

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RELATIONAL GRAPH TRANSFORMER

Anonymous authors

Paper under double-blind review

ABSTRACT

Relational Deep Learning (RDL) is a promising approach for building state-of-the-art predictive models on multi-table relational data by representing it as a heterogeneous temporal graph. However, commonly used Graph Neural Network models suffer from fundamental limitations in capturing complex structural patterns and long-range dependencies that are inherent in relational data. While Graph Transformers have emerged as powerful alternatives to GNNs on general graphs, applying them to relational entity graphs presents unique challenges: (i) Traditional positional encodings fail to generalize to massive, heterogeneous graphs; (ii) existing architectures cannot model the temporal dynamics and schema constraints of relational data; (iii) existing tokenization schemes lose critical structural information. Here we introduce the Relational Graph Transformer (RELT), the first graph transformer architecture designed specifically for relational tables. RELT employs a novel multi-element tokenization strategy that decomposes each node into five components (features, type, hop distance, time, and local structure), enabling efficient encoding of heterogeneity, temporality, and topology without expensive precomputation. Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids, incorporating both local and database-wide representations. Across 21 tasks from the RelBench benchmark, RELT consistently matches or outperforms GNN baselines by up to 18%, establishing Graph Transformers as a powerful architecture for Relational Deep Learning.

1 INTRODUCTION

Real-world enterprise data, such as financial transactions, supply chain data, e-commerce records, product catalogs, customer interactions, and electronic health records, are predominantly stored in relational databases (Codd, 1970). These databases typically consist of multiple tables, each dedicated to different entity types, interconnected through primary-foreign key links. This abstraction underpins large quantities of complex, dynamically updated data that scale with business volume, storing potentially immense, unexploited knowledge (Fey et al., 2024). However, extracting predictive patterns from such data has traditionally depended on manual feature engineering within complex machine learning pipelines, requiring the transformation of multi-table records into flat feature vectors suitable for models like deep neural networks and decision trees (Chen & Guestrin, 2016).

Relational Deep Learning. To enable end-to-end deep learning, relational databases can be represented as relational entity graphs (Fey et al., 2024), where nodes correspond to entities and edges capture primary-foreign key relationships. This graph-based representation allows Graph Neural Networks (GNNs) to learn abstract features directly from the underlying data structure, effectively modeling complex dependencies for various downstream prediction tasks. With this setup, which is termed as Relational Deep Learning (RDL), GNNs reduce or eliminate the need for manual feature engineering and often lead to better performance (Robinson et al., 2024), at a fraction of the traditional model development cost.

Existing gaps. Despite their effectiveness, standard message-passing GNN architectures (Gilmer et al., 2017; Kipf & Welling, 2016; Hamilton et al., 2017; Velickovic et al., 2017) have notable limitations, such as insufficient structural expressiveness (Xu et al., 2019; Morris et al., 2019; Loukas, 2019) and restricted long-range modeling capabilities (Alon & Yahav, 2020). For example, consider an e-commerce database with three tables: *customers*, *transactions*, and *products*, which can be represented as a relational entity graph as in Figure 1. In a standard GNN, *transactions* are always two hops away from each other, connected only through shared *customers*. This creates an information

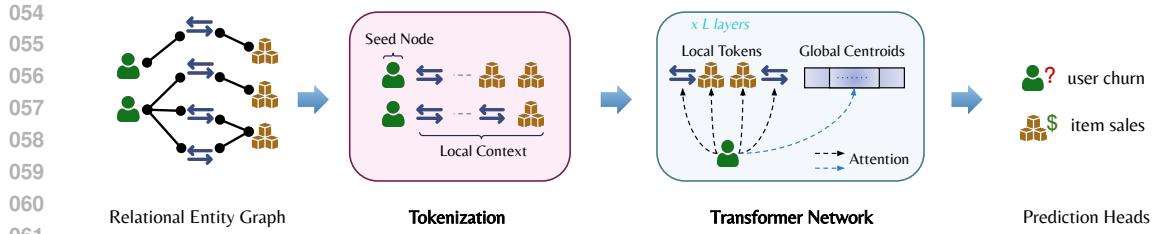


Figure 1: Overview of the RELGT architecture. First, the input relational entity graph (REG) is converted into tokens where each training seed node (such as the *customer* node in this example) gets a fixed number of neighboring nodes, which are encoded with a multi-element tokenization strategy. These tokens are then passed through a Transformer network that builds both local and global representations, which are then fed to downstream prediction layers.

bottleneck: *transaction-to-transaction* patterns require multiple layers of message passing, while *product* relationships remain entirely indirect in shallow networks. Furthermore, *products* would never directly interact in a two-layer GNN (Robinson et al., 2024), as their messages must pass through both a transaction and a customer, highlighting the inherent structural constraints of GNN architectures that restrict capturing long-range dependencies.

Graph Transformers (GTs) have emerged as more expressive models for graph learning, utilizing self-attention in the full graph to increase the range of information flow and additionally, incorporating positional and structural encodings (PEs/SEs) to better capture graph topology (Dwivedi & Bresson, 2021; Ying et al., 2021; Rampášek et al., 2022). These advances have produced strong results across domains (Müller et al., 2023), including foundation models for molecular graphs (Sypetkowski et al., 2024). However, many GT designs are limited to non-temporal, homogeneous, and small-scale graphs, assumptions that do not hold for relational entity graphs (REGs) (Fey et al., 2024), which are typically (i) heterogeneous, with different tables representing distinct node types; (ii) temporal, with entities often associated with timestamps and requiring careful handling to prevent data leakage; (iii) large-scale, containing millions or more records across multiple interconnected tables. In particular, existing PEs often require precomputation, depend on graph size, and typically do not scale well to large, heterogeneous, or dynamic graphs (Cantürk et al., 2023; Kanatsoulis et al., 2025). For instance, node2vec (Grover & Leskovec, 2016), while more efficient than Laplacian or random walk PEs, can become prohibitively expensive and impractical to compute on massive graphs (Postăvaru et al., 2020). These limitations, along with the inability to capture the multi-dimensional complexity of relational structures, render current GTs inadequate for relational databases.

Present work. We introduce the **Relational Graph Transformer (RELTG)**, the first Graph Transformer specifically designed for relational entity graphs. RELGT addresses key gaps in existing methods by enabling effective graph representation learning within the RDL framework. It is a unified model that explicitly captures the temporality, heterogeneity, and structural complexity inherent to relational graphs. We summarize the architecture as follows (Figure 1):

- **Tokenization:** We develop a multi-element tokenization scheme that converts each node into structurally enriched tokens. By sampling fixed-size subgraphs as local context windows and encoding each node’s features, type, hop distance, time, and local structure, RELGT captures fine-grained graph properties without expensive precomputation at the subgraph or graph level.
- **Attention:** We develop a transformer network that combines local and global representations, adapting existing GT architectures (Rampášek et al., 2022). The model extracts features from the local tokens while simultaneously attending to learnable global tokens that act as soft centroids, effectively balancing fine-grained structural modeling with database-wide patterns.
- **Validation:** We showcase RELGT’s effectiveness through a comprehensive evaluation on 21 tasks from RelBench (Robinson et al., 2024). RELGT consistently outperforms GNN baselines, with gains of up to 18%, establishing transformers as a powerful architecture for relational deep learning. Compared to HGT, a strong GT baseline for heterogeneous graphs, RELGT achieves better results without added computational cost, even when HGT uses Laplacian eigenvectors for PE.

108
109

2 BACKGROUND

110
111

2.1 RELATIONAL DEEP LEARNING

112
113

Relational Deep Learning is an end-to-end learning framework that converts relational databases into graph structures, enabling direct use of GNNs for representation learning (Fey et al., 2024).

114
115
116
117
118
119
120
121
122
123
124

Definitions. Formally, we can define a **relational database** as the tuple (T, R) comprising a collection of tables $T = \{T_1, \dots, T_n\}$ connected through inter-table relationships $R \subseteq T \times T$. A link $(T_{\text{fkey}}, T_{\text{pkey}}) \in R$ denotes a foreign key in one table referencing a primary key in another. Each table contains entities (rows) $\{v_1, \dots, v_{n_T}\}$, with each entity typically consisting of: (1) a unique identifier (primary key), (2) references to other entities (foreign keys), (3) entity-specific attributes, and (4) timestamp information indicating when the entity was created or modified. The structure of relational databases inherently forms a graph representation, called as **relational entity graphs** (REGs). An REG is formally defined as a heterogeneous temporal graph $G = (V, E, \phi, \psi, \tau)$, where nodes V represent entities from the database tables, edges E represent primary-foreign key relationships, ϕ maps nodes to their respective types based on source tables, ψ assigns relation types to edges, and τ captures the temporal dimension through timestamps (Fey et al., 2024).

125
126
127
128
129
130
131
132
133
134
135
136

Challenges. Relational entity graphs exhibit three distinctive properties that set them apart from conventional graph data. First, their structure is fundamentally schema-defined, with topology shaped by primary-foreign keys rather than arbitrary connections, creating specific patterns of information flow that require specialized modeling approaches. Second, they incorporate temporal dynamics, as relational databases track events and interactions over time, necessitating techniques like time-aware neighbor sampling to prevent future information from leaking into past predictions. Third, they display multi-type heterogeneity, as different tables correspond to different entity types with diverse attribute schemas and data modalities, presenting challenges in creating unified representations that effectively integrate information across diverse node and edge types (Schlichtkrull et al., 2018; Wang et al., 2019). These characteristics create both challenges and opportunities for GNN architectures, requiring models that can simultaneously address temporal evolution, heterogeneous information, and schema-constrained structures while processing potentially massive multi-table datasets.

137
138

2.2 RDL METHODS

139
140
141
142
143
144
145
146
147
148
149

The baseline GNN approach introduced by (Robinson et al., 2024) for RDL uses a heterogeneous GraphSAGE (Hamilton et al., 2017) model with temporal-aware neighbor sampling, which demonstrates significant improvements compared to traditional tabular methods like LightGBM (Ke et al., 2017) across most of the tasks in the RelBench benchmark. This baseline architecture leverages PyTorch Frame’s multi-modal feature encoders (Hu et al., 2024) to transform diverse entity attributes into initial feature embeddings that serve as input to the GNN. Several specialized architectures have been developed to address specific challenges in relational entity graphs. RelGNN (Chen et al., 2025) introduces composite message-passing with atomic routes to facilitate direct information exchange between neighbors of bridge and hub nodes, commonly found in relational structures. Similarly, ContextGNN (Yuan et al., 2024) employs a hybrid approach, combining pair-wise and two-tower representations, specifically optimized for recommendation tasks in RelBench.

150
151
152
153
154
155

Beyond pure GNN approaches, retrieval-augmented generation techniques (Wydmuch et al., 2024) and hybrid tabular-GNN methods (Lachi et al., 2024) have also demonstrated comparable or superior performance to the standard GNN baseline, while showing the use of LLMs (Grattafiori et al., 2024) and inference speedups, respectively. These approaches confirm the effectiveness of graph, tabular, and LLM-based methods for downstream predictions in RDL. However, these methods typically optimize specific aspects of the problem, failing to incorporate broader advances from GTs in general.

156
157

2.3 GRAPH TRANSFORMERS

158
159
160
161

Graph Transformers extend the self-attention mechanism from sequence modeling (Vaswani et al., 2017) to graph-structured data, offering powerful alternatives to traditional GNNs (Dwivedi & Bresson, 2021). These models typically restrict attention to local neighborhoods, functioning as message-passing networks with attention-based aggregation (Joshi, 2020; Bronstein et al., 2021), while positional encodings are developed based on Laplacian eigenvectors (Dwivedi et al., 2020).

162 Subsequent Graph Transformers incorporate global attention mechanisms, allowing all nodes to
 163 attend to one another (Ying et al., 2021; Mialon et al., 2021; Kreuzer et al., 2021). This moves beyond
 164 the local neighborhood limitations of standard GNNs (Alon & Yahav, 2020), albeit at the cost of
 165 significantly increased computational complexity.

166 Modern GT architectures have improved the aforementioned early works by creating effective
 167 structural encodings and ensuring scalability to medium and large-scale graphs. For structural
 168 expressiveness of the node tokens, several positional and structural encoding methods have been
 169 developed (Dwivedi et al., 2022; Cantürk et al., 2023; Lim et al., 2022; Huang et al.; Kanatsoulis
 170 et al., 2025) to inject the input graph topology. For scalability, various strategies have emerged
 171 including hierarchical clustering that coarsens graphs (Zhang et al., 2022; Zhu et al., 2023), sparse
 172 attention mechanisms that reduce computational cost (Rampášek et al., 2022; Shirzad et al., 2023),
 173 and neighborhood sampling techniques for processing massive graphs (Zhao et al., 2021; Chen
 174 et al., 2022; Dwivedi et al., 2023). Models like GraphGPS (Rampášek et al., 2022) combine these
 175 advances through hybrid local-global designs that maintain Transformers’ global context advantages
 176 while ensuring practical efficiency when scaling to medium and large graph datasets. However,
 177 these approaches exhibit several key limitations: they are largely confined to static graphs, and
 178 lack mechanisms to handle multiple node and edge types. While specialized Transformers for
 179 heterogeneous graphs exist (Hu et al., 2020; Mao et al., 2023; Zhu et al., 2023; Zhai et al., 2024),
 180 integrating them, alongside other aforementioned methods, into the RDL pipeline remains challenging.
 181 This is primarily because adapting PEs under precomputation constraints is difficult, compounded by
 182 the complexity of modeling large-scale, temporal, and heterogeneous relational entity graphs (REGs).

183 2.4 ADDRESSING CHALLENGES

185 While heterogeneous graph transformers (Hu et al., 2020) and temporal graph methods exist, no prior
 186 GT architecture effectively handles relational entity graphs where heterogeneity, temporality, and
 187 rich entity attributes co-occur within schema-defined database structures. Heterogeneous Temporal
 188 Graph Transformers like HTGformer (Wang, 2025) process heterogeneity and temporality through
 189 separate, iterative modules without graph positional encodings, a component now considered essential
 190 in modern GTs (Rampášek et al., 2022; Müller et al., 2023), and do not address the multimodal
 191 attributes or schema constraints inherent to relational databases (Hu et al., 2024). Existing subgraph-
 192 based GTs (Zhao et al., 2021; Chen et al., 2022) focus on scalability for homogeneous graphs without
 193 mechanisms for heterogeneity or temporal dynamics.

194 We address these limitations by recognizing that relational entity graphs require a rethinking on
 195 how their multimodal attributes and comprehensive graph structure are jointly processed. We
 196 systematically decompose the information coming from the REGs into specialized components that
 197 can be independently learned and composed, as we describe in detail in Section 3. This principled
 198 design enables GTs to handle the unique combination of heterogeneity, temporality, and schema-
 199 defined structures in relational databases without expensive global precomputation.

200 3 RELGT: RELATIONAL GRAPH TRANSFORMER

202 3.1 TOKENIZATION

204 Traditional Transformers in NLP represent text through tokens with two primary elements: (i) **token**
 205 **identifiers** (or features) that denotes the token from a vocabulary set and (ii) **positional encodings**
 206 that represent sequential structure (Vaswani et al., 2017). For example, a token can correspond to a
 207 word and its positional encoding can correspond to its order in the input sentence. Similarly, Graph
 208 Transformers *generally* adapt this two-element representation to graphs, where nodes are tokens with
 209 features, and graph positional encodings provide structural information. Although this two-element
 210 approach works well for homogeneous static graphs, it becomes computationally inefficient when
 211 trying to encode multiple aspects of graph structural information for REGs.

212 In particular, capturing heterogeneity, temporality, and schema-defined structure (as defined in
 213 Section 2.1) through a single positional encoding scheme would either require complex, multi-stage
 214 encoding or result in significant information loss about the rich relational context. For instance, if we
 215 were to extend existing PEs for REGs, several practical challenges emerge: (i) standard Laplacian
 or random walk-based PEs would need significant modification to differentiate between multiple

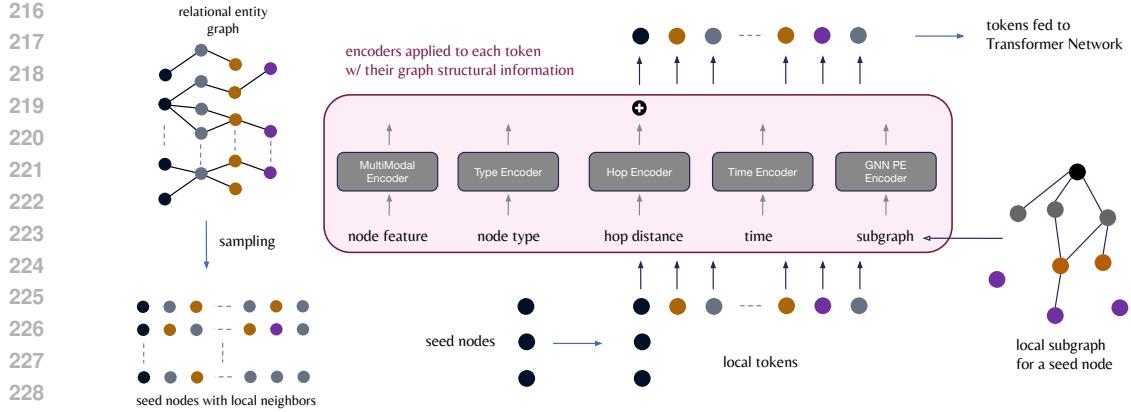


Figure 2: The tokenization procedure. A temporal-aware subgraph sampling step extracts a fixed set of local tokens for each training seed node, denoted by the node in black. Each token incorporates its respective graph structure information, which are element-wise transformed to a common embedding space and combined to form the effective token representation to be fed to the Transformer network.

node types (e.g., customers vs. products vs. transactions), (ii) these encodings lack mechanisms to incorporate temporal dynamics critical for time-sensitive predictions (e.g., capturing that a user’s recent purchases are more relevant than older ones), and (iii) the scale of relational databases makes global PE computation in REGs prohibitively expensive. With millions of records across tables, precomputation would only be feasible on small subgraphs, resulting in incomplete structural context.

3.1.1 PROPOSED APPROACH

RELTG overcomes these limitations through a multi-element token representation approach, without any computational overhead concerning the dependency on the number of nodes in the input REG. Rather than trying to compress all structural information into a single positional encoding, we decompose the token representation into distinct elements that explicitly model different aspects of relational data. This decoupled design allows each component to capture a specific characteristic of REGs: node features represent entity attributes, node types encode table-based heterogeneity, hop distance preserves relative distances among nodes in a local context, time encodings capture temporal dynamics, and GNN-based positional encodings preserve local graph structure.

Sampling and token elements. The tokenization process in RELTG converts a REG $G = (V, E, \phi, \psi, \tau)$ into sets of tokens suitable for processing by the Transformer network. Specifically, as shown in Fig 2, for each training seed node $v_i \in V$, we first sample a fixed set of K neighboring nodes v_j from within 2 hops of the local neighborhood using temporal-aware sampling¹, ensuring that only nodes with timestamps $\tau(v_j) \leq \tau(v_i)$ are included to prevent temporal leakage. Each token in this set is represented by a **5-tuple**: $(x_{v_j}, \phi(v_j), p(v_i, v_j), \tau(v_j) - \tau(v_i), \text{GNN-PE}_{v_j})$, where, (i) node feature (x_{v_j}) denotes the raw features derived from entity attributes in the database, (ii) node type ($\phi(v_j)$) is a categorical identifier corresponding to the entity’s originating table, (iii) relative hop distance ($p(v_i, v_j)$) captures the structural distance between the seed node v_i and the neighbor node v_j , (iv) relative time ($\tau(v_j) - \tau(v_i)$) represents the temporal difference between the neighbor and seed node, and (v) finally, subgraph based PE (GNN-PE $_{v_j}$) provides a graph PE for each node within the sampled subgraph, generated by applying a lightweight GNN to the subgraph’s adjacency matrix with random node feature initialization (Sato et al., 2021; Kanatsoulis et al., 2025).

Encoders. Each element in the 5-tuple is processed by a specialized encoder before being combined into the final token representation, as illustrated in Figure 2.

1. Node Feature Encoder. The node features x_{v_j} , representing the columnar attributes of the node v_j in REG (which corresponds to a table row in a database), are encoded into a d -dimensional embedding. Each modality, such as numerical, categorical, multi-categorical, text, and image data, is encoded separately using modality-specific encoders following (Hu et al., 2024), and the resulting

¹When fewer than K neighbors are available within 2 hops, we use randomly selected nodes as fallback tokens to maintain the fixed size K , ensuring consistent computational complexity regardless of local structure.

270 representations are then aggregated into a unified d -dimensional embedding.
 271

$$272 \quad h_{\text{feat}}(v_j) = \text{MultiModalEncoder}(x_{v_j}) \in \mathbb{R}^d \quad (1)$$

273 where $\text{MultiModalEncoder}(\cdot)$ is unified feature encoder adapted from (Hu et al., 2024).
 274

275 **2. Node Type Encoder.** The node type encoding steps converts each table-specific entity type $\phi(v_j)$
 276 to a d -dimensional representation, incorporating the heterogeneous information from the input data.
 277

$$278 \quad h_{\text{type}}(v_j) = W_{\text{type}} \cdot \text{onehot}(\phi(v_j)) \in \mathbb{R}^d \quad (2)$$

279 where $\phi(v_j)$ is the node type of v_j , $W_{\text{type}} \in \mathbb{R}^{d \times |T|}$ is the learnable weight matrix, $|T|$ is the number
 280 of node types, and $\text{onehot}(\cdot)$ is the one-hot encoding function.
 281

282 **3. Hop Encoder.** The relative hop distance $p(v_i, v_j)$, that captures the structural proximity between
 283 the seed node v_i and a neighbor node v_j , is encoded into a d -dimensional embedding as:
 284

$$285 \quad h_{\text{hop}}(v_i, v_j) = W_{\text{hop}} \cdot \text{onehot}(p(v_i, v_j)) \in \mathbb{R}^d \quad (3)$$

286 with $p(v_i, v_j)$ being the relative hop distance between seed node v_i and neighbor node v_j , and
 287 $W_{\text{hop}} \in \mathbb{R}^{d \times h_{\text{max}}}$ the learnable matrix mapping hop distances (up to h_{max}).
 288

289 **4. Time Encoder.** The time encoder linearly transforms the time difference $\tau(v_j) - \tau(v_i)$ between a
 290 neighbor node v_j and the seed node v_i :
 291

$$292 \quad h_{\text{time}}(v_i, v_j) = W_{\text{time}} \cdot (\tau(v_j) - \tau(v_i)) \in \mathbb{R}^d \quad (4)$$

293 where $\tau(v_j) - \tau(v_i)$ is the relative time difference, and $W_{\text{time}} \in \mathbb{R}^{d \times 1}$ are learnable parameters.
 294

295 **5. Subgraph PE Encoder.** Finally, for capturing local graph structure that can otherwise not be
 296 represented by other token elements, we apply a light-weight GNN to the subgraph. This GNN
 297 encoder effectively preserves important structural relationships, such as complex cycles and quasi-
 298 cliques between entities (Kanatsoulis & Ribeiro, 2024), as well as parent-child relationships (e.g., a
 299 *product* node within the local subgraph corresponding to specific *transactions*), and can be written as:
 300

$$301 \quad h_{\text{pe}}(v_j) = \text{GNN}(A_{\text{local}}, Z_{\text{random}})_j \in \mathbb{R}^d \quad (5)$$

302 where $\text{GNN}(\cdot, \cdot)_j$ is a light-weight GNN applied to the local subgraph yielding the encoding for
 303 node v_j , $A_{\text{local}} \in \mathbb{R}^{K \times K}$ is the adjacency matrix of the sampled subgraph of K nodes, and $Z_{\text{random}} \in$
 304 $\mathbb{R}^{K \times d_{\text{init}}}$ are randomly initialized node features for the GNN (with d_{init} as the initial feature dimension).
 305

306 One key advantage of using random node features in this GNN encoder is that it breaks structural
 307 symmetries between the subgraph topology and node attributes, thereby increasing the expressiveness
 308 of GNN layers (Sato et al., 2021). However, a fixed random initialization would destroy permutation
 309 equivariance, a critical property for generalization. To address this, we resample Z_{random} independently
 310 at every training step. This ‘stochastic initialization’ approach can be viewed as a relaxed version
 311 of the learnable PE method described in Kanatsoulis et al. (2025), thus approximately preserving
 312 permutation equivariance while retaining the expressivity gains afforded by the randomization.
 313

314 At last, the effective token representation is formed by combining all encoded elements:
 315

$$316 \quad h_{\text{token}}(v_j) = O \cdot [h_{\text{feat}}(v_j) \parallel h_{\text{type}}(v_j) \parallel h_{\text{hop}}(v_i, v_j) \parallel h_{\text{time}}(v_i, v_j) \parallel h_{\text{pe}}(v_j)] \quad (6)$$

317 where \parallel denotes the concatenation of the individual encoder outputs, and $O \in \mathbb{R}^{5d \times d}$ is a learnable
 318 matrix to mix the embeddings. This multi-element approach provides a comprehensive token
 319 representation that explicitly captures node features, type information, structural position, temporal
 320 dynamics, and local topology without requiring expensive computation on the graph structure.
 321

3.2 TRANSFORMER NETWORK

322 The Transformer network in RELGT, shown in Fig. 3, processes the tokenized relational entity graph
 323 using a combination of local and global attention mechanisms, following the successful designs used
 324 in modern GTs (Rampášek et al., 2022; Wu et al., 2023; Kong et al., 2023; Dwivedi et al., 2023).
 325

326 **Local module.** The local attention mechanism allows each seed node to attend to its K local tokens
 327 selected during tokenization, capturing the fine-grained relationships defined by the database schema.
 328

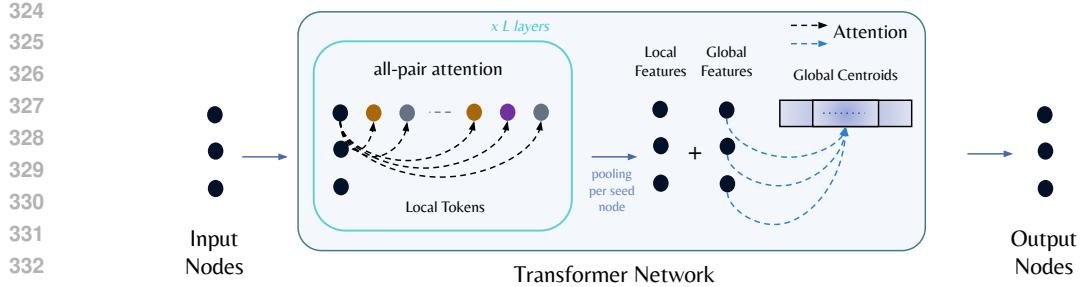


Figure 3: The Transformer network which processes the input tokens by first building local representations using the local tokens, then incorporating global context by attending to centroids that are dynamically updated during training. The final node representations combine both local structural details and global database context, enabling effective prediction across downstream tasks.

This mechanism is different from a GNN used in RDL (Robinson et al., 2024) in two key aspects: self-attention is used as the message-passing scheme and the attention is all-pair, *i.e.*, all nodes in the local K set attend to each other. This is implemented using an L layer Transformer (Vaswani et al., 2017) and provides a broader structural coverage compared to a baseline GNN (Robinson et al., 2024). A practical application of this improvement can be seen in the e-commerce example introduced in Sec. 1, where the proposed full-attention mechanism can directly connect seemingly unrelated products by identifying relationships through shared transactions or customer behaviors. This capability enables the model to capture subtle associations, such as customers frequently purchasing unexpected combinations of items. The local node representation $h_{\text{local}}(v_i)$ is obtained as:

$$h_{\text{local}}(v_i) = \text{Pool}(\text{FFN}(\text{Attention}(v_i, \{v_j\}_{j=1}^K))_L) \quad (7)$$

where, L denotes the layers, FFN and Attention are standard components in a Transformer (Vaswani et al., 2017), and Pool denotes the aggregation of $\{v_j\}_{j=1}^K$ and v_i using a learnable linear combination.

Global module. The global attention mechanism enables each seed node to attend to a set of B global tokens representing centroids of all nodes in the graph, conceptually and is adapted from prior works (Kong et al., 2023; Dwivedi et al., 2023). These centroids are updated during training using an Exponential Moving Average (EMA) K-Means algorithm applied to seed node features in each mini-batch, providing a broader contextual view beyond the local neighborhood. The global representation is formulated as:

$$h_{\text{global}}(v_i) = \text{Attention}(v_i, \{c_b\}_{b=1}^B) \quad (8)$$

The final output representation of each node v_i is obtained by combining local and global embeddings:

$$h_{\text{output}}(v_i) = \text{FFN}([h_{\text{local}}(v_i) \parallel h_{\text{global}}(v_i)]) \quad (9)$$

with FFN being a feed forward network. The components of the Transformer in all stages follow standard instantiations with normalization and residual connections.

For downstream prediction, the combined representation of the seed node is passed through a task-specific prediction head. The model is trained end-to-end using suitable task specific loss functions. By leveraging multi-element token representations within a hybrid local-global Transformer architecture, RELGT effectively addresses the challenges of heterogeneity, temporal dynamics, and schema-defined structures inherent in relational entity graphs.

4 EXPERIMENTS

RELG is evaluated on the recently introduced RDL Benchmark (RelBench) (Robinson et al., 2024). RelBench consists of 7 datasets from diverse relational database domains, including e-commerce, clinical records, social networks, and sports, among others. These datasets are curated from their respective source domains and consist a wide range of sizes, from 1.3K to 5.4M records in the training set for the prediction tasks, with a total of 47M training records. For each dataset, multiple predictive tasks are defined, such as predicting a user’s engagement with an advertisement within the next four

378
 379 Table 1: Test set results on the entity regression and classification tasks in RelBench. Best values
 380 are in **bold**. RDL: HeteroGNN baseline (Robinson et al., 2024), HGT: Heterogeneous GT (Hu et al.,
 381 2020), PE: Laplacian PE. Relative gains are expressed as percentage improvement over RDL baseline.
 382

(a) MAE for entity regression. Lower is better (b) AUC for entity classification. Higher is better.

Dataset	Task	RDL	HGT	HGT +PE	RelGT (ours)	% Rel. Gain	Dataset	Task	RDL	HGT	HGT +PE	RelGT (ours)	% Rel. Gain
rel-f1	driver-position	4.022	4.2263	4.3921	3.9170	2.61	rel-f1	driver-dnf	0.7262	0.7077	0.7117	0.7587	4.48
	ad-ctr	0.041	0.0462	0.0483	0.0345	15.85		driver-top3	0.7554	0.7075	0.7627	0.8352	10.56
rel-event	user-attendance	0.258	0.2635	0.2611	0.2502	2.79	rel-avito	user-clicks	0.6590	0.6376	0.6457	0.6830	3.64
	study-adverse	44.473	45.1692	42.6484	43.9923	1.08		user-visits	0.6620	0.6432	0.6495	0.6678	0.88
rel-trial	site-success	0.400	0.4428	0.4396	0.3263	18.43	rel-event	user-repeat	0.7689	0.6494	0.6536	0.7609	-1.04
	user-ltv	14.313	15.4120	15.8643	14.2665	0.32		user-ignore	0.8162	0.8247	0.8161	0.8157	-0.06
rel-amazon	item-ltv	50.053	55.8683	55.8493	48.9222	2.26	rel-trial	study-outcome	0.6860	0.5837	0.5921	0.6861	0.01
	post-votes	0.065	0.0679	0.0680	0.0654	-0.62		user-churn	0.7042	0.6643	0.6619	0.7039	-0.04
rel-stack	item-sales	0.056	0.0641	0.0639	0.0536	4.29	rel-amazon	item-churn	0.8281	0.7797	0.7803	0.8255	-0.31
	user-churn	0.6988	0.6695	0.6569	0.6927	-0.87		user-engagement	0.9021	0.8847	0.8817	0.9053	0.35
rel-hm	user-badge	0.8986	0.8608	0.8566	0.8632	-3.94		user-badge	0.8986	0.8608	0.8566	0.8632	-3.94
	user-churn	0.6988	0.6695	0.6569	0.6927	-0.87							

391 days or determining whether a clinical trial will achieve its primary outcome within the next year. In
 392 total, RelBench has 30 tasks across the 7 datasets, covering entity classification, entity regression, and
 393 recommendation. For our evaluation, we focus on 21 tasks on entity classification and regression ².
 394

4.1 SETUP AND BASELINES

398 We implement RELGT within the RDL pipeline (Robinson et al., 2024) by replacing the original
 399 GNN component, while preserving the learning mechanisms, database loaders, and task evaluators.
 400 The model has between 10-20M parameters, and we use a learning rate of $1e-4$. For tasks with
 401 fewer than 1M training nodes, we tune the number of layers $L \in \{1, 4, 8\}$ and use dropout rates of
 402 0.3, 0.4, 0.5. For tasks with more than 1M training nodes, we fix the number of layers to $L = 4$ due
 403 to compute budgets. For the sampling during the token preparation stage, we use $K = 300$ local
 404 neighbors and set $B = 4096$ as the number of tokens for global centroids. For smaller datasets (under
 405 one million training nodes), we use a batch size of 256 to ensure sufficient training steps. For larger
 406 datasets, we use a batch size of 1024. We do not perform exhaustive hyperparameter tuning; rather,
 407 our goal is to showcase the benefits of using RELGT in place of GNNs within the RDL framework.
 408 As shown in our ablation of the multi-element tokenization and global module in RELGT (Tab. 2),
 409 and context size (Fig. 4), careful tuning may further improve performance across different tasks.

410 In addition to the HeteroGNN baseline used in RDL, we report results for two variants of the
 411 Heterogeneous Graph Transformer (HGT) (Hu et al., 2020) to highlight the advantages of RELGT
 412 over existing GT models. Notably, many GTs, such as GraphGPS (Rampášek et al., 2022), are not
 413 directly applicable to heterogeneous graphs. Therefore, we adopt HGT and an enhanced version,
 414 HGT+PE, which incorporates Laplacian PE. These positional encodings are computed on the sampled
 415 subgraphs rather than the entire graph. Additional details are included in Appendix A.5.

4.2 RESULTS AND DISCUSSION

416 **RELTG improves over GNN in RDL.** The experimental results in Tables 1a and 1b demonstrate that
 417 RELGT consistently matches or outperforms the standard GNN baseline used in RDL (Robinson et al.,
 418 2024) across multiple datasets and tasks. Using a $\pm 1\%$ threshold to assess comparable performance,
 419 RELGT shows: (i) clear improvements (more than a 1% relative gain) on 10 tasks, (ii) comparable
 420 results (within $\pm 1\%$) on 9 tasks, and (iii) competitive but lower performance (more than a 1% relative
 421 loss) on 2 tasks. We observe the largest improvements in `rel-trial site-success` (18.43%),
 422 `rel-avito ad-ctr` (15.85%), and `rel-f1 driver-top3` (10.56%), while on `rel-stack`
 423 `user-badge`, RELGT performs below the RDL baseline by a margin of -3.94%. For all other tasks,
 424 RELGT consistently improves or matches the performance of the baseline GNN. We attribute the
 425 overall performance improvement to two key factors: (i) the broader structural coverage enabled
 426 by RELGT’s attention mechanisms as described in Section 3.2, and (ii) the fine-grained encodings
 427 employed in our tokenization scheme, which are further studied as follows and presented in Table 2.

431 ²We exclude recommendation tasks in this work since they involve specific considerations, such as identifying
 432 target nodes (You et al., 2021) or using pair-wise learning architectures (Yuan et al., 2024). Details in Sec. A.1

432 Table 2: Relative drop (%) in performance in RELGT after removing a model component. Negative
 433 scores suggest the component is critical in RELGT, and vice-versa. Full results in Table 9.

Dataset	Task	No Global Module	No GNN PE	No Node Type	No Hop Distance	No Relative Time
rel-avito	ad-ctr	-6.00	-1.14	-7.14	-3.43	-9.14
rel-avito	user-clicks	7.85	-15.15	5.01	5.77	8.37
rel-avito	user-visits	-0.35	-2.38	-0.11	0.39	-0.75
rel-event	user-ignore	-1.30	0.12	-0.11	0.66	-0.09
rel-trial	study-outcome	-2.14	-1.72	3.74	-0.43	2.48
rel-trial	site-success	-19.01	-9.17	-2.88	-21.49	-0.71
rel-amazon	user-churn	-0.64	-0.78	0.16	0.06	-2.20
rel-hm	item-sales	-9.33	-17.35	-12.69	0.93	-77.24
Average		-3.87	-5.95	-1.75	-2.19	-9.91

446 **Subgraph GNN PE is critical in RELGT.** In Table 2, we highlight the importance of several
 447 components in RELGT by conducting ablation studies. We remove one component at a time while
 448 preserving all others, and report the relative performance drop compared to the full RELGT model.
 449 Our results show that removing the subgraph GNN (PE), which encodes local subgraph structure
 450 (Section 3.1), leads to consistent performance degradation across all tasks. This component proves
 451 critical for disambiguating parent-child relationships when full-attention is applied, thanks to the
 452 random node features initialization (Sato et al., 2021; Kanatsoulis et al., 2025). For instance, without
 453 the GNN (PE), *products* belonging to specific *transactions* (Figure 1) cannot be effectively captured,
 454 even when other encodings remain.

455 **Global module can bring gains depending on the task.** In the same Table 2, our results of
 456 removing the global attention to the learnable centroids (Section 3.2) reveal task-dependent patterns
 457 that align with the findings reported in (Kong et al., 2023; Dwivedi et al., 2023). For some tasks,
 458 such as *rel-trial site-success*, removing the attention to the centroids tokens leads to a
 459 substantial performance drop (-19.08%), indicating that the global database-wide context provides
 460 crucial information beyond the local neighborhood. However, for certain tasks such as *rel-avito*
 461 *user-clicks*, removing the global module actually improves performance (7.79% relative gain),
 462 suggesting that for some prediction targets, local information is sufficient, and the global context
 463 might introduce noise. These mixed results highlight the complementary nature of local and global
 464 information in relational graphs, with the latter being optional depending on the task.

465 **Ablation of other encodings.** The remaining ablations in Table 2 reveal mixed results across different
 466 components. While removing explicit fine-grained encodings (node type, hop distance, and relative
 467 time) degrades performance on some tasks, it improves performance on others. For tasks with specific
 468 temporal dependencies (detailed in Sec. A.1), our current temporal encodings may inadvertently
 469 introduce noise. Similarly, for node type and hop distance encodings, their information might already
 470 be partially captured by other model components. Despite these variations, the full RELGT model
 471 still shows consistently superior results when averaged across all tasks. However, our findings suggest
 472 that RELGT’s scores could be further enhanced by careful tuning of these encoding components based
 473 on their task-specific importance. In particular, additional gains can be achieved by incorporating
 474 more effective temporal encodings (Clauset & Eagle, 2012; Huang et al., 2024; Jiang & Pu, 2023).

475 **HGT, a GT baseline, underperforms with significant overhead.** As shown in Tables 1a and 1b,
 476 HGT (Hu et al., 2020) underperforms compared to the HeteroGNN baseline of RDL (Robinson
 477 et al., 2024) across most tasks, with only two exceptions: *rel-trial study-adverse* and
 478 *rel-event user-ignore*. Notably, the integration of Laplacian PEs in HGT improves perfor-
 479 mance in 8 (of 21) tasks. Moreover, as illustrated in Figure 4, the computational overhead required
 480 for precomputing the Laplacian PEs substantially increases per-epoch runtime across various tasks.
 481 These empirical findings clearly reveal the difficulties of directly applying existing GT architectures
 482 to relational entity graphs, emphasizing the importance and need for our contributions with RELGT.

483 **Local context size K .** In our main RELGT experiments, we set the local context size at 300 nodes
 484 (Section 3.1), however, we study its variability in Figure 4 for context sizes $K \in \{100, 300, 500\}$.
 485 Although $K = 300$ generally produces the best results, optimal values vary across specific tasks.
 For instance, *rel-avito ad-ctr* benefits from a larger context size, whereas *rel-trial*
 486 *study-outcome* achieves better performance with a smaller context window. These findings

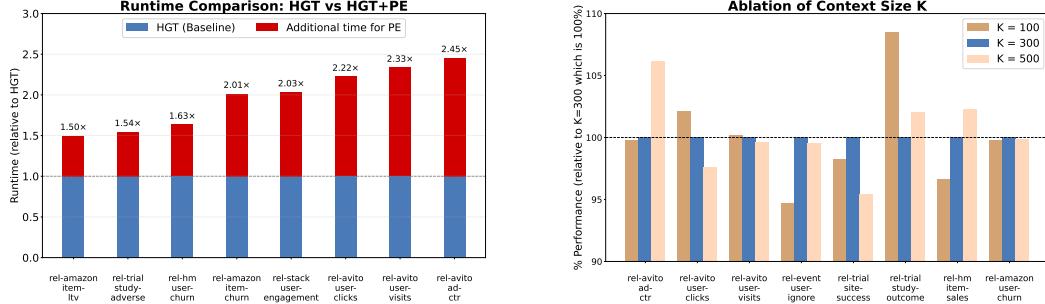


Figure 4: **Left:** Epoch runtime comparison of HGT (Hu et al., 2020) and HGT+PE, with Laplacian PE (see Figure 5 for all tasks). The red portion shows the additional time consumed by the precomputation of Laplacian PE against the base HGT time (blue). **Right:** Ablation for different K values as the local context size in RELGT. Results using $K = 300$ serve as the baseline (100% performance), with $K = 100$ and $K = 500$ runs measured as % of performance relative to $K = 300$.

suggest that RELGT’s performance could be further enhanced by task-specific tuning of the context size, allowing for better model expressivity based on the structural characteristics of each dataset.

5 CONCLUSION

In this work, we introduce the first Graph Transformer designed specifically for relational entity graphs: the Relational Graph Transformer. It addresses key challenges faced by existing models, such as incorporating heterogeneity, temporality, and comprehensive structural modeling within a unified GT framework. RELGT represents nodes as multi-element tokens enriched with fine-grained graph context and combines local attention over sampled subgraph tokens with global attention to learnable centroids, enabling effective representation learning on relational data. Experiments on the RelBench benchmark show that RELGT consistently outperforms GNN and GT baselines across multiple tasks. Moreover, our analysis highlights the critical role of subgraph-based positional encodings as a lightweight and effective alternative to traditional graph positional encodings. This work establishes RELGT as a powerful architecture for relational deep learning and opens new avenues for advancing and scaling such architectures toward foundation models tailored for relational data.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications. *arXiv preprint arXiv:2006.05205*, 2020.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique Beaini, and Ladislav Rampášek. Graph positional and structural encoder. *arXiv preprint arXiv:2307.07107*, 2023.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer for node classification in large graphs. In *The Eleventh International Conference on Learning Representations*, 2022.

Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. Relgnn: Composite message passing for relational deep learning. In *Forty-second International Conference on Machine Learning*, 2025.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794, 2016.

Aaron Clauset and Nathan Eagle. Persistence and periodicity in a dynamic proximity network. *arXiv preprint arXiv:1211.7343*, 2012.

540 Edgar F Codd. A relational model of data for large shared data banks. *Communications of the ACM*,
 541 13(6):377–387, 1970.

542

543 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 544 *AAAI Workshop on Deep Learning on Graphs: Methods and Applications*, 2021.

545 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 546 Xavier Bresson. Benchmarking graph neural networks. *arXiv:2003.00982*, 2020.

547

548 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 549 Graph neural networks with learnable structural and positional representations. In *International
 550 Conference on Learning Representations*, 2022.

551 Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
 552 Graph transformers for large graphs. *arXiv preprint arXiv:2312.11109*, 2023.

553

554 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. *arXiv
 555 preprint arXiv:1903.02428*, 2019.

556

557 Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
 558 Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning-graph representation
 559 learning on relational databases. In *Forty-first International Conference on Machine Learning*,
 2024.

560

561 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 562 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 1263–1272. PMLR, 2017.

563

564 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 565 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 566 models. *arXiv preprint arXiv:2407.21783*, 2024.

567

568 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings
 569 of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*, pp.
 855–864, 2016.

570

571 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 572 *Advances in neural information processing systems*, 30, 2017.

573

574 Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jinu Sunil, Jure
 575 Leskovec, and Matthias Fey. Pytorch frame: A modular framework for multi-modal tabular
 576 learning. *arXiv preprint arXiv:2404.00776*, 2024.

577

578 Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
 579 *Proceedings of the web conference 2020*, pp. 2704–2710, 2020.

580

581 Shenyang Huang, Farimah Poursafaei, Reihaneh Rabbany, Guillaume Rabusseau, and Emanuele
 582 Rossi. Utg: Towards a unified view of snapshot and event based models for temporal graphs. *arXiv
 583 preprint arXiv:2407.12269*, 2024.

584

585 Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
 586 Li. On the stability of expressive positional encodings for graphs. In *The Twelfth International
 587 Conference on Learning Representations*.

588

589 Xiangjian Jiang and Yanyi Pu. Exploring time granularity on temporal graphs for dynamic link
 590 prediction in real-world networks. *arXiv preprint arXiv:2311.12255*, 2023.

591

592 Chaitanya Joshi. Transformers are graph neural networks. *The Gradient*, 12:17, 2020.

593

594 Charilaos Kanatsoulis and Alejandro Ribeiro. Counting graph substructures with graph neural
 595 networks. In *The twelfth international conference on learning representations*, 2024.

596

597 Charilaos I Kanatsoulis, Evelyn Choi, Stephanie Jegelka, Jure Leskovec, and Alejandro Ribeiro.
 598 Learning efficient positional encodings with graph neural networks. In *The Thirteenth International
 599 Conference on Learning Representations*, 2025.

594 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
 595 Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information*
 596 *processing systems*, 30, 2017.

597

598 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 599 *arXiv preprint arXiv:1609.02907*, 2016.

600

601 Kezhi Kong, Juhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
 602 A global transformer on large-scale graphs. In *International Conference on Machine Learning*,
 603 2023.

604

605 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 606 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing*
 607 *Systems*, 34:21618–21629, 2021.

608

609 Veronica Lachi, Antonio Longa, Beatrice Bevilacqua, Bruno Lepri, Andrea Passerini, and Bruno
 610 Ribeiro. Over 100x speedup in relational deep learning via static gnns and tabular distillation.
 611 2024.

612 Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
 613 Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. In
 614 *The Eleventh International Conference on Learning Representations*, 2022.

615

616 Andreas Loukas. What graph neural networks cannot learn: depth vs width. *arXiv preprint*
 617 *arXiv:1907.03199*, 2019.

618

619 Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. Hinormer: Representation learning on
 620 heterogeneous information networks with graph transformer. In *Proceedings of the ACM web*
 621 *conference 2023*, pp. 599–610, 2023.

622

623 Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
 624 structure in transformers. *arXiv preprint arXiv:2106.05667*, 2021.

625

626 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
 627 Rattan, and Martin Grohe. Weisfeiler and leman go neural: higher-order graph neural networks.
 628 In *Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First*
 629 *Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on*
 630 *Educational Advances in Artificial Intelligence*, pp. 4602–4609, 2019.

631

632 Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
 633 transformers. *arXiv preprint arXiv:2302.04181*, 2023.

634

635 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
 636 *arXiv:1912.01703*, 2019.

637

638 Štefan Postăvaru, Anton Tsitsulin, Filipe Miguel Gonçalves de Almeida, Yingtao Tian, Silvio
 639 Lattanzi, and Bryan Perozzi. Instantembedding: Efficient local node representations. *arXiv*
 640 *preprint arXiv:2010.06992*, 2020.

641

642 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 643 minique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural*
 644 *Information Processing Systems*, 35:14501–14515, 2022.

645

646 Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles, Matthias
 647 Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark for deep
 648 learning on relational databases. *Advances in Neural Information Processing Systems*, 37:21330–
 649 21341, 2024.

650

651 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
 652 networks. In *Proceedings of the 2021 SIAM international conference on data mining (SDM)*, pp.
 653 333–341. SIAM, 2021.

648 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
 649 Welling. Modeling relational data with graph convolutional networks. In *The semantic web: 15th*
 650 *international conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15*,
 651 pp. 593–607. Springer, 2018.

652 Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
 653 Exphormer: Sparse transformers for graphs. *arXiv preprint arXiv:2303.06147*, 2023.

655 Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Fradkin,
 656 and Dominique Beaini. On the scalability of gnns for molecular graphs. *Advances in Neural*
 657 *Information Processing Systems*, 37:19870–19906, 2024.

658 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 659 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Information Processing*
 660 *Systems*, 30, 2017.

662 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
 663 et al. Graph attention networks. *stat*, 1050(20):10–48550, 2017.

664 Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
 665 graph attention network. In *The world wide web conference*, pp. 2022–2032, 2019.

667 Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, and Muhan
 668 Zhang. Griffin: Towards a graph-centric relational database foundation model. *arXiv preprint*
 669 *arXiv:2505.05568*, 2025.

670 Yili Wang. Htgformer: Heterogeneous temporal graph transformer. In *Proceedings of the 48th*
 671 *International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp.
 672 2550–2554, 2025.

673 Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
 674 Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations.
 675 *Advances in Neural Information Processing Systems*, 36:64753–64773, 2023.

677 Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling prediction tasks in relational
 678 databases with llms. *arXiv preprint arXiv:2411.11829*, 2024.

679 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 680 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

683 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 684 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in Neural*
 685 *Information Processing Systems*, 34:28877–28888, 2021.

686 Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
 687 neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp.
 688 10737–10745, 2021.

690 Yiwen Yuan, Zecheng Zhang, Xinwei He, Akihiro Nitta, Weihua Hu, Dong Wang, Manan Shah,
 691 Shenyang Huang, Blaž Stojanović, Alan Krumholz, et al. Contextggn: Beyond two-tower recom-
 692 mendation systems. *arXiv preprint arXiv:2411.19513*, 2024.

693 Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao, Zhaojie Gong, Fangda
 694 Gu, Michael He, et al. Actions speak louder than words: Trillion-parameter sequential transducers
 695 for generative recommendations. *arXiv preprint arXiv:2402.17152*, 2024.

696 Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
 697 adaptive node sampling. *Advances in Neural Information Processing Systems*, 35:21171–21183,
 698 2022.

700 Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
 701 Ye. Gophormer: Ego-graph transformer for node classification. *arXiv preprint arXiv:2110.13094*,
 2021.

702 Wenhao Zhu, Tianyu Wen, Guojie Song, Xiaojun Ma, and Liang Wang. Hierarchical transformer for
703 scalable graph learning. *arXiv preprint arXiv:2305.02866*, 2023.
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 Table 3: Dataset and task statistics from RelBench used for our evaluation.
757

758 759 Dataset	760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 Task	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 Task type	794 795 #Rows of training table			796 797 798 799 800 801 802 803 804 805 806 807 808 809 Train	796 797 798 799 800 801 802 803 804 805 806 807 808 809 Validation	796 797 798 799 800 801 802 803 804 805 806 807 808 809 Test	796 797 798 799 800 801 802 803 804 805 806 807 808 809 #Unique Entities	796 797 798 799 800 801 802 803 804 805 806 807 808 809 %train/test Entity Overlap
			790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 Train	790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 Validation	790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 Test	790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 #Unique Entities	790 791 792 793 794 795 %train/test Entity Overlap			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-amazon	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-churn	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	4,732,555	709,792	351,885	1,585,983	88.0			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 item-churn	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	2,559,264	177,689	166,842	416,352	93.1			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-ltv	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	4,732,555	409,792	351,885	1,585,983	88.0			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 item-ltv	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	2,707,679	166,978	178,334	427,537	93.5			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-avito	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-clicks	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	59,454	21,183	47,996	66,449	45.3			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-visits	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	86,619	29,979	36,129	63,405	64.6			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 ad-ctr	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	5,100	1,766	1,816	4,997	59.8			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-event	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-repeat	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	3,842	268	246	1,514	11.5			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-ignore	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	19,239	4,185	4,010	9,799	21.1			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-attendance	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	19,261	2,014	2,006	9,694	14.6			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-f1	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 driver-dnf	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	11,411	566	702	821	50.0			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 driver-top3	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	1,353	588	726	134	50.0			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 driver-position	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	7,453	499	760	826	44.6			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-hm	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-churn	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	3,871,410	76,556	74,575	1,002,984	89.7			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 item-sales	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	5,488,184	105,542	105,542	105,542	100.0			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-engagement	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	1,360,850	85,838	88,137	88,137	97.4			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-stack	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 user-badge	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	3,386,276	247,398	255,360	255,360	96.9			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 post-votes	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	2,453,921	156,216	160,903	160,903	97.1			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 study-outcome	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 classification	11,994	960	825	13,779	0.0			
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 rel-trial	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 study-adverse	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	43,335	3,596	3,098	50,029	0.0			
	775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 site-success	794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 regression	151,407	19,740	22,617	129,542	42.0			

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
A APPENDIX775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
A.1 BENCHMARK DETAILS

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
In this section, we include the details on the datasets and the tasks in RelBench (Robinson et al., 2024) which we use for our evaluation. RelBench consists of 7 datasets from diverse relational database domains, including e-commerce, clinical records, social networks, and sports, among others. These datasets are curated from their respective source domains and consist a wide range of sizes, from 1.3K to 5.4M records in the training set for the prediction tasks, with a total of 47M training records. For each dataset, multiple predictive tasks are defined, such as predicting a user’s engagement with an advertisement within the next four days or determining whether a clinical trial will achieve its primary outcome within the next year. In total, RelBench has 30 tasks across the 7 datasets, covering entity classification, entity regression, and recommendation. For our evaluation, we focus on 21 tasks on entity classification and regression as RELGT primarily serves as a node representation learning model in RDL. We exclude recommendation tasks in this work since they involve specific considerations, such as identifying target nodes (You et al., 2021) or using pair-wise learning architectures (Yuan et al., 2024) and using RELGT trivially in RDL is sub-optimal. We detail the dataset and task statistics in Table 3.

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
A.1.1 DATASETS

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
The Amazon E-commerce dataset consists of product details, user information, and review interactions from Amazon’s platform, including metadata like pricing and categories, along with review ratings and content.

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
Avito’s marketplace dataset contains search queries, advertisement characteristics, and contextual information from this major online trading platform that facilitates transactions across various categories including real estate and vehicles.

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
The Event Recommendation dataset from Hangtime mobile app tracks users’ social planning, capturing interactions, event details, demographic data, and social connections to reveal how relationships impact user behavior.

775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
The F1 dataset provides comprehensive Formula 1 racing information since 1950, documenting drivers, constructors, manufacturers, and circuits with detailed records of race results, standings, and specific data on various racing sessions and pit stops.

810 **rel-hm.** H&M’s dataset contains customer-product interactions from their e-commerce platform,
 811 featuring customer demographics, product descriptions, and purchase histories.
 812

813 **rel-stack.** The Stack Exchange dataset documents activity from this network of Q&A websites,
 814 including user biographies, posts, comments, edits, votes, and question relationships where users
 815 earn reputation through contributions.
 816

817 **rel-trial.** The clinical trial dataset from the AACT initiative has study protocols and outcomes,
 818 containing trial designs, participant information, intervention details, and results metrics, serving as a
 819 key resource for medical research.
 820

821 A.1.2 TASKS

822 The following entity classification and regression tasks are defined in RelBench for the above datasets.
 823

824 1. **rel-amazon**

- 825 (a) **user-churn:** Predict whether a user will discontinue reviewing products within the
 826 next three months.
- 827 (b) **item-churn:** Predict if a product will have no reviews in the next three months.
- 828 (c) **user-ltv:** Estimate the total monetary value of merchandise in dolloar that a user
 829 will purchase and review within the next three months.
- 830 (d) **item-ltv:** Estimate the total monetary value of purchases and reviews a product will
 831 receive during the next three months.

833 2. **rel-avito**

- 834 (a) **user-visits:** Predict if a user will engage with several (advertisements) ads within
 835 the upcoming four days.
- 836 (b) **user-clicks:** Predict whether a user will interact with multiple ads through clicking
 837 within the upcoming four days.
- 838 (c) **ad-ctr:** Estimate the interaction probability for an ad, assuming it receives an
 839 interaction within four days.

840 3. **rel-event**

- 841 (a) **user-attendance:** Estimate the number of of events a user will confirm attendance
 842 to (RSVP yes or maybe) within the upcoming seven days.
- 843 (b) **user-repeat:** Predict whether a user will join an event (RSVP yes or maybe)
 844 within the upcoming seven days, provided they attended in an event during the previous
 845 fourteen days.
- 846 (c) **user-ignore:** Predict whether a user will disregard or ignore more than two events
 847 invitations within the upcoming seven days.

848 4. **rel-f1**

- 849 (a) **driver-dnf:** Predict if a driver will not finish a race within the upcoming month.
- 850 (b) **driver-top3:** Determine if a driver will achieve a top-three qualifying position in a
 851 race within the upcoming month.
- 852 (c) **driver-position:** Estimate a driver’s average finishing placement across all races
 853 in the upcoming two months.

855 5. **rel-hm**

- 856 (a) **user-churn:** Predict whether a customer will not perform any transactions in the
 857 upcoming week.
- 858 (b) **item-sales:** Estimate total revenue generated by a product in the upcoming week.

859 6. **rel-stack**

- 860 (a) **user-engagement:** Predict whether a user will contribute through voting, posting,
 861 or commenting within the upcoming three months.
- 862 (b) **user-badge:** Predict whether a user will secure a new badge within the upcoming
 863 three months.

864
865 Table 4: Study of node initialization in Subgraph GNN PE. Relative drop is expressed as percentage
866 drop of using Z_{LapPE} vs. Z_{random} and runtime ratio compares the time for Z_{LapPE} vs. Z_{random} .
867

Dataset	Task (# train)	MAE ↓	Performance		Epoch time (m)		Runtime Ratio	
			Z_{random}	Z_{LapPE}	% Rel Drop	Z_{random}		
rel-avito	ad-ctr	Test	0.035	0.0369	-5.43	0.76	2.57	3.38
		Val	0.0314	0.0314				
rel-trial	site-success	Test	0.326	0.3452	-5.89	32.88	36.09	1.1
		Val	0.359	0.3683				
rel-hm	item-sales	Test	0.0536	0.0573	-6.9	49.26	53.8	1.09
		Val	0.0627	0.0667				
Dataset	Task (# train)	AUC ↑	Z_{random}	Z_{LapPE}	% Rel Drop	Z_{random}	Z_{LapPE}	Runtime Ratio
			Test	0.607	0.583	-3.95	6.42	7.43
rel-avito	user-clicks	Val	0.656	0.6564				
		Test	0.664	0.6626	-0.21	9.26	10.50	1.13
rel-event	user-ignore	Val	0.699	0.7002				
		Test	0.8	0.7988	-0.15	1.85	2.77	1.5
rel-trial	study-outcome	Val	0.881	0.8916				
		Test	0.674	0.6532	-3.09	1.41	1.52	1.08
rel-amazon	user-churn	Val	0.689	0.6719				
		Test	0.7039	0.7044	0.07	168.00	170.55	1.02
		Val	0.7036	0.7036				

885
886 (c) **post-votes**: Estimate the number of votes a user’s post will accumulate over the
887 upcoming three months.

7. **rel-trial**

888
889 (a) **study-outcome**: Predict whether a clinical trial will achieve its principal outcome
890 within the upcoming year.
891 (b) **study-adverse**: Estimate the number of patients who will experience significant
892 adverse effects or mortality in a clinical trial over the upcoming year.
893 (c) **site-success**: Estimate the success rate of a clinical trial site in the upcoming
894 year.

895 A.2 NODE INITIALIZATION FOR SUBGRAPH GNN PE IN RELGT

896 As described in Section 3.1, we employ a lightweight GNN PE to capture local graph structures
897 that cannot be represented by other elements of the token, particularly the parent-child relationships
898 among nodes in the local subgraph. The GNN is implemented as:

$$901 h_{\text{pe}}(v_j) = \text{GNN}(A_{\text{local}}, Z_{\text{random}})_j \in \mathbb{R}^d \quad (10)$$

902 where $\text{GNN}(\cdot, \cdot)_j$ is a lightweight GNN applied to the local subgraph, yielding the encoding for node
903 v_j . Here, $A_{\text{local}} \in \mathbb{R}^{K \times K}$ represents the adjacency matrix of the sampled subgraph containing K
904 nodes, and $Z_{\text{random}} \in \mathbb{R}^{K \times d_{\text{init}}}$ denotes randomly initialized node features for the GNN (with d_{init} as
905 the initial feature dimension). In RELGT, we set $d_{\text{init}} = 1$.

906 The randomly initialized node features (Z_{random}) provide enhanced properties as discussed in Section
907 3.1. We investigate the alternative approach of using Laplacian PE (Z_{LapPE}) computed over the
908 subgraph instead of random initialization and report these results in Table 4. For these results, we
909 utilized a positional encoding dimension size of 4. Our findings indicate that Z_{LapPE} consistently
910 underperforms compared to Z_{random} , while also introducing additional computational overhead
911 ranging from $1.02 \times$ to $3.38 \times$ across the 8 selected tasks in our study. This shows the challenges of
912 using existing PEs such as Laplacian PE in relational entity graphs and signify the use of GNN PE as
913 part of RELGT’s tokenization strategy.

914 A.3 LEARNABLE SPATIO-TEMPORAL PE

915 In this section, we explore a learnable spatio-temporal positional encoding (PE) for RELGT. Instead
916 of using the relative time encoder (Eqn. 4), we use the ‘relative time’ term to initialize nodes in

918
919
920
921 Table 5: Performance comparison of RELGT (Full) with the Spatio-Temporal PE (Eqns. 11 - 12).
922 Negative scores suggest performance drop with the spatio-temporal PE in RELGT.
923
924
925
926
927

Dataset	Task	MAE ↓	RelGT (Full)	RelGT (Spatio-Temporal PE)	% Rel. Diff
rel-avito	ad-ctr	Test	0.0345	0.0355	-2.90
		Val	0.0314	0.0315	
rel-trial	site-success	Test	0.3262	0.3554	-8.95
		Val	0.3593	0.3883	
rel-hm	item-sales	Test	0.0536	0.0630	-17.54
		Val	0.0627	0.0718	
Dataset	Task	AUC ↑	RelGT (Full)	RelGT (Spatio-Temporal PE)	% Rel. Diff
rel-avito	user-clicks	Test	0.6830	0.6465	-5.34
		Val	0.6649	0.6519	
rel-avito	user-visits	Test	0.6678	0.6641	-0.55
		Val	0.7024	0.7017	
rel-event	user-ignore	Test	0.8157	0.8152	-0.06
		Val	0.8868	0.8870	
rel-trial	study-outcome	Test	0.6861	0.6537	-4.72
		Val	0.6678	0.6757	
rel-amazon	user-churn	Test	0.7039	0.7036	-0.04
		Val	0.7036	0.7037	

938
939
940 Table 6: RELGT results on entity classification tasks in RelBench compared with Griffin (Wang et al.,
941 2025). AUC is the performance metric. Higher is better.

Dataset	Task	Griffin	RelGT (ours)	% Rel. Gain
rel-f1	driver-dnf	0.745	0.7587	1.84
	driver-top3	0.825	0.8352	1.24
rel-avito	user-clicks	0.630	0.6830	8.41
	user-visits	0.650	0.6678	2.74
rel-trial	study-outcome	0.689	0.6861	-0.42
rel-amazon	user-churn	0.700	0.7039	0.56
	item-churn	0.811	0.8255	1.79
rel-stack	user-engagement	0.898	0.9053	0.81
	user-badge	0.870	0.8632	-0.78
rel-hm	user-churn	0.683	0.6927	1.42

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
the Subgraph GNN PE, where relative time $\tau(v_j) - \tau(v_i)$ denotes the temporal difference between
955 neighbor node v_j and seed node v_i . This approach repurposes the Subgraph GNN PE as a learnable
956 spatio-temporal PE, which is defined as:
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
$$h_{\text{stpe}}(v_j) = \text{GNN}(A_{\text{local}}, Z_{\text{relative_time}})_j \in \mathbb{R}^d \quad (11)$$

where $z_{j,\text{relative_time}} = \tau(v_j) - \tau(v_i)$. The token representation, then, becomes:
$$h_{\text{token}}(v_j) = O \cdot [h_{\text{feat}}(v_j) || h_{\text{type}}(v_j) || h_{\text{hop}}(v_i, v_j) || h_{\text{stpe}}(v_j)] \quad (12)$$

where $||$ denotes the concatenation of the individual encoder outputs, and $O \in \mathbb{R}^{4d \times d}$ is a learnable
matrix to mix the embeddings.
Table 5 presents our evaluation results over three regression and five classification tasks in RelBench.
Across all tasks, replacing the original temporal encoder and subgraph GNN PE encoder with the
Spatio-Temporal PE leads to a consistent performance decline in RELGT.
A.4 COMPARISON WITH GRIFFIN
In this section, we compare RELGT with Griffin (Wang et al., 2025), which is a GNN based relational
foundation model that integrates unified feature encoders, cross-attention and hierarchical message
passing to process relational entity graphs from diverse domains. We report the results in Table 6

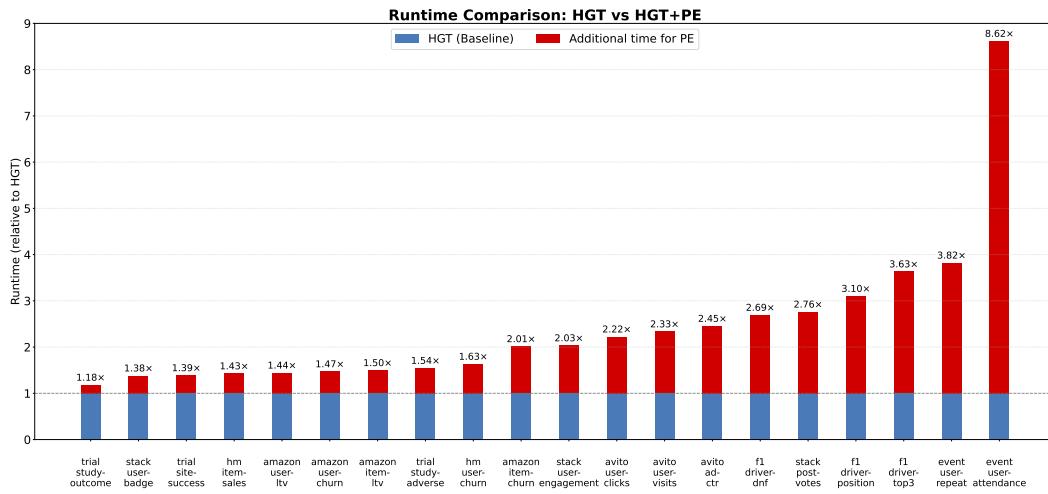


Figure 5: Runtime Comparison of HGT and HGT+PE baseline. Adding the Laplacian Positional Encoding increases computational overhead, with penalties on average training time per epoch. The overhead for PE reaches up to 761% relative to the training time of HGT on the same dataset.

for 10 entity classification tasks in RelBench, where Griffin is finetuned on each task following the same procedure used to train RELGT. RELGT outperforms Griffin on 8 out of 10 tasks with relative gains of up to 8.41%, demonstrating the advantages of a Graph Transformer backbone for processing relational entity graphs.

A.5 HGT BASELINE

In the main experiments (Section 4), we use the Heterogeneous Graph Transformer (HGT) (Hu et al., 2020) as a graph transformer (GT) baseline, and report results for two variants to demonstrate the advantages of RELGT over existing GT models. Specifically, we consider the standard HGT model and an enhanced version, HGT+PE, which incorporates Laplacian positional encodings (LapPE). These positional encodings are computed on sampled subgraphs rather than the full graph.

For implementation, we use the HGTConv layer from PyTorch Geometric (Fey & Lenssen, 2019) and integrate it into the RDL pipeline (Robinson et al., 2024) by replacing the default GNN module. Both variants use 4 attention heads and 2 layers, similar to the configuration of the GNN module in RDL, with residual connections and layer normalization applied between layers. For the HGT+PE variant, we use LapPE of dimension 4 for all tasks, except for `rel-amazon item-ltv` and `rel-hm item-sales`, where we use dimension 2. Notably, because the relational entity graphs are heterogeneous, the Laplacian positional encodings is computed multiple times for each node type, unlike the original homogeneous setting for which LapPE was designed (Dwivedi et al., 2020).

In addition to the main results in Table 1, we report per-epoch runtimes in Figure 5 and Table 7. We observe a significant computational overhead from precomputing Laplacian positional encodings, with slowdowns ranging from 1.8x to 8.62x, highlighting the challenge of directly applying existing graph PE techniques *as is* to relational entity graphs, and signifying the contributions of RELGT.

A.6 DETAILED RESULTS

In Table 8, we report the full results of different configurations we tuned for RELGT, particularly on the smaller datasets with lesser than a million training nodes. Table 9 provides the full scores for the RELGT component study in Table 2, while Table 10 provides the supporting results for Figure 4. Finally, we provide the elaborated version of the Tables 1a and 1b in Tables 11 and 12, respectively.

1026 Table 7: Relative performance drop (%) when position encoding (PE) is removed from HGT+PE
1027 models and average training time per epoch of HGT and HGT+PE. Negative scores suggest the PE is
1028 critical, and vice-versa. HGT+PE consistently requires more training time per epoch compared to
1029 HGT without PE across all datasets.

Dataset	Task	No PE	HGT(s)	HGT+PE(s)
rel-f1	driver-position	1.79	1.47	4.56
rel-avito	ad-ctr	10.73	1.63	4.00
rel-event	user-attendance	-2.85	4.36	37.57
rel-trial	study-adverse	-2.03	9.72	15.02
rel-trial	site-success	1.29	45.73	63.41
rel-amazon	user-ltv	3.45	73.59	106.21
rel-amazon	item-ltv	-0.93	73.68	110.33
rel-stack	post-votes	0.15	191.23	528.25
rel-hm	item-sales	-2.18	94.66	135.05
rel-f1	driver-dnf	0.46	2.54	6.84
rel-f1	driver-top3	-23.39	0.38	1.38
rel-avito	user-clicks	3.08	11.09	24.66
rel-avito	user-visits	-1.24	17.16	40.07
rel-event	user-repeat	1.93	1.35	5.16
rel-event	user-ignore	2.29	4.49	651.10
rel-trial	study-outcome	-0.21	4.09	4.83
rel-amazon	user-churn	0.29	78.56	115.53
rel-amazon	item-churn	-0.20	75.51	152.06
rel-stack	user-engagement	0.52	175.16	356.07
rel-stack	user-badge	1.57	153.68	212.21
rel-hm	user-churn	4.34	77.73	127.04
Average		-0.05	52.28	128.64

A.7 COMPUTATIONAL COMPLEXITY AND RESOURCE INFORMATION.

1051 RELGT has $O(K^2 \cdot d)$ complexity for local attention and $O(K \cdot B \cdot d)$ for global attention per
1052 node, where K is local context size, B is number of global centroids, and d is hidden dimension.
1053 We implement RELGT using PyTorch framework (Paszke, 2019), PyTorch Geometric framework
1054 (Fey & Lenssen, 2019) and adapt the codebase of relational deep learning (Robinson et al., 2024)
1055 <https://github.com/snap-stanford/relbench>. All our experiments are conducted
1056 on an NVIDIA A100 GPU server with 8 GPU nodes.

1057 Table 8: RELGT results using $L \in 1, 4, 8$ and dropout $\in 0.3, 0.4, 0.5$ for the smaller datasets with
1058 less than a million training nodes.

Dataset	Task (# train)	MAE \downarrow	L1 0.3	L1 0.4	L1 0.5	L4 0.3	L4 0.4	L4 0.5	L8 0.3	L8 0.4	L8 0.5
rel-f1	driver-position (7k)	Test Val	4.942 3.1897	5.6431 3.1817	3.917 3.3257	4.6316 3.1046	4.0851 3.3352	4.0042 3.1276	5.5273 3.1589	5.5569 3.2907	4.6085 3.1843
rel-avito	ad-ctr (5k)	Test Val	0.0358 0.0322	0.0352 0.0313	0.0345 0.0314	0.035 0.0314	0.0366 0.0322	0.0388 0.0335	0.0354 0.0317	0.0358 0.0322	0.0356 0.0324
rel-event	user-attendance (19k)	Test Val	0.2635 0.2618	0.2595 0.2558	0.2635 0.2618	0.2502 0.2548	0.2543 0.2534	0.2584 0.253	0.2635 0.2618	0.2637 0.2599	0.2635 0.2618
rel-trial	study-adverse (43k)	Test Val	44.8553 46.3538	44.2260 46.3193	44.848 46.2056	44.8893 46.1031	44.4310 45.9498	43.9923 46.2148	44.2245 46.1804	44.5878 46.1381	44.5013 46.4332
rel-trial	site-success (151k)	Test Val	0.3490 0.3493	0.3652 0.3455	0.3830 0.3550	0.4019 0.3771	0.386 0.392	0.3262 0.3593	0.3783 0.3848	0.3431 0.3643	0.3644 0.3669
Dataset	Task (# train)	AUC \uparrow	L1 0.3	L1 0.4	L1 0.5	L4 0.3	L4 0.4	L4 0.5	L8 0.3	L8 0.4	L8 0.5
rel-f1	driver-dnf (11k)	Test Val	0.7434 0.6877	0.7587 0.6761	0.7521 0.6896	0.7587 0.6804	0.745 0.6762	0.6957 0.6768	0.7349 0.6702	0.7393 0.6803	0.741 0.6865
rel-f1	driver-top3 (1k)	Test Val	0.7845 0.7775	0.8203 0.783	0.8 0.7764	0.8171 0.7841	0.8157 0.79	0.8352 0.7958	0.7871 0.7893	0.8217 0.7847	0.8222 0.7829
rel-avito	user-clicks (59k)	Test Val	0.6524 0.6649	0.6233 0.6616	0.6212 0.6501	0.6067 0.6564	0.5893 0.6608	0.5956 0.6579	0.6245 0.6587	0.6649 0.6648	0.6507 0.6648
rel-avito	user-visits (86k)	Test Val	0.6627 0.7005	0.6663 0.6993	0.6615 0.7001	0.6584 0.6954	0.6642 0.6958	0.6647 0.699	0.6647 0.6995	0.6647 0.7024	0.664 0.7011
rel-event	user-repeat (3k)	Test Val	0.6981 0.7172	0.7403 0.7386	0.7452 0.7319	0.7563 0.7245	0.7236 0.7207	0.7432 0.736	0.7609 0.7285	0.7316 0.7209	0.7418 0.7064
rel-event	user-ignore (19k)	Test Val	0.8006 0.8739	0.802 0.8721	0.7986 0.8729	0.799 0.878	0.787 0.8731	0.8002 0.881	0.7956 0.8757	0.8076 0.8801	0.8157 0.8868
rel-trial	study-outcome (11k)	Test Val	0.6808 0.6815	0.6753 0.6792	0.6837 0.6751	0.6488 0.6737	0.6818 0.676	0.6744 0.689	0.6861 0.6678	0.6562 0.6746	0.6649 0.6768

1080
1081 Table 9: Relative drop (%) in performance in RELGT after removing a model component. Negative
1082 scores suggest the component is critical in RELGT, and vice-versa.
1083

Dataset	Task (# train)	MAE ↓	RelGT (Full)	RelGT (No Global)	% Rel. Drop	RelGT (No GNN)	% Rel. Drop	RelGT (No Type)	% Rel. Drop	RelGT (No Hop)	% Rel. Drop	RelGT (No Time)	% Rel. Drop
rel-avito	ad-ctr	Test	0.0350	0.0371	-6.0	0.0354	-1.14	0.0375	-7.14	0.0362	-3.43	0.0382	-9.14
		Val	0.0314	0.0323		0.0315		0.0328		0.0322		0.0337	
rel-trial	site-success	Test	0.3262	0.3882	-19.01	0.3561	-9.17	0.3356	-2.88	0.3963	-21.49	0.3285	-0.71
		Val	0.3593	0.3342		0.3637		0.3655		0.3614		0.3615	
rel-hm	item-sales	Test	0.0536	0.0586	-9.33	0.0629	-17.35	0.0604	-12.69	0.0531	0.93	0.095	-77.24
		Val	0.0627	0.0676		0.073		0.0696		0.0623		0.1025	
Dataset	Task (# train)	AUC ↑	RelGT (Full)	RelGT (No Global)	% Rel. Drop	RelGT (No GNN)	% Rel. Drop	RelGT (No Type)	% Rel. Drop	RelGT (No Hop)	% Rel. Drop	RelGT (No Time)	% Rel. Drop
rel-avito	user-clicks	Test	0.6067	0.6543	7.85	0.5148	-15.15	0.6371	5.01	0.6417	5.77	0.6575	8.37
		Val	0.6564	0.6496		0.6551		0.6559		0.6482		0.6579	
rel-trial	user-visits	Test	0.6642	0.6619	-0.35	0.6484	-2.38	0.6635	-0.11	0.6668	0.39	0.6592	-0.75
		Val	0.699	0.6892		0.6879		0.6991		0.7016		0.7005	
rel-event	user-ignore	Test	0.8002	0.7898	-1.3	0.8012	0.12	0.7993	-0.11	0.8055	0.66	0.7995	-0.09
		Val	0.881	0.8575		0.8637		0.8873		0.8852		0.8789	
rel-trial	study-outcome	Test	0.6744	0.66	-2.14	0.6628	-1.72	0.6996	3.74	0.6715	-0.43	0.6911	2.48
		Val	0.689	0.664		0.6775		0.6728		0.6705		0.6578	
rel-amazon	user-churn	Test	0.7039	0.6994	-0.64	0.6984	-0.78	0.705	0.16	0.7043	0.06	0.6884	-2.2
		Val	0.7036	0.6994		0.6994		0.7042		0.704		0.6882	

1096
1097 Table 10: Ablation of context size K in RELGT.
1098

Dataset	Task (# train)	MAE ↓	RELGT K=100	RELGT K=300	RELGT K=500
rel-avito	ad-ctr	Test	0.0375	0.0374	0.0351
		Val	0.0329	0.0319	0.031
rel-trial	site-success	Test	0.3739	0.3674	0.3842
		Val	0.3708	0.372	0.376
rel-hm	item-sales	Test	0.055	0.0532	0.052
		Val	0.0643	0.0619	0.061
Dataset	Task (# train)	AUC ↑	RelGT K=100	RelGT K=300	RelGT K=500
rel-avito	user-clicks	Test	0.6628	0.6491	0.6334
		Val	0.6437	0.6622	0.6632
rel-avito	user-visits	Test	0.6664	0.6653	0.6627
		Val	0.7013	0.701	0.7005
rel-event	user-ignore	Test	0.7674	0.8105	0.8068
		Val	0.8682	0.8853	0.8843
rel-trial	study-outcome	Test	0.7078	0.6526	0.666
		Val	0.6575	0.663	0.6877
rel-amazon	user-churn	Test	0.7038	0.7054	0.7043
		Val	0.7033	0.7044	0.7042

1116 Table 11: Results on the entity regression tasks in RelBench. Lower is better. Best values are in **bold**.
1117 Relative gains are expressed as percentage improvement over RDL baseline.
1118

Dataset	Task	MAE ↓	RDL Baseline	HGT	HGT +PE	RelGT (ours)	% Rel. Gain
rel-f1	driver-position	Test	4.022±0.119	4.2263±0.0580	4.3921±0.1382	3.9170 ±0.3448	2.61
		Val	3.193±0.024	3.1543±0.1455	3.1116±0.1120	3.3257±0.5618	
rel-avito	ad-ctr	Test	0.041±0.001	0.0462±0.0021	0.0483±0.0027	0.0345 ±0.0009	15.85
		Val	0.037±0.000	0.0433±0.0019	0.0444±0.0024	0.0314±0.0010	
rel-event	user-attendance	Test	0.258±0.006	0.2635±0.0000	0.2611±0.0043	0.2502 ±0.0033	2.79
		Val	0.255±0.007	0.2616±0.0001	0.2603±0.0020	0.2548±0.0018	
rel-trial	study-adverse	Test	44.473±0.209	45.1692±2.6927	42.6484 ±0.2785	43.9923±0.5928	1.08
		Val	46.290±0.304	47.3913±1.7936	45.7910±0.0051	46.2148±0.7210	
rel-trial	site-success	Test	0.400±0.020	0.4428±0.0047	0.4396±0.0083	0.3263 ±0.0306	18.43
		Val	0.401±0.009	0.4275±0.0062	0.4292±0.0069	0.3593±0.0372	
rel-amazon	user-ltv	Test	14.313±0.013	15.4120±0.0447	15.8643±0.0924	14.2665 ±0.0154	0.32
		Val	12.132±0.007	13.2295±0.1402	13.4886±0.0713	12.1151±0.0218	
rel-amazon	item-ltv	Test	50.053±0.163	55.8683±0.6003	55.8493±0.3226	48.9222 ±0.7006	2.26
		Val	45.140±0.068	51.0303±0.2230	50.6522±0.6141	43.8161±0.0548	
rel-stack	post-votes	Test	0.065 ±0.0000	0.0679±0.0000	0.0680±0.0000	0.0654 ±0.0002	-0.62
		Val	0.059±0.000	0.0615±0.0000	0.0617±0.0000	0.0592±0.0002	
rel-hm	item-sales	Test	0.056±0.000	0.0641±0.0012	0.0639±0.0003	0.0536 ±0.0006	4.29
		Val	0.065±0.000	0.0739±0.0008	0.0739±0.0010	0.0627±0.0008	

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152

Table 12: Results on the entity classification tasks in RelBench. Higher is better. Best values are in **bold**. Relative gains are expressed as percentage improvement over RDL baseline.

Dataset	Task	AUC \uparrow	RDL Baseline	HGT	HGT +PE	RelGT (ours)	% Rel. Gain
rel-f1	driver-dnf	Test	0.7262 \pm 0.0027	0.7077 \pm 0.0153	0.7117 \pm 0.0084	0.7587 \pm 0.0413	4.48
		Val	0.7136 \pm 0.0154	0.7765 \pm 0.0066	0.7340 \pm 0.0018	0.6804 \pm 0.0420	
	driver-top3	Test	0.7554 \pm 0.0063	0.7075 \pm 0.1156	0.7627 \pm 0.1390	0.8352 \pm 0.0342	10.56
		Val	0.7764 \pm 0.0316	0.6457 \pm 0.0147	0.6486 \pm 0.0287	0.7958 \pm 0.0513	
rel-avito	user-clicks	Test	0.6590 \pm 0.0195	0.6376 \pm 0.0298	0.6457 \pm 0.0099	0.6830 \pm 0.0602	3.64
		Val	0.6473 \pm 0.0032	0.5999 \pm 0.0022	0.5886 \pm 0.0231	0.6649 \pm 0.0610	
	user-visits	Test	0.6620 \pm 0.0010	0.6432 \pm 0.0002	0.6495 \pm 0.0022	0.6678 \pm 0.0015	0.88
		Val	0.6965 \pm 0.0004	0.6652 \pm 0.0040	0.6649 \pm 0.0060	0.7024 \pm 0.0009	
rel-event	user-repeat	Test	0.7689 \pm 0.0159	0.6496 \pm 0.0220	0.6536 \pm 0.0137	0.7609 \pm 0.0219	-1.04
		Val	0.7125 \pm 0.0253	0.6082 \pm 0.0148	0.6148 \pm 0.0172	0.7285 \pm 0.0108	
	user-ignore	Test	0.8162 \pm 0.0111	0.8247 \pm 0.0096	0.8161 \pm 0.0001	0.8157 \pm 0.0040	-0.06
		Val	0.9170 \pm 0.0033	0.8997 \pm 0.0114	0.8940 \pm 0.0000	0.8868 \pm 0.0032	
rel-trial	study-outcome	Test	0.6860 \pm 0.0101	0.5837 \pm 0.0141	0.5921 \pm 0.0303	0.6861 \pm 0.0040	0.01
		Val	0.6818 \pm 0.0049	0.6037 \pm 0.0040	0.6025 \pm 0.0071	0.6678 \pm 0.0038	
rel-amazon	user-churn	Test	0.7042 \pm 0.0005	0.6643 \pm 0.0041	0.6619 \pm 0.0042	0.7039 \pm 0.0008	-0.04
		Val	0.7045 \pm 0.0006	0.6680 \pm 0.0029	0.6652 \pm 0.0030	0.7036 \pm 0.0008	
	item-churn	Test	0.8281 \pm 0.0003	0.7797 \pm 0.0039	0.7803 \pm 0.0053	0.8255 \pm 0.0006	-0.31
		Val	0.8239 \pm 0.0002	0.7816 \pm 0.0031	0.7803 \pm 0.0030	0.8220 \pm 0.0010	
rel-stack	user-engagement	Test	0.9021 \pm 0.0007	0.8847 \pm 0.0044	0.8817 \pm 0.0046	0.9053 \pm 0.0005	0.35
		Val	0.9059 \pm 0.0009	0.8863 \pm 0.0039	0.8811 \pm 0.0034	0.9033 \pm 0.0013	
	user-badge	Test	0.8986 \pm 0.0008	0.8608 \pm 0.0044	0.8566 \pm 0.0068	0.8632 \pm 0.0018	-3.94
		Val	0.8886 \pm 0.0008	0.8732 \pm 0.0025	0.8710 \pm 0.0016	0.8741 \pm 0.0050	
rel-hm	user-churn	Test	0.6988 \pm 0.0021	0.6695 \pm 0.0067	0.6569 \pm 0.0109	0.6927 \pm 0.0019	-0.87
		Val	0.7042 \pm 0.0009	0.6727 \pm 0.0062	0.6605 \pm 0.0103	0.6988 \pm 0.0034	

1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187