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ABSTRACT

The regularization of prediction models is arguably the most crucial ingredient
that allows Machine Learning solutions to generalize well on unseen data. Several
types of regularization are popular in the Deep Learning community (e.g., weight
decay, drop-out, early stopping, etc.), but so far these are selected on an ad-hoc
basis, and there is no systematic study as to how different regularizers should be
combined into the best “cocktail”. In this paper, we fill this gap, by considering the
cocktails of 13 different regularization methods and framing the question of how
to best combine them as a standard hyperparameter optimization problem. We per-
form a large-scale empirical study on 40 tabular datasets, concluding that, firstly,
regularization cocktails substantially outperform individual regularization meth-
ods, even if the hyperparameters of the latter are carefully tuned; secondly, the
optimal regularization cocktail depends on the dataset; and thirdly, regularization
cocktails yield the state-of-the-art in classifying tabular datasets by outperforming
Gradient-Boosted Decision Trees.

1 INTRODUCTION

In most supervised learning application domains, the available data for training predictive models is
both limited and noisy with respect to the target variable. Therefore, it is paramount to regularize
machine learning models for generalizing the predictive performance on future unseen data. The
concept of regularization is well-studied and constitutes one of the pillar components of machine
learning. Throughout this work we use the term “regularization” for all methods that explicitly or im-
plicitly take measures that reduce the overfitting phenomenon; we categorize these non-exhaustively
into weight decay, data augmentation, model averaging, structure and linearization, and implicit reg-
ularization families (detailed in Section 2). In this paper, we propose a new principled strategy that
highlights the need for automatically learning the optimal combination of regularizers, denoted as
regularization cocktails, via a hyperparameter optimization procedure.

Truth be told, combining regularization methods is of course far from being a novel practice per se.
As a matter of fact, most modern deep learning models use combinations of a number of regularizers.
For instance, EfficientNet (Tan & Q.Le, 2019) mixes components of structural regularization and
linearization via ResNet-style skip connections (He et al., 2016), learning rate scheduling, Drop-
Out ensembling (Srivastava et al., 2014) and AutoAugment data augmentation (Cubuk et al., 2019).
However, even though each of those regularizers is motivated in isolation, the reasoning behind
a specific combination of regularizers is largely based on accuracy-driven manual trial-and-error
iterations, mostly on image classification benchmarks like CIFAR (Krizhevsky et al., 2009) and
ImageNet (Deng et al., 2009).

Unfortunately, the manual search for combinations of regularizers is sub-optimal, unsustainable,
and in essence consists of an example of manual hyperparameter tuning, which in turn is easily
outperformed by automated algorithms (Snoek et al., 2012; Thornton et al., 2013; Feurer et al.,
2015; Olson & Moore, 2016; Jin et al., 2019; Erickson et al., 2020; Zimmer et al., 2020).

Following the spirit of AutoML (Hutter et al., 2018), we, therefore, propose a strategy for learning
the optimal dataset-specific regularization cocktail by means of a modern hyperparameter optimiza-
tion (HPO) method. To the best of our knowledge, there exists no study providing empirical evidence
that a mixture of numerous regularizers outperforms individual regularizers; this paper fills this gap.
More precisely, the research hypothesis of this paper is that a properly mixed regularization cocktail
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outperforms every individual regularizer in it, in terms of accuracy under the same run-time budget,
and that the best cocktail to use depends on the dataset. To validate this hypothesis, we executed a
large-scale experimental study employing 40 diverse tabular datasets and 13 prominent regularizers
with a thorough hyperparameter tuning for all regularizers. We focus on tabular datasets because,
in contrast to large image datasets, a thorough hyper-parameter search procedure is feasible. Neural
networks are high variance models for tabular datasets, therefore improved regularization schemes
can provide a relatively higher generalization gain on tabular datasets compared to other data types.

Thereby, we make the followings contributions:

1. We demonstrate the empirical accuracy gains of regularization cocktails in a systematic
manner via a large-scale experimental study on tabular datasets;

2. We challenge the status-quo practices of designing universal dataset-agnostic regularizers,
by showing that an optimal regularization cocktail is highly dataset-dependent;

3. We demonstrate that regularization cocktails achieve state-of-the-art classification accuracy
performance on tabular datasets and outperform Gradient-Boosted Decision Trees (GBDT)
with a statistically-significant margin;

4. As an overarching contribution, this paper provides previously-lacking in-depth empiri-
cal evidence to better understand the importance of combining different mechanisms for
regularization, one of the most fundamental concepts in machine learning.

2 RELATED WORK

Weight decay: The classical approaches of regularization focused on minimizing the norms of
the parameter values, concretely either the L1 (Tibshirani, 1996), the L2 (Tikhonov, 1943), or a
combination of L1 and L2 known as the Elastic Net (Zou & Hastie, 2005). A recent work fixes the
malpractice of adding the decay penalty term before momentum-based adaptive learning rate steps
(e.g., in common implementations of Adam (Kingma & Ba, 2015)), by decoupling the regularization
from the loss and applying it after the learning rate computation (Loshchilov & Hutter, 2019).

Data Augmentation: A different treatment of the overfitting phenomenon relies on enriching the
training dataset via instance augmentation. The literature on data augmentation is vast, especially
for image data, ranging from basic image manipulations (e.g., geometric transformations, or mixing
images) up to parametric augmentation strategies such as adversarial and controller-based meth-
ods (Shorten & Khoshgoftaar, 2019). For example, Cut-Out (Devries & Taylor, 2017) proposes
to mask a subset of input features (e.g., pixel patches for images) for ensuring that the predictions
remain invariant to distortions in the input space. Along similar lines, Mix-Up (Zhang et al., 2018)
generates new instances as a linear span of pairs of training examples, while Cut-Mix (Yun et al.,
2019) suggests super-positions of instance pairs with mutually-exclusive pixel masks. A recent tech-
nique, called Aug-Mix (Hendrycks et al., 2020), generates instances by sampling chains of augmen-
tation operations. On the other hand, the direction of reinforcement learning (RL) for augmentation
policies was elaborated by Auto-Augment (Cubuk et al., 2019), followed by a technique that speeds
up the training of the RL policy (S.Lim et al., 2019). Last but not least, adversarial attack strategies
(e.g., FGSM (Goodfellow et al., 2015)) generate synthetic examples with minimal perturbations,
which are employed in training robust models (Madry et al., 2018).

Model Averaging: Ensembled machine learning models have been shown to reduce variance and
act as regularizers (Polikar, 2012). A popular ensemble neural network with shared weights among
its base models is Drop-Out (Srivastava et al., 2014), which was extended to a variational version
with a Gaussian posterior of the model parameters (Kingma et al., 2015). A follow-up work that is
known as Mix-Out (Lee et al., 2020) extends Drop-Out by statistically fusing the parameters of two
base models. Furthermore, ensembles can be created using models from the local optima discovered
along a single convergence procedure (Huang et al., 2016).

Structural and Linearization: One strategy of regularizing deep learning models is to discover
dedicated neural structures that generalize on particular tasks, such as image classification or Nat-
ural Language Processing (NLP). In that context, ResNet adds skip connections across layers (He
et al., 2016), while the Inception model computes latent representations by aggregating diverse con-
volutional filter sizes (Szegedy et al., 2017). The attention mechanism gave rise to the popular
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Transformer architecture in the realm of NLP (Vaswani et al., 2017). Recently, EfficientNet is an
architecture that easily scales deep convolutional neural networks by controlling only a few hyper-
parameters (Tan & Q.Le, 2019).

Besides the aforementioned manually-designed architectures, the stream of Neural Architecture
Search (Elsken et al., 2019) focuses on exploring neural connectivity graphs for finding the optimal
architectures via reinforcement learning (Zoph & Le, 2017), black-box search (Real et al., 2019)
or differentiable solvers (Liu et al., 2019). A recent trend adds a dosage of linearization to deep
models, where skip connections transfer embeddings from previous less non-linear layers (He et al.,
2016; Huang et al., 2017). Along similar lines, the Shake-Shake regularization deploys skip con-
nections in parallel convolutional blocks and aggregates the parallel representations through affine
combinations (Gastaldi, 2017), while Shake-Drop extends this mechanism to a larger number of
CNN architectures (Yamada et al., 2018).

Implicit: The last family of regularizers broadly encapsulates methods which do not directly pro-
pose novel regularization techniques but have an implicit regularization effect as a virtue of their
‘modus operandi’ (Arora et al., 2019). For instance, Batch Normalization improves generalization
by reducing the internal covariate shifts (Ioffe & Szegedy, 2015), while early stopping of the opti-
mization procedure also yields a similar generalization effect (Yao et al., 2007). On the other hand,
stabilizing the convergence of the training routine is another implicit regularization, for instance by
introducing learning rate scheduling schemes (Loshchilov & Hutter, 2017). The recent strategy of
stochastic weight averaging relies on averaging parameter values from the local optima encountered
along the sequence of optimization steps (Izmailov et al., 2018), while another approach conducts
updates in the direction of a few ‘lookahead’ steps (Zhang et al., 2019).

Positioning in the realm of AutoML: In contrast to the prior literature, we do not propose a new
individual regularization method, but empirically identify the superiority of learning regularization
cocktails among a set of existing regularizers from the aforementioned categories. We train dataset-
specific cocktails as a hyperparameter optimization (HPO) task (Feurer & Hutter, 2019). In that
regard, our work is positioned in the realm of AutoML and is a special case of a combined algo-
rithm selection and hyperparameter optimization (Thornton et al., 2013). We learn the regularization
cocktails and optimize the joint hyperparameter configuration space by means of BOHB (Falkner
et al., 2018b), which is a variation of Hyperband (Li et al., 2017) with model-based surrogates and
is one of the current state of the art approaches for efficient HPO.

3 MIXING THE REGULARIZATION COCKTAIL

3.1 THE RECIPE AS PROBLEM STATEMENT

A training set is composed of features X(Train) and targets y(Train), while the test dataset is denoted
by X(Test),y(Test). A parameterized function approximates the targets as ŷ = f(X;θ) whereas the
parameters θ are trained to minimize a differentiable loss function L as:

θ∗ ∈ arg min
θ

L
(
y(Train), f

(
X(Train);θ

))
. (1)

To generalize into minimizing L
(
y(Test), f(X(Test);θ

)
, the parameters of f are controlled with a

regularization technique Ω that avoids overfitting to the peculiarities of the training data. With a
slight abuse of notation we denote f (X; Ω (θ;λ)) to be the predictions of the model f whose
parameters θ are optimized under the regime of the regularization method Ω(·;λ), where λ ∈ Λ
represent the hyperparameters of Ω. The training data is further divided into two subsets as training
and validation splits,1 the later denoted by X(Val),y(Val), such that λ can be tuned on the validation
loss via the following hyperparameter optimization objective:

λ∗ ∈ arg min
λ∈Λ

L
(
y(Val), f

(
X(Val); Ω (θ∗;λ)

))
, (2)

s.t. θ∗ ∈ arg min
θ

L
(
y(Train), f(X(Train); Ω (θ;λ)

)
. (3)

1For simplicity, we only discuss hold-out validation scheme here, but in principle any other validation
scheme, such as cross validation and bootstrap sampling, would be possible.
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While the search for optimal hyperparameters λ is an active field of research in the realm of
AutoML (Hutter et al., 2018), still the choice of the regularizer Ω mostly remains an ad-hoc
practice, where practitioners select few combinations among popular regularizers (Dropout, L2,
Batch Normalization, etc.). In contrast to prior studies, we hypothesize that the optimal regular-
izer is a cocktail mixture of a large set of regularization methods, all being simultaneously ap-
plied with different strengths (i.e., dataset-specific hyperparameters). Given a set of K regularizers{

(Ω(k)
(
·;λ(k)

)}K
k=1

:=
{

Ω(1)
(
·;λ(1)

)
, . . . ,Ω(K)

(
·;λ(K)

)}
, each with its own hyperparameters

λ(k) ∈ Λ(k),∀k ∈ {1, . . . ,K}, the problem of finding the optimal cocktail of regularizers is:

λ∗ ∈ arg min
λ(1)∈Λ(k),...,λ(K)∈Λ(k)

L
(

y(Val), f

(
X (Val);

{
Ω(k)

(
θ∗,λ(k)

)}K
k=1

))
(4)

s.t. θ∗ ∈ arg min
θ

L
(

y(Train), f

(
X(Train);

{
Ω(k)

(
θ,λ(k)

)}K
k=1

))
(5)

The intuitive interpretation of Equations 4-5 is searching for the optimal hyperparameters λ (i.e.,
strengths) of the cocktail’s regularizers using the validation set (Equation 4), given that the optimal
prediction model parameters θ are trained under the regime of all the regularizers being applied
jointly (Equation 5). We stress that the hyperparameters λ(k) include a conditional hyperparameter
controlling whether the k-th regularizer is applied at all, or skipped. Therefore, the best cocktail
might consist of combinations of a subset of regularizers.

3.2 REGULARIZATION INGREDIENTS AND THE SEARCH SPACE

To build the regularization cocktails we combine the 13 methods shown in Table 1, which are se-
lected among the categories of regularizers covered in Section 2, each having its own hyperparam-
eter search space. We set the other hyperparameters regarding the architecture and the optimizer
as detailed in Table 2 in Appendix B.1. The regularization cocktails introduce 9 non-conditional
hyperparameters in the search space, which, in turn, can add up to 9 conditional hyperparameters.
In total, our regularization cocktails can add up to 18 hyperparameters in the search space.

In the defined search space some of the combinations are not technically feasible, therefore, we
introduce the following constraints to the proposed search space: (i) Shake-Shake and Shake-Drop
are not simultaneously active since the latter builds on the former. (ii) Only one data augmentation
technique out of Mix-Up, Cut-Mix, Cut-Out, and FGSM adversarial learning can be active at once
due to a technical limitation of the base library (Zimmer et al., 2020).

As an optimizer, we decided to use BOHB (Falkner et al., 2018a) since it achieves a strong any-
time performance by combining Hyperband (Li et al., 2017) and Bayesian Optimization (Shahriari
et al., 2016), and still has the convergence guarantees of Hyperband. Furthermore, BOHB can deal
with the categorical hyperparameters for enabling or disabling regularization techniques and the
corresponding conditional structures. In Appendix A we provide a brief description of how BOHB
works.

4 EXPERIMENTAL PROTOCOL

4.1 EXPERIMENTAL SETUP

We use a collection of tabular datasets (listed in Table 4 in Appendix D) from the recent open-
source OpenML AutoML Benchmark (Gijsbers et al., 2019), as well as popular online repositories,
such as UCI (Asuncion & Newman, 2007) and Kaggle. Our benchmark of 40 datasets includes
tabular datasets that represent diverse classification problems, containing between 452 and 416188
instances, and between 4 and 2001 features, varying in terms of the number of numerical and cat-
egorical features. The datasets are retrieved from OpenML (Vanschoren et al., 2014) and split as
60% training, 20% validation and 20% testing sets. All data is standardized to have 0 mean and
unit variance. For datasets with missing values, the median value on the known values is used as an
imputation strategy.

We ran all experiments on a CPU cluster, each node of which contains two Intel Xeon E5-2630v4
at 2.2GHz with 20 CPU cores and a total memory of 128GB. We chose the PyTorch library (Paszke
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Regularizer Hyperparameter Type Range Conditionality

BN BN-active Boolean {True, False} −

WD WD-active Boolean {True, False} −
Decay factor Continuous [10−5, 0.1] WD-active

DO

DO-active Boolean {True, False} −

Dropout shape Nominal
{funnel, long funnel,

DO-activediamond, hexagon,
brick, triangle, stairs}

Drop rate Continuous [0.0, 0.8] DO-active

SC SC-active Boolean {True, False} −
MB choice Nominal {SS, SD, Standard} SC-active

SD Max. probability Continuous [0.0, 1.0] SC-active ∧MB choice = SD

LA
LA-active Boolean {True, False} −
Step size Continuous [0.5, 0.8] LA-active
Num. steps Integer [1, 5] LA-active

SWA SWA-active Boolean {True, False} -

SE SE-active Boolean {True, False} -
Num. models Constant {3} SE-active

− Augment Nominal {MU,CM,CO,AT,None} −
MU Mix. magnitude Continuous [0.0, 1.0] Augment = MU

CM Probability Continuous [0.0, 1.0] Augment = CM

CO Probability Continuous [0.0, 1.0] Augment = CO
Patch ratio Continuous [0.0, 1.0] Augment = CO

Table 1: The configuration space for the regularization cocktail regarding the explicit regularization
hyperparameters of the methods and the conditional constraints enabling or disabling them. (BN:
Batch Normalization, WD: Weight Decay, DO: Drop-Out, SC: Skip Connection, MB: Multi-branch
choice, SS: Shake-Shake, SD: Shake-Drop, LA: Lookahead Optimizer, SWA: Stochastic Weight
Averaging, SE: Snapshot Ensembles, MU: Mix-Up, CM: Cut-Mix, CO: Cut-Out, and AT: FGSM
Adversarial Learning)

et al., 2019) as the main deep learning framework for our work and we extended the AutoDL-
framework Auto-Pytorch (Mendoza et al., 2018; Zimmer et al., 2020) with our implementations for
the regularizers, as shown in Table 1.

To optimally utilize resources, we ran BOHB with 10 workers in parallel, where each worker had
access to 2 CPU cores and 12GB of memory, executing one configuration at a time. In view of
limited computational resources and taking into account the dimensions D of the considered config-
uration spaces, we ran BOHB for at most 4 days, or at most 40×D hyperparameter configurations,
whichever came first. During the training phase, each configuration was run for 105 epochs. For the
sake of studying the effect on more datasets, we only evaluated a single train-val-test split. After the
training phase is completed, we report the results on the best hyperparameter configuration found
retrained on the joint train and validation set for 105 epochs.

4.2 FIXED ARCHITECTURE AND OPTIMIZATION HYPERPARAMETERS

In order to focus exclusively on investigating the effect of individual regularization methods, we fix
the hyperparameters that are related to the model architecture and general training procedure in the
search-space, as specified in Table 2 of Appendix B.1. These hyperparameter values are tuned for
maximizing the performance of an unregularized neural network on our dataset collection (see Table
4 in Appendix D). Moreover, we use a 9-layer feed-forward neural network with 512 units for each
layer, a choice based on a previous related work (Orhan & Pitkow, 2017). We emphasize that the
network has a sufficiently large capacity, to ensure that the effect of regularization methods would
be noticeable.
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Moreover, we set a low learning rate of 10−3 after performing a grid search for finding the value
performing best across all datasets. We use the AdamW implementation (Loshchilov & Hutter,
2019), which implements decoupled weight decay, and cosine annealing with restarts (Loshchilov
& Hutter, 2019) as a learning rate scheduler. Using a learning rate scheduler with restarts helps in
our case because we keep a fixed initial learning rate. For the restarts, we use an initial budget of 15
epochs, with a budget multiplier of 3, following published practices (Zimmer et al., 2020). Addition-
ally, since our benchmark includes imbalanced datasets, we use a weighted version of categorical
cross-entropy and balanced accuracy (Brodersen et al., 2010) as the evaluation metric.

4.3 HYPOTHESES AND ASSOCIATED EXPERIMENTS

Hypothesis 1: The regularization cocktails achieve better generalization performance compared to
the individual regularization methods over all datasets.

Experiment 1: We regularize the plain neural network (Section 4.2) with each method from Ta-
ble 1, one at a time. For every regularizer, we tune its hyperparameters on each dataset,
then finally measure the regularized network’s performance on the test set after retrain-
ing the best hyper-parameter configuration on the joint train and validation set. For each
dataset, we compare the results against the results of a cocktail optimized the same way as
each of the individual ingredient regularizers.

Hypothesis 2: The optimal regularization cocktails are dataset-dependent.

Experiment 2: We study the best-found regularization cocktails of every dataset and frequencies
of the regularizers that were chosen to be activated by BOHB, to demonstrate that no com-
bination of regularizers is frequent. Furthermore, we regularize the plain network with the
most frequent regularizers and compare it against our proposed method of Section 3.

Hypothesis 3: The regularization cocktails achieve state-of-the-art classification accuracies in tab-
ular datasets.

Experiment 3: We compare against GBDT, the state-of-the-art classifier for tabular data. For a fair
comparison, we optimized the hyper-parameters of GBDT on every dataset using the pop-
ular AutoSklearn2 library, by following the exact hyper-parameter search protocol (same
train, validation, and test splits) and provided GBDT with the same HPO budget as our
proposed method. The search space for the hyperparameters of GBDT is further detailed
in Section 5.

5 EXPERIMENTAL RESULTS

123456789101112131415

11.2875Shake-Shake
10.8500Stochastic Weight Averaging
10.4250Adversarial Training

9.9750Plain network
8.6750Lookahead
8.3500Weight Decay
8.3000Skip Connection
8.0625Snapshot Ensembling

7.9500 Batch Normalization
7.7625 Shake-Drop
6.9875 Dropout
6.7250 CutOut
6.2500 MixUp
5.2375 CutMix
3.1625 Cocktail

Ranks

Figure 1: Critical difference diagram generated with the Wilcoxon-Holm post-hoc analysis on
40 datasets. The diagram shows the ranks and the statistical significance of the results for every
individual regularization technique and our regularization cocktails.

Regularization cocktail performance (Experiment 1): Figure 1 presents the critical difference
diagram of the ranks, which demonstrates that the cocktail outperforms each individual regular-
izer. The critical difference diagram is generated by performing a posthoc analysis based on the
Wilcoxon-Holm method (Wilcoxon, 1992; Holm, 1979) with a p value of 0.05 as the threshold for

2https://automl.github.io/auto-sklearn
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statistical significance. Observing the results, the regularization cocktail manages to outperform all
individual cocktail ingredients with a statistically significant margin. This confirms our hypothesis
that well-tuned regularization cocktails outperform well-tuned individual regularization techniques
across a diverse suite of tabular datasets. In addition, Figure 2 provides additional information on the
rank distributions of the different compared methods, while Figure 6 of Appendix C offers detailed
descriptive statistics for each one-on-one comparison against baselines.

PN BN LA SE SWA SC AT SS SD MU CO CM WD DO Cocktail
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R
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Ranks of individual regularizers and the cocktail

Figure 2: Rank distribution for the individual regularization methods and the regularization
cocktail. The rank distribution for each method is calculated on the test set over all datasets.

Dataset-dependent optimal cocktails (Experiment 2): Figure 3 shows that the optimal regular-
ization cocktail depends on the dataset at hand since no combination of regularizers was active on
the majority of the datasets. The plot depicts all frequent singular regularizers and combinations of
pairs of regularizers occurring in at least 30% of the datasets, based on how often they were part
of the per-dataset cocktails. The most frequent pair of regularizers (BN and SE) is selected only on
50% of the datasets, which highlights the fact that regularization cocktails are dataset-specific and
there is no frequent universal combination.
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Figure 3: Left: Individual and pairwise cocktail ingredients occurring in at least 30% of the datasets.
Right: Clustered histogram of cocktail ingredients. Data Augmentation: {CutMix, Cutout, Mixup,
Adversarial Training}, Structural: {Skip connection, Shake-Shake, Shake-Drop}, Weight aggrega-
tion: {Lookahead Optimizer, Stochastic Weight Averaging, Snapshot Ensembling}.

Moreover, the results presented in Figure 3 provide insights into frequent cocktail ingredients with
regards to the regularization types. For instance, although Snapshot Ensembling as an individual

7



Under review as a conference paper at ICLR 2021

method ranks 7-th among 13 regularizers in Figure 1, it is nevertheless present in the regulariza-
tion cocktails of 72.5% datasets. The finding hints that optimal cocktails are composed of weaker
regularizers, whose dataset-dependent combination enhances the regularization effect. For a more
in-depth summary of the frequencies that correspond to the individual regularization methods, we
refer to Figure 7 in Appendix C.

Our Dataset-specific vs. Top-5 Most Frequent (22 wins, 15 losses, 3 draws, p-value: 0.08143)
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Our Dataset-specific vs. Top-5 Highest Ranks (32 wins, 6 losses, 2 draws, p-value: 0.00004)
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Figure 4: Comparison of our proposed dataset-specific cocktail against the cocktail of the top-5
most frequent regularizers (top row), and the cocktail of the top-5 regularizers with the highest
performance ranks (bottom row). Each point represents a dataset and the gain is defined as the test
accuracy of our method divided by the test accuracy of each baseline. We illustrate the gain with
three ablations: the number of samples (left), number of features (middle) and test accuracy (right).

Lastly, to further validate that good performing regularization cocktails are dataset-dependent, we
conducted another experiment by creating 2 baselines consisting of the following top-5 cocktails:

1. The top-5 most frequent regularizers of Experiment 2 (Snapshot Ensembling, Batch Nor-
malization, Dropout, Weight Decay, and dataset-specific augmentation);

2. The top-5 regularizers with the highest ranks from Experiment 1 (Dropout, Shake-Drop,
Batch Normalization, Snapshot Ensembling, and dataset-specific augmentation).

In both top-5 cocktails ”dataset-specific augmentation” signifies having data augmentation activated,
however, the choice between CutMix, CutOut, and Mixup is dataset-specific and is tuned during the
HPO process. This design decision was taken to make the baselines even more competitive. The
aforementioned regularizers in the top-5 baselines are always applied jointly (i.e. no subset of those
methods are selected on a per dataset basis), however, we tune the hyper-parameters of all regulariz-
ers in each top-5 baseline jointly for each dataset. We observe that both top-5 baselines underperform
against our proposed dataset-specific cocktail as indicated in Figure 4. Additionally, we measured
the statistical significance between the top-5 baselines and our method using the Wilcoxon signed-
rank test at a 10% significance level. For the top-5 highest ranks variant, the result confirms that the
difference is significant with a p-value of 0.00004. Similarly, the results show a significance against
the top-5 most frequent variant with a p-value of 0.08143. For a detailed summary of all the results
for every method we refer to Appendix D, Table 5.

Regularization cocktails achieve state-of-the-art classification accuracy in tabular datasets
(Experiment 3): To investigate whether the regularization cocktails achieve state-of-the-art clas-
sification accuracy, we compare our method against the GBDT method, which is the de-facto state-
of-the-art in tabular datasets. The results, as presented in Figure 5 show the superiority of the
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regularization cocktails in terms of the predictive performance under the same time and resource
constraints compared to the GBDT algorithm. We used the GBDT implementation of Auto-Sklearn,
a popular automated tool in the realm of AutoML. For ensuring a fair comparison we ran GBDT
with the same setup (same training, validation, testing splits) and the same hyper-parameter search
time. In addition, we ran experiments with the same computational hardware as for the cocktail.
More details on the experimental setup are presented in Appendix B.2.
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Figure 5: Left: Cocktail gain over the GBDT algorithm calculated on the test set for every dataset
(The gain is calculated by dividing the cocktail accuracy with the GBDT accuracy). Right: The
distribution of the cocktail gain.

The regularization cocktails achieve higher accuracies compared to GBDT on 28 out of 40 datasets
(70% win ratio) and the difference is statistically significant. Figure 5 further illustrates that the
performance gain of the regularization cocktails is invariant to the dataset size. In the left subplot
of Figure 5 we observe that our method outperforms GBDT in both small and large datasets. Fur-
thermore, the right subplot of Figure 5 depicts the fact that our gain is not marginal and in certain
datasets, we achieve up to 30% increase in test accuracy. The full per-dataset accuracies of GBDT
are found in Appendix D, Table 7. Lastly, we computed the statistical significance between the cock-
tail and GBDT using the Wilcoxon signed-rank test, which resulted in a p-value of 0.0003. Based on
the empirical results, we conclude that the regularization cocktails yield state-of-the-art prediction
models for classifying tabular datasets.

6 CONCLUSIONS AND FUTURE WORK

Even though combining regularizers is a relatively frequent practice by researchers, to date, there
exists no prior work that systematically studies the effect of optimally combining regularization
methods. This paper presented the first step in empirically studying regularization cocktails, by pos-
ing the problem as a standard hyperparameter optimization challenge. We conducted a large-scale
experiment involving 13 regularization methods and 40 datasets, with a thorough hyperparameter
optimization procedure for each technique. The findings of this study can be summarized as three
simple take-home messages for practitioners:

1. Instead of applying a single regularization technique, we recommend exploiting the com-
plementary effects of regularization cocktails.

2. To make neural networks achieve state-of-the-art classification accuracy in classifying tab-
ular datasets the regime of regularization cocktails should be applied.

3. To obtain a well-performing, dataset-specific regularization cocktail, using state-of-the-art
hyperparameter optimization techniques is recommended.

As future work, we would like to combine regularization cocktails for neural networks with auto-
mated data preprocessing pipelines and architecture search, in order to advance the performance
gain of deep learning on small tabular data.
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A DESCRIPTION OF BOHB

Algorithm 1 BOHB

Input: bmin, bmax and η . b stands for budget, while η stands for the downsampling rate
Initialization: smax = logη

bmax

bmin

for s in (smax, smax−1,...,0) do
n = smax+1

s+1 . Number of configurations
Call SH routine with η−s · bmax as an initial budget . SH = Successing Halving routine

end for
Output: Return hyperparameter configuration with the smallest loss

BOHB (Falkner et al., 2018a) is a hyperparameter optimization algorithm that extends Hyperband (Li et al.,
2017) by sampling from a model instead of sampling randomly from the hyperparameter search space.

Initially, BOHB performs random search and favors exploration. As it iterates and gets more observations, it
builds models over different fidelities and trades off exploration with exploitation to avoid converging in bad
regions of the search space. BOHB samples from the model of the highest fidelity with a probability p and with
1− p from random. A model is built for a fidelity only when enough observations exist, by default the criteria
is set to equal S + 1, where S is the dimensionality of the search space.

BOHB achieves strong anytime results by combining Random Search and Bayesian optimization and helps deep
neural networks in achieving faster convergence compared with traditional Bayesian Optimisation methods.

B CONFIGURATION SPACES

B.1 METHOD IMPLICIT SEARCH SPACE

Category Hyperparameter Type Range Conditionality

Cosine Annealing Iterations multiplier Continuous {2.0} Scheduler = COS
Max. iterations Integer {15} Scheduler = COS

Network

Activation Nominal {ReLU} −
Bias initialization Nominal {Yes} −
Blocks in a group Integer {2} −
Embeddings Nominal {None} −
Number of groups Integer {2} −
Resnet shape Nominal {Brick} Type = Shaped-Resnet
Type Nominal {Shaped-Resnet} −
Units in a layer Integer {512} −

Preprocessing Preprocessor Nominal {None} −

Resampling Target size Nominal {Median,Upsample} −Under sampling Nominal {Random,None}

Training

Batch size Integer {128} −
Imputation Nominal {Median} −
Initialization method Nominal {Default} −
Learning rate Continuous {10−3} −
Loss module Nominal {Weighted Cross-Entropy} −
Normalization strategy Nominal {Standardize} −
Optimizer Nominal {AdamW} −
Scheduler Nominal {COS} −
Seed Integer {11} −

Table 2: The configuration space of the training and model architecture hyperparameters.

Table 2 presents the implicit search space used in all our experiments. The implicit search space is shared
between all the individual regularizers and the regularization cocktail.
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B.2 AUTO-SKLEARN: GRADIENT BOOSTED DECISION TREE SEARCH SPACE

For Experiment 3, we set up the search space of Auto-Sklearn as follows:

Hyperparameter Type Range Conditionality

Early Stopping Nominal {Off, Train, Valid} Estimator = Gradient Boosting

L2 Regularization Continuous [1e− 10, 1] Estimator = Gradient Boosting

Learning Rate Continuous [0.01, 1] Estimator = Gradient Boosting

Max Leaf Nodes Integer [3, 2047] Estimator = Gradient Boosting

Min Samples Leaf Integer [1, 200] Estimator = Gradient Boosting

# Iterations No Change Integer [1, 20] Estimator = Gradient Boosting

Validation Fraction Continuous [0.01, 0.4] Estimator = Gradient Boosting

Table 3: The search space of the training and model hyperparameters for the gradient boosting
estimator of the Auto-Sklearn tool.

Furthermore, the estimator for Auto-Sklearn is restricted to only include GBDT, for the sake of fully comparing
against the algorithm as a baseline. We do not activate any preprocessing since also our regularization cocktails
do not make use of preprocessing algorithms in the pipeline. The time left is always selected based on the time
it took BOHB to find the hyperparameter with the best validation accuracy from the start of the hyperparameter
optimization phase. The ensemble size is kept to 1 since our method only features one classifier and not multiple
ones. The seed is set to 11 as it was set in the experiments with the regularization cocktail, so we can have
the same data splits. To keep the comparison fair, there is no warm start for the initial configurations with
meta-learning, since, our method also does not make use of meta-learning. Lastly, the number of workers in
parallel is set to 10 to match the parallel resources that were given to the experiment with the regularization
cocktails.

C PLOTS

C.1 EXPERIMENT 1: REGULARIZATION COCKTAIL PERFORMANCE

Cocktail WD DO BN SD SS SC SWA SE CO CM MU LA AT PN

Cocktail

WD

DO

BN

SD

SS

SC

SWA

SE

CO

CM

MU

LA

AT

PN

30, 1, 9
p: 0.000

30, 1, 9
p: 0.000

32, 1, 7
p: 0.000

34, 1, 5
p: 0.000

36, 1, 3
p: 0.000

33, 1, 6
p: 0.000

35, 0, 5
p: 0.000

36, 0, 4
p: 0.000

34, 1, 5
p: 0.000

29, 2, 9
p: 0.001

32, 3, 5
p: 0.000

34, 0, 6
p: 0.000

36, 1, 3
p: 0.000

35, 0, 5
p: 0.000

17, 3, 20
p: 0.213

17, 1, 22
p: 0.615

17, 0, 23
p: 0.727

28, 2, 10
p: 0.001

18, 0, 22
p: 0.979

27, 0, 13
p: 0.002

20, 1, 19
p: 0.477

15, 0, 25
p: 0.056

11, 1, 28
p: 0.003

12, 1, 27
p: 0.004

18, 0, 22
p: 0.619

27, 2, 11
p: 0.076

25, 1, 14
p: 0.094

21, 1, 18
p: 0.468

22, 1, 17
p: 0.379

30, 1, 9
p: 0.000

22, 0, 18
p: 0.237

28, 0, 12
p: 0.001

26, 1, 13
p: 0.072

22, 1, 17
p: 0.410

13, 2, 25
p: 0.022

17, 2, 21
p: 0.357

26, 0, 14
p: 0.013

27, 3, 10
p: 0.002

30, 2, 8
p: 0.000

21, 0, 19
p: 0.861

30, 1, 9
p: 0.001

22, 0, 18
p: 0.638

26, 0, 14
p: 0.008

20, 0, 20
p: 0.904

14, 0, 26
p: 0.175

12, 1, 27
p: 0.027

14, 1, 25
p: 0.084

22, 0, 18
p: 0.313

24, 2, 14
p: 0.086

26, 0, 14
p: 0.101

32, 0, 8
p: 0.000

25, 4, 11
p: 0.027

28, 0, 12
p: 0.003

19, 0, 21
p: 0.638

19, 0, 21
p: 0.206

12, 1, 27
p: 0.040

16, 1, 23
p: 0.214

20, 0, 20
p: 0.452

28, 1, 11
p: 0.019

22, 0, 18
p: 0.175

9, 2, 29
p: 0.000

20, 0, 20
p: 0.957

12, 0, 28
p: 0.000

9, 0, 31
p: 0.000

7, 1, 32
p: 0.000

8, 1, 31
p: 0.000

10, 1, 29
p: 0.001

14, 3, 23
p: 0.026

15, 0, 25
p: 0.011

27, 0, 13
p: 0.008

21, 0, 19
p: 0.519

16, 0, 24
p: 0.072

13, 1, 26
p: 0.023

17, 0, 23
p: 0.090

19, 0, 21
p: 0.840

25, 0, 15
p: 0.129

22, 0, 18
p: 0.259

10, 0, 30
p: 0.001

7, 1, 32
p: 0.000

8, 0, 32
p: 0.000

9, 0, 31
p: 0.000

12, 0, 28
p: 0.004

15, 0, 25
p: 0.119

15, 1, 24
p: 0.048

14, 1, 25
p: 0.036

8, 2, 30
p: 0.001

9, 3, 28
p: 0.042

27, 1, 12
p: 0.015

28, 1, 11
p: 0.004

31, 4, 5
p: 0.000

17, 1, 22
p: 0.180

18, 2, 20
p: 0.971

27, 0, 13
p: 0.013

29, 2, 9
p: 0.001

28, 1, 11
p: 0.002

25, 2, 13
p: 0.060

33, 0, 7
p: 0.001

32, 2, 6
p: 0.000

34, 1, 5
p: 0.000

29, 1, 10
p: 0.003

32, 2, 6
p: 0.000

29, 3, 8
p: 0.000

27, 1, 12
p: 0.121

23, 1, 16
p: 0.364
16, 1, 23
p: 0.343

0.2

0.4

0.6

0.8

W
ilcoxon signed-rank test p-value

Figure 6: Pairwise statistical significance and comparison. For every entry, the first row show-
cases the wins, draws and losses of the horizontal method with the vertical method on all datasets,
calculated on the test set; the second row presents the p-value for the statistical significance test.
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In Figure 6, we present the results of each pairwise comparison. The results presented are calculated on the
test set after the refit phase is completed on the best hyperparameter configuration. The p-value is generated by
performing the Wilcoxon signed-rank test. As can be seen from the results, the regularization cocktail is the
only method that has statistically significant results compared to all the other methods.

C.2 EXPERIMENT 2: DATASET-DEPENDENT OPTIMAL COCKTAILS

In Figure 7, we present the occurrences of every regularization method over all datasets. The occurrences are
calculated by analyzing the best-found hyperparameter configuration for each dataset and observing the number
of times the regularization method was chosen to be activated by BOHB.
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Figure 7: Frequency of the regularization techniques. The occurrences of the individual reg-
ularization techniques in the best hyperparameter configurations found by the cocktail across 42
datasets.
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D TABLES

In this section, at Table 4 we provide information about the datasets that are considered in our experiments.
Concretely, we provide descriptive statistics and the identifiers for every dataset. The identifier (the task id) can
be used to download the datasets from OpenML.

Task Id Dataset Name Number of Instances Number of Features Majority Class Percentage Minority Class Percentage

233090 anneal 898 39 76.17 0.89
233091 kr-vs-kp 3196 37 52.22 47.78
233092 arrhythmia 452 280 54.20 0.44
233093 mfeat-factors 2000 217 10.00 10.00
233088 credit-g 1000 21 70.00 30.00
233094 vehicle 846 19 25.77 23.52
233096 kc1 2109 22 84.54 15.46
233099 adult 48842 15 76.07 23.93
233102 walking-activity 149332 5 14.73 0.61
233103 phoneme 5404 6 70.65 29.35
233104 skin-segmentation 245057 4 79.25 20.75
233106 ldpa 164860 8 33.05 0.84
233107 nomao 34465 119 71.44 28.56
233108 cnae-9 1080 857 11.11 11.11
233109 blood-transfusion 748 5 76.20 23.80
233110 bank-marketing 45211 17 88.30 11.70
233112 connect-4 67557 43 65.83 9.55
233113 shuttle 58000 10 78.60 0.02
233114 higgs 98050 29 52.86 47.14
233115 Australian 690 15 55.51 44.49
233116 car 1728 7 70.02 3.76
233117 segment 2310 20 14.29 14.29
233118 Fashion-MNIST 70000 785 10.00 10.00
233119 Jungle-Chess-2pcs 44819 7 51.46 9.67
233120 numerai28.6 96320 22 50.52 49.48
233121 Devnagari-Script 92000 1025 2.17 2.17
233122 helena 65196 28 6.14 0.17
233123 jannis 83733 55 46.01 2.01
233124 volkert 58310 181 21.96 2.33
233126 MiniBooNE 130064 51 71.94 28.06
233130 APSFailure 76000 171 98.19 1.81
233131 christine 5418 1637 50.00 50.00
233132 dilbert 10000 2001 20.49 19.13
233133 fabert 8237 801 23.39 6.09
233134 jasmine 2984 145 50.00 50.00
233135 sylvine 5124 21 50.00 50.00
233137 dionis 416188 61 0.59 0.21
233142 aloi 108000 129 0.10 0.10
233143 C.C.FraudD. 284807 31 99.83 0.17
233146 Click prediction 399482 12 83.21 16.79

Table 4: Datasets. The collection of datasets used in our experiments, combined with detailed
information for each dataset.

Moreover, Table 5 shows the results for the comparison between the Regularization Cocktail and the Top-5
cocktail variants as described in Experiment 2. The results are calculated on the test set for all datasets, after
retraining on the best dataset-specific hyperparameter configuration.

Task Id Cockt. Top-5 F Top-5 R Task Id Cockt. Top-5 F Top-5 R Task Id Cockt. Top-5 F Top-5 R

233090 89.27 89.71 88.54 233091 99.85 99.85 98.20 233092 61.46 59.94 57.21
233093 98.00 98.75 98.75 233088 74.64 71.43 74.76 233094 82.58 82.01 80.33
233096 74.38 78.03 73.96 233099 82.44 82.35 82.24 233102 63.92 62.21 54.10
233103 86.62 85.90 82.33 233104 99.95 99.96 99.85 233106 68.11 68.81 55.45
233107 96.83 96.67 96.59 233108 95.83 95.83 95.83 233109 67.62 67.32 68.20
233110 85.99 86.35 86.06 233112 80.07 79.57 77.49 233113 99.95 97.95 85.34
233114 73.55 73.25 72.06 233115 87.09 88.11 87.60 233116 99.59 100.00 98.20
233117 93.72 93.94 90.69 233118 91.95 91.83 91.59 233119 97.47 92.66 85.53
233120 52.67 52.49 51.70 233121 98.37 98.41 96.93 233122 27.70 28.82 28.09
233123 65.29 65.13 62.11 233124 71.67 70.87 66.06 233126 94.02 88.13 93.16
233130 92.53 96.24 95.89 233131 74.26 71.86 74.63 233132 99.05 98.95 98.55
233133 69.18 68.75 69.03 233134 79.22 78.21 77.71 233135 94.05 94.43 93.95
233137 94.01 94.33 92.43 233142 97.17 97.06 96.06
233146 64.28 64.53 63.28 233143 92.53 92.13 92.59

Table 5: Top-5 baselines. The test set performance for the Regularization Cocktail against the Top-5
Most Frequent (Top-5 F) and the Top-5 Highest Ranks (Top-5 R) baselines.
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At Table 6 we provide the results of all our experiments for the baseline, the individual regularization methods,
and the regularization cocktail. All the results are calculated on the test set after retraining on the best-found
hyperparameter configurations. The evaluation metric used for the performance is the balanced accuracy.

Task Id PN BN LA SE SWA SC AT SS SD MU CO CM WD DO Cocktail

233090 84.13 86.78 83.99 86.48 87.96 87.21 86.92 84.28 87.21 89.27 85.60 86.77 87.06 86.92 89.27
233091 99.70 99.85 99.70 99.70 99.55 100.00 99.85 99.85 99.69 99.85 99.55 99.85 99.85 99.85 99.85
233092 37.99 41.91 36.14 37.31 25.94 53.42 38.79 55.61 53.26 42.19 32.48 42.22 35.76 38.70 61.46
233093 97.75 98.50 96.00 97.75 69.25 98.25 97.25 97.25 98.25 98.00 98.00 97.75 98.00 98.00 98.00
233088 69.40 68.69 70.83 69.76 69.40 66.43 69.29 66.43 67.14 70.00 70.36 64.29 69.29 68.10 74.64
233094 83.77 83.17 84.36 84.39 83.36 80.82 83.17 83.20 81.98 83.77 81.47 78.65 83.20 82.60 82.58
233096 70.27 66.56 71.95 76.43 75.44 77.40 71.95 65.31 78.31 72.43 76.84 74.94 67.33 72.98 74.38
233099 76.89 77.92 75.95 78.23 76.38 78.38 76.75 75.56 78.61 78.67 82.56 82.23 76.99 78.52 82.44
233102 61.00 62.89 61.32 63.57 56.67 60.79 59.99 43.04 60.77 61.95 63.30 63.49 64.03 63.75 63.92
233103 87.51 87.02 88.25 87.03 87.22 85.90 87.99 87.64 85.90 87.12 87.26 86.59 86.74 88.39 86.62
233104 99.97 99.96 99.96 99.94 2.57 99.97 99.95 92.77 99.97 99.95 99.96 99.97 99.96 99.96 99.95
233106 62.83 68.90 62.46 65.70 62.16 61.85 61.89 44.63 62.05 66.29 65.43 64.99 66.50 67.04 68.11
233107 95.92 95.93 96.01 96.36 95.23 95.76 95.77 95.37 96.22 96.52 96.10 96.55 95.98 96.23 96.83
233108 87.50 91.20 85.65 87.96 50.00 93.98 92.59 94.91 94.44 94.44 93.06 95.37 91.67 90.74 95.83
233109 67.84 73.68 66.52 68.20 66.45 65.20 66.89 66.74 67.03 68.64 67.32 70.18 66.23 68.42 67.62
233110 78.08 72.58 72.70 83.40 66.93 72.74 74.12 70.16 74.76 74.09 85.71 85.76 72.34 83.14 85.99
233112 73.63 74.68 73.37 74.33 77.36 73.86 72.91 72.06 74.35 72.08 76.23 75.74 72.48 76.35 80.07
233113 99.47 99.89 99.92 99.87 55.86 98.11 99.46 90.60 98.11 99.94 99.92 99.91 99.88 99.89 99.95
233114 67.75 68.90 68.81 69.11 67.36 68.08 67.44 67.70 68.56 68.59 71.93 73.13 67.80 66.87 73.55
233115 86.27 85.79 88.73 86.44 87.26 87.74 88.39 87.74 88.39 88.73 88.25 88.90 87.91 86.27 87.09
233116 97.44 100.00 96.79 97.44 87.35 99.47 99.14 97.46 99.69 99.37 97.64 99.04 97.44 99.69 99.59
233117 94.81 92.86 93.51 93.51 90.48 93.72 92.86 92.64 93.72 93.51 93.07 93.72 93.94 94.59 93.72
233118 90.46 90.86 90.73 90.75 81.72 89.91 90.69 86.69 90.06 91.11 91.09 91.88 90.70 90.51 91.95
233119 97.06 93.76 97.79 96.08 92.15 87.83 97.16 87.08 87.68 98.14 96.50 97.51 97.33 97.24 97.47
233120 50.26 50.95 51.29 50.50 51.63 50.92 50.17 50.23 51.00 50.72 52.35 52.10 50.41 50.30 52.67
233121 96.12 97.83 96.45 96.74 92.40 95.31 96.34 91.38 95.15 97.52 97.88 97.80 96.88 97.00 98.37
233122 16.84 22.26 17.20 19.65 20.90 24.53 16.77 18.71 24.35 23.62 23.43 24.10 17.52 23.98 27.70
233123 51.51 51.74 50.86 53.16 56.11 53.58 49.65 49.88 51.94 51.22 60.98 61.67 51.13 55.12 65.29
233124 65.08 66.82 65.57 66.56 66.15 57.71 65.26 64.97 58.04 67.24 70.03 68.84 66.86 67.00 71.67
233126 90.64 58.17 90.42 92.94 92.60 93.99 90.45 88.55 93.98 93.58 93.86 93.87 92.97 94.10 94.02
233130 87.76 87.81 88.98 88.99 70.72 87.99 50.00 85.25 88.35 92.43 50.00 95.81 94.92 91.19 92.53
233131 70.94 69.28 71.59 70.94 71.31 72.14 71.59 71.59 72.32 70.94 72.69 72.42 70.76 70.76 74.26
233132 96.93 98.62 97.52 97.14 94.58 96.85 97.00 97.27 96.90 98.66 98.14 99.15 96.81 96.73 99.05
233133 63.71 65.11 65.00 66.05 64.57 66.21 62.82 64.33 65.98 68.75 66.58 66.28 64.36 64.81 69.18
233134 78.05 75.87 79.05 78.22 80.38 78.38 76.88 78.38 78.38 76.88 77.38 76.54 76.88 76.21 79.22
233135 93.07 92.49 92.10 93.17 93.17 92.10 93.17 93.27 92.10 92.58 92.68 94.53 93.75 93.36 94.05
233137 91.91 93.71 92.16 92.56 90.38 91.58 91.36 88.09 91.60 92.72 92.48 92.39 92.95 92.72 94.01
233142 92.33 96.70 92.90 92.35 63.59 95.47 91.43 93.60 95.56 93.47 93.81 93.25 92.60 93.85 97.17
233143 50.00 92.30 92.76 50.00 70.81 90.28 50.00 50.31 89.26 50.00 50.00 50.00 92.26 50.00 92.53
233146 63.12 60.06 62.79 64.16 63.39 64.42 63.52 54.64 64.21 64.26 64.05 64.57 64.41 64.37 64.28

Table 6: Detailed Table of Results. The test set performance for the plain network, individual
regularization methods and for the regularization cocktails.

Lastly, in Table 7 we present the results of Experiment 3 where we compare our method with GBDT. The
results describe the balanced accuracy calculated on the test set after retraining on both methods on the best
hyperparameter configuration found within the given budget.

Task Id GBDT Cockt. Task Id GBDT Cockt. Task Id GBDT Cockt. Task Id GBDT Cockt.

233090 90.000 89.270 233091 99.850 99.850 233092 46.850 61.461 233093 97.500 98.000
233088 71.191 74.643 233094 80.165 82.576 233096 63.353 74.381 233099 79.830 82.443
233102 62.764 63.923 233103 88.341 86.619 233104 99.967 99.953 233106 68.947 68.107
233107 97.217 96.826 233108 93.519 95.833 233109 64.985 67.617 233110 72.283 85.993
233112 72.645 80.073 233113 98.571 99.948 233114 72.926 73.546 233115 88.589 87.088
233116 100.000 99.587 233117 93.074 93.723 233118 90.457 91.950 233119 83.070 97.471
233120 52.421 52.668 233121 77.897 98.370 233122 21.144 27.70 233123 55.593 65.287
233124 63.428 71.667 233126 94.137 94.015 233130 91.797 92.535 233131 74.447 74.262
233132 98.704 99.049 233133 70.120 69.183 233134 78.878 79.217 233135 95.119 94.045
233137 74.620 94.01 233142 13.534 97.17 233143 92.514 92.531 233146 58.201 64.280

Table 7: Results of Experiment 3 The performances of the Regularization Cocktail and the GBDT
algorithm over the different datasets.
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