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ABSTRACT

Relational Deep Learning (RDL) is a promising approach for building state-of-
the-art predictive models on multi-table relational data by representing it as a
heterogeneous temporal graph. However, commonly used Graph Neural Network
models suffer from fundamental limitations in capturing complex structural pat-
terns and long-range dependencies that are inherent in relational data. While Graph
Transformers have emerged as powerful alternatives to GNNs on general graphs,
applying them to relational entity graphs presents unique challenges: (i) Traditional
positional encodings fail to generalize to massive, heterogeneous graphs; (ii) exist-
ing architectures cannot model the temporal dynamics and schema constraints of
relational data; (iii) existing tokenization schemes lose critical structural informa-
tion. Here we introduce the Relational Graph Transformer (RELGT), the first graph
transformer architecture designed specifically for relational tables. RELGT em-
ploys a novel multi-element tokenization strategy that decomposes each node into
five components (features, type, hop distance, time, and local structure), enabling
efficient encoding of heterogeneity, temporality, and topology without expensive
precomputation. Our architecture combines local attention over sampled subgraphs
with global attention to learnable centroids, incorporating both local and database-
wide representations. Across 21 tasks from the RelBench benchmark, RELGT
consistently matches or outperforms GNN baselines by up to 18%, establishing
Graph Transformers as a powerful architecture for Relational Deep Learning.

1 INTRODUCTION

Real-world enterprise data, such as financial transactions, supply chain data, e-commerce records,
product catalogs, customer interactions, and electronic health records, are predominantly stored
in relational databases (Codd, 1970). These databases typically consist of multiple tables, each
dedicated to different entity types, interconnected through primary-foreign key links. This abstraction
underpins large quantities of complex, dynamically updated data that scale with business volume,
storing potentially immense, unexploited knowledge (Fey et al., 2024). However, extracting predictive
patterns from such data has traditionally depended on manual feature engineering within complex
machine learning pipelines, requiring the transformation of multi-table records into flat feature vectors
suitable for models like deep neural networks and decision trees (Chen & Guestrin, 2016).

Relational Deep Learning. To enable end-to-end deep learning, relational databases can be repre-
sented as relational entity graphs (Fey et al., 2024), where nodes correspond to entities and edges
capture primary-foreign key relationships. This graph-based representation allows Graph Neural
Networks (GNNs) to learn abstract features directly from the underlying data structure, effectively
modeling complex dependencies for various downstream prediction tasks. With this setup, which is
termed as Relational Deep Learning (RDL), GNNs reduce or eliminate the need for manual feature
engineering and often lead to better performance (Robinson et al., 2024), at a fraction of the traditional
model development cost.

Existing gaps. Despite their effectiveness, standard message-passing GNN architectures (Gilmer
et al., 2017; Kipf & Welling, 2016; Hamilton et al., 2017; Velickovic et al., 2017) have notable
limitations, such as insufficient structural expressiveness (Xu et al., 2019; Morris et al., 2019; Loukas,
2019) and restricted long-range modeling capabilities (Alon & Yahav, 2020). For example, consider
an e-commerce database with three tables: customers, transactions, and products, which can be
represented as a relational entity graph as in Figure 1. In a standard GNN, transactions are always two
hops away from each other, connected only through shared customers. This creates an information
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Figure 1: Overview of the RELGT architecture. First, the input relational entity graph (REG) is
converted into tokens where each training seed node (such as the customer node in this example)
gets a fixed number of neighboring nodes, which are encoded with a multi-element tokenization
strategy. These tokens are then passed through a Transformer network that builds both local and
global representations, which are then fed to downstream prediction layers.

bottleneck: transaction-to-transaction patterns require multiple layers of message passing, while
product relationships remain entirely indirect in shallow networks. Furthermore, products would
never directly interact in a two-layer GNN (Robinson et al., 2024), as their messages must pass
through both a transaction and a customer, highlighting the inherent structural constraints of GNN
architectures that restrict capturing long-range dependencies.

Graph Transformers (GTs) have emerged as more expressive models for graph learning, utilizing
self-attention in the full graph to increase the range of information flow and additionally, incorporating
positional and structural encodings (PEs/SEs) to better capture graph topology (Dwivedi & Bresson,
2021; Ying et al., 2021; Rampášek et al., 2022). These advances have produced strong results across
domains (Müller et al., 2023), including foundation models for molecular graphs (Sypetkowski et al.,
2024). However, many GT designs are limited to non-temporal, homogeneous, and small-scale
graphs, assumptions that do not hold for relational entity graphs (REGs) (Fey et al., 2024), which are
typically (i) heterogeneous, with different tables representing distinct node types; (ii) temporal, with
entities often associated with timestamps and requiring careful handling to prevent data leakage; (iii)
large-scale, containing millions or more records across multiple interconnected tables. In particular,
existing PEs often require precomputation, depend on graph size, and typically do not scale well to
large, heterogeneous, or dynamic graphs (Cantürk et al., 2023; Kanatsoulis et al., 2025). For instance,
node2vec (Grover & Leskovec, 2016), while more efficient than Laplacian or random walk PEs,
can become prohibitively expensive and impractical to compute on massive graphs (Postăvaru et al.,
2020). These limitations, along with the inability to capture the multi-dimensional complexity of
relational structures, render current GTs inadequate for relational databases.

Present work. We introduce the Relational Graph Transformer (RELGT), the first Graph
Transformer specifically designed for relational entity graphs. RELGT addresses key gaps in existing
methods by enabling effective graph representation learning within the RDL framework. It is a unified
model that explicitly captures the temporality, heterogeneity, and structural complexity inherent to
relational graphs. We summarize the architecture as follows (Figure 1):

• Tokenization: We develop a multi-element tokenization scheme that converts each node into
structurally enriched tokens. By sampling fixed-size subgraphs as local context windows and
encoding each node’s features, type, hop distance, time, and local structure, RELGT captures
fine-grained graph properties without expensive precomputation at the subgraph or graph level.

• Attention: We develop a transformer network that combines local and global representations,
adapting existing GT architectures (Rampášek et al., 2022). The model extracts features from the
local tokens while simultaneously attending to learnable global tokens that act as soft centroids,
effectively balancing fine-grained structural modeling with database-wide patterns.

• Validation: We showcase RELGT’s effectiveness through a comprehensive evaluation on 21 tasks
from RelBench (Robinson et al., 2024). RELGT consistently outperforms GNN baselines, with
gains of up to 18%, establishing transformers as a powerful architecture for relational deep learning.
Compared to HGT, a strong GT baseline for heterogeneous graphs, RELGT achieves better results
without added computational cost, even when HGT uses Laplacian eigenvectors for PE.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 RELATIONAL DEEP LEARNING

Relational Deep Learning is an end-to-end learning framework that converts relational databases into
graph structures, enabling direct use of GNNs for representation learning (Fey et al., 2024).

Definitions. Formally, we can define a relational database as the tuple (T,R) comprising a
collection of tables T = {T1, . . . , Tn} connected through inter-table relationshipsR ⊆ T ×T . A link
(Tfkey, Tpkey) ∈ R denotes a foreign key in one table referencing a primary key in another. Each table
contains entities (rows) {v1, . . . , vnT

}, with each entity typically consisting of: (1) a unique identifier
(primary key), (2) references to other entities (foreign keys), (3) entity-specific attributes, and (4)
timestamp information indicating when the entity was created or modified. The structure of relational
databases inherently forms a graph representation, called as relational entity graphs (REGs). An
REG is formally defined as a heterogeneous temporal graph G = (V,E, ϕ, ψ, τ), where nodes V
represent entities from the database tables, edges E represent primary-foreign key relationships, ϕ
maps nodes to their respective types based on source tables, ψ assigns relation types to edges, and τ
captures the temporal dimension through timestamps (Fey et al., 2024).

Challenges. Relational entity graphs exhibit three distinctive properties that set them apart from
conventional graph data. First, their structure is fundamentally schema-defined, with topology shaped
by primary-foreign keys rather than arbitrary connections, creating specific patterns of information
flow that require specialized modeling approaches. Second, they incorporate temporal dynamics, as
relational databases track events and interactions over time, necessitating techniques like time-aware
neighbor sampling to prevent future information from leaking into past predictions. Third, they
display multi-type heterogeneity, as different tables correspond to different entity types with diverse
attribute schemas and data modalities, presenting challenges in creating unified representations that
effectively integrate information across diverse node and edge types (Schlichtkrull et al., 2018; Wang
et al., 2019). These characteristics create both challenges and opportunities for GNN architectures,
requiring models that can simultaneously address temporal evolution, heterogeneous information,
and schema-constrained structures while processing potentially massive multi-table datasets.

2.2 RDL METHODS

The baseline GNN approach introduced by (Robinson et al., 2024) for RDL uses a heterogeneous
GraphSAGE (Hamilton et al., 2017) model with temporal-aware neighbor sampling, which demon-
strates significant improvements compared to traditional tabular methods like LightGBM (Ke et al.,
2017) across most of the tasks in the RelBench benchmark. This baseline architecture leverages
PyTorch Frame’s multi-modal feature encoders (Hu et al., 2024) to transform diverse entity attributes
into initial feature embeddings that serve as input to the GNN. Several specialized architectures have
been developed to address specific challenges in relational entity graphs. RelGNN (Chen et al., 2025)
introduces composite message-passing with atomic routes to facilitate direct information exchange
between neighbors of bridge and hub nodes, commonly found in relational structures. Similarly,
ContextGNN (Yuan et al., 2024) employs a hybrid approach, combining pair-wise and two-tower
representations, specifically optimized for recommendation tasks in RelBench.

Beyond pure GNN approaches, retrieval-augmented generation techniques (Wydmuch et al., 2024)
and hybrid tabular-GNN methods (Lachi et al., 2024) have also demonstrated comparable or superior
performance to the standard GNN baseline, while showing the use of LLMs (Grattafiori et al., 2024)
and inference speedups, respectively. These approaches confirm the effectiveness of graph, tabular,
and LLM-based methods for downstream predictions in RDL. However, these methods typically
optimize specific aspects of the problem, failing to incorporate broader advances from GTs in general.

2.3 GRAPH TRANSFORMERS

Graph Transformers extend the self-attention mechanism from sequence modeling (Vaswani et al.,
2017) to graph-structured data, offering powerful alternatives to traditional GNNs (Dwivedi &
Bresson, 2021). These models typically restrict attention to local neighborhoods, functioning as
message-passing networks with attention-based aggregation (Joshi, 2020; Bronstein et al., 2021),
while positional encodings are developed based on Laplacian eigenvectors (Dwivedi et al., 2020).
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Subsequent Graph Transformers incorporate global attention mechanisms, allowing all nodes to
attend to one another (Ying et al., 2021; Mialon et al., 2021; Kreuzer et al., 2021). This moves beyond
the local neighborhood limitations of standard GNNs (Alon & Yahav, 2020), albeit at the cost of
significantly increased computational complexity.

Modern GT architectures have improved the aforementioned early works by creating effective
structural encodings and ensuring scalability to medium and large-scale graphs. For structural
expressiveness of the node tokens, several positional and structural encoding methods have been
developed (Dwivedi et al., 2022; Cantürk et al., 2023; Lim et al., 2022; Huang et al.; Kanatsoulis
et al., 2025) to inject the input graph topology. For scalability, various strategies have emerged
including hierarchical clustering that coarsens graphs (Zhang et al., 2022; Zhu et al., 2023), sparse
attention mechanisms that reduce computational cost (Rampášek et al., 2022; Shirzad et al., 2023),
and neighborhood sampling techniques for processing massive graphs (Zhao et al., 2021; Chen
et al., 2022; Dwivedi et al., 2023). Models like GraphGPS (Rampášek et al., 2022) combine these
advances through hybrid local-global designs that maintain Transformers’ global context advantages
while ensuring practical efficiency when scaling to medium and large graph datasets. However,
these approaches exhibit several key limitations: they are largely confined to static graphs, and
lack mechanisms to handle multiple node and edge types. While specialized Transformers for
heterogeneous graphs exist (Hu et al., 2020; Mao et al., 2023; Zhu et al., 2023; Zhai et al., 2024),
integrating them, alongside other aforementioned methods, into the RDL pipeline remains challenging.
This is primarily because adapting PEs under precomputation constraints is difficult, compounded by
the complexity of modeling large-scale, temporal, and heterogeneous relational entity graphs (REGs).

2.4 ADDRESSING CHALLENGES

While heterogeneous graph transformers (Hu et al., 2020) and temporal graph methods exist, no prior
GT architecture effectively handles relational entity graphs where heterogeneity, temporality, and
rich entity attributes co-occur within schema-defined database structures. Heterogeneous Temporal
Graph Transformers like HTGformer (Wang, 2025) process heterogeneity and temporality through
separate, iterative modules without graph positional encodings, a component now considered essential
in modern GTs (Rampášek et al., 2022; Müller et al., 2023), and do not address the multimodal
attributes or schema constraints inherent to relational databases (Hu et al., 2024). Existing subgraph-
based GTs (Zhao et al., 2021; Chen et al., 2022) focus on scalability for homogeneous graphs without
mechanisms for heterogeneity or temporal dynamics.

We address these limitations by recognizing that relational entity graphs require a rethinking on
how their multimodal attributes and comprehensive graph structure are jointly processed. We
systematically decompose the information coming from the REGs into specialized components that
can be independently learned and composed, as we describe in detail in Section 3. This principled
design enables GTs to handle the unique combination of heterogeneity, temporality, and schema-
defined structures in relational databases without expensive global precomputation.

3 RELGT: RELATIONAL GRAPH TRANSFORMER

3.1 TOKENIZATION

Traditional Transformers in NLP represent text through tokens with two primary elements: (i) token
identifiers (or features) that denotes the token from a vocabulary set and (ii) positional encodings
that represent sequential structure (Vaswani et al., 2017). For example, a token can correspond to a
word and its positional encoding can correspond to its order in the input sentence. Similarly, Graph
Transformers generally adapt this two-element representation to graphs, where nodes are tokens with
features, and graph positional encodings provide structural information. Although this two-element
approach works well for homogeneous static graphs, it becomes computationally inefficient when
trying to encode multiple aspects of graph structural information for REGs.

In particular, capturing heterogeneity, temporality, and schema-defined structure (as defined in
Section 2.1) through a single positional encoding scheme would either require complex, multi-stage
encoding or result in significant information loss about the rich relational context. For instance, if we
were to extend existing PEs for REGs, several practical challenges emerge: (i) standard Laplacian
or random walk-based PEs would need significant modification to differentiate between multiple
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encoders applied to each token 
w/ their graph structural information

node feature node type hop distance time subgraph
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Figure 2: The tokenization procedure. A temporal-aware subgraph sampling step extracts a fixed set
of local tokens for each training seed node, denoted by the node in black. Each token incorporates its
respective graph structure information, which are element-wise transformed to a common embedding
space and combined to form the effective token representation to be fed to the Transformer network.

node types (e.g., customers vs. products vs. transactions), (ii) these encodings lack mechanisms to
incorporate temporal dynamics critical for time-sensitive predictions (e.g., capturing that a user’s
recent purchases are more relevant than older ones), and (iii) the scale of relational databases makes
global PE computation in REGs prohibitively expensive. With millions of records across tables,
precomputation would only be feasible on small subgraphs, resulting in incomplete structural context.

3.1.1 PROPOSED APPROACH

RELGT overcomes these limitations through a multi-element token representation approach, without
any computational overhead concerning the dependency on the number of nodes in the input REG.
Rather than trying to compress all structural information into a single positional encoding, we
decompose the token representation into distinct elements that explicitly model different aspects of
relational data. This decoupled design allows each component to capture a specific characteristic of
REGs: node features represent entity attributes, node types encode table-based heterogeneity, hop
distance preserves relative distances among nodes in a local context, time encodings capture temporal
dynamics, and GNN-based positional encodings preserve local graph structure.

Sampling and token elements. The tokenization process in RELGT converts a REG G =
(V,E, ϕ, ψ, τ) into sets of tokens suitable for processing by the Transformer network. Specifi-
cally, as shown in Fig 2, for each training seed node vi ∈ V , we first sample a fixed set of K
neighboring nodes vj from within 2 hops of the local neighborhood using temporal-aware sampling1,
ensuring that only nodes with timestamps τ(vj) ≤ τ(vi) are included to prevent temporal leakage.
Each token in this set is represented by a 5-tuple: (xvj , ϕ(vj), p(vi, vj), τ(vj)− τ(vi),GNN-PEvj ),
where, (i) node feature (xvj ) denotes the raw features derived from entity attributes in the database,
(ii) node type (ϕ(vj)) is a categorical identifier corresponding to the entity’s originating table, (iii)
relative hop distance (p(vi, vj)) captures the structural distance between the seed node vi and the
neighbor node vj , (iv) relative time (τ(vj)− τ(vi)) represents the temporal difference between the
neighbor and seed node, and (v) finally, subgraph based PE (GNN-PEvj ) provides a graph PE for
each node within the sampled subgraph, generated by applying a lightweight GNN to the subgraph’s
adjacency matrix with random node feature initialization (Sato et al., 2021; Kanatsoulis et al., 2025).

Encoders. Each element in the 5-tuple is processed by a specialized encoder before being combined
into the final token representation, as illustrated in Figure 2.

1. Node Feature Encoder. The node features xvj , representing the columnar attributes of the node
vj in REG (which corresponds to a table row in a database), are encoded into a d-dimensional
embedding. Each modality, such as numerical, categorical, multi-categorical, text, and image data, is
encoded separately using modality-specific encoders following (Hu et al., 2024), and the resulting

1When fewer than K neighbors are available within 2 hops, we use randomly selected nodes as fallback
tokens to maintain the fixed size K, ensuring consistent computational complexity regardless of local structure.
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representations are then aggregated into a unified d-dimensional embedding.

hfeat(vj) = MultiModalEncoder(xvj ) ∈ Rd (1)

where MultiModalEncoder(·) is unified feature encoder adapted from (Hu et al., 2024).

2. Node Type Encoder. The node type encoding steps converts each table-specific entity type ϕ(vj)
to a d-dimensional representation, incorporating the heterogeneous information from the input data.

htype(vj) =Wtype · onehot(ϕ(vj)) ∈ Rd (2)

where ϕ(vj) is the node type of vj , Wtype ∈ Rd×|T | is the learnable weight matrix, |T | is the number
of node types, and onehot(·) is the one-hot encoding function.

3. Hop Encoder. The relative hop distance p(vi, vj), that captures the structural proximity between
the seed node vi and a neighbor node vj , is encoded into a d-dimensional embedding as:

hhop(vi, vj) =Whop · onehot(p(vi, vj)) ∈ Rd (3)

with p(vi, vj) being the relative hop distance between seed node vi and neighbor node vj , and
Whop ∈ Rd×hmax the learnable matrix mapping hop distances (up to hmax).

4. Time Encoder. The time encoder linearly transforms the time difference τ(vj)− τ(vi) between a
neighbor node vj and the seed node vi:

htime(vi, vj) =Wtime · (τ(vj)− τ(vi)) ∈ Rd (4)

where τ(vj)− τ(vi) is the relative time difference, and Wtime ∈ Rd×1 are learnable parameters.

5. Subgraph PE Encoder. Finally, for capturing local graph structure that can otherwise not be
represented by other token elements, we apply a light-weight GNN to the subgraph. This GNN
encoder effectively preserves important structural relationships, such as complex cycles and quasi-
cliques between entities (Kanatsoulis & Ribeiro, 2024), as well as parent-child relationships (e.g., a
product node within the local subgraph corresponding to specific transactions), and can be written as:

hpe(vj) = GNN(Alocal, Zrandom)j ∈ Rd (5)

where GNN(·, ·)j is a light-weight GNN applied to the local subgraph yielding the encoding for
node vj , Alocal ∈ RK×K is the adjacency matrix of the sampled subgraph of K nodes, and Zrandom ∈
RK×dinit are randomly initialized node features for the GNN (with dinit as the initial feature dimension).

One key advantage of using random node features in this GNN encoder is that it breaks structural
symmetries between the subgraph topology and node attributes, thereby increasing the expressiveness
of GNN layers (Sato et al., 2021). However, a fixed random initialization would destroy permutation
equivariance, a critical property for generalization. To address this, we resampleZrandom independently
at every training step. This ‘stochastic initialization’ approach can be viewed as a relaxed version
of the learnable PE method described in Kanatsoulis et al. (2025), thus approximately preserving
permutation equivariance while retaining the expressivity gains afforded by the randomization.

At last, the effective token representation is formed by combining all encoded elements:

htoken(vj) = O · [hfeat(vj) ||htype(vj) ||hhop(vi, vj) ||htime(vi, vj) ||hpe(vj)] (6)

where || denotes the concatenation of the individual encoder outputs, and O ∈ R5d×d is a learnable
matrix to mix the embeddings. This multi-element approach provides a comprehensive token
representation that explicitly captures node features, type information, structural position, temporal
dynamics, and local topology without requiring expensive computation on the graph structure.

3.2 TRANSFORMER NETWORK

The Transformer network in RELGT, shown in Fig. 3, processes the tokenized relational entity graph
using a combination of local and global attention mechanisms, following the successful designs used
in modern GTs (Rampášek et al., 2022; Wu et al., 2023; Kong et al., 2023; Dwivedi et al., 2023).

Local module. The local attention mechanism allows each seed node to attend to its K local tokens
selected during tokenization, capturing the fine-grained relationships defined by the database schema.
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Figure 3: The Transformer network which processes the input tokens by first building local represen-
tations using the local tokens, then incorporating global context by attending to centroids that are
dynamically updated during training. The final node representations combine both local structural
details and global database context, enabling effective prediction across downstream tasks.

This mechanism is different from a GNN used in RDL (Robinson et al., 2024) in two key aspects:
self-attention is used as the message-passing scheme and the attention is all-pair, i.e., all nodes in the
local K set attend to each other. This is implemented using an L layer Transformer (Vaswani et al.,
2017) and provides a broader structural coverage compared to a baseline GNN (Robinson et al., 2024).
A practical application of this improvement can be seen in the e-commerce example introduced in Sec.
1, where the proposed full-attention mechanism can directly connect seemingly unrelated products
by identifying relationships through shared transactions or customer behaviors. This capability
enables the model to capture subtle associations, such as customers frequently purchasing unexpected
combinations of items. The local node representation hlocal(vi) is obtained as:

hlocal(vi) = Pool(FFN(Attention(vi, {vj}Kj=1))L) (7)

where, L denotes the layers, FFN and Attention are standard components in a Transformer (Vaswani
et al., 2017), and Pool denotes the aggregation of {vj}Kj=1 and vi using a learnable linear combination.

Global module. The global attention mechanism enables each seed node to attend to a set of B
global tokens representing centroids of all nodes in the graph, conceptually and is adapted from
prior works (Kong et al., 2023; Dwivedi et al., 2023). These centroids are updated during training
using an Exponential Moving Average (EMA) K-Means algorithm applied to seed node features in
each mini-batch, providing a broader contextual view beyond the local neighborhood. The global
representation is formulated as:

hglobal(vi) = Attention(vi, {cb}Bb=1) (8)

The final output representation of each node vi is obtained by combining local and global embeddings:

houtput(vi) = FFN([hlocal(vi) ||hglobal(vi)]) (9)

with FFN being a feed forward network. The components of the Transformer in all stages follow
standard instantiations with normalization and residual connections.

For downstream prediction, the combined representation of the seed node is passed through a task-
specific prediction head. The model is trained end-to-end using suitable task specific loss functions.
By leveraging multi-element token representations within a hybrid local-global Transformer ar-
chitecture, RELGT effectively addresses the challenges of heterogeneity, temporal dynamics, and
schema-defined structures inherent in relational entity graphs.

4 EXPERIMENTS

RELGT is evaluated on the recently introduced RDL Benchmark (RelBench) (Robinson et al., 2024).
RelBench consists of 7 datasets from diverse relational database domains, including e-commerce,
clinical records, social networks, and sports, among others. These datasets are curated from their
respective source domains and consist a wide range of sizes, from 1.3K to 5.4M records in the training
set for the prediction tasks, with a total of 47M training records. For each dataset, multiple predictive
tasks are defined, such as predicting a user’s engagement with an advertisement within the next four
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Table 1: Test set results on the entity regression and classification tasks in RelBench. Best values
are in bold. RDL: HeteroGNN baseline (Robinson et al., 2024), HGT: Heterogeneous GT (Hu et al.,
2020), PE: Laplacian PE. Relative gains are expressed as percentage improvement over RDL baseline.

(a) MAE for entity regression. Lower is better

Dataset Task RDL HGT HGT
+PE

RelGT
(ours)

% Rel.
Gain

rel-f1 driver-position 4.022 4.2263 4.3921 3.9170 2.61

rel-avito ad-ctr 0.041 0.0462 0.0483 0.0345 15.85

rel-event user-attendance 0.258 0.2635 0.2611 0.2502 2.79

rel-trial
study-adverse 44.473 45.1692 42.6484 43.9923 1.08
site-success 0.400 0.4428 0.4396 0.3263 18.43

rel-amazon
user-ltv 14.313 15.4120 15.8643 14.2665 0.32
item-ltv 50.053 55.8683 55.8493 48.9222 2.26

rel-stack post-votes 0.065 0.0679 0.0680 0.0654 -0.62

rel-hm item-sales 0.056 0.0641 0.0639 0.0536 4.29

(b) AUC for entity classification. Higher is better.

Dataset Task RDL HGT HGT
+PE

RelGT
(ours)

% Rel.
Gain

rel-f1
driver-dnf 0.7262 0.7077 0.7117 0.7587 4.48
driver-top3 0.7554 0.7075 0.7627 0.8352 10.56

rel-avito
user-clicks 0.6590 0.6376 0.6457 0.6830 3.64
user-visits 0.6620 0.6432 0.6495 0.6678 0.88

rel-event
user-repeat 0.7689 0.6496 0.6536 0.7609 -1.04
user-ignore 0.8162 0.8247 0.8161 0.8157 -0.06

rel-trial study-outcome 0.6860 0.5837 0.5921 0.6861 0.01

rel-amazon
user-churn 0.7042 0.6643 0.6619 0.7039 -0.04
item-churn 0.8281 0.7797 0.7803 0.8255 -0.31

rel-stack
user-engagement 0.9021 0.8847 0.8817 0.9053 0.35
user-badge 0.8986 0.8608 0.8566 0.8632 -3.94

rel-hm user-churn 0.6988 0.6695 0.6569 0.6927 -0.87

days or determining whether a clinical trial will achieve its primary outcome within the next year. In
total, RelBench has 30 tasks across the 7 datasets, covering entity classification, entity regression, and
recommendation. For our evaluation, we focus on 21 tasks on entity classification and regression 2.

4.1 SETUP AND BASELINES

We implement RELGT within the RDL pipeline (Robinson et al., 2024) by replacing the original
GNN component, while preserving the learning mechanisms, database loaders, and task evaluators.
The model has between 10-20M parameters, and we use a learning rate of 1e − 4. For tasks with
fewer than 1M training nodes, we tune the number of layers L ∈ 1, 4, 8 and use dropout rates of
0.3, 0.4, 0.5. For tasks with more than 1M training nodes, we fix the number of layers to L = 4 due
to compute budgets. For the sampling during the token preparation stage, we use K = 300 local
neighbors and set B = 4096 as the number of tokens for global centroids. For smaller datasets (under
one million training nodes), we use a batch size of 256 to ensure sufficient training steps. For larger
datasets, we use a batch size of 1024. We do not perform exhaustive hyperparameter tuning; rather,
our goal is to showcase the benefits of using RELGT in place of GNNs within the RDL framework.
As shown in our ablation of the multi-element tokenization and global module in RELGT (Tab. 2),
and context size (Fig. 4), careful tuning may further improve performance across different tasks.

In addition to the HeteroGNN baseline used in RDL, we report results for two variants of the
Heterogeneous Graph Transformer (HGT) (Hu et al., 2020) to highlight the advantages of RELGT
over existing GT models. Notably, many GTs, such as GraphGPS (Rampášek et al., 2022), are not
directly applicable to heterogeneous graphs. Therefore, we adopt HGT and an enhanced version,
HGT+PE, which incorporates Laplacian PE. These positional encodings are computed on the sampled
subgraphs rather than the entire graph. Additional details are included in Appendix A.5.

4.2 RESULTS AND DISCUSSION

RELGT improves over GNN in RDL. The experimental results in Tables 1a and 1b demonstrate that
RELGT consistently matches or outperforms the standard GNN baseline used in RDL (Robinson et al.,
2024) across multiple datasets and tasks. Using a ±1% threshold to assess comparable performance,
RELGT shows: (i) clear improvements (more than a 1% relative gain) on 10 tasks, (ii) comparable
results (within ±1%) on 9 tasks, and (iii) competitive but lower performance (more than a 1% relative
loss) on 2 tasks. We observe the largest improvements in rel-trial site-success (18.43%),
rel-avito ad-ctr (15.85%), and rel-f1 driver-top3 (10.56%), while on rel-stack
user-badge, RELGT performs below the RDL baseline by a margin of -3.94%. For all other tasks,
RELGT consistently improves or matches the performance of the baseline GNN. We attribute the
overall performance improvement to two key factors: (i) the broader structural coverage enabled
by RELGT’s attention mechanisms as described in Section 3.2, and (ii) the fine-grained encodings
employed in our tokenization scheme, which are further studied as follows and presented in Table 2.

2We exclude recommendation tasks in this work since they involve specific considerations, such as identifying
target nodes (You et al., 2021) or using pair-wise learning architectures (Yuan et al., 2024). Details in Sec. A.1
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Table 2: Relative drop (%) in performance in RELGT after removing a model component. Negative
scores suggest the component is critical in RELGT, and vice-versa. Full results in Table 9.

Dataset Task No Global
Module

No GNN
PE

No Node
Type

No Hop
Distance

No Relative
Time

rel-avito ad-ctr −6.00 −1.14 −7.14 −3.43 −9.14
rel-avito user-clicks 7.85 −15.15 5.01 5.77 8.37
rel-avito user-visits −0.35 −2.38 −0.11 0.39 −0.75
rel-event user-ignore −1.30 0.12 −0.11 0.66 −0.09
rel-trial study-outcome −2.14 −1.72 3.74 −0.43 2.48
rel-trial site-success −19.01 −9.17 −2.88 −21.49 −0.71
rel-amazon user-churn −0.64 −0.78 0.16 0.06 −2.20
rel-hm item-sales −9.33 −17.35 −12.69 0.93 −77.24

Average −3.87 −5.95 −1.75 −2.19 −9.91

Subgraph GNN PE is critical in RELGT. In Table 2, we highlight the importance of several
components in RELGT by conducting ablation studies. We remove one component at a time while
preserving all others, and report the relative performance drop compared to the full RELGT model.
Our results show that removing the subgraph GNN (PE), which encodes local subgraph structure
(Section 3.1), leads to consistent performance degradation across all tasks. This component proves
critical for disambiguating parent-child relationships when full-attention is applied, thanks to the
random node features initialization (Sato et al., 2021; Kanatsoulis et al., 2025). For instance, without
the GNN (PE), products belonging to specific transactions (Figure 1) cannot be effectively captured,
even when other encodings remain.

Global module can bring gains depending on the task. In the same Table 2, our results of
removing the global attention to the learnable centroids (Section 3.2) reveal task-dependent patterns
that align with the findings reported in (Kong et al., 2023; Dwivedi et al., 2023). For some tasks,
such as rel-trial site-success, removing the attention to the centroids tokens leads to a
substantial performance drop (-19.08%), indicating that the global database-wide context provides
crucial information beyond the local neighborhood. However, for certain tasks such as rel-avito
user-clicks, removing the global module actually improves performance (7.79% relative gain),
suggesting that for some prediction targets, local information is sufficient, and the global context
might introduce noise. These mixed results highlight the complementary nature of local and global
information in relational graphs, with the latter being optional depending on the task.

Ablation of other encodings. The remaining ablations in Table 2 reveal mixed results across different
components. While removing explicit fine-grained encodings (node type, hop distance, and relative
time) degrades performance on some tasks, it improves performance on others. For tasks with specific
temporal dependencies (detailed in Sec. A.1), our current temporal encodings may inadvertently
introduce noise. Similarly, for node type and hop distance encodings, their information might already
be partially captured by other model components. Despite these variations, the full RELGT model
still shows consistently superior results when averaged across all tasks. However, our findings suggest
that RELGT’s scores could be further enhanced by careful tuning of these encoding components based
on their task-specific importance. In particular, additional gains can be achieved by incorporating
more effective temporal encodings (Clauset & Eagle, 2012; Huang et al., 2024; Jiang & Pu, 2023).

HGT, a GT baseline, underperforms with significant overhead. As shown in Tables 1a and 1b,
HGT (Hu et al., 2020) underperforms compared to the HeteroGNN baseline of RDL (Robinson
et al., 2024) across most tasks, with only two exceptions: rel-trial study-adverse and
rel-event user-ignore. Notably, the integration of Laplacian PEs in HGT improves perfor-
mance in 8 (of 21) tasks. Moreover, as illustrated in Figure 4, the computational overhead required
for precomputing the Laplacian PEs substantially increases per-epoch runtime across various tasks.
These empirical findings clearly reveal the difficulties of directly applying existing GT architectures
to relational entity graphs, emphasizing the importance and need for our contributions with RELGT.

Local context size K. In our main RELGT experiments, we set the local context size at 300 nodes
(Section 3.1), however, we study its variability in Figure 4 for context sizes K ∈ {100, 300, 500}.
Although K = 300 generally produces the best results, optimal values vary across specific tasks.
For instance, rel-avito ad-ctr benefits from a larger context size, whereas rel-trial
study-outcome achieves better performance with a smaller context window. These findings

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e 

(re
la

tiv
e 

to
 H

GT
)

rel-amazon
item-

ltv

rel-trial
study-

adverse

rel-hm
user-
churn

rel-amazon
item-
churn

rel-stack
user-

engagement

rel-avito
user-
clicks

rel-avito
user-
visits

rel-avito
ad-
ctr

1.50× 1.54× 1.63×

2.01× 2.03×
2.22×

2.33×
2.45×

Runtime Comparison: HGT vs HGT+PE
HGT (Baseline) Additional time for PE

rel-avito
ad-
ctr

rel-avito
user-
clicks

rel-avito
user-
visits

rel-event
user-

ignore

rel-trial
site-

success

rel-trial
study-

outcome

rel-hm
item-
sales

rel-amazon
user-
churn

90

95

100

105

110

%
 P

er
fo

rm
an

ce
 (r

el
at

iv
e 

to
 K

=3
00

 w
hi

ch
 is

 1
00

%
) Ablation of Context Size K

K = 100
K = 300
K = 500

Figure 4: Left: Epoch runtime comparison of HGT (Hu et al., 2020) and HGT+PE, with Laplacian PE
(see Figure 5 for all tasks). The red portion shows the additional time consumed by the precomputation
of Laplacian PE against the base HGT time (blue). Right: Ablation for different K values as the
local context size in RELGT. Results using K = 300 serve as the baseline (100% performance), with
K = 100 and K = 500 runs measured as % of performance relative to K = 300.

suggest that RELGT’s performance could be further enhanced by task-specific tuning of the context
size, allowing for better model expressivity based on the structural characteristics of each dataset.

5 CONCLUSION

In this work, we introduce the first Graph Transformer designed specifically for relational entity
graphs: the Relational Graph Transformer. It addresses key challenges faced by existing models, such
as incorporating heterogeneity, temporality, and comprehensive structural modeling within a unified
GT framework. RELGT represents nodes as multi-element tokens enriched with fine-grained graph
context and combines local attention over sampled subgraph tokens with global attention to learnable
centroids, enabling effective representation learning on relational data. Experiments on the RelBench
benchmark show that RELGT consistently outperforms GNN and GT baselines across multiple
tasks. Moreover, our analysis highlights the critical role of subgraph-based positional encodings as a
lightweight and effective alternative to traditional graph positional encodings. This work establishes
RELGT as a powerful architecture for relational deep learning and opens new avenues for advancing
and scaling such architectures toward foundation models tailored for relational data.
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Table 3: Dataset and task statistics from RelBench used for our evaluation.

Dataset Task Task type #Rows of training table #Unique %train/test
Train Validation Test Entities Entity Overlap

rel-amazon

user-churn classification 4,732,555 409,792 351,885 1,585,983 88.0
item-churn classification 2,559,264 177,689 166,842 416,352 93.1
user-ltv regression 4,732,555 409,792 351,885 1,585,983 88.0
item-ltv regression 2,707,679 166,978 178,334 427,537 93.5

rel-avito

user-clicks classification 59,454 21,183 47,996 66,449 45.3
user-visits classification 86,619 29,979 36,129 63,405 64.6
ad-ctr regression 5,100 1,766 1,816 4,997 59.8

rel-event
user-repeat classification 3,842 268 246 1,514 11.5
user-ignore classification 19,239 4,185 4,010 9,799 21.1
user-attendance regression 19,261 2,014 2,006 9,694 14.6

rel-f1
driver-dnf classification 11,411 566 702 821 50.0
driver-top3 classification 1,353 588 726 134 50.0
driver-position regression 7,453 499 760 826 44.6

rel-hm
user-churn classification 3,871,410 76,556 74,575 1,002,984 89.7
item-sales regression 5,488,184 105,542 105,542 105,542 100.0

rel-stack

user-engagement classification 1,360,850 85,838 88,137 88,137 97.4
user-badge classification 3,386,276 247,398 255,360 255,360 96.9
post-votes regression 2,453,921 156,216 160,903 160,903 97.1

rel-trial

study-outcome classification 11,994 960 825 13,779 0.0
study-adverse regression 43,335 3,596 3,098 50,029 0.0
site-success regression 151,407 19,740 22,617 129,542 42.0

A APPENDIX

A.1 BENCHMARK DETAILS

In this section, we include the details on the datasets and the tasks in RelBench (Robinson et al.,
2024) which we use for our evaluation. RelBench consists of 7 datasets from diverse relational
database domains, including e-commerce, clinical records, social networks, and sports, among
others. These datasets are curated from their respective source domains and consist a wide range
of sizes, from 1.3K to 5.4M records in the training set for the prediction tasks, with a total of 47M
training records. For each dataset, multiple predictive tasks are defined, such as predicting a user’s
engagement with an advertisement within the next four days or determining whether a clinical trial
will achieve its primary outcome within the next year. In total, RelBench has 30 tasks across the 7
datasets, covering entity classification, entity regression, and recommendation. For our evaluation,
we focus on 21 tasks on entity classification and regression as RELGT primarily serves as a node
representation learning model in RDL. We exclude recommendation tasks in this work since they
involve specific considerations, such as identifying target nodes (You et al., 2021) or using pair-wise
learning architectures (Yuan et al., 2024) and using RELGT trivially in RDL is sub-optimal. We
detail the dataset and task statistics in Table 3.

A.1.1 DATASETS

rel-amazon. The Amazon E-commerce dataset consists of product details, user information,
and review interactions from Amazon’s platform, including metadata like pricing and categories,
along with review ratings and content.

rel-avito. Avito’s marketplace dataset contains search queries, advertisement characteristics,
and contextual information from this major online trading platform that facilitates transactions across
various categories including real estate and vehicles.

rel-event. The Event Recommendation dataset from Hangtime mobile app tracks users’ social
planning, capturing interactions, event details, demographic data, and social connections to reveal
how relationships impact user behavior.

rel-f1. The F1 dataset provides comprehensive Formula 1 racing information since 1950, doc-
umenting drivers, constructors, manufacturers, and circuits with detailed records of race results,
standings, and specific data on various racing sessions and pit stops.
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rel-hm. H&M’s dataset contains customer-product interactions from their e-commerce platform,
featuring customer demographics, product descriptions, and purchase histories.

rel-stack. The Stack Exchange dataset documents activity from this network of Q&A websites,
including user biographies, posts, comments, edits, votes, and question relationships where users
earn reputation through contributions.

rel-trial. The clinical trial dataset from the AACT initiative has study protocols and outcomes,
containing trial designs, participant information, intervention details, and results metrics, serving as a
key resource for medical research.

A.1.2 TASKS

The following entity classification and regression tasks are defined in RelBench for the above datasets.

1. rel-amazon
(a) user-churn: Predict whether a user will discontinue reviewing products within the

next three months.
(b) item-churn: Predict if a product will have no reviews in the next three months.
(c) user-ltv: Estimate the total monetary value of merchandise in dolloar that a user

will purchase and review within the next three months.
(d) item-ltv: Estimate the total monetary value of purchases and reviews a product will

receive during the next three months.
2. rel-avito

(a) user-visits: Predict if a user will engage with several (advertisements) ads within
the upcoming four days.

(b) user-clicks: Predict whether a user will interact with multiple ads through clicking
within the upcoming four days.

(c) ad-ctr: Estimate the interaction probability for an ad, assuming it receives an
interaction within four days.

3. rel-event
(a) user-attendance: Estimate the number of of events a user will confirm attendance

to (RSVP yes or maybe) within the upcoming seven days.
(b) user-repeat: Predict whether a user will join an event (RSVP yes or maybe)

within the upcoming seven days, provided they attended in an event during the previous
fourteen days.

(c) user-ignore: Predict whether a user will disregard or ignore more than two events
invitations within the upcoming seven days.

4. rel-f1
(a) driver-dnf: Predict if a driver will not finish a race within the upcoming month.
(b) driver-top3: Determine if a driver will achieve a top-three qualifying position in a

race within the upcoming month.
(c) driver-position: Estimate a driver’s average finishing placement across all races

in the upcoming two months.
5. rel-hm

(a) user-churn: Predict whether a customer will not perform any transactions in the
upcoming week.

(b) item-sales: Estimate total revenue generated by a product in the upcoming week.
6. rel-stack

(a) user-engagement: Predict whether a user will contribute through voting, posting,
or commenting within the upcoming three months.

(b) user-badge: Predict whether a user will secure a new badge within the upcoming
three months.
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Table 4: Study of node initialization in Subgraph GNN PE. Relative drop is expressed as percentage
drop of using ZLapPE vs. Zrandom and runtime ratio compares the time for ZLapPE vs. Zrandom.

Performance Epoch time (m)

Dataset Task (# train) MAE ↓ Zrandom ZLapPE
% Rel
Drop Zrandom ZLapPE

Runtime
Ratio

rel-avito ad-ctr
Test 0.035 0.0369 -5.43 0.76 2.57 3.38
Val 0.0314 0.0314

rel-trial site-success
Test 0.326 0.3452 -5.89 32.88 36.09 1.1
Val 0.359 0.3683

rel-hm item-sales
Test 0.0536 0.0573 -6.9 49.26 53.8 1.09
Val 0.0627 0.0667

Dataset Task (# train) AUC ↑ Zrandom ZLapPE
% Rel
Drop Zrandom ZLapPE

Runtime
Ratio

rel-avito
user-clicks

Test 0.607 0.583 -3.95 6.42 7.43 1.16
Val 0.656 0.6564

user-visits
Test 0.664 0.6626 -0.21 9.26 10.50 1.13
Val 0.699 0.7002

rel-event user-ignore
Test 0.8 0.7988 -0.15 1.85 2.77 1.5
Val 0.881 0.8916

rel-trial study-outcome
Test 0.674 0.6532 -3.09 1.41 1.52 1.08
Val 0.689 0.6719

rel-amazon user-churn
Test 0.7039 0.7044 0.07 168.00 170.55 1.02
Val 0.7036 0.7036

(c) post-votes: Estimate the number of votes a user’s post will accumulate over the
upcoming three months.

7. rel-trial
(a) study-outcome: Predict whether a clinical trial will achieve its principal outcome

within the upcoming year.
(b) study-adverse: Estimate the number of patients who will experience significant

adverse effects or mortality in a clinical trial over the upcoming year.
(c) site-success: Estimate the success rate of a clinical trial site in the upcoming

year.

A.2 NODE INITIALIZATION FOR SUBGRAPH GNN PE IN RELGT

As described in Section 3.1, we employ a lightweight GNN PE to capture local graph structures
that cannot be represented by other elements of the token, particularly the parent-child relationships
among nodes in the local subgraph. The GNN is implemented as:

hpe(vj) = GNN(Alocal, Zrandom)j ∈ Rd (10)
where GNN(·, ·)j is a lightweight GNN applied to the local subgraph, yielding the encoding for node
vj . Here, Alocal ∈ RK×K represents the adjacency matrix of the sampled subgraph containing K
nodes, and Zrandom ∈ RK×dinit denotes randomly initialized node features for the GNN (with dinit as
the initial feature dimension). In RELGT, we set dinit = 1.

The randomly initialized node features (Zrandom) provide enhanced properties as discussed in Section
3.1. We investigate the alternative approach of using Laplacian PE (ZLapPE) computed over the
subgraph instead of random initialization and report these results in Table 4. For these results, we
utilized a positional encoding dimension size of 4. Our findings indicate that ZLapPE consistently
underperforms compared to Zrandom, while also introducing additional computational overhead
ranging from 1.02× to 3.38× across the 8 selected tasks in our study. This shows the challenges of
using existing PEs such as Laplacian PE in relational entity graphs and signify the use of GNN PE as
part of RELGT’s tokenization strategy.

A.3 LEARNABLE SPATIO-TEMPORAL PE

In this section, we explore a learnable spatio-temporal positional encoding (PE) for RELGT. Instead
of using the relative time encoder (Eqn. 4), we use the ‘relative time’ term to initialize nodes in
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Table 5: Performance comparison of RELGT (Full) with the Spatio-Temporal PE (Eqns. 11 - 12).
Negative scores suggest performance drop with the spatio-temporal PE in RELGT.

Dataset Task MAE ↓ RelGT
(Full)

RelGT
(Spatio-Temporal PE)

% Rel.
Diff

rel-avito ad-ctr
Test 0.0345 0.0355 -2.90
Val 0.0314 0.0315

rel-trial site-success
Test 0.3262 0.3554 -8.95
Val 0.3593 0.3883

rel-hm item-sales
Test 0.0536 0.0630 -17.54
Val 0.0627 0.0718

Dataset Task AUC ↑ RelGT
(Full)

RelGT
(Spatio-Temporal PE)

% Rel.
Diff

rel-avito
user-clicks

Test 0.6830 0.6465 -5.34
Val 0.6649 0.6519

user-visits
Test 0.6678 0.6641 -0.55
Val 0.7024 0.7017

rel-event user-ignore
Test 0.8157 0.8152 -0.06
Val 0.8868 0.8870

rel-trial study-outcome
Test 0.6861 0.6537 -4.72
Val 0.6678 0.6757

rel-amazon user-churn
Test 0.7039 0.7036 -0.04
Val 0.7036 0.7037

Table 6: RELGT results on entity classification tasks in RelBench compared with Griffin (Wang et al.,
2025). AUC is the performance metric. Higher is better.

Dataset Task Griffin RelGT
(ours)

% Rel.
Gain

rel-f1
driver-dnf 0.745 0.7587 1.84
driver-top3 0.825 0.8352 1.24

rel-avito
user-clicks 0.630 0.6830 8.41
user-visits 0.650 0.6678 2.74

rel-trial study-outcome 0.689 0.6861 -0.42

rel-amazon
user-churn 0.700 0.7039 0.56
item-churn 0.811 0.8255 1.79

rel-stack
user-engagement 0.898 0.9053 0.81
user-badge 0.870 0.8632 -0.78

rel-hm user-churn 0.683 0.6927 1.42

the Subgraph GNN PE, where relative time τ(vj)− τ(vi) denotes the temporal difference between
neighbor node vj and seed node vi. This approach repurposes the Subgraph GNN PE as a learnable
spatio-temporal PE, which is defined as:

hstpe(vj) = GNN(Alocal, Zrelative_time)j ∈ Rd (11)

where zj,relative_time = τ(vj)− τ(vi). The token representation, then, becomes:

htoken(vj) = O · [hfeat(vj) ||htype(vj) ||hhop(vi, vj) ||hstpe(vj)] (12)

where || denotes the concatenation of the individual encoder outputs, and O ∈ R4d×d is a learnable
matrix to mix the embeddings.

Table 5 presents our evaluation results over three regression and five classification tasks in RelBench.
Across all tasks, replacing the original temporal encoder and subgraph GNN PE encoder with the
Spatio-Temporal PE leads to a consistent performance decline in RELGT.

A.4 COMPARISON WITH GRIFFIN

In this section, we compare RELGT with Griffin (Wang et al., 2025), which is a GNN based relational
foundation model that integrates unified feature encoders, cross-attention and hierarchical message
passing to process relational entity graphs from diverse domains. We report the results in Table 6
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Figure 5: Runtime Comparison of HGT and HGT+PE baseline. Adding the Laplacian Positional
Encoding increases computational overhead, with penalties on average training time per epoch. The
overhead for PE reaches up to 761% relative to the training time of HGT on the same dataset.

for 10 entity classification tasks in RelBench, where Griffin is finetuned on each task following the
same procedure used to train RELGT. RelGT outperforms Griffin on 8 out of 10 tasks with relative
gains of up to 8.41%, demonstrating the advantages of a Graph Transformer backbone for processing
relational entity graphs.

A.5 HGT BASELINE

In the main experiments (Section 4), we use the Heterogeneous Graph Transformer (HGT) (Hu et al.,
2020) as a graph transformer (GT) baseline, and report results for two variants to demonstrate the
advantages of RELGT over existing GT models. Specifically, we consider the standard HGT model
and an enhanced version, HGT+PE, which incorporates Laplacian positional encodings (LapPE).
These positional encodings are computed on sampled subgraphs rather than the full graph.

For implementation, we use the HGTConv layer from PyTorch Geometric (Fey & Lenssen, 2019)
and integrate it into the RDL pipeline (Robinson et al., 2024) by replacing the default GNN module.
Both variants use 4 attention heads and 2 layers, similar to the configuration of the GNN module in
RDL, with residual connections and layer normalization applied between layers. For the HGT+PE
variant, we use LapPE of dimension 4 for all tasks, except for rel-amazon item-ltv and
rel-hm item-sales, where we use dimension 2. Notably, because the relational entity graphs
are heterogeneous, the Laplacian positional encodings is computed multiple times for each node type,
unlike the original homogeneous setting for which LapPE was designed (Dwivedi et al., 2020).

In addition to the main results in Table 1, we report per-epoch runtimes in Figure 5 and Table 7. We
observe a significant computational overhead from precomputing Laplacian positional encodings,
with slowdowns ranging from 1.8× to 8.62×, highlighting the challenge of directly applying existing
graph PE techniques as is to relational entity graphs, and signifying the contributions of RELGT.

A.6 DETAILED RESULTS

In Table 8, we report the full results of different configurations we tuned for RELGT, particularly
on the smaller datasets with lesser than a million training nodes. Table 9 provides the full scores for
the RELGT component study in Table 2, while Table 10 provides the supporting results for Figure 4.
Finally, we provide the elaborated version of the Tables 1a and 1b in Tables 11 and 12, respectively.
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Table 7: Relative performance drop (%) when position encoding (PE) is removed from HGT+PE
models and average training time per epoch of HGT and HGT+PE. Negative scores suggest the PE is
critical, and vice-versa. HGT+PE consistently requires more training time per epoch compared to
HGT without PE across all datasets.

Dataset Task No PE HGT(s) HGT+PE(s)
rel-f1 driver-position 1.79 1.47 4.56
rel-avito ad-ctr 10.73 1.63 4.00
rel-event user-attendance −2.85 4.36 37.57
rel-trial study-adverse −2.03 9.72 15.02
rel-trial site-success 1.29 45.73 63.41
rel-amazon user-ltv 3.45 73.59 106.21
rel-amazon item-ltv −0.93 73.68 110.33
rel-stack post-votes 0.15 191.23 528.25
rel-hm item-sales −2.18 94.66 135.05
rel-f1 driver-dnf 0.46 2.54 6.84
rel-f1 driver-top3 −23.39 0.38 1.38
rel-avito user-clicks 3.08 11.09 24.66
rel-avito user-visits −1.24 17.16 40.07
rel-event user-repeat 1.93 1.35 5.16
rel-event user-ignore 2.29 4.49 651.10
rel-trial study-outcome −0.21 4.09 4.83
rel-amazon user-churn 0.29 78.56 115.53
rel-amazon item-churn −0.20 75.51 152.06
rel-stack user-engagement 0.52 175.16 356.07
rel-stack user-badge 1.57 153.68 212.21
rel-hm user-churn 4.34 77.73 127.04

Average −0.05 52.28 128.64

A.7 COMPUTATIONAL COMPLEXITY AND RESOURCE INFORMATION.

RELGT has O(K2 · d) complexity for local attention and O(K · B · d) for global attention per
node, where K is local context size, B is number of global centroids, and d is hidden dimension.
We implement RELGT using PyTorch framework (Paszke, 2019), PyTorch Geometric framework
(Fey & Lenssen, 2019) and adapt the codebase of relational deep learning (Robinson et al., 2024)
https://github.com/snap-stanford/relbench. All our experiments are conducted
on an NVIDIA A100 GPU server with 8 GPU nodes.

Table 8: RELGT results using L ∈ 1, 4, 8 and dropout ∈ 0.3, 0.4, 0.5 for the smaller datasets with
less than a million training nodes.

Dataset Task (# train) MAE ↓ L1
0.3

L1
0.4

L1
0.5

L4
0.3

L4
0.4

L4
0.5

L8
0.3

L8
0.4

L8
0.5

rel-f1 driver-position (7k) Test 4.942 5.6431 3.917 4.6316 4.0851 4.0042 5.5273 5.5569 4.6085
Val 3.1897 3.1817 3.3257 3.1046 3.3352 3.1276 3.1589 3.2907 3.1843

rel-avito ad-ctr (5k) Test 0.0358 0.0352 0.0345 0.035 0.0366 0.038 0.0354 0.0358 0.0356
Val 0.0322 0.0313 0.0314 0.0314 0.0322 0.0335 0.0317 0.0322 0.0324

rel-event user-attendance (19k) Test 0.2635 0.2595 0.2635 0.2502 0.2543 0.2584 0.2635 0.2637 0.2635
Val 0.2618 0.2558 0.2618 0.2548 0.2534 0.253 0.2618 0.2599 0.2618

rel-trial
study-adverse (43k) Test 44.8553 44.2260 44.848 44.8893 44.4310 43.9923 44.2245 44.5878 44.5013

Val 46.3538 46.3193 46.2056 46.1031 45.9498 46.2148 46.1804 46.1381 46.4332

site-success (151k) Test 0.3490 0.3652 0.3830 0.4019 0.386 0.3262 0.3783 0.3431 0.3644
Val 0.3493 0.3455 0.3550 0.3771 0.392 0.3593 0.3848 0.3643 0.3669

Dataset Task (# train) AUC ↑ L1
0.3

L1
0.4

L1
0.5

L4
0.3

L4
0.4

L4
0.5

L8
0.3

L8
0.4

L8
0.5

rel-f1
driver-dnf (11k) Test 0.7434 0.7587 0.7521 0.7587 0.745 0.6957 0.7349 0.7393 0.741

Val 0.6877 0.6761 0.6896 0.6804 0.6762 0.6768 0.6702 0.6803 0.6865

driver-top3 (1k) Test 0.7845 0.8203 0.8 0.8171 0.8157 0.8352 0.7871 0.8217 0.8222
Val 0.7775 0.783 0.7764 0.7841 0.79 0.7958 0.7893 0.7847 0.7829

rel-avito
user-clicks (59k) Test 0.6524 0.6233 0.6212 0.6067 0.5893 0.596 0.6245 0.683 0.6507

Val 0.6649 0.6616 0.6501 0.6564 0.6608 0.6579 0.6587 0.6649 0.6648

user-visits (86k) Test 0.6627 0.6663 0.665 0.6615 0.6584 0.6642 0.6647 0.6678 0.664
Val 0.7005 0.6993 0.7001 0.6954 0.6958 0.699 0.6995 0.7024 0.7011

rel-event
user-repeat (3k) Test 0.6981 0.7403 0.7452 0.7563 0.7236 0.7432 0.7609 0.7316 0.7418

Val 0.7172 0.7386 0.7319 0.7245 0.7207 0.736 0.7285 0.7209 0.7064

user-ignore (19k) Test 0.8006 0.802 0.7986 0.799 0.787 0.8002 0.7956 0.8076 0.8157
Val 0.8739 0.8721 0.8729 0.878 0.8731 0.881 0.8757 0.8801 0.8868

rel-trial study-outcome (11k) Test 0.6808 0.6753 0.6837 0.6488 0.6818 0.6744 0.6861 0.6562 0.6649
Val 0.6815 0.6792 0.6751 0.6737 0.676 0.689 0.6678 0.6746 0.6768
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Table 9: Relative drop (%) in performance in RELGT after removing a model component. Negative
scores suggest the component is critical in RELGT, and vice-versa.

Dataset Task (# train) MAE ↓ RelGT
(Full)

RelGT
(No Global)

% Rel.
Drop

RelGT
(No GNN)

% Rel.
Drop

RelGT
(No Type)

% Rel.
Drop

RelGT
(No Hop)

% Rel.
Drop

RelGT
(No Time)

% Rel.
Drop

rel-avito ad-ctr
Test 0.0350 0.0371 -6.0 0.0354 -1.14 0.0375 -7.14 0.0362 -3.43 0.0382 -9.14
Val 0.0314 0.0323 0.0315 0.0328 0.0322 0.0337

rel-trial site-success Test 0.3262 0.3882 -19.01 0.3561 -9.17 0.3356 -2.88 0.3963 -21.49 0.3285 -0.71
Val 0.3593 0.3342 0.3637 0.3655 0.3614 0.3615

rel-hm item-sales
Test 0.0536 0.0586 -9.33 0.0629 -17.35 0.0604 -12.69 0.0531 0.93 0.095 -77.24
Val 0.0627 0.0676 0.073 0.0696 0.0623 0.1025

Dataset Task (# train) AUC ↑ RelGT
(Full)

RelGT
(No Global)

% Rel.
Drop

RelGT
(No GNN)

% Rel.
Drop

RelGT
(No Type)

% Rel.
Drop

RelGT
(No Hop)

% Rel.
Drop

RelGT
(No Time)

% Rel.
Drop

rel-avito
user-clicks Test 0.6067 0.6543 7.85 0.5148 -15.15 0.6371 5.01 0.6417 5.77 0.6575 8.37

Val 0.6564 0.6496 0.6551 0.6559 0.6482 0.6579

user-visits Test 0.6642 0.6619 -0.35 0.6484 -2.38 0.6635 -0.11 0.6668 0.39 0.6592 -0.75
Val 0.699 0.6892 0.6879 0.6991 0.7016 0.7005

rel-event user-ignore Test 0.8002 0.7898 -1.3 0.8012 0.12 0.7993 -0.11 0.8055 0.66 0.7995 -0.09
Val 0.881 0.8575 0.8637 0.8873 0.8852 0.8789

rel-trial study-outcome Test 0.6744 0.66 -2.14 0.6628 -1.72 0.6996 3.74 0.6715 -0.43 0.6911 2.48
Val 0.689 0.664 0.6775 0.6728 0.6705 0.6578

rel-amazon user-churn
Test 0.7039 0.6994 -0.64 0.6984 -0.78 0.705 0.16 0.7043 0.06 0.6884 -2.2
Val 0.7036 0.6994 0.6994 0.7042 0.704 0.6882

Table 10: Ablation of context size K in RELGT.

Dataset Task (# train) MAE ↓ RELGT
K=100

RELGT
K=300

RELGT
K=500

rel-avito ad-ctr
Test 0.0375 0.0374 0.0351
Val 0.0329 0.0319 0.031

rel-trial site-success
Test 0.3739 0.3674 0.3842
Val 0.3708 0.372 0.376

rel-hm item-sales
Test 0.055 0.0532 0.052
Val 0.0643 0.0619 0.061

Dataset Task (# train) AUC ↑ RelGT
K=100

RelGT
K=300

RelGT
K=500

rel-avito
user-clicks

Test 0.6628 0.6491 0.6334
Val 0.6437 0.6622 0.6632

user-visits
Test 0.6664 0.6653 0.6627
Val 0.7013 0.701 0.7005

rel-event user-ignore
Test 0.7674 0.8105 0.8068
Val 0.8682 0.8853 0.8843

rel-trial study-outcome
Test 0.7078 0.6526 0.666
Val 0.6575 0.663 0.6877

rel-amazon user-churn
Test 0.7038 0.7054 0.7043
Val 0.7033 0.7044 0.7042

Table 11: Results on the entity regression tasks in RelBench. Lower is better. Best values are in bold.
Relative gains are expressed as percentage improvement over RDL baseline.

Dataset Task MAE ↓ RDL
Baseline HGT HGT

+PE
RelGT
(ours)

% Rel.
Gain

rel-f1 driver-position
Test 4.022±0.119 4.2263±0.0580 4.3921±0.1382 3.9170±0.3448 2.61
Val 3.193±0.024 3.1543±0.1455 3.1116±0.1120 3.3257±0.5618

rel-avito ad-ctr
Test 0.041±0.001 0.0462±0.0021 0.0483±0.0027 0.0345±0.0009 15.85
Val 0.037±0.000 0.0433±0.0019 0.0444±0.0024 0.0314±0.0010

rel-event user-attendance
Test 0.258±0.006 0.2635±0.0000 0.2611±0.0043 0.2502±0.0033 2.79
Val 0.255±0.007 0.2616±0.0001 0.2603±0.0020 0.2548±0.0018

rel-trial
study-adverse

Test 44.473±0.209 45.1692±2.6927 42.6484±0.2785 43.9923±0.5928 1.08
Val 46.290±0.304 47.3913±1.7936 45.7910±0.0051 46.2148±0.7210

site-success
Test 0.400±0.020 0.4428±0.0047 0.4396±0.0083 0.3263±0.0306 18.43
Val 0.401±0.009 0.4275±0.0062 0.4292±0.0069 0.3593±0.0372

rel-amazon
user-ltv

Test 14.313±0.013 15.4120±0.0447 15.8643±0.0924 14.2665±0.0154 0.32
Val 12.132±0.007 13.2295±0.1402 13.4886±0.0713 12.1151±0.0218

item-ltv
Test 50.053±0.163 55.8683±0.6003 55.8493±0.3226 48.9222±0.7006 2.26
Val 45.140±0.068 51.0303±0.2230 50.6522±0.6141 43.8161±0.0548

rel-stack post-votes
Test 0.065±0.000 0.0679±0.0000 0.0680±0.0000 0.0654±0.0002 -0.62
Val 0.059±0.000 0.0615±0.0000 0.0617±0.0000 0.0592±0.0002

rel-hm item-sales
Test 0.056±0.000 0.0641±0.0012 0.0639±0.0003 0.0536±0.0006 4.29
Val 0.065±0.000 0.0739±0.0008 0.0739±0.0010 0.0627±0.0008
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Table 12: Results on the entity classification tasks in RelBench. Higher is better. Best values are in
bold. Relative gains are expressed as percentage improvement over RDL baseline.

Dataset Task AUC ↑ RDL
Baseline HGT HGT

+PE
RelGT
(ours)

% Rel.
Gain

rel-f1
driver-dnf

Test 0.7262±0.0027 0.7077±0.0153 0.7117±0.0084 0.7587±0.0413 4.48
Val 0.7136±0.0154 0.7765±0.0066 0.7340±0.0018 0.6804±0.0420

driver-top3
Test 0.7554±0.0063 0.7075±0.1156 0.7627±0.1390 0.8352±0.0342 10.56
Val 0.7764±0.0316 0.6457±0.0147 0.6486±0.0287 0.7958±0.0513

rel-avito
user-clicks

Test 0.6590±0.0195 0.6376±0.0298 0.6457±0.0099 0.6830±0.0602 3.64
Val 0.6473±0.0032 0.5999±0.0022 0.5886±0.0231 0.6649±0.0610

user-visits
Test 0.6620±0.0010 0.6432±0.0002 0.6495±0.0022 0.6678±0.0015 0.88
Val 0.6965±0.0004 0.6652±0.0040 0.6649±0.0060 0.7024±0.0009

rel-event
user-repeat

Test 0.7689±0.0159 0.6496±0.0220 0.6536±0.0137 0.7609±0.0219 -1.04
Val 0.7125±0.0253 0.6082±0.0148 0.6148±0.0172 0.7285±0.0108

user-ignore
Test 0.8162±0.0111 0.8247±0.0096 0.8161±0.0001 0.8157±0.0040 -0.06
Val 0.9170±0.0033 0.8997±0.0114 0.8940±0.0000 0.8868±0.0032

rel-trial study-outcome
Test 0.6860±0.0101 0.5837±0.0141 0.5921±0.0303 0.6861±0.0040 0.01
Val 0.6818±0.0049 0.6037±0.0040 0.6025±0.0071 0.6678±0.0038

rel-amazon
user-churn

Test 0.7042±0.0005 0.6643±0.0041 0.6619±0.0042 0.7039±0.0008 -0.04
Val 0.7045±0.0006 0.6680±0.0029 0.6652±0.0030 0.7036±0.0008

item-churn
Test 0.8281±0.0003 0.7797±0.0039 0.7803±0.0053 0.8255±0.0006 -0.31
Val 0.8239±0.0002 0.7816±0.0031 0.7803±0.0030 0.8220±0.0010

rel-stack
user-engagement

Test 0.9021±0.0007 0.8847±0.0044 0.8817±0.0046 0.9053±0.0005 0.35
Val 0.9059±0.0009 0.8863±0.0039 0.8811±0.0034 0.9033±0.0013

user-badge
Test 0.8986±0.0008 0.8608±0.0044 0.8566±0.0068 0.8632±0.0018 -3.94
Val 0.8886±0.0008 0.8732±0.0025 0.8710±0.0016 0.8741±0.0050

rel-hm user-churn
Test 0.6988±0.0021 0.6695±0.0067 0.6569±0.0109 0.6927±0.0019 -0.87
Val 0.7042±0.0009 0.6727±0.0062 0.6605±0.0103 0.6988±0.0034
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