under
SGCls, since all the object information is given in PredCls.

The scene graph classification models used are the MOTIFS-SUM-TDE models 6 (Tang et al., 2020), given
their popularity, easy access, and reasonable performance. Besides LayoutDiffusion and Relation-ControlNet,
we also consider another variant of ControlNet as a baseline, named Object-ControlNet. The difference be-
tween Object-ControlNet and Relation-ControlNet is that in Object-ControlNet, the control input contains
only the object information and the text prompt includes all English words of object labels (allowing repe-
titions). This can be considered as an ablation of Relation-ControlNet, which omits relation information.

Given an image generator, we use the 5, 000 scene graphs from the VG’s validation set, each to generate 5
images, resulting in 25, 000 images. The accuracy results are presented in Tab. 37, where the object label
accuracy is denoted as Object Acc and the triplet label accuracy is denoted as Mean Triplet Acc. We
also report the accuracies of the scene graph classifiers on VG’s ground-truth validation images, to show the
upper bounds of the accuracy values. We also present the FID scores of the generated images to show the
general image generation quality.

As the results suggested, the images generated from all conditional image generators have comparable general
image quality (similar FIDs). However, different image generators show different control abilities. Though
both LayoutDiffusion and Object-ControlNet receive the same object control information: object labels and
bounding box locations, the Object-ControlNet shows worse object renderings, which also results in worse
relation renderings. We believe this result difference is due to the different model architectures and training
strategies between these two models. The Relation-ControlNet includes relation labels as an additional
control input compared to Object-ControlNet, thus it has better triplet accuracies even with worse object
accuracy. The worse object renderings of Relation-ControlNet is reasonable. It is a common observation
that it is more difficult to generate images properly with more condition inputs. Note that even the triplet
accuracies of Relation-ControlNet are better than those of Object-ControlNet, the differences are marginal
(0.4 under PredCls and 0.72 under SGCls), and they are still worse than those of LayoutDiffusion. This is
due to the fact that in VG, many relations can be inferred from bounding box positions. This is an artifact
of the dataset and not a general problem at hand.

6The model checkpoints are downloaded from https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch.
7As discussed in Appendix C.1, the result calculation in this Table is actually inferior to LayoutDiffusion. However, it

achieves the best accuracies compared to both Object-ControlNet and Relation-ControlNet.

13

https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch

Under review as submission to TMLR

LayoutDiffusion

Object-ControlNet

Relation-ControlNet

beach

woman

Condition

Condition

Condition

Relation Triplet:
<woman walking on beach>

Relation Triplet:
<woman standing on beach>

beach

woman

beach

woman

beach

woman

beach

woman

beach

woman

Figure 5: Relation control evaluation qualitative results. The same layout condition containing an
object woman and an object beach with their corresponding bounding box locations is fed to all the models.
Additionally, the relation information is given to the Relation-ControlNet model. We draw 10 image samples
from both LayoutDiffusion and Object-ControlNet, while with Relation-ControlNet, we draw 5 samples on
the relations <woman standing on beach> and <woman walking on beach> respectively.

14

Under review as submission to TMLR

Table 5: Scene graph detection (SGDet) results of SGTR.
Data Setting mR@50 mR@100 R@50 R@100 Head Body Tail
Original 11.9 16.0 23.7 27.0 26.6 19.8 9.0
Additional 12.7 16.7 23.6 26.8 26.4 20.7 9.7

4.3.2 Relation Control Evaluation

To show the benefits of Relation-ControlNet, we build an evaluation set specifically designed for relation
control evaluation. Among the 50 VG relation categories, we choose the subset containing carrying, eating,
holding, laying on, looking at, lying on, playing, riding, sitting on, standing on, using, and
watching. These are the relations which can not be easily determined by relative bounding box locations.
In the validation set, we find the <subject, relation, object> triplets containing those relation categories.
For each such triplet, we find its closest triplet inside the validation set. The closest triplet is to have the
same subject and object labels, but a different relation label as the original one. The relative bounding
box position of the subject and the object of the closest triplet is also the same as the original one8. We
discard the triplets for which we can not find the closest counterpart. If there are more than one such closest
triplets, we choose the one which has the most similar subject and object bounding box aspect ratios as
the original triplet. We then swap the relation labels between the triplet and its closest counterpart. We
keep all the triplets, their closest triplets, and the triplets with swapped relations. This process gives us 328
triplets. The swapping procedure guarantees that for the same pair of subject and object, there exist two
different relation types, which is agnostic to the object-only conditioned models, but important to the relation
conditioned model. For each triplet, we generate 5 images from LayoutDiffusion, Object-ControlNet, and
Relation-ControlNet respectively. The corresponding object and triplet accuracies are reported in Tab. 4.

This setting shows the benefits of Relation-ControlNet. As indicated in the results, though Relation-
ControlNet is worse than LayoutDiffusion and Object-ControlNet in terms of object accuracy, its triplet
accuracies are significantly better than the other two. This is because LayoutDiffusion and Object-ControlNet
can not take the relation label as input but Relation-ControlNet can. As the qualitative examples shown
in Fig. 5, when the relation information is inputted to the model, Relation-ControlNet can constantly render
the appropriate postures for the woman, either standing or walking depending on the condition. However,
for both LayoutDiffusion and Object-ControlNet, since these models can not read in the relation informa-
tion, the models have to render the postures of the woman via their own decisions, which may be standing,
walking, or even bending the knees. Though our Relation-ControlNet is not perfect, it implies the usefulness
of generating scene graphs. Generating scene graphs, which contain object labels and locations along with
relation labels, can provide more controllability for image generation.

Relation-ControlNet is designed for a harder task, where the relation information is also part of the condition.
However, given the inferior performance of Relation-ControlNet in the real validation setting (Tab. 3) and
limitations of current datasets (many of the relations in VG can be easily determined by relative bounding
box positions), we use LayoutDiffusion as the conditional image generator for experiments that follow.

4.4 Scene Graph Detection Evaluation

We take the DiffuseSG trained on VG, and pair it with the trained LayoutDiffusion model (Zheng et al.,
2023b) to form 5, 000 scene graph - image pairs, treated as additional training data for the downstream
scene graph detection (SGDet) task: given an image, detecting the object labels and locations, as well as
the relation labels. Those additional scene graphs only contain body relations as defined in Li et al. (2021a).
Detailed process is in Appendix C.2.

We use the SGTR model (Li et al., 2022a), as an example, to show the value of our generated scene graph
- image pairs. We train SGTR for the SGDet task under two training data settings: (1) Original, where
the training data is the original Visual Genome training data in Li et al. (2022a); (2) Additional, where

8The relative bounding box positions are defined as the same way used in the COCO-Stuff dataset.

15

Under review as submission to TMLR

besides the original training data, we add in our generated 5, 000 scene graph - image pairs. Note that these
two settings only differ in the training data; both validation and testing data is still the original data for
the SGDet task. For both data settings, we train SGTR 4 times and the averaged test results are reported
in Tab. 5, where the model for testing is selected via best mR@100 on the validation set. We report results
on mean Recalls (mR@50 and mR@100), Recalls (R@50 and R@100), and mR@100 on the head, body, and
tail relation partitions (respectively indicated as Head, Body, and Tail in the Table).

Comparing our Additional results with the Original ones, we can see that our generated scene graph - image
pairs do have value, which brings improved results on Body and Tail, and comparable results on Head, which
results in increased results on mean Recalls and comparable results on Recalls. As suggested in Tang et al.
(2020), mean Recall is a better evaluation metric than Recall for the scene graph detection task, because
it is less biased to the dominant relation classes. Note that although the generated scene graphs in the
additional training data only contain body relations, the Tail results also get improved. This is reasonable,
because scene graph is a structure, increasing the confidence of some part of the structural prediction will
increase the confidence of other part as well, especially for the tail relations, where the prediction confidence
is usually low.

5 Conclusion

In this work, we propose a novel framework for joint scene graph - image generation. As part of this, we
propose DiffuseSG, a diffusion-based model for generating scene graphs that adeptly handles mixed discrete
and continuous attributes. DiffuseSG demonstrates superior performance on both unconditional scene graph
generation and conditional scene graph completion tasks. By pairing DiffuseSG with a conditional image
generation model, the joint scene graph - image pair distribution can be obtained. We illustrate the benefits
of DiffuseSG both on its own and as part of joint scene graph - image generation. In the future, we are
interested in modeling the joint distribution with a single model.

References
Diego Martin Arroyo, Janis Postels, and Federico Tombari. Variational transformer networks for layout

generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13642–13652, 2021.

Oron Ashual and Lior Wolf. Specifying object attributes and relations in interactive scene generation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 4561–4569, 2019.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems,
34:17981–17993, 2021.

Bashirul Azam Biswas and Qiang Ji. Probabilistic debiasing of scene graphs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10429–10438, 2023.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1209–1218, 2018.

Shang Chai, Liansheng Zhuang, and Fengying Yan. Layoutdm: Transformer-based diffusion model for layout
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 18349–18358, 2023.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Jiaxin Cheng, Xiao Liang, Xingjian Shi, Tong He, Tianjun Xiao, and Mu Li. Layoutdiffuse: Adapting
foundational diffusion models for layout-to-image generation. arXiv preprint arXiv:2302.08908, 2023.

16

Under review as submission to TMLR

Hyuna Cho, Minjae Jeong, Sooyeon Jeon, Sungsoo Ahn, and Won Hwa Kim. Multi-resolution spectral
coherence for graph generation with score-based diffusion. Advances in Neural Information Processing
Systems, 36, 2024.

Vinay Damodaran, Sharanya Chakravarthy, Akshay Kumar, Anjana Umapathy, Teruko Mitamura, Yuta
Nakashima, Noa Garcia, and Chenhui Chu. Understanding the role of scene graphs in visual question
answering. arXiv preprint arXiv:2101.05479, 2021.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols, and
Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design applications. In Proceedings
of the 30th annual ACM symposium on user interface software and technology, pp. 845–854, 2017.

Helisa Dhamo, Azade Farshad, Iro Laina, Nassir Navab, Gregory D Hager, Federico Tombari, and Christian
Rupprecht. Semantic image manipulation using scene graphs. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5213–5222, 2020.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106
(496):1602–1614, 2011. doi: 10.1198/jasa.2011.tm11181. URL https://doi.org/10.1198/jasa.2011.
tm11181. PMID: 22505788.

Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and Aleksander Holynski. Diffusion self-guidance for
controllable image generation. Advances in Neural Information Processing Systems, 36:16222–16239, 2023.

Azade Farshad, Yousef Yeganeh, Yu Chi, Chengzhi Shen, Böjrn Ommer, and Nassir Navab. Scenegenie:
Scene graph guided diffusion models for image synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshop, pp. 88–98, 2023.

Sarthak Garg, Helisa Dhamo, Azade Farshad, Sabrina Musatian, Nassir Navab, and Federico Tombari.
Unconditional scene graph generation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 16362–16371, 2021.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to sequence
text generation with diffusion models. arXiv preprint arXiv:2210.08933, 2022.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and José
Lezama. Photorealistic video generation with diffusion models. In European Conference on Computer
Vision, pp. 393–411. Springer, 2024.

Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S Davis, Vijay Mahadevan, and Abhinav Shrivas-
tava. Layouttransformer: Layout generation and completion with self-attention. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1004–1014, 2021.

Zeeshan Hayder and Xuming He. Dsgg: Dense relation transformer for an end-to-end scene graph generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 28317–
28326, 2024.

Sen He, Wentong Liao, Michael Ying Yang, Yongxin Yang, Yi-Zhe Song, Bodo Rosenhahn, and Tao Xi-
ang. Context-aware layout to image generation with enhanced object appearance. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 15049–15058, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

17

https://doi.org/10.1198/jasa.2011.tm11181
https://doi.org/10.1198/jasa.2011.tm11181

Under review as submission to TMLR

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Jiun Tian Hoe, Xudong Jiang, Chee Seng Chan, Yap-Peng Tan, and Weipeng Hu. Interactdiffusion: Interac-
tion control in text-to-image diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6180–6189, 2024.

Mude Hui, Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, Yuwang Wang, and Yan Lu. Unifying layout
generation with a decoupled diffusion model. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1942–1951, 2023.

Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Layoutdm: Discrete dif-
fusion model for controllable layout generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10167–10176, 2023.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a free tool
to discover chemistry for biology. Journal of chemical information and modeling, 52(7):1757–1768, 2012.

Zhaoyun Jiang, Jiaqi Guo, Shizhao Sun, Huayu Deng, Zhongkai Wu, Vuksan Mijovic, Zijiang James Yang,
Jian-Guang Lou, and Dongmei Zhang. Layoutformer++: Conditional graphic layout generation via con-
straint serialization and decoding space restriction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 18403–18412, 2023.

Tianlei Jin, Fangtai Guo, Qiwei Meng, Shiqiang Zhu, Xiangming Xi, Wen Wang, Zonghao Mu, and Wei
Song. Fast contextual scene graph generation with unbiased context augmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6302–6311, 2023.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the system
of stochastic differential equations. In International Conference on Machine Learning, pp. 10362–10383.
PMLR, 2022.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. arXiv preprint
arXiv:2302.03596, 2023.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1219–1228, 2018.

Deunsol Jung, Sanghyun Kim, Won Hwa Kim, and Minsu Cho. Devil’s on the edges: Selective quad attention
for scene graph generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18664–18674, 2023.

Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori. Layoutvae: Stochastic
scene layout generation from a label set. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9895–9904, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.

Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. Constrained graphic layout gener-
ation via latent optimization. In Proceedings of the 29th ACM International Conference on Multimedia,
pp. 88–96, 2021.

Jinseok Kim and Tae-Kyun Kim. Arbitrary-scale image generation and upsampling using latent diffusion
model and implicit neural decoder. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9202–9211, 2024.

18

https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

Under review as submission to TMLR

Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, and Irfan Essa. Blt: bidirec-
tional layout transformer for controllable layout generation. In European Conference on Computer Vision,
pp. 474–490. Springer, 2022.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision
using crowdsourced dense image annotations. International journal of computer vision, 123:32–73, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept cus-
tomization of text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1931–1941, 2023.

Sanjoy Kundu and Sathyanarayanan N Aakur. Is-ggt: Iterative scene graph generation with generative
transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6292–6301, 2023.

Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng Gong, Ming-Hsuan Yang, and Weilong Yang.
Neural design network: Graphic layout generation with constraints. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pp. 491–506.
Springer, 2020.

Elad Levi, Eli Brosh, Mykola Mykhailych, and Meir Perez. Dlt: Conditioned layout generation with joint
discrete-continuous diffusion layout transformer. arXiv preprint arXiv:2303.03755, 2023.

Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. Layoutgan: Synthesizing graphic
layouts with vector-wireframe adversarial networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(7):2388–2399, 2020a.

Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu, Christina Wang, and Tingfa Xu. Attribute-conditioned
layout gan for automatic graphic design. IEEE Transactions on Visualization and Computer Graphics, 27
(10):4039–4048, 2020b.

Jiankai Li, Yunhong Wang, Xiefan Guo, Ruijie Yang, and Weixin Li. Leveraging predicate and triplet
learning for scene graph generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 28369–28379, 2024.

Rongjie Li, Songyang Zhang, Bo Wan, and Xuming He. Bipartite graph network with adaptive message
passing for unbiased scene graph generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11109–11119, 2021a.

Rongjie Li, Songyang Zhang, and Xuming He. Sgtr: End-to-end scene graph generation with transformer.
In proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 19486–19496,
2022a.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm
improves controllable text generation. Advances in Neural Information Processing Systems, 35:4328–4343,
2022b.

Yikang Li, Tao Ma, Yeqi Bai, Nan Duan, Sining Wei, and Xiaogang Wang. Pastegan: A semi-parametric
method to generate image from scene graph. Advances in Neural Information Processing Systems, 32,
2019.

Zejian Li, Jingyu Wu, Immanuel Koh, Yongchuan Tang, and Lingyun Sun. Image synthesis from layout with
locality-aware mask adaption. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 13819–13828, 2021b.

19

Under review as submission to TMLR

Jingyun Liang, Yuchen Fan, Kai Zhang, Radu Timofte, Luc Van Gool, and Rakesh Ranjan. Movideo:
Motion-aware video generation with diffusion model. In European Conference on Computer Vision, pp.
56–74. Springer, 2024.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel Urtasun, and
Richard Zemel. Efficient graph generation with graph recurrent attention networks. Advances in neural
information processing systems, 32, 2019.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and Weizhu Chen.
Text generation with diffusion language models: A pre-training approach with continuous paragraph
denoise. In International Conference on Machine Learning, pp. 21051–21064. PMLR, 2023.

Zhihang Lin, Mingbao Lin, Meng Zhao, and Rongrong Ji. Accdiffusion: An accurate method for higher-
resolution image generation. In European Conference on Computer Vision, pp. 38–53. Springer, 2024.

Jinxiu Liu and Qi Liu. R3cd: Scene graph to image generation with relation-aware compositional contrastive
control diffusion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 3657–
3665, 2024.

Shanyuan Liu, Ao Ma, Xiaoyu Wu, Dawei Leng, Yuhui Yin, et al. Hico: Hierarchical controllable diffusion
model for layout-to-image generation. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a.

Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha Kumar. Learning design
semantics for mobile apps. In Proceedings of the 31st Annual ACM Symposium on User Interface Software
and Technology, pp. 569–579, 2018.

Xiaohong Liu, Xiongkuo Min, Guangtao Zhai, Chunyi Li, Tengchuan Kou, Wei Sun, Haoning Wu, Yixuan
Gao, Yuqin Cao, Zicheng Zhang, et al. Ntire 2024 quality assessment of ai-generated content challenge. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6337–6362,
2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:
Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Andrew Melnik, Michal Ljubljanac, Cong Lu, Qi Yan, Weiming Ren, and Helge Ritter. Video diffusion
models: A survey. arXiv preprint arXiv:2405.03150, 2024.

Zichen Miao, Jiang Wang, Ze Wang, Zhengyuan Yang, Lijuan Wang, Qiang Qiu, and Zicheng Liu. Training
diffusion models towards diverse image generation with reinforcement learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10844–10853, 2024.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. Proceedings of
the AAAI Conference on Artificial Intelligence, 33(01):4602–4609, Jul. 2019. doi: 10.1609/aaai.v33i01.
33014602. URL https://ojs.aaai.org/index.php/AAAI/article/view/4384.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe, Matthias
Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far. arXiv preprint
arXiv:2112.09992, 2021.

Nithin Gopalakrishnan Nair, Anoop Cherian, Suhas Lohit, Ye Wang, Toshiaki Koike-Akino, Vishal M Patel,
and Tim K Marks. Steered diffusion: A generalized framework for plug-and-play conditional image syn-
thesis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20850–20860,
2023.

20

https://ojs.aaai.org/index.php/AAAI/article/view/4384

Under review as submission to TMLR

Tianwen Qian, Jingjing Chen, Shaoxiang Chen, Bo Wu, and Yu-Gang Jiang. Scene graph refinement network
for visual question answering. IEEE Transactions on Multimedia, 2022.

Zhiwu Qing, Shiwei Zhang, Jiayu Wang, Xiang Wang, Yujie Wei, Yingya Zhang, Changxin Gao, and
Nong Sang. Hierarchical spatio-temporal decoupling for text-to-video generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6635–6645, 2024.

Leigang Qu, Wenjie Wang, Yongqi Li, Hanwang Zhang, Liqiang Nie, and Tat-Seng Chua. Discriminative
probing and tuning for text-to-image generation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 7434–7444, 2024.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio Savarese. Gen-
eralized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 658–666, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241.
Springer, 2015.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural Information Processing
Systems, 35:36479–36494, 2022.

Mohammad Amin Shabani, Zhaowen Wang, Difan Liu, Nanxuan Zhao, Jimei Yang, and Yasutaka Furukawa.
Visual layout composer: Image-vector dual diffusion model for design layout generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9222–9231, 2024.

Ivan Skorokhodov, Willi Menapace, Aliaksandr Siarohin, and Sergey Tulyakov. Hierarchical patch diffusion
models for high-resolution video generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7569–7579, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pp. 2256–2265.
PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

Mingzhen Sun, Weining Wang, Zihan Qin, Jiahui Sun, Sihan Chen, and Jing Liu. Glober: coherent non-
autoregressive video generation via global guided video decoder. Advances in Neural Information Process-
ing Systems, 36, 2023.

Wei Sun and Tianfu Wu. Image synthesis from reconfigurable layout and style. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10531–10540, 2019.

21

https://openreview.net/forum?id=PxTIG12RRHS

Under review as submission to TMLR

Wei Sun and Tianfu Wu. Learning layout and style reconfigurable gans for controllable image synthesis.
IEEE transactions on pattern analysis and machine intelligence, 44(9):5070–5087, 2021.

Tristan Sylvain, Pengchuan Zhang, Yoshua Bengio, R Devon Hjelm, and Shikhar Sharma. Object-centric
image generation from layouts. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 2647–2655, 2021.

Endre Süli and David F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003.
doi: 10.1017/CBO9780511801181.

Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. Unbiased scene graph gener-
ation from biased training. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3716–3725, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Tathagat Verma, Abir De, Yateesh Agrawal, Vishwa Vinay, and Soumen Chakrabarti. Varscene: A deep
generative model for realistic scene graph synthesis. In International Conference on Machine Learning,
pp. 22168–22183. PMLR, 2022.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734, 2022.

Yanhui Wang, Jianmin Bao, Wenming Weng, Ruoyu Feng, Dacheng Yin, Tao Yang, Jingxu Zhang, Qi Dai,
Zhiyuan Zhao, Chunyu Wang, et al. Microcinema: A divide-and-conquer approach for text-to-video
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8414–8424, 2024a.

Yunnan Wang, Ziqiang Li, Zequn Zhang, Wenyao Zhang, Baao Xie, Xihui Liu, Wenjun Zeng, and Xin Jin.
Scene graph disentanglement and composition for generalizable complex image generation. arXiv preprint
arXiv:2410.00447, 2024b.

Fanyue Wei, Wei Zeng, Zhenyang Li, Dawei Yin, Lixin Duan, and Wen Li. Powerful and flexible: Personalized
text-to-image generation via reinforcement learning. In European Conference on Computer Vision, pp.
394–410. Springer, 2024.

Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan Duan,
Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text generation. Advances in Neural
Information Processing Systems, 36:39957–39974, 2023.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative message
passing. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5410–
5419, 2017.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Mahashweta
Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation. arXiv preprint
arXiv:2405.11416, 2024.

Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang. Swingnn: Rethinking permutation
invariance in diffusion models for graph generation. arXiv preprint arXiv:2307.01646, 2023.

Ling Yang, Zhilin Huang, Yang Song, Shenda Hong, Guohao Li, Wentao Zhang, Bin Cui, Bernard Ghanem,
and Ming-Hsuan Yang. Diffusion-based scene graph to image generation with masked contrastive pre-
training. arXiv preprint arXiv:2211.11138, 2022.

Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai. Auto-encoding scene graphs for image captioning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10685–10694,
2019.

22

Under review as submission to TMLR

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Mingxuan Wang. Dinoiser: Diffused conditional
sequence learning by manipulating noises. arXiv preprint arXiv:2302.10025, 2023.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine learning, pp. 5708–5717.
PMLR, 2018.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Fei Huang, and Songfang Huang. Seqdiffuseq: Text diffusion with
encoder-decoder transformers. arXiv preprint arXiv:2212.10325, 2022.

Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene graph parsing with
global context. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5831–5840, 2018.

Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang Wei, Yuchen Zhang, and Hang Li. Make pixels
dance: High-dynamic video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8850–8860, 2024a.

Yu Zeng, Vishal M Patel, Haochen Wang, Xun Huang, Ting-Chun Wang, Ming-Yu Liu, and Yogesh Balaji.
Jedi: Joint-image diffusion models for finetuning-free personalized text-to-image generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6786–6795, 2024b.

Junyi Zhang, Jiaqi Guo, Shizhao Sun, Jian-Guang Lou, and Dongmei Zhang. Layoutdiffusion: Improving
graphic layout generation by discrete diffusion probabilistic models. arXiv preprint arXiv:2303.11589,
2023a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847,
2023b.

Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image generation from layout. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8584–8593, 2019.

Chaofan Zheng, Xinyu Lyu, Lianli Gao, Bo Dai, and Jingkuan Song. Prototype-based embedding network
for scene graph generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22783–22792, 2023a.

Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion: Con-
trollable diffusion model for layout-to-image generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22490–22499, 2023b.

Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH Lau. Content-aware generative modeling of graphic
design layouts. ACM Transactions on Graphics (TOG), 38(4):1–15, 2019.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document layout
analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–
1022. IEEE, 2019.

Yiwu Zhong, Liwei Wang, Jianshu Chen, Dong Yu, and Yin Li. Comprehensive image captioning via scene
graph decomposition. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XIV 16, pp. 211–229. Springer, 2020.

23

Under review as submission to TMLR

Table 6: Architecture details of our graph transformer.
Hyperparameter VG COCO-Stuff
Full tensor size (n× n) 64 × 64 40 × 40
Down block attention layers [1, 1, 3, 1] [1, 2, 6]
Up block attention layers [1, 1, 3, 1] [1, 2, 6]
Number of attention heads [3, 6, 12, 24] [3, 6, 12]
Window size 8 10
Token dimension 96 96
Feedforward layer dimension 384 384

A Implementation Details

A.1 Discrete Input Encodings

To effectively handle the discrete attributes, we implement the following encoding methods.

Scalar. Similar to prior works (Ho et al., 2020; Song et al., 2021; Karras et al., 2022; Jo et al., 2022),
we use zero-based indexing and map the scalar value to the range [−1, 1]. Specifically, during training,
denoting an integer label of an attribute as n and the number of categories of the attribute as m, where
n ∈ {0, 1, . . . , m−1}, the scalar representation becomes 2n

m−1 −1. During sampling, we first split the interval
[−1, 1] into equal-sized bins in accordance with the number of node or edge categories. We then decode the
continuous-valued network output into a discrete label based on the bin into which the output value falls.

Binary-Bit. Following Chen et al. (2022), we first convert the zero-based indexed integer node/edge at-
tribute into binary bits, and then remap the 0/1 bit values to -1/1 for improved training stability. During
sampling, we binarize each value in the network output based on its sign. That is, a positive value is inter-
preted as 1, and a negative value as 0. We then convert the binary representation back into an integer node
or edge label.

One-Hot. We remap the 0/1 values in the one-hot encoding of the original integer node/edge label to -1/1.
During sampling, we take the argmax value of the network output to obtain the categorical label.

A.2 DiffuseSG Network Architecture

Our proposed graph transformer has two essential components: (1) shifted-window attention mechanism, and
(2) downsampling/upsampling layers. In the case of graphs comprising n nodes, their adjacency matrices,
incorporating both node and edge attributes, are conceptualized as high-order tensors with n × n entries.
To handle graphs of varying sizes, we standardize the size of these adjacency matrices through padding.
Consequently, for different datasets, we accordingly adjust the design parameters to ensure the network is
proportionate and suitable for the specific requirements of each dataset.

Shifted-Window Attention. We adopt the shifted window attention technique from Liu et al. (2021),
which partitions the original grid-like feature map into smaller subregions. Within these subregions, local
message passing is executed using self-attention mechanisms. Additionally, the windows are interleavedly
shifted, facilitating cross-window message passing, thereby enhancing the overall efficiency and effectiveness
of the feature extraction process.

Downsampling/Upsampling Layer. We incorporate channel mixing-based downsampling/upsampling
operators to effectively diminish or augment the size of the feature map, thereby constructing hierarchical
representations. During downsampling, the feature map is divided into four segments based on the parity of
the row and column indices, followed by a concatenation process along the channel, which serves to reduce
the dimensions of height and width. The upsampling layer performs the inverse operations. It initially splits
the tensors along the channel and then reshapes them, effectively reversing the process conducted in the
downsampling layer. We also implement one MLP layer right after each downsampling/upsampling layer.

24

Under review as submission to TMLR

Table 7: Sampling parameters in the denoising process.
σmin = 0.002, σmax = 80, ρ = 7

Stmin = 0.05, Stmax = 50, Snoise = 1.003, Schurn = 40, T = 256
ti = (σmax

1
ρ + i

T −1 (σmin
1
ρ − σmax

1
ρ))ρ

γi = 1Stmin≤ti≤Stmax ·min(Schurn
T ,
√

2− 1)

Algorithm 1 DiffuseSG Sampler.
Require: Dθ, T, {ti}T

i=0, {γi}T −1
i=0 .

1: sample S̃
(0)
∼ N (0, t2

0I), Ŝ
(0)
sc = 0.

2: for i = 0 to T − 1 do
3: sample ϵ ∼ N (0, S2

noiseI)
4: t̂i ← (1 + γi)ti

5: S̃
(̂i)
← S̃

(i)
+

√
t̂2
i − t2

i ϵ

6: Ŝ
(̂i)
sc ← Dθ(S̃

(̂i)
, Ŝ

(i)
sc , t̂i)

7: di ← (S̃
(̂i)
− Ŝ

(̂i)
sc)/t̂i

8: S̃
(i+1)

← S̃
(̂i)

+ (ti+1 − t̂i)di

9: Ŝ
(i+1)
sc ← Dθ(S̃

(i+1)
, Ŝ

(̂i)
sc , ti+1)

10: d′
i ← (S̃

(i+1)
− Ŝ

(i+1)
sc)/ti+1

11: S̃
(i+1)

← S̃
(i)

+ 1
2 (ti+1 − t̂i)(di + d′

i)
12: end for
13: return S̃

(T)

In line with the widely recognized U-Net architecture (Song et al., 2021; Karras et al., 2022), our approach
also integrates skip-connections for tensors of identical sizes to enhance the network capacity.

The crucial design parameters of our model are detailed in Tab. 6. It is important to note that within the
Down/Up block layers, the initial blocks do not utilize downsampling/upsampling operations. For instance,
in the context of the Visual Genome dataset, we effectively implement 3 downsampling layers, which leads
to the successive alteration of the feature map dimensions as 64→ 32→ 16→ 8. In this setup, we opt for a
window size of 8, ensuring that the receptive field is sufficiently large to facilitate effective message passing
between each pair of nodes. While on COCO-Stuff, we employ 2 downsampling layers, resulting the feature
map dimensions as 40→ 20→ 10, and thus the window size is set to 10.

MLP Prediction Head. The node/edge attribute MLP prediction head (DV
θ /DE

θ) is implemented as two
linear layers with a GELU (Hendrycks & Gimpel, 2016) operation injected in between.

A.3 DiffuseSG Diffusion Modeling Details

To ensure the stable training of our diffusion model, we adopt a framework based on the stochastic differ-
ential equation (SDE), as proposed in Song et al. (2021). Additionally, we incorporate a variety of training
techniques that have been proven effective in image generation contexts: network preconditioning (Karras
et al., 2022), self-conditioning (Chen et al., 2022) and exponential moving average (EMA). For network
training, we employ the hyperparameters specified for the ImageNet-64 dataset in Karras et al. (2022) for
preconditioning purposes; a detailed explanation of these parameters can be found therein. We use Adam
optimizer and learning rate being 0.0002. The EMA coefficients used for evaluation are 0.9999 and 0.999 on
the Visual Genome and COCO-Stuff datasets respectively.

The pseudocode of our sampling algorithm is presented in Algorithm 1, which follows the stochastic sampler
in Karras et al. (2022) but with the additional self-conditioning (Chen et al., 2022) technique. In the

25

Under review as submission to TMLR

algorithm, Dθ is the denoising network, S̃
(t)

is the generated scene graph at step t, and I is the identity
matrix. The associated parameters are detailed in Tab. 7. We opt for T = 256 sampling steps to expedite
the sampling process, as opposed to the original 1, 000 steps used in the DDPM framework (Ho et al., 2020).
In Algorithm 1, with a slight abuse of notations for simplicity, we consider the generated scene graph (S̃,
Ŝsc), which comprises tuples of node and edge attributes, as a singular tensor, allowing for straightforward
addition or subtraction operations. Practically, this is implemented through separate operations on the node
and edge tensors.

A.4 Relation-ControlNet and Object-ControlNet Training Details

Following Zhang et al. (2023b), we use Stable Diffusion as an instantiation of the ControlNet architecture.
We use Stable Diffusion V1.5. To train both Relation-ControlNet and Object-ControlNet, we use Adam
optimizer with β1 being 0.9, β2 being 0.999, and weight decay being 0.01; a constant learning rate 0.00001 is
used to train the models. Both models are trained for 200 epochs with a batch size of 120. Following Zhang
et al. (2023b), during training, the text prompts are randomly replaced with empty strings at a chance of
50%. Images are generated in the resolution of 256× 256.

B D3PM Baseline

Our D3PM (Austin et al., 2021) baseline is based on the image generation model on the CIFAR-10
dataset (Krizhevsky et al., 2009). Given a scene graph S = (V , E)9 with n nodes, where V ∈ Nn is
the node vector containing the integer node labels, and E ∈ Nn×n is the adjacency matrix containing the in-
teger edge labels, the input to our D3PM baseline is represented as Q ∈ Nn×n×3, where Qi,j = [V i, V j , Ei,j],
∀i, j ∈ {1, 2, . . . , n}.

We use two separate discretized Gaussian transition matrices, one for the node category and one for the edge
category, to add noise on Q, resulting in the noised Q̃. We then use a U-Net with two separate prediction
heads, each implemented as two convolution layers with a sigmoid operation before each of the convolution
layers, to respectively produce the logits of the denoised V̂ and Ê, which then form the logits of the denoised
Q̂. We use the Lλ=0.001 (Eq. (5) in Austin et al. (2021)), calculated on the logits of Q̂, to train our D3PM
baseline. We use Adam optimizer and learning rate being 0.00005 for training. We use T = 1, 000 noising
and denoising steps and take the model with EMA coefficient 0.9999 for evaluation.

The βt (in Eq. (8) in the Appendix of Austin et al. (2021)) of the discretized Gaussian transition matrix is
increased linearly, for t ∈ {1, 2, . . . , T}. On the Visual Genome dataset, we set n to be 64, and βt is increased
linearly from 0.0001 to 0.02 for both node and edge categories. On the COCO-Stuff dataset, n is set to be
36. The βt is increased linearly from 0.0001 to 0.02 for the node category and from 0.04 to 0.1 for the edge
category.

C Evaluation Details

C.1 Scene Graph Classification Evaluation on LayoutDiffusion

The LayoutDiffusion model checkpoint that we used is trained on a version of the VG dataset annotation
which has 178 object categories. This is slightly different from the VG dataset annotation that the scene
graph classification models are trained on, which contains 150 object categories. However, between these two
versions of VG annotations, there are 131 object categories in common. Thus when generating images from
LayoutDiffusion for the scene graph classification evaluation, we only keep the objects whose labels are in
the common category set. Specifically, given a ground-truth VG validation scene graph, we keep the objects
in the common category set and discard others, and then generate the corresponding images. But when
calculating the scene graph classification accuracy scores, we still use the ground-truth scene graph without
any object filtering. Though this setting is inferior to LayoutDiffusion, it still achieves better accuracies than
Object-ControlNet and Relation-ControlNet, as shown in Tab. 3.

9We slightly abuse the notations here, specifically for the D3PM model, compared to the ones in the main text.

26

Under review as submission to TMLR

When building the evaluation set for the relation control evaluation, we make sure that all the subject and
object labels are in the common category set.

C.2 Generating Additional Training Data for the Scene Graph Detection Task

We take our DiffuseSG model trained on the Visual Genome dataset, let it generate a set of scene graphs
which only contain relations falling into the body partition (as defined in Li et al. (2021a)), and then use
the pretrained (on VG, with resolution 256× 256) LayoutDiffusion model (Zheng et al., 2023b) to form the
scene graph - image pairs. Since there exists some node label set discrepancy between the respective VG
annotations used to train the LayoutDiffusion model (178 node categories) and our DiffuseSG model (150
node categories). When forming the scene graph - image pairs, we discard the nodes whose labels are not
in the common category set (131 node categories) and their related edges. We randomly choose 5, 000 such
generated pairs, where node numbers are restricted to be less than 10, as additional training data to train the
SGTR model (Li et al., 2022a) on the scene graph detection task: given an image, detecting a scene graph
(node labels and bounding box locations, and edge labels) from it. We guarantee that for those randomly
chosen scene graphs, each of them has at least one edge.

The motivations of why we generating the scene graphs only containing body relations are as follows. First,
for the scene graph detection task, there are already many training instances for the head classes, so gen-
erating additional head relations may not be beneficial at all. Second, for our scene graph generation task,
since the training data for the tail relations is limited, our scene graph generation model may not be able to
model the tail class distribution well.

D More Qualitative Results

D.1 Scene Graph - Image Pair Generation

More qualitative results of scene graph - image pair generation are shown in Figs. 6 and 7 (Visual Genome)
and Figs. 8 and 9 (COCO-Stuff). Scene graphs including the bounding box locations are generated by Diffus-
eSG and the corresponding images (in resolution 256× 256) are produced by the pretrained LayoutDiffusion
model (Zheng et al., 2023b). Note that on the Visual Genome dataset, since there exists some node label set
discrepancy between the annotations used to train our DiffuseSG model and the LayoutDiffusion model, we
only visualize the scene graphs whose node labels are all in the common node label set (131 node categories).

D.2 Single Bounding Box Completion

More qualitative results of our DiffuseSG on the Visual Genome validation set are shown in Fig. 10. The left
figure shows the input scene graph, where only the edges and corresponding node labels are shown. The blue
node’s bounding box has been masked out. The middle figure shows the untouched (input) bounding boxes
with labels in red, the one masked out in blue, along with the corresponding ground-truth image. The right
figure shows our generated bounding box heatmap in white along with the target ground-truth bounding
box (to be completed) in blue. The heatmap is obtained via generating the bounding box 100 times; the
whiter the area, the more overlap at the location. Note that neither the image nor any image feature is given
to the model for the completion task; the image is only for visualization.

27

Under review as submission to TMLR

pizza
table

buildingtree

train

track

boot

hat

tree
snow

woman

building
roofclock-2

clock-1

window

wave

man
head

hair arm

surfboard

Figure 6: Scene graph - image pair generation qualitative results on the Visual Genome dataset.

28

Under review as submission to TMLR

building

window-1

window-2

window-3

tile

glove

man

shirt

sign
bus

plate

windshield

pole

bed

pillow

window

curtain

lamp

door

engine
logo

man

train sign

wheel

windshield

Figure 7: Scene graph - image pair generation qualitative results on the Visual Genome dataset.

29

Under review as submission to TMLR

above

below

inside

right of

surrounding

left of

Legend

dog

frisbee
sea

zebra

tree

straw

sky-other

building-other

river

boat

snowboard

tree
person

snow

tree

bush

bench

grass

dirt

Figure 8: Scene graph - image pair generation qualitative results on the COCO-Stuff dataset.

30

Under review as submission to TMLR

above

below

inside

right of

surrounding

left of

Legend

person-1

person-4
snow

person-2

sky-other

person-3

fog

person

playing-field

building-other

traffic light

sky-other

clouds

giraffe

tree

straw

building-othersky-other

bird

tree

Figure 9: Scene graph - image pair generation qualitative results on the COCO-Stuff dataset.

31

Under review as submission to TMLR

Figure 10: Single bounding box completion qualitative results on the Visual Genome validation set.

32

	Introduction
	Related Work
	Joint Scene Graph - Image Pair Modeling
	Scene Graph Generation
	Scene Graph Generation Task
	Diffusion Model Basics
	DiffuseSG for Scene Graph Generation

	Conditional Image Generation
	LayoutDiffusion
	Relation-Aware Layout-to-Image Generation (Relation-ControlNet)

	Experiments
	Datasets
	Scene Graph Generation Experiments
	Evaluation Metrics
	Baselines
	Scene Graph Generation Results
	Scene Graph Completion

	Conditional Image Generator Discussion
	Scene Graph Classification Evaluation
	Relation Control Evaluation

	Scene Graph Detection Evaluation

	Conclusion
	Implementation Details
	Discrete Input Encodings
	DiffuseSG Network Architecture
	DiffuseSG Diffusion Modeling Details
	Relation-ControlNet and Object-ControlNet Training Details

	D3PM Baseline
	Evaluation Details
	Scene Graph Classification Evaluation on LayoutDiffusion
	Generating Additional Training Data for the Scene Graph Detection Task

	More Qualitative Results
	Scene Graph - Image Pair Generation
	Single Bounding Box Completion

