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ABSTRACT

A standard assumption in supervised learning is that the training data and test data
are from the same distribution. However, this assumption often fails to hold in
practice, which can cause the learned model to perform poorly. We consider the
problem of detecting covariate shift, where the covariate distribution shifts but the
conditional distribution of labels given covariates remains the same. This problem
can naturally be solved using a two-sample test—i.e., test whether the current test
distribution of covariates equals the training distribution of covariates. Our algo-
rithm builds on classifier tests, which train a discriminator to distinguish train and
test covariates, and then use the accuracy of this discriminator as a test statistic. A
key challenge is that classifier tests assume given a fixed set of test covariates. In
practice, test covariates often arrive sequentially over time—e.g., a self-driving car
observes a stream of images while driving. Furthermore, covariate shift can occur
multiple times—i.e., shift and then shift back later or gradually shift over time. To
address these challenges, our algorithm trains the discriminator online. Further-
more, it evaluates test accuracy using each new covariate before taking a gradient
step; this strategy avoids constructing a held-out test set, which can reduce sam-
ple efficiency. We prove that this optimization preserves the correctness—i.e., our
algorithm achieves a desired bound on the false positive rate. In our experiments,
we show that our algorithm efficiently detects covariate shifts on ImageNet.

1 INTRODUCTION

A key challenge facing deep neural networks is their sensitivity to changes in the data distribution. In
particular, supervised learning traditionally assumes that the training and test data are from the same
distribution (Vapnik, 1998), but this assumption often fails in practice. For example, an autonomous
car using perception to identify obstacles needs to be robust to shifts such as changes in the weather
and lighting conditions. We focus on covariate shift (Shimodaira, 2000), where there is a shift in
the covariate distribution p(x), and the conditional label distribution p(y | x) remains unchanged.
Covariate shift can reduce model performance (Sugiyama & Müller, 2005), invalidate uncertainty
estimates (Ovadia et al., 2019; Park et al., 2020), and affect model selection (Sugiyama et al., 2007).

One strategy is to devise an algorithm to detect covariate shift; if detected, the algorithm can alert the
user that predictions may be unreliable. Covariate shift detection can be formulated as two-sample
hypothesis test (Gretton et al., 2012a; Rabanser et al., 2018; Liu et al., 2020), where the goal is to
determine whether two sets of examples are from the same distribution. To test for covariate shift,
we choose the first sample to be the data used to train the model and the second sample to be recent
test data given as input to the model. Then, the detector returns “covariate shift” if the hypothesis
test indicates that the two samples are from different distributions and “no shift” otherwise.

We propose a detection algorithm based on classifier tests (Lopez-Paz & Oquab, 2017; Cheng &
Cloninger, 2019; Kim et al., 2021), which use the accuracy of a classifier trained to distinguish the
two samples as the test statistic. In particular, if the two samples are from the same distribution, then
the accuracy should be 1/2; otherwise, it should be> 1/2. Since the test statistic follows a binomial
distribution, we use the Clopper-Pearson interval (Clopper & Pearson, 1934) (an exact confidence
interval for the unknown success probability of the Binomial distribution) to derive the cutoff. In
contrast, prior work relies on asymptotics to derive the cutoff, which results in approximations.
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A key challenge is that the test examples are typically obtained over time—e.g., an autonomous robot
continuously perceives its environment, and we want to detect if its distribution of observations shifts
at any time. There are two key challenges to leveraging classifier tests in this setting. First, they rely
on training a classifier to distinguish training and test examples; doing so on every step would be
computationally intractable. Second, they rely on a held-out test set to estimate the test statistic, but
constructing such a set online would reduce sample efficiency.

Rather than train a classifier at each step, our proposed algorithm trains a model online using stochas-
tic gradient descent. Then, rather than construct a held-out test set, our algorithm evaluates the ac-
curacy of the model online using each example before taking a gradient step on that example. We
prove that this strategy results in an unbiased estimate of the model accuracy; as a consequence, the
finite-sample guarantees on the false positive rate provided by the sequential test continue to hold.
In addition, we prove bounds on the false negative rate under mild conditions on the classifier (i.e.,
it achieves nontrivial accuracy distinguishing the two distributions).

We evaluate our approach on both synthetic and natural shifts on the ImageNet (Russakovsky et al.,
2015) dataset. In particular, we demonstrate that our approach achieves better sample efficiency
than baseline algorithms; furthermore, it uniformly satisfies the desired false positive rate. Thus, our
algorithm is an effective strategy for sequential covariate shift detection.

Contributions. We formulate (sequential) covariate shift detection as a two-sample test, and pro-
pose a novel algorithm to solve this problem (Section 3). Then, we prove finite sample bounds
on false positive rate and false negative rate achieved by our algorithm (Section 4). Finally, we
empirically demonstrate that our algorithm effectively detects shifts on ImageNet (Section 5).

Sequential detection vs. sequential tests. While we consider the sequential setting, we deliberately
choose not use a sequential hypothesis test, since the covariate shift may occur after a delay or
gradually over time. A sequential test only applies if all of the test data is shifted. Furthermore, since
we are not using sequential tests, the false positive rate bound only holds per-step, not uniformly
across all steps. This is necessary: we cannot guarantee that we detect a covariate shift occurring
at a later point in time if we constrain the false positive to be bounded uniformly across all steps.
In our experiments, we show that the rate of false alarms remains manageable while enabling our
algorithm to detect covariate shift in a number of interesting scenarios.

2 RELATED WORK

Covariate shift. There has been work on training models in the presence of covariate shift. In
particular, in the unsupervised domain adaptation setting (Ben-David et al., 2007; Bickel et al.,
2007; Ganin et al., 2016), the algorithm has access to labeled examples from the source domain but
only unlabeled examples from the target domain, and the goal is to train a model that achieves good
performance on the target domain. One strategy is to use importance weighting to upweight source
examples that are more similar to target examples (Bickel et al., 2007). Another strategy is to first
learn an invariant representation (Ganin et al., 2016), which is an embedding space where the source
and target examples are similar, and then train a model on this embedding space using the source
examples. If we detect covariate shift, one solution is to retrain the model using these techniques.

Two-sample tests. We focus on classifier two-sample tests (C2ST). In this approach, the idea is
to train a binary classifier to distinguish source and target samples, compute a real-valued score
based on this classifier as the test statistic, and then use a univariate two-sample test to determine the
cutoff for rejecting the null hypothesis (Friedman, 2004). A natural test statistic is the classifier’s
accuracy on a held-out test set (Kim et al., 2021; Lopez-Paz & Oquab, 2017), or the differences
in the classifier’s logits (Cheng & Cloninger, 2019); in this work, we use the former. One way to
compute the cutoff is to use the asymptotic distribution of the test statistic (Lopez-Paz & Oquab,
2017). Nonparametric tests such as permutation tests can also be used (Kim et al., 2021).

Another kind of two-sample test is called a kernel two-sample test. In this approach, the idea is to
use the maximum mean discrepancy (MMD) between the two samples according to a given kernel
embedding as the test statistic (Gretton et al., 2012a; Chwialkowski et al., 2015; Jitkrittum et al.,
2016). The key design decision is the choice of kernel. One strategy is to use a nonparametric kernel
such as Gaussian radial basis functions (Gretton et al., 2012a); alternatively, the kernel can also be
optimized to minimize the false negative rate of the resulting test (Gretton et al., 2012b). In addition,
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recent work has shown how to first learn a kernel function in the form of a deep neural network, and
then evaluate the MMD distance on a held-out test set (Liu et al., 2020). The test statistic can be
chosen based on finite sample bounds or based on its asymptotic distribution (Gretton et al., 2012a).
Nonparametric permutation tests can also be used (Liu et al., 2020) with this approach.

Concept Drift. In the context of concept drift (Gama et al., 2014), there has been work detecting
shifts in p(x, y) (Gonçalves Jr et al., 2014). However, this work assumes that ground truth labels are
provided for test examples, whereas our approach only requires unlabeled test examples. The former
is substantially easier, since it suffices to check for drift in the distribution of prediction errors, which
is usually very simple (e.g., a Bernoulli distribution for the 0-1 loss), making it easy to test for drift.
In contrast, our approach checks for drift in high-dimensional covariates distribution.

Sequential hypothesis testing. A closely related problem is sequential hypothesis testing, which
adaptively decides whether to reject the null hypothesis as samples become available (Wald, 1945).
These approaches can also applied to two-sample testing (Balsubramani & Ramdas, 2015; Lhéritier
& Cazals, 2018; 2019; Manole & Ramdas, 2021). However, as discussed above, they assume that
the each distribution of the two samples does not change over time. In contrast, we are interested
in the setting where the test examples might initially be from the same distribution as the training
examples, but then shift at a later point in time. Sequential tests are not applicable to this setting.

3 SEQUENTIAL COVARIATE SHIFT DETECTION

3.1 PROBLEM FORMULATION

Let X be the covariate space, S be the source distribution over X , and Tt1:t2 = (Tt1 , Tt1+1, . . . , Tt2)
be a sequence of target distributions over X from time steps t1 to t2. On time step t, we consider
samples xt ∼ S and x′t ∼ Tt; in practice, S can be taken to be the uniform distribution over
the training set. We let Sw,t = (xt−w+1, xt−w+2, . . . , xt) and Tw,t = (x′t−w+1, x

′
t−w+2, . . . , x

′
t)

denote the recent examples in a time window of a given size w ∈ N.

Our goal is to detect covariate shift at any step t. More precisely, we want to determine whether
S 6= T̄w,t, where T̄w,t =

∑t
k=t−w+1 Tk/w, i.e., whether the average target distributions over the

previousw steps is shifted compared to S. For a fixed step t, this problem is a two-sample hypothesis
test (Lehmann & Romano, 2006), where the null hypothesis is H0 : S = T̄w,t, and the alternative
hypothesis is H1 : S 6= T̄w,t. That is, a two-sample test f̂ is designed to compute

f̂(Sw,t, Tw,t) ≈
{

1 if S 6= T̄w,t
0 otherwise.

Our goal is to design a two-sample test f̂ for detecting covariate shift with this data stream. While
we can in principle use any two-sample test, our goal is to design one that is both sample and
computationally efficient while achieving high accuracy for high-dimensional data such as images.
In addition, we want the test f̂ to come with finite sample guarantees on the false positive rate. In
particular, given α ∈ R>0, if S = T̄w,t, we want to ensure

PSw,t∼Sw,Tw,t∼Tt−w+1:t

[
f̂(Sw,t, Tw,t;α) = 0

]
≥ 1− α.

Ideally, we also want to provide finite sample bounds on the false negative rate; however, for clas-
sifier tests, we can only do so under additional assumptions about the model family used to try and
distinguish S and T̄w,t. Intuitively, we assume that (i) the model family has bounded complexity
(e.g., Rademacher complexity), and (ii) some model exists in the family that achieves nontrivial
accuracy at distinguishing S and T̄w,t. Then, our goal is to ensure that if S 6= T̄w,t, we have

PSw,t∼Sw,Tw,t∼Tt−w+1:t

[
f̂(Sw,t, Tw,t;α) = 1

]
≥ 1−M(α,w)

for some function M(α,w) that depends on the model family.

3.2 ALGORITHM OVERVIEW

Next, we describe our two-sample test. We build on classifier two-sample test (C2ST) (Lopez-Paz
& Oquab, 2017; Kim et al., 2021). The idea is to train a classifier ĝt to try and distinguish Sw,t
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Algorithm 1 Sequential Calibrated Classifier Two-Sample Test

1: Input: significance level α, window size w
2: for each time step t do
3: Draw examples xt ∼ S, x′t ∼ Tt
4: Predict ŷt = ĝt(xt) and ŷ′t = ĝt(x

′
t) (.) Source-target prediction

5: Detect covariate shift if 0.5 6∈ ΘCP(2wµ̂w,t, 2w;α) (.) Calibrated covariate shift detection
6: Update ĝt using (xt, 0) and (x′t, 1) (.) Online source-target classifier update
7: end for

from Tw,t. Intuitively, if S and T̄w,t are different distributions, then ĝt should achieve nontrivial
accuracy at distinguishing Sw,t from Tw,t (assuming the model family is sufficiently expressive).
Alternatively, if S = T̄w,t, then ĝt necessarily achieves a trivial expected accuracy of 1/2.

In particular, the accuracy of ĝt can be used as a test statistic for the two-sample test. To choose
the cutoff for rejecting the null hypothesis, we use the Clopper-Pearson (CP) interval (Clopper &
Pearson, 1934) to construct an interval that contains the true accuracy ĝt with high probability based
on the accuracy of ĝt on a test set. More precisely, the CP interval is an exact confidence interval
around the empirical estimate of the mean of a Bernoulli random variable. Letting z1, ..., zn ∼
Bernoulli(µ∗) be i.i.d. samples from a Bernoulli distribution with true mean µ∗, the (unnormalized)
estimate of its mean n · µ̂(z1:n) =

∑n
i=1 zi has distribution Binomial(n, µ∗). Then, the CP interval

ΘCP(s, n;α) ⊆ [0, 1] is an interval around µ̂ containing µ∗ with probability at least 1− α, i.e.,

Ps∼Binomial(n,µ∗)[µ
∗ ∈ ΘCP(s, n;α)] ≥ 1− α, (1)

where the probability is taken over s, α is a given confidence level, and ΘCP is a function of the
Binomial random variable s = n · µ̂(z1:n). The CP interval is concretely defined by

ΘCP(s, n;α):=
[
inf
{
θ
∣∣∣ F (n− s;n, 1− θ) ≥ α

2

}
, sup

{
θ
∣∣∣ F (s;n, θ) ≥ α

2

}]
,

where F (s;n, θ) is the cumulative distribution function (CDF) of Binomial(n, θ). To compute the
CP interval, we can use the following equivalent formula:

ΘCP(s, n;α) =
[
Q
(α

2
; s, n− s+ 1

)
, Q
(

1− α

2
; s+ 1, n− s

)]
,

where Q(p, a, b) is the pth quantile of a Beta distribution with parameters a, b (Hartley & Fitch,
1951; Brown et al., 2001). Our algorithm uses the CP interval to determine whether the accuracy of
ĝt is nontrivial, i.e., > 1/2. In particular, the accuracy of ĝt is the mean of the Bernoulli random
variable 1(ĝt(x) = y), where y is the ground truth indicating whether x is from S or T̄w,t. Then,
our algorithm rejects if the CP interval does not contain 1/2, since this condition implies that the
accuracy of ĝt does not equal 1/2 with high probability. We describe this step in detail below.

The key challenge is what data to use as the test dataset to estimate the accuracy of ĝt. The traditional
strategy is to split the available data into two parts: one to train ĝt and a second held-out test set to
estimate its accuracy (Lopez-Paz & Oquab, 2017; Kim et al., 2021). However, this approach reduces
sample efficiency, which is problematic in our setting since we often want to w to be small.

To address this challenge, our algorithm exploits the conditional independence structure of classifier
predictions. In particular, as described below, our algorithm uses each example xt to evaluate the
accuracy of ĝt before using it to train ĝt. In the next section, we prove that this strategy maintains
the independence of our estimate of the accuracy of ĝt (Lemma 1), and that as a consequence, our
algorithm satisfies the desired false positive rate (for a single step t).

3.3 ALGORITHM DETAILS

Sequential detection algorithm. At each time step t, we observe a source sample xt ∼ S and a
target sample x′t ∼ Tt. By using these current samples and previous samples, we detect covariate
shifts by updating the source-target classifier in online learning. In particular, our algorithm consists
of three steps: (1) source-target prediction, (2) covariate shift detection, and (3) online source-target
classifier update. The following and Algorithm 1 include details.
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Step 1. Source-target prediction. We predict source-target labels on the current samples xt and x′t
using the current source-target classifier ĝt. In particular, we denote prediction on the source sample
xt by ŷt, i.e., ŷt = ĝt(xt), and denote prediction on the target sample x′t by ŷ′t, i.e., ŷ′t = ĝt(x

′
t).

These predictions and previous predictions are used in covariate shift detection in the following step.

Step 2. Calibrated covariate shift detection. Let Qw,t be a distribution over X × {0, 1}, where

Qw,t(x, y):=
1

2
· S(x) · 1(y = 0) +

1

2
· T̄w,t(x) · 1(y = 1).

Then, z = 1(ĝt(x) = y) is a Bernoulli random variable with distribution Bernoulli(µ∗w,t), where

µ∗w,t = P(x,y)∼Qw,t
[ĝt(x) = y]

is the accuracy of ĝ at distinguishing whether an example x is from distribution S or T̄w,t. The
unbiased empirical estimate of this accuracy is denoted by

µ̂w,t =
1

2w

t∑
i=t−w+1

(1 (ŷi = yi) + 1 (ŷ′i = y′i)) .

In fact, 2wµ̂w,t is a Binomial random variable with Binomial(2w, µ∗w,t); thus, the accuracy µ∗w,t can
be estimated by the Clopper-Pearson (CP) interval ΘCP(2wµ̂w,t, 2w;α) that includes the unknown
parameter µ∗w,t with high probability, i.e.,

P [µ∗ ∈ ΘCP(2wµ̂w,t, 2w;α)] ≥ 1− α.
This property can be used for checking the accuracy of ĝt might be 1/2. In particular, our algorithm
returns “covariate shift” if 1/2 6∈ ΘCP(2wµ̂w,t, 2w;α), and “no covariate shift” otherwise, i.e.

f̂(Sw,t, Tw,t;α) = 1

(
1

2
6∈ ΘCP (2w · µ̂w,t, 2w;α)

)
.

Here, the Clopper-Pearson interval calibrates the empirical accuracy µ̂w,t using the property of the
Binomial distribution.

Step 3. Online source-target classifier update. Finally, we update a binary classifier ĝt using new
training examples based on the source and target samples, i.e., (xt, 0) and (x′t, 1). In general, ĝt can
be any model; we consider it to be a neural network, in which case we can update its parameters
using stochastic gradient descent with respect to the cross entropy loss.

4 THEORETICAL GUARANTEES

In this section, we describe our finite sample bounds on the false positive and false negative rates of
our covariate shift detector f̂ ; the key to have valid bounds is proving the independence on predic-
tions ŷ1, . . . , ŷt (and ŷ′1, . . . , ŷ

′
t) to have a valid Clopper-Pearson interval, since they are seemingly

dependent through the online learned classifier ĝt. First, our key result shows that our estimate
of the accuracy of ĝt is valid—i.e., the predictions ŷi, . . . , ŷj are conditionally independent (see
Appendix A.1 for a proof), thus the accuracy is the parameter of the Binomial distribution:
Lemma 1. If xi, . . . , xj are independent for any i, j ∈ N where i < j, ŷi, . . . , ŷj are conditionally
independent given ĝi, . . . , ĝj−1.

Our next result says that our algorithm ensures the desired bound α on the false positive rate (i.e., f̂
says “covariate shift” when there is no covariate shift). To this end, we exploit the following obser-
vation that any source-target classifier makes the expected accuracy of 1/2 if there is no covariate
shift. Intuitively, if S = T̄w,t, source-target classification is impossible (Lopez-Paz & Oquab, 2017;
Liu et al., 2020); we include this lemma for completeness (see Appendix A.2 for a proof):
Lemma 2. If S = T̄w,t, we have µ∗w,t = 1/2 for any source-target classifier ĝt.

Since the expected accuracy of ĝt is 1/2 regardless of how we design and learn ĝt, and how many
samples are used to learn ĝt, the Clopper-Pearson interval includes the true accuracy with high prob-
ability; thus the false positive rate of the proposed covariate shift detector f̂ is effectively controlled
by the confidence level of the Clopper-Pearson interval, as follows (see Appendix A.3 for a proof):
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Theorem 3 (Bound on false positive rate). If S = T̄w,t, then for any ĝt, we have

P(Sw,t,Tw,t)∼Sw×Tt−w+1:t

[
f̂(Sw,t, Tw,t;α) = 0

]
≥ 1− α. (2)

Our next result provides a bound on the false negative rate; we first observe that the Clopper-Pearson
interval is included in the interval by the Hoeffding’s bound. Intuitively, the Clopper-Pearson interval
represents a lower and upper bound of the expected accuracy given an empirical accuracy tailored
to a Bernoulli random variable; the Hoeffding’s bound can similarly bound the mean but in a more
general setup. Thus, the Clopper-Pearson interval can be smaller (see Appendix A.4 for a proof).

Lemma 4. Let s ∼ Binomial(n, p) and F (s;n, p) is the CDF of Binomial(n, p); we have

s

n
−

√
ln 2

α

2n
≤ inf

{
θ
∣∣∣ F (n− s;n, 1− θ) ≥ α

2

}
and sup

{
θ
∣∣∣ F (s;n, θ) ≥ α

2

}
≤ s

n
+

√
ln 2

α

2n
.

Leveraging this, we have the following bound on false negative rate (see Appendix A.5 for a proof).

Theorem 5 (Bound on false negative rate). Assume ĝt achieves nontrivial accuracy, i.e., µ∗w,t ≥
1/2 + ε, where ε ∈ (0, 1/2], is the accuracy at distinguishing S and T̄w,t. Let a(w,α) := 2w(1/2 +√

log(2/α)/4w) and b(w,α) := 2w(1/2−
√

log(2/α)/4w). If S 6= T̄w,t and w−1−b
√
w log(2/α)c ≥

0, then we have

P

[
f̂(Sw,t, Tw,t;α)=1

]
≥F

(
2w − ba(w,α) + 1c; 2w,

1

2
− ε
)

+F
(
db(w,α)− 1e; 2w, 1

)
. (3)

In the false negative bound, the first term is dominant and increases asw increases, which implies the
sample size needs to be increased to have a powerful shift detector; the condition on w suggests that
the bound is valid when w ≥ 201 given α = 0.01. We note that the assumption L(ĝt) := 1− µ∗ ≤
1/2 − ε can be achieved under standard conditions. For instance, assume that the model family G
of source-target classifiers has finite VC dimension (i.e., VC(G) < ∞), and that the optimal model
g∗ ∈ G has nontrivial inaccuracy L(g∗) = 1/2− ξ for some ξ ∈ R>0; then, with probability at least
1− δ with respect to Sw,t and Tw,t and letting m = 2w, we have

L(ĝt) ≤ L(g∗) + 4

√
VC(G)(log(2m) + 1)

m
+

√
log(2/δ)

m

≤ 1

2
−

(
ξ − 4

√
VC(G)(log(2m) + 1)

m
−
√

log(2/δ)

m

)
︸ ︷︷ ︸

=:ε

,

where the second term (which we have taken to be ε) satisfies ε > 0 for sufficiently large m.

5 EXPERIMENTS

We evaluate the effectiveness of our algorithm at detecting both natural and synthetic covariate shifts
of varying forms (e.g., gradual shifts and multiple shifts back and forth), showing that it significantly
outperforms natural baselines.

5.1 EXPERIMENT SETUP

Baselines. We compare our algorithm to three baselines: two of them differ in the way they use the
samples at each time step, the third uses Wald’s sequential likelihood test (Wald, 1945). For the first
two baselines, while our approach uses all samples to construct the CP interval around the accuracy
of the source-target classifier ĝt as well as to train ĝt, the baseline instead constructs a held-out test
set using every Hth sample. Then, only this held-out test set is used to compute the CP interval, and
only the remaining samples are used to train ĝt. In our experiments, we used values of H ∈ {2, 5},
denoted H2, H5, respectively. For Wald’s test, we consider the Bernoulli random variable with a
probability p indicating whether the prediction of the source-target classifier is correct for the given
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Table 1: Scenario description for experiments. (a) “M-shift” is Multiple shift, (b) “GI-shift” is
gradually increasing shift, and (c) “GID-shift” is gradually increasing-then-decreasing shift.

(a) M-shift

Start position Description Prob.

0% No shift 0.0
25% Shift 1.0
50% No shift 0.0
75% Shift 1.0

(b) GI-shift

Start position Description Prob.

0% No shift 0.0
20% Shift 0.2
40% Shift 0.4
60% Shift 0.6
80% Shift 0.8

(c) GID-shift

Start position Description Prob.

0 No shift 0.0
20% Shift 0.4
40% Shift 0.8
60% Shift 0.4
80% No shift 0.0

sample. The hypothesis test isH0 : p = 0.5 vs. H1 : p = 0.5+ε, where ε = 0.2 in our experiments;
we restart the test each time it makes a decision.

This baseline is essentially the online version of an existing classifier two-sample test (C2ST) (Kim
et al., 2021; Lopez-Paz & Oquab, 2017), which splits the (fixed) training dataset into a training set to
train ĝt and a held-out test set to estimate the accuracy of ĝt; thus, H controls the tradeoff between
the number of examples in the training set and held-out test set.

Source-target classifier. We use a fully-connected neural network with a single hidden layer (with
128 hidden units) and with the ReLU activation functions as the source-target classifier ĝt. We use
a binary cross-entropy loss for training in conjunction with an SGD optimizer with a learning rate
of 0.01 (for natural shift experiments) and 0.001 (for synthetic shift experiments). Finally, since the
inputs are ImageNet images (Russakovsky et al., 2015), we use a 2048-dimensional feature vector
generated by first running a pretrained ResNet152 model (He et al., 2016) on the images, and then
using these features vectors for the covariates of Sw,t and Tw,t.

Scenarios. We run each algorithm to test whether the target distribution in the given window is
shifted with three different scenarios: multiple shift (“M-shift”), gradually increasing shift (“GI-
shift”), and gradually increasing-then-decreasing shift (“GID-shift”). Table 1 describes each sce-
nario. For example, the multiple shift scenario proceeds as follows: (i) it starts with no covariate
shift at the beginning; (ii) after observing 25% target samples (i.e., 250th samples for natural shift
experiments and 2500th samples for synthetic shift experiments), covariate shift is applied to all tar-
get samples (with probability 1) by adding random perturbations for synthetic shift and by drawing
samples from a target distribution for natural shift; (iii) after 50% of target samples, it reverts to
no covariate shift; and (iv) finally after observing 75% target samples, the covariate shift is applied
to the all target samples. Gradually increasing shift and gradually increasing-then-decreasing shift
scenarios start with no covariate shift for the first 20% of target samples; then, covariate shift is
applied with some probability 0 < p < 1 by gradually changing p over time.

Stream data generation. For each shift (i.e., natural shift and synthetic shift), we have a source
dataset S and target datasets Tt, from which we randomly draw source and target samples for each
time step t. In particular, we consider a batch of samples for computational efficiency, where we
denote the batch size byB; we useB = 10 for our experiments. That is, we wait forB samples to be
collected from the target distribution before checking for covariate shift and the updating the source-
target classifier; then, we begin collecting the next batch. Finally, we evaluate each approach using
multiple random repetitions, which we denote by R (the value of R depends on each experiment).

5.2 NATURAL SHIFT

Dataset. First, we consider a natural shift on ImageNet. To construct such a shift, we consider the
subset of dog classes; in particular, 120 of the 1000 of the ImageNet classes are of dogs (Khosla
et al., 2011). Then, we randomly select half (i.e., 60) of these classes to be the source dataset, and
the other half to be the target dataset; thus, the number of source and target images is 2997 each
(after removing duplicated images). As a consequence, the source and target datasets correspond to
different dog breeds, which is a kind of natural distribution shift.

Results. Figure 1 and Table 2 show results for the natural shift experiment with w = 10 and
α = 1%. Figure 1 illustrates detection rates of the four algorithms with R = 100 repetitions (i.e.,
the fraction of repetitions that reported “covariate shift” at each step). Table 2a shows the number

7
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(a) M-shift (b) GI-shift (c) GID-shift

Figure 1: Detection rate for natural shift with R = 100, w = 10, α = 1%. The black dashed line
indicates shifted sample ratio, i.e., the degree (or probability) of covariate shift.

Table 2: Natural shift results with (a) w = 10, α = 1%, and R = 100, and (b) R = 20000 . In (a),
we bold the best algorithm. In (b), we bold values that exceed the desired α = 1%.

(a) Number of samples for detection (≥ 80%)

Scenario Algorithm Natural shift

M-shift

Ours 190
H2 720
H5 -

Wald 640

GI-shift

Ours 620
H2 -
H5 -

Wald -

GID-shift

Ours 310
H2 -
H5 -

Wald -

(b) FPR (%) at selected time

Scenario Algorithm 50 100 150 200

M-shift

Ours 0.27 0.53 0.73 0.77
H2 0.29 0.28 0.26 0.33
H5 0.34 0.52 0.51 0.56

Wald 0.60 0.47 0.27 0.27

GI-shift

Ours 0.21 0.60 0.76 0.83
H2 0.21 0.25 0.29 0.36
H5 0.32 0.43 0.50 0.85

Wald 0.78 0.57 0.29 0.22

GID-shift

Ours 0.30 0.53 0.70 0.95
H2 0.18 0.21 0.28 0.41
H5 0.36 0.56 0.53 0.81

Wald 0.77 0.58 0.34 0.23

of shifted samples required to reach at least 80% of covariate shift detection rate under the shift.
Table 2b shows false positive rate (FPR) after 50, 100, 150, and 200 samples with R = 20000
repetitions.

Discussion. Figure 1 shows the detection rate of each algorithm as each scenario progresses. In
multiple shift (Figure 1a) and gradually increasing-then-decreasing shift (Figure 1c), covariate shift
disappears after a certain point, and all algorithms correctly detect this change. However, as shown
in Table 2a, our approach always requires fewer samples to detect the shift. While H5 does not
achieve 80% detection and H2 and Wald reach 80% only for multiple shift change scenario, our
approach always detects covariate shift at a rate higher than 80%. Furthermore, for multiple shift,
our algorithm requires fewer than half the number of samples compared to H2. In summary, our al-
gorithm is significantly more sample efficient at detecting covariate shift compared to the baselines,
most likely since it utilizes all samples for both training the source-target classifier and constructing
the CP interval. For FPR, all algorithms always satisfy the FPR bound (i.e., FPR ≤ α).

5.3 SYNTHETIC SHIFT

Dataset. Next, we consider a synthetic shift on ImageNet. In particular, we split the original Im-
ageNet validation set into equal sized source and target datasets. To construct the target dataset,
we add synthetic perturbations on original images. We (separately) consider five perturbation types
from (Hendrycks & Dietterich, 2019)—in particular, Contrast, Defocus Blur, Elastic Transform,
Gaussian Blur, and Gaussian Noise, with five different severity levels.

Results. The experiment results are shown in Figure 2 and Table 3 for the experiments with the
perturbation severity of 2, window size w = 10, and significance level α = 1%. Table 3a shows the
number of target samples required by each algorithm to detect the first covariate shift in the detection
rate of at least 80%. Table 3b shows the false positive rate (FPR) after 500, 1000, 1500 and 2000
samples for each of the three scenarios. Figure 2 shows the detection rates over multiple repetitions

8
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(a) M-shift (b) GI-shift (c) GID-shift

Figure 2: Detection rate for synthetic shifts with Gaussian noise perturbation, Severity = 2, R =
100, w = 10, α = 1%. The black dashed line indicates shifted sample ratio, i.e., the degree (or
probability) of covariate shift. The red dotted line shows the accuracy of ResNet152 on the source
and target samples in the given window.

Table 3: Synthetic shift results with (a) Severity = 2, w = 10, α = 1%, and R = 100, and (b)
R = 20000. In (a), we bold the best algorithm. In (b), we bold values that exceed the desired
α = 1%.

(a) Number of samples for detection

Scenario Alg. Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

M-shift

Ours 230 200 220 210 180
H2 470 450 450 490 350
H5 410 410 410 460 310

Wald - - - - -

GI-shift

Ours 2100 2060 2090 2070 2080
H2 4050 3690 4050 4010 3670
H5 4360 4110 6010 4110 4110

Wald - - - - -

GID-shift

Ours 880 560 900 720 610
H2 2030 2010 2050 2010 2010
H5 2060 2060 2060 2060 2060

Wald - - - - -

(b) FPR (%) at selected time

Scenario Alg. 500 1000 1500 2000

M-shift

Ours 0.73 1.00 0.90 1.00
H2 0.40 0.46 0.46 0.50
H5 0.80 0.73 0.84 0.69

Wald 0.07 0.11 0.04 0.01

GI-shift

Ours 0.86 0.89 0.92 0.85
H2 0.62 0.54 0.60 0.50
H5 0.74 0.71 0.77 0.73

Wald 0.10 0.13 0.07 0.03

GID-shift
Ours 0.87 0.95 0.92 0.89
H2 0.51 0.57 0.51 0.53
H5 0.73 0.75 0.85 0.89

Wald 0.09 0.08 0.04 0.02

for each of the three scenarios using the Gaussian noise perturbation. Results for other perturbation
types and severities are shown in Appendix D.

Discussion. As can be seen, our approach outperforms the baselines in terms of sample efficiency
for the covariate shift detection as was the case of the natural shift. Our algorithm requires about
half as many samples before detecting covariate shift compared to the baselines. In terms of FPR,
our approach always satisfies the FPR bound. Finally, Figure 2 shows the accuracy drop with the
shifted samples. In particular, the red dotted line shows the accuracy of ResNet152 on the examples
in the source and target samples of the given window; as can be seen, the accuracy decreases as the
degree of the shift increases. Covariate shift detection can be successfully used to notify a user that
an accuracy drop may have occurred.

6 CONCLUSION

We have proposed a novel covariate shift detection algorithm, which uses a classifier two-sample test
to check whether the current test examples differ in distribution compared to the training examples.
Our approach ensures sample efficiency by avoiding the need to split the dataset into a training set
and a held-out test set, and instead using all the data to both train the source-target discriminator
and to evaluate its accuracy. We prove that even with this optimization, our approach provides finite
sample guarantees on the false positive rate at a desired level; we also prove bounds on the false
negative rate under a mild conditions on the trained classifier. Finally, we empirically demonstrate
that our proposed algorithm is significantly more sample efficient compared to a natural baseline
that uses a held-out test set in terms of detecting both natural and synthetic shifts on ImageNet.
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Reproducibility Statement. For our empirical results, we stated our algorithm in Algorithm 1,
hyperparameters in Section 5.1, and dataset setups in Section 5.2 and 5.3. We have included the
source code in the supplement for reproducing the experimental results. For our theory, we have
included all proofs in Appendix A.
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Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, and Arthur Gretton. Interpretable distri-
bution features with maximum testing power. arXiv preprint arXiv:1605.06796, 2016.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. Novel dataset for fine-
grained image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE
Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, June 2011.

Ilmun Kim, Aaditya Ramdas, Aarti Singh, and Larry Wasserman. Classification accuracy as a proxy
for two-sample testing. The Annals of Statistics, 49(1):411–434, 2021.

Erich L Lehmann and Joseph P Romano. Testing statistical hypotheses. Springer Science & Business
Media, 2006.
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Alix Lhéritier and Frederic Cazals. Low-complexity nonparametric bayesian online prediction with
universal guarantees. Advances in Neural Information Processing Systems, 32:14581–14590,
2019.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Dougal J Sutherland. Learn-
ing deep kernels for non-parametric two-sample tests. In International Conference on Machine
Learning, pp. 6316–6326. PMLR, 2020.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In International Con-
ference on Learning Representations, 2017.

Tudor Manole and Aaditya Ramdas. Sequential estimation of convex divergences using reverse
submartingales and exchangeable filtrations. arXiv preprint arXiv:2103.09267, 2021.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. arXiv preprint arXiv:1906.02530, 2019.

Sangdon Park, Osbert Bastani, James Weimer, and Insup Lee. Calibrated prediction with covariate
shift via unsupervised domain adaptation. In International Conference on Artificial Intelligence
and Statistics, pp. 3219–3229. PMLR, 2020.
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A PROOFS

A.1 PROOF OF LEMMA 1

· · · xi xi+1 xi+2 · · · xj

· · · ĝi ĝi+1 ĝi+2 · · · ĝj

· · · ŷi ŷi+1 ŷi+2 · · · ŷj

Figure 3: The dependency structure of random variables.

Figure 3 represents the graphical model over random variables, where observed random variables
are colored in gray. We prove the conditional independence using the d-separation (also called the
Bayes ball algorithm) (Bishop, 2006), which is a set of rules that can determine the conditional
dependency between two random variables based on the graphical model and observed random
variables. In particular, ŷi+2 is conditionally independent to ŷk for all k ≤ i+ 1 since the path to ŷk
is blocked by ĝi+1 (i.e., ĝi+1 is observed). Similarly, ŷi+2 is conditionally independent to ŷk for all
k ≥ i+ 3. This proves the claim.

A.2 PROOF OF LEMMA 2

For any source-target classifier ĝt, if S = T̂w,t, the following holds:

µ∗w,t = P(x,y)∼Qw,t
[ĝt(x) = y]

=

∫ ∑
y∈{0,1}

1 (ĝt(x) = y)Qw,t(x, y)dx

=

∫ ∑
y∈{0,1}

1 (ĝt(x) = y)

(
1

2
· S(x) · 1(y = 0) +

1

2
· T̄w,t(x) · 1(y = 1)

)
dx

=
1

2

∫ ∑
y∈{0,1}

1 (ĝt(x) = y)S(x)1(y = 0) +
∑

y∈{0,1}

1 (ĝt(x) = y) T̄w,t(x)1(y = 1)dx

=
1

2

∫
1 (ĝt(x) = 0)S(x) + 1 (ĝt(x) = 1) T̄w,t(x)dx

=
1

2

∫
1 (ĝt(x) = 0)S(x) + 1 (ĝt(x) = 1)S(x)dx

=
1

2

∫
(1 (ĝt(x) = 0) + 1 (ĝt(x) = 1))S(x)dx

=
1

2

∫
S(x)dx

=
1

2
,

where the sixth equality holds since S = T̂w,t; the claim follows.

12



Under review as a conference paper at ICLR 2022

A.3 PROOF OF THEOREM 3

Denote the event that P(x,y)∼Qw,t
[ĝt(x) = y] = 1/2 by E, and let sw,t = 2wµ̂w,t. Then, we have

PSw,t,Tw,t

[
f̂(Sw,t, Tw,t;α) = 0

]
= PSw,t,Tw,t

[(
1

2
∈ ΘCP(sw,t, 2w;α)

)
∧
(
Px,y [ĝt(x) = y] =

1

2

)]
= PSw,t,Tw,t [E]PSw,t,Tw,t

[
1

2
∈ ΘCP(sw,t, 2w;α)

∣∣∣∣ E]
= PSw,t,Tw,t

[
1

2
∈ ΘCP(sw,t, 2w;α)

∣∣∣∣ E]
≥ 1− α,

where the first equality holds since S = T̂w,t and by Lemma 2, the third equality holds by Lemma
2, and the last inequality holds by the property of the Clopper-Pearson interval and Lemma 1.

A.4 PROOF OF LEMMA 4

We use the tail bound of the binomial distribution using the Hoeffding’s inequality—i.e.

F (s;n, p) ≤ exp

{
−2n

(
p− s

n

)2}
.

For the upper bound of the upper Clopper-Pearson interval, we have

sup
{
θ
∣∣∣ F (s;n, θ) ≥ α

2

}
≤ sup

{
θ

∣∣∣∣ exp

{
−2n

(
θ − s

n

)2}
≥ α

2

}

= sup

θ
∣∣∣∣∣∣ sn −

√
ln 2

α

2n
≤ θ ≤ s

n
+

√
ln 2

α

2n


=
s

n
+

√
ln 2

α

2n
. (4)

For the lower bound of the lower Clopper-Pearson interval, we have

inf
{
θ
∣∣∣ F (n− s;n, 1− θ) ≥ α

2

}
≥ inf

{
θ

∣∣∣∣ exp

{
−2n

(
θ − s

n

)2}
≥ α

2

}

= inf

θ
∣∣∣∣∣∣ sn −

√
ln 2

α

2n
≤ θ ≤ s

n
+

√
ln 2

α

2n


=
s

n
−

√
ln 2

α

2n
. (5)

Finally, (4) and (5) imply the claim.

A.5 PROOF OF THEOREM 5

Let the lower and upper bound of the Clopper-Pearson interval ΘCP be ΘCP and ΘCP, respectively.
Recall that we denote the CDF of a binomial distribution binomial(n, p) by F (s;n, p). Then, we
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have

PSw,t,Tw,t

[
f̂(Sw,t, Tw,t;α) = 1

]
= PSw,t,Tw,t

[
1

2
/∈ ΘCP(2wµ∗w,t, 2w;α)

]
= PSw,t,Tw,t

[(
µ∗w,t <

1

2
+ ε ∨ µ∗w,t ≥

1

2
+ ε

)
∧
(

1

2
/∈ ΘCP(2wµ∗w,t, 2w;α)

)]
= PSw,t,Tw,t

[(
µ∗w,t ≥

1

2
+ ε

)
∧
(

1

2
/∈ ΘCP(2wµ∗w,t, 2w;α)

)]
(6)

= PSw,t,Tw,t

[
µ∗w,t ≥

1

2
+ ε

]
PSw,t,Tw,t

[
1

2
/∈ ΘCP(2wµ∗w,t, 2w;α)

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
= PSw,t,Tw,t

[
1

2
/∈ ΘCP(2wµ∗w,t, 2w;α)

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
(7)

= PSw,t,Tw,t

[
ΘCP(2wµ∗w,t, 2w;α) >

1

2
∨ΘCP(2wµ∗w,t, 2w;α) <

1

2

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
= PSw,t,Tw,t

[
ΘCP(2wµ∗w,t, 2w;α) >

1

2

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
+PSw,t,Tw,t

[
ΘCP(2wµ∗w,t, 2w;α) <

1

2

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
,

where (6) and (7) hold due to PSw,t,Tw,t
[µ∗w,t < 1/2 + ε] = 0 and PSw,t,Tw,t

[µ∗w,t ≥ 1/2 + ε] = 1
from the assumption on ĝt and S 6= T , respectively.

By Lemma 4, the first term is lower bounded as follows:

PSw,t,Tw,t

[
ΘCP(2wµ∗w,t, 2w;α) >

1

2

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]

≥ PSw,t,Tw,t

µ̂w,t −
√

ln 2
α

4w
>

1

2

∣∣∣∣∣∣ µ∗w,t ≥ 1

2
+ ε


= PSw,t,Tw,t

[
2wµ̂w,t > a(w,α)

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
= PSw,t,Tw,t

[
2wµ̂w,t ≥ ba(w,α) + 1c

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
≥F

(
2w − ba(w,α) + 1c; 2w,

1

2
− ε
)
, (8)

where the last inequality holds since the binomial parameter 1
2 − ε makes the CDF F smallest.

Similarly, the second term is lower bounded as follows:

PSw,t,Tw,t

[
ΘCP(2wµ∗w,t, 2w;α) <

1

2

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]

≥ PSw,t,Tw,t

µ̂w,t +

√
ln 2

α

4w
<

1

2

∣∣∣∣∣∣ µ∗w,t ≥ 1

2
+ ε


= PSw,t,Tw,t

[
2wµ̂w,t < b(w,α)

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
= PSw,t,Tw,t

[
2wµ̂w,t ≤ db(w,α)− 1e

∣∣∣∣ µ∗w,t ≥ 1

2
+ ε

]
≥F (db(w,α)− 1e; 2w, 1) , (9)

where the last inequality holds since the binomial parameter µ∗w,t = 1 makes the CDF F smallest.

The claim follows by combining (8) and (9).
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(a) M-shift (b) GI-shift (c) GID-shift

Figure 4: Detection rate for natural shift with R = 100, w = 10, α = 1%. Deep Kernel result is
included. The black dashed line indicates shifted sample ratio, i.e., the degree (or probability) of
covariate shift.

Table 4: Natural shift results with (a) w = 10, α = 1%, and R = 100, and (b) R = 20000 . In (a),
we bold the best algorithm. In (b), we bold values that exceed the desired α = 1%.

(a) Number of samples for detection (≥ 80%)

Scenario Algorithm Natural shift

M-shift

Ours 190
H2 720
H5 -

Wald 640
DK 180

GI-shift

Ours 620
H2 -
H5 -

Wald -
DK 770

GID-shift

Ours 310
H2 -
H5 -

Wald -
DK -

(b) FPR (%) at selected time

Scenario Algorithm 50 100 150 200

M-shift

Ours 0.27 0.53 0.73 0.77
H2 0.29 0.28 0.26 0.33
H5 0.34 0.52 0.51 0.56

Wald 0.60 0.47 0.27 0.27
DK 1.69 2.31 2.16 2.54

GI-shift

Ours 0.21 0.60 0.76 0.83
H2 0.21 0.25 0.29 0.36
H5 0.32 0.43 0.50 0.85

Wald 0.78 0.57 0.29 0.22
DK 2.11 2.67 2.22 3.29

GID-shift

Ours 0.30 0.53 0.70 0.95
H2 0.18 0.21 0.28 0.41
H5 0.36 0.56 0.53 0.81

Wald 0.77 0.58 0.34 0.23
DK 1.91 2.67 2.37 3.42

B ADDITIONAL BASELINE

We include one additional baseline, adapted version of Deep Kernel MMD (Liu et al., 2020). This
Deep Kernel (DK) requires training of the kernel parameters and the network for extracting features.
We use half of samples for this training process and conduct a test using the rest of samples as H2.
We run this algorithm for Natural shift as in Section 5.2.

Results. The experimental results with DK are shown in Figure 4, and Table 4. As described in
Section 5.2, Figure 4 shows the detection rates of each algorithms, and Table 4 presents FPR at
selected points. Our approach outperforms this adapted version of Deep kernel MMD approach.
First, in terms of the false positive rate (FPR), DK violates the desired FPR bound, while ours
satisfies the bound (Table 4b). Furthermore, Table 4a shows that our approach generally requires
a smaller number of samples for detection. In the M-shift case, ours needs ten more samples. In
the other two shifts, however, ours shows superior performance compared to DK. In the GI-shift,
our approach requires 150 fewer samples, and in GID-shift, our approach uses 310 samples for the
detection, while DK cannot achieve 80 % detection.

C ADDITIONAL DISCUSSION

C.1 MULTIPLE EPOCHS IN TRAINING

As shown in Algorithm 1, each example is used only once in updating the source-target classifier,
baselines also follow this setting in all experiments. We consider this single epoch update anticipat-
ing that our algorithms being used in the online setting, where it is infeasible to take multiple passes
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over the training data. However, without consideration of the online setting, each example can be
used multiple times during training with the restriction that the example can be used only once in
the CP interval, which can improve the performance. As this strategy is orthogonal to our approach,
it can be applied to both ours and other baselines expecting the performance improvement.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DETECTION RATE

This section shows the additional detection rate plots for the different perturbations, severities, and
window sizes (w) including figures in the main paper.

D.1.1 M-SHIFT

Figure 5 - Figure 19 display the detection rate plot for M-shift scenario with different settings. These
all different settings show the similar pattern with the figures in the main paper.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 5: Contrast with R = 100, w = 10, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 6: Defocus blur with R = 100, w = 10, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 7: Elastic transform with R = 100, w = 10, α = 1%.

19



Under review as a conference paper at ICLR 2022

(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 8: Gaussian blur with R = 100, w = 10, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 9: Gaussian noise with R = 100, w = 10, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 10: Contrast with R = 100, w = 20, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 11: Defocus blur with R = 100, w = 20, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 12: Elastic transform with R = 100, w = 20, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 13: Gaussian blur with R = 100, w = 20, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 14: Gaussian noise with R = 100, w = 20, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 15: Contrast with R = 100, w = 50, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 16: Defocus blur with R = 100, w = 50, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 17: Elastic transform with R = 100, w = 50, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 18: Gaussian blur with R = 100, w = 50, α = 1%.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 19: Gaussian noise with R = 100, w = 50, α = 1%.
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D.1.2 GI-SHIFT

This section includes the plots for GI-shift scenario with different perturbation, window sizes (w),
and fixed severity.

(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 20: GI-shift with R = 100, w = 10, α = 1%.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 21: GI-shift with R = 100, w = 20, α = 1%.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 22: GI-shift with R = 100, w = 50, α = 1%.
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D.1.3 GID-SHIFT

Similar to the previous two sections, this section includes figures for the GID-shift scenario with
different perturbation with severity 2, and different window sizes (w).

(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 23: GID-shift with R = 100, w = 10, α = 1%.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 24: GID-shift with R = 100, w = 20, α = 1%.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 25: GID-shift with R = 100, w = 50, α = 1%.
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D.2 NUMBER OF SAMPLES FOR DETECTION

This section presents the required number of samples for detecting covariate shift over repetitions
(Rate ≥ 80%) with different perturbations, severities, and window sizes (w).

D.2.1 M-SHIFT

Table 5: Number of samples for detection with R = 100, w = 10

Severity Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

1
Ours 280 240 510 400 220
H2 610 550 1310 950 450
H5 610 460 1610 960 410

2
Ours 230 200 220 210 180
H2 470 450 450 490 350
H5 410 410 410 460 310

3
Ours 190 170 190 140 140
H2 350 370 410 270 270
H5 310 360 360 260 260

4
Ours 150 140 160 120 120
H2 250 290 290 210 210
H5 210 260 260 210 160

5
Ours 130 120 140 100 110
H2 210 230 210 170 150
H5 160 210 210 160 160

Table 6: Number of samples for detection with R = 100, w = 20

Severity Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

1
Ours 300 250 430 360 250
H2 530 430 970 770 410
H5 460 410 1010 710 360

2
Ours 250 220 240 230 210
H2 430 390 390 410 350
H5 360 360 360 360 310

3
Ours 220 200 230 170 170
H2 330 330 370 290 270
H5 310 310 360 260 260

4
Ours 170 170 200 140 140
H2 270 290 310 230 230
H5 260 260 260 210 210

5
Ours 160 150 170 110 120
H2 250 250 230 190 190
H5 210 210 210 160 160
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Table 7: Number of samples for detection with R = 100, w = 50

Severity Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

1
Ours 360 300 490 430 290
H2 570 510 870 710 470
H5 560 460 810 660 410

2
Ours 310 270 280 280 250
H2 510 450 470 470 390
H5 460 410 460 460 360

3
Ours 260 240 270 220 210
H2 410 410 450 330 330
H5 360 360 410 310 310

4
Ours 210 210 230 170 160
H2 310 370 370 270 270
H5 310 360 360 260 260

5
Ours 170 170 190 130 130
H2 290 310 290 210 210
H5 260 260 260 210 210
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D.2.2 GI-SHIFT

Table 8: Number of samples for detection with R = 100, w = 20

Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

Ours 2100 2040 2100 2040 2050
H2 2890 2150 2610 2170 2190
H5 4110 4010 4110 4010 4010

Table 9: Number of samples for detection with R = 100, w = 50

Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

Ours 1580 980 1340 1170 970
H2 2310 2130 2190 2170 2130
H5 2460 2310 2510 2310 2310

D.2.3 GID-SHIFT

Table 10: Number of samples for detection with R = 100, w = 20

Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

Ours 620 430 530 470 450
H2 1890 990 1670 1170 1030
H5 2010 2010 2060 2010 2010

Table 11: Number of samples for detection with R = 100, w = 50

Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

Ours 590 480 550 520 490
H2 1110 870 1010 970 910
H5 1510 910 1310 1010 960
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