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ABSTRACT

We present VIBeID, a dataset and benchmark designed for advancing non-invasive
human gait recognition using structural vibration. Structural vibrations, produced
by the rhythmic impact of the toe and heel on the ground, are distinct and can
be used as a privacy-preserving and non-cooperative soft-biometric modality. We
curated the largest dataset VIBeID consists of footfall generated structural vibra-
tions of 100 subjects. Existing datasets in this field typically include around ten
subjects and lack comprehensive exploration of domain adaptation. To thoroughly
explore the domain adaptation aspect of this biometric approach, we recorded
vibration data on three distinct floor types (wooden, carpet, and cement) and at
three distances from the geophone sensor (1.5 m, 2.5 m, and 4.0 m), involving 40
and 30 subjects, respectively. Additionally, we benchmarked our dataset against
video recordings from 15 individuals in an outdoor setting. Beyond providing 88
hours of raw vibration data, VIBeID establishes a comprehensive benchmark for
a) person identification: where the aim is to recognize individuals through their
unique structural vibrations, b) domain adaptation: assessing model performance
across different walking surfaces and sensor positions, and c) multi-modal com-
parison: comparing vibration-based and vision-based identification methods. Our
experiments, using both machine learning and deep learning approaches, establish
a baseline for future research in this field, and introduce a large-scale dataset for
the broader machine learning community. 1

1 INTRODUCTION

Structural vibration-based person identification is an emerging topic in the field of soft biometrics (Pan
et al., 2017; Anchal et al., 2020). As humans walk, our bodies exert an impact force on the ground,
generating vibrations that propagate through the structure. These structural vibrations are unique to
each individual as they depend on various factors such as height, weight, gait strides, stride length
along with structural properties, and background noises (Succi et al., 2000). Our technique uses these
vibrations to identify individuals. This paper introduces VIBeID, a novel dataset containing structural
vibration signals recorded by geophone sensors from human walking. VIBeID is designed to address
three key questions: a) Is it possible to accurately identify individuals from a large population based
on their unique structural vibration patterns?, b) Can humans be identified at varying distances from
the sensor and on different floor types using the same model?, and c) How does the performance
compare to established modalities like camera?

Early biometric research was primarily focused on physiological traits, also known as “hard bio-
metrics”, such as fingerprints, iris scans, and facial recognition (Jain et al., 2007; Dantcheva et al.,
2015). While “hard biometrics” offer uniqueness, they can be inflexible in deployment scenarios,
where non-intrusive or remote identification methods performs better (Zewail et al., 2004). “Soft
biometrics” like gait, voice, and structural vibration, prioritizes convenience over uniqueness, have
gained traction to address this limitation. (Jain et al., 2004), has defined the ideal characteristics for
"soft biometrics" as, a) inexpensive computation, b) usability from a distance, and c) functionality
with uncooperative subjects. Our proposed system aligns perfectly with these criterias. Structural
vibrations offer many advantages over existing methods, such as being low-cost, non-invasive, less

1*The project page, along with the dataset and code, is available at https://vibeidiclr.github.
io/, under CC BY-NC-SA 4.0 License.
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computationally complex, and free of privacy issues. Prior studies has established the potential of
using structural vibration as behavioral biometrics (Pan et al., 2017; Anchal et al., 2020). However,
such works relied on limited datasets, impeding the development of robust identification methods.
Our research fills a crucial gap by compiling the first comprehensive dataset of 100 individuals,
including task-specific sub-datasets totaling 88.66 hours of structural vibration signals recorded with
a single geophone. We used standard models such as ResNet-18 and ResNet-50 for benchmarking.
Our baseline results show the possibility of identifying humans across different underlying structures
and at distinct distances from the sensor. Additionally, we validated our approach using vibration
data alongside camera recordings for outdoor environment.

Our key contributions can be summarised as :

• Dataset Development: We introduce a novel dataset repository of structural vibration
signals categorized as follows:

– Person Identification: Raw vibration data collected from 100 individuals walking on a
single floor within a 50-100 square meter area.

– Multi-Distance: Data from 30 subjects walking at three pre-defined distances (1.5 m,
2.5 m, and 4.0 m) from a geophone sensor.

– Multi-Structure: Data from 40 subjects walking on three distinct floor surfaces (wood,
carpet, and cement).

– Multi-Modal Comparison: Data from 15 subjects collected in an outdoor environment
using two cameras and a geophone sensor.

• Benchmark Establishment: We demonstrate the utility of the dataset by performing
analyses on three distinct use cases:

– Multi-Class Classification: This analysis employs both traditional machine learning
and deep learning algorithms for person identification.

– Domain Adaptation: We investigate the effectiveness of domain adaptation techniques
for addressing potential variations in real-world deployments.

– Multi-Modal Comparison: Performance comparison of vision-based and vibration-
based identification methods using data from both the camera and the geophone sensor.

• Experimental Evaluation: We conduct a comprehensive evaluation of existing research
methods on the dataset to explore their effectiveness for various tasks, where applicable.

2 RELATED WORK

This section delves into various soft biometric modalities, with a specific focus on person identification
through human movement (gait). We categorize existing modalities as follows:

2.1 RELATED WORK ON PERSON IDENTIFICATION USING STRUCTURAL VIBRATION

As shown in Table 1, early research focused on establishing proof-of-concept using small datasets,
typically involving around ten participants (Pan et al., 2017; Anchal et al., 2020; Dong & Noh,
2023; Mirshekari et al., 2018; Chakraborty & Kar, 2023; Xu et al., 2024). These studies aimed
to demonstrate that unique characteristics of an individual’s walking pattern can be recorded and
classified through the vibrations transmitted to the supporting structure. However, as highlighted
by (Mirshekari et al., 2018), data scarcity is a serious bottleneck, where extensive experiments with
humans have not been conducted. Another aspect of these early investigations is the emphasis on
mathematical modeling of the vibration signals, which prioritized developing models that capture the
physical dynamics of the system rather than focusing on robust statistical analysis of the acquired
data (Succi et al., 2000; Mirshekari et al., 2018). Additionally, previous datasets were highly
supervised and tailored to singular use cases (training and testing models on data from the same
underlying structure), limiting their applicability to real-world scenarios. We adopted a comprehensive
approach to address this limitation by creating a large dataset for person identification and task-specific
datasets. This strategy enhances the real-life applicability of our research.
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Table 1: Overview of soft biometric datasets for person identification using various sensor modalities

Author(s) Sensor Modality Dataset Description EnvironmentPerson(s) Total Samples† Domain
(Yu et al., 2006) Camera 20 240 1 Outdoor

(Zheng et al., 2011) Camera 120 13,640 1 Indoor
(Tan et al., 2006) Camera 153 1530 1 Outdoor

(Song et al., 2022) Camera 1014 778,752 3 Outdoor
(Burdack et al., 2020) Pressure Plates 42 90 1 Indoor

(Derlatka & Parfieniuk, 2023) Pressure Plates 324 324 1 Indoor
(Ngo et al., 2014) IMU 744 37,500 1 Indoor
(Shen et al., 2023) Event cameras 20 4000 1 Indoor
(Wang et al., 2022) LIDAR 1050 25,239 1 Outdoor
(Pan et al., 2017) Geophone 10 - 1 Indoor

(Anchal et al., 2020) Geophone 10 7750 1 Indoor
(Xu et al., 2024) Geophone 10 12,278 4 Indoor

VIBeID (Ours) Geophone

100 144,371 1

Indoor and Outdoor30‡ 75,675 3
40∗ 142,526 3
15 2,171 1

† Samples (for sensor data) is equivalent to Sequence (for camera data)
‡Distances: VIBeID A2.1 (1.5 m),VIBeID A2.2 (2.5 m) and VIBeID A2.3 (4.0 m) annular from seismic sensor
∗3 structures viz, wood (VIBeID A3.1), carpet (VIBeID A3.2),and concrete (VIBeID A3.3)

2.2 RELATED WORK ON PERSON IDENTIFICATION OTHER THAN STRUCTURAL VIBRATION

Human movement (gait), the unique way individuals walk, is a valuable biometric for identification
using cameras, particularly over long distances. Significant research has been conducted to capture
and analyze human gait patterns. Previous studies have concentrated on various features extracted
from walking videos, such as Gait Energy Image (Han & Bhanu, 2005), Gait Entropy Image (Bashir
et al., 2009), and Gait Flow Image (Lam et al., 2011). As shown in Table 1, early research was
conducted using limited datasets of twenty people (Yu et al., 2006). Recent work, however, has
shifted towards large-scale datasets, incorporating both indoor and outdoor walking scenarios from
various perspectives (Song et al., 2022). Our dataset aims to pave the way for further exploration in
structural vibration analysis, similar to the advancements seen in video-based research. Despite the
advantages of traditional gait-based video surveillance systems, it face limitations due to low-light
conditions, restricted line-of-sight, adverse weather conditions, and extensive data processing (Song
et al., 2022). A notable drawback of vision-based systems is the privacy concerns and user discomfort
associated with continuous monitoring. Structural vibration analysis offers a promising alternative
that addresses these issues. LiDAR offers a strong alternative to RGB cameras (Shen et al., 2023), but
its high cost and need for a clear line of sight pose challenges, especially indoors. Event stream-based
gait recognition (Wang et al., 2022) can produce sparse, noisy data in low-contrast or variable lighting
conditions.

As shown in Table 1, Pressure plates and Inertial Measurement Units (IMUs) are prominent soft
biometric modalities based on human movement (Ngo et al., 2014; Burdack et al., 2020; Derlatka
& Parfieniuk, 2023). Pressure plates capture the unique Ground Reaction Forces (GRFs) exerted
by the foot during walking by being placed directly beneath it. Pressure plates exhibit limitations
as a soft biometric modality due to their requirement for direct user interaction. Deployment often
requires explicit user consent, hindering their applicability in scenarios demanding unobtrusive
identification (Leporace et al., 2015). IMUs, often embedded in wearable devices, offer gait-based
identification through their ability to track body movements (Ngo et al., 2014). IMUs attachment
to the body can be perceived as intrusive (Subramanian & Sarkar, 2018). In contrast, structural
vibration-based monitoring is non-intrusive and does not require direct body contact.

3 BUILDING VIBEID DATASET

3.1 WHAT IS FOOTSTEP INDUCED STRUCTURAL VIBRATION?

During walking, our body apply forces to the ground or platform, which help us move forward and
keep us balanced. These forces propagate through the structure as horizontal and vertical waves

3
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Figure 1: Visual depiction of VIBeID’s data collection framework showcasing structural vibration
signals, and signal envelope (Hilbert Transform) in outdoor environment

(a) (b)

Figure 2: Data collection Setup of VIBeID A3.2 (a) the front view of setup, and (b) the side view

or vibrations (Succi et al., 2000). Our work focuses on the vertical vibrations due to their unique
individual characteristics (Pan et al., 2017; Dong & Noh, 2023). As shown in Figure 1, foot strikes
(initial contact) generate higher frequency vibrations than lift-off (acceleration) due to the impulsive
force during the strike. We extract the envelope of the signal, using Hilbert transform, to visualise
the overall variation by subsiding the rapid oscillations (Cohen, 1995; Anchal et al., 2020). This
reveals a distinct pattern indicating cyclical changes in the signal corresponding to the phases of
contact and acceleration. Early research has tried to model this structural vibration using deterministic
force models (Mirshekari et al., 2018). In this study, we adopt a probabilistic perspective, assuming
individuals do not produce exact identical force-time profiles. However, the walking pattern is similar
over different space-time, and the wave profile will exhibit intrinsic and extrinsic randomness as a
function of weight, height, structural properties, and background noise, among other factors (Pan et al.,
2017). Naturally, a substantial subject database is crucial for such robust statistical characterization.
The impact force (kgms2 or Newton (N)) due to footstep impact on the ground is transmitted through
the structure and recorded as a vibration signal by a geophone sensor(in Volt(V)). Thus, the recorded
signal has induced properties of both the structure and the individual walking pattern.
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Figure 3: Overview of our structural vibration based dataset analysis framework, (a) Data acquisition,
(b) Data preprocessing, and (c) Dataset applications like Person Identification, Multi-Distance
analysis, Multi Domain analysis, and Multi-modal analysis.

3.2 RECORDING SETUP

A single geophone sensor with a sensitivity of 2.88 V/m/sec and a gain of 10 was used for both indoor
and outdoor environments. Vibration signals were captured using a Logic sound card hat equipped
with a 16-bit analog-to-digital converter (ADC) operating at a sampling rate of 8 kHz. The sound
card interfaced with a Raspberry Pi 3B+ having 1 GB of RAM and 16 GB of storage for indoor data
(VIBeID A1, A2, and A3). For outdoor data (VIBeID A4), a single seismic sensor was interfaced
with a Sony CXD5602 Spresense embedded microcontroller. Vibration signals were initially recorded
at 16 kHz due to hardware limitations and subsequently downsampled to 8 kHz for consistency with
the indoor datasets. Details of each recording environment are provided in detail in the supplementary
section.

3.3 DATASET DETAILS

As shown in figure 2, the sensor, with an effective sensing area of 50-100m² was placed on the
floor, and participants were instructed to walk within this region in to-and-fro motion. The data
collection protocol excluded any concurrent human activity. Background noise remained unmitigated
throughout the recording process. As shown in figure 3, the dataset can be furthur used for four
different use-cases. The detail are as follows:

• VIBeID A1: Vibration signals were recorded from 100 individuals at a distance of 2.5 m-4.0
m from the sensor. Each individual has 20 minutes of recorded data, totaling 33.66 hours.

• VIBeID A2: Data from 30 individuals were collected on a cement floor at three distances
from the sensor: 1.5 m (A2.1), 2.5 m (A2.2), and 4.0 m (A2.3). Each individual has
15 minutes of recorded data for each distances, totaling 22.5 hours. To evaluate model
performance on different distance range from the sensor, six cross-domain tasks were created:
A2.1→A2.2, A2.1→A2.3, A2.2→A2.1, A2.2→A2.3, A2.3→A2.1, and A2.3→A2.2.

• VIBeID A3: Data from 40 individuals were collected on wooden (A3.1), carpet (A3.2), and
cement (A3.3) floors, at a distance of 2.5 m-4.0 m from the sensor. Each individual has 20
minutes of data per floor, totaling 30 hours. To study the effect of different structure on model
performance, we created six cross-domain tasks: A3.1→A3.2, A3.2→A3.3, A3.2→A3.1,
A3.2→A3.3, A3.3→A3.1, and A3.3→A3.2.

• VIBeID A4: Data from 15 individuals were recorded using single geophone (A4.1) and two
off-the-shelve cameras (left camera-A4.2a and right camera-A4.2b). Each individual has 10
minutes of recorded data, totaling 2.5 hours.

5
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Figure 4: Distribution of Subjects in VIBeID A1, (a) Height and weight distribution of the 100
participants, and (b) Age distribution of the participants in VIBeID A1.

3.4 STATISTICAL ATTRIBUTES OF THE DATASET

Table 2: VIBeID Datasets: Sample Details and Characteristics

Name Experiments Number of Persons Length of data Samples
VIBeID A1 Person Identification 100 33.66 hrs 1,87,500

VIBeID A2
A2.1

Multi-Distance
1.5 m

30 22.5 hrs
33,151

A2.2 2.5 m 19,494
A2.3 4.0 m 23,030

VIBeID A3
A3.1

Multi-Floor (1.5 m - 4.0 m) 40 30 hrs
63,394

A3.2 54,840
A3.3 34,328

VIBeID A4
A4.1

Multi-Modal
Geophone

15 2.5 hrs
2,171

A4.2a Camera 2,670
A4.2b 2,074

The different statistical attributes of the dataset are given below:

• Subjects: In this study, 100 participants, comprising 68 males and 32 females, aged between
20 to 60 years, took part. Details of the participant’s gender, age, height, and weight are
available in the supplementary section. Each participant was asked to wear flat-bottom shoes
that would be comfortable for walking. Table 2, shows the description of the sub-datasets
within VIBeID, including sampling details, number of participants, recording duration, their
use cases, and environment The data collection process strictly adhered to the rigorous
guidelines established by the Institutional Review Board (IRB).

• Anthropometrics: As shown in the figure 4, the participants’ heights vary from approx-
imately 1.40 m to 1.90 m, and weights range from 40 kg to 90 kg. The dataset’s details
regarding age, gender, height, and weight are available on the GitHub repository.

• Data Collection Environment: Indoor data collection involves multiple 5-minute walking
sessions for each participant between 11:00 AM and 6:00 PM.

• Environmental Noise: The indoor datasets potentially include noise from typical building
operations such as air conditioning. These temporal variations and noises reflect real-world
conditions in a multi-functional building environment.

3.5 DATA PREPROCESSING

As highlighted by (Pan et al., 2017), footstep vibration can be affected by unknown wave propagation
across different locations due to floor heterogeneity. Thus, identifying each footstep event from
background noises is an essential goal for data preprocessing. We preprocessed the data using the
toolkit provided by (Anchal et al., 2020), which uses unsupervised clustering to extract footstep
events based on both statistical features (skewness and kurtosis) and spectral features based on energy
bins(40-80Hz, 80-120Hz, and 120-160Hz). We take a rolling window of 375ms with a 50% overlap
and calculate 134 features. After preprocessing, we structured the dataset based on footstep events,
grouping them so that each row represents one sample consisting of 2-10 footstep events (Anchal et al.,

6
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2020). As shown in the figure 5, we converted the extracted footstep events to 2-D time-frequency
images using Continuous Wavelet Transform (CWT) to focus on the changes in energy distribution,
which is unique for each and every individual (Xu et al., 2024). Each CWT image is considered
as a single sample for deep learning analysis. For the data preprocessing of Dataset VIBeID A4.2,
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Figure 5: This image depicts vibration signal from three individuals collected from wooden floor:
(a) Person 1, (b) Person 50, and (c) Person 100. The corresponding CWT images for each person’s
footprint are shown in (d), (e), and (f) respectively.

we used the toolkit provided by (Song et al., 2022). We extract Gait Energy Images (GEI) from
video footage and classify them using a deep neural network. The process begins with converting the
original MP4 video files into individual JPEG images (frames), each maintaining a high resolution
of 1920 x 1080 pixels to capture detailed gait information. Next, we use the Mask R-CNN model
(pre-trained on the ImageNet dataset) to detect humans within each image frame, allowing us to
isolate the human silhouettes from the background (He et al., 2017). This step ensures that the image
is normalized based on the extracted silhouette, focusing solely on the relevant body region for gait
analysis. Finally, we formulate the GEI by merging the gait cycle images, resulting in a standardized
size of 88 x 128 pixels. This consistent size ensures compatibility during subsequent processing and
analysis.

4 BASELINES EVALUATION OF THE DATASET

4.1 PERSON IDENTIFICATION USING STRUCTURAL VIBRATION

This work investigates person identification using structural vibration data as a multi-class classifica-
tion problem. Each dataset is treated as a separate standalone dataset for this analysis.

Baselines: The details of the two main approaches are as follows:

• Machine Learning Approach: We use the toolkits provided by (Anchal et al., 2020), which
utilize 134 pre-defined features, to represent the gait patterns within the data. These features
are extracted from the raw vibration signals. We then create labeled datasets from the features
and perform five-fold cross-validation for robust evaluation. We investigate the performance
of Support Vector Machines with radial basis function (SVM-RBF) and Random Forest(RF).
The hyperparameters for SVM-RBF C and γ were set to 107 and 10−7. In RF, we used
entropy as the splitting criteria, and depth is set at 30.

• Deep Learning Approach: We utilize ResNet-18 and ResNet-50 as backbone architec-
tures (He et al., 2016) for two evaluation tasks:

– Multi-class classification: Training (Dtrain) and testing (Dtest) sets are disjoint at the
sample level (Dtrain ∩Dtest = ∅). Models are trained using either single-image input (S)
or five consecutive images (M). For multi-image input, a Conv2D layer (15 channels,

7
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Table 3: Accuracy (%) of datasets evaluated using machine learning methods. Accuracy is in
“mean (std.)” format.

Classifier Dataset / Footstep Events 2 5 7 10

Random Forest A1 81.50(4.49) 88.10(4.56) 90.54(4.33) 92.67(3.91)
A2.1 51.19(1.54) 61.89(2.77) 65.60(2.69) 69.37(2.19)
A2.2 59.69(3.65) 68.15(4.00) 69.32(4.67) 72.35(6.49)
A2.3 59.93(2.33) 71.87(2.30) 74.87(3.14) 76.31(2.90)
A3.1 81.67(3.79) 88.71(3.28) 91.10(3.33) 93.60(2.69)
A3.2 85.21(2.92) 92.29(2.46) 94.369(2.78) 95.87(1.97)
A3.3 81.01(3.81) 88.99(3.55) 91.58(3.46) 93.67(2.89)
A4.1 76.57(3.89) 79.47(2.72) 82.87(2.77) 81.04(5.43)

SVM (RBF) A1 32.35(1.24) 44.02(2.21) 46.42(1.98) 51.97(1.76)
A2.1 79.88(4.80) 87.99(4.14) 91.08(3.59) 92.51(3.41)
A2.2 84.33(4.57) 89.49(4.26) 92.64(3.73) 94.31(3.45)
A2.3 86.66(2.32) 94.25(1.14) 95.66(1.65) 97.03(1.48)
A3.1 37.83(1.88) 45.71(2.60) 50.47(2.90) 56.71(3.51)
A3.2 63.87(2.24) 73.79(2.45) 77.048(2.43) 80.01(2.72)
A3.3 61.58(2.45) 71.31(3.64) 74.35(4.42) 76.20(3.87)
A4.1 33.14(2.08) 37.28(3.09) 37.13(7.83) 44.99(4.89)

kernel size = 7, stride = 2, padding = 3) is added before the backbone, feeding into the
base network (output channels = 64 for ResNet-18/50). The final dense layer matches
the number of dataset classes, with categorical cross-entropy loss and Adam optimizer.
Data is split into 80% training and 20% testing.

– Person identification: Training (Ctrain) and testing (Ctest) classes are disjoint (Ctrain ∩
Ctest = ∅), evaluating model generalization using top-k accuracy and precision. We
employ a triplet loss (margin = 1.0) to reduce intra-class distances and increase inter-
class separability, with dynamically generated triplets during training. The backbone is
modified to produce 512-dimensional embeddings by replacing the classification head
with a linear layer.

For both tasks, models are trained for up to 25 epochs with a batch size of 16 experiments
are repeated five times, reporting the mean accuracy and standard deviation.

Table 4: Classification accuracy (%) of datasets evaluated using deep learning methods. Accuracy is
in “mean (std.)” format.

Datasets ResNet50 (S) ResNet50 (M) ResNet18 (S) ResNet18 (M)

A1 84.45 (1.10) 88.96 (0.32) 81.29 (3.41) 92.46 (0.43)
A2.1 84.68 (2.35) 86.09 (3.08) 82.17 (1.02) 84.60 (2.83)
A2.2 87.70 (3.70) 85.88 (1.92) 68.50 (4.03) 74.58 (1.54)
A2.3 87.73 (0.93) 86.81 (2.20) 70.14 (2.64) 73.26 (3.15)
A3.1 87.25 (2.75) 91.99 (0.78) 87.35 (0.84) 92.35 (0.21)
A3.2 82.61 (0.50) 89.48 (1.34) 84.65 (2.46) 89.89 (1.89)
A3.3 89.38 (3.20) 88.34 (3.94) 90.52 (1.20) 88.19 (0.13)
A4.1 93.70 (1.67) 84.87 (2.51) 94.71 (3.61) 90.79 (2.91)

Table 5: Identification Accuracy (%) of datasets evaluated using multi-input models (Pretrained-P,
None-N). Accuracy is in “mean (std.)” format.

Model A1 A2.1 A2.2 A2.3 A3.1 A3.2 A3.3 A4.1

ResNet-18 (P) 78.10 (1.42) 81.53 (2.19) 91.75 (1.87) 92.67 (0.57) 75.13 (2.34) 84.09 (0.92) 84.43 (2.78) 84.31 (1.12)
ResNet-18 (N) 66.62 (4.87) 74.61 (3.21) 78.27 (2.18) 76.91 (3.45) 68.56 (4.02) 70.04 (3.89) 85.38 (4.33) 82.35 (2.01)
ResNet-50 (P) 69.87 (2.65) 72.90 (1.13) 75.70 (2.84) 84.50 (0.72) 62.17 (2.21) 65.80 (1.91) 73.82 (0.47) 80.31 (2.53)
ResNet-50 (N) 58.70 (3.77) 68.50 (1.92) 73.61 (2.61) 64.54 (3.14) 67.66 (2.89) 63.72 (4.25) 71.46 (2.03) 70.59 (1.98)

Results: A comparative analysis of machine learning methodologies on the datasets (Table 3) revealed
superior performance in indoor environments. This suggests that the hand-crafted features used by
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the toolkits are better optimized for indoor footstep characteristics. Random Forest achieved better
performance than SVM (RBF kernel) except multi-distance datasets. Using multiple footstep inputs
improved recognition results by ∼ 5− 10%, this is most likely due to the ability of multiple footsteps
to capture a more comprehensive representation of the underlying walking patterns. An analysis of
deep learning methodologies is presented in Table 4, for each datasets. Since pre-trained models for
structural vibration signals are unavailable, all models were trained from scratch. Both ResNet-18
and ResNet-50 demonstrated equally good performance. This is likely attributable to applying a fixed
hyperparameter evaluation rather than individual fine-tuning for each dataset. The higher accuracy
of the outdoor dataset shows that deep learning-based methods are more suitable for applications in
varied and dynamic environments.

Table 6: Accuracy (%) for domain adaptation. Accuracy is in “mean (std.)” format.

(a) VIBeID A2 Multi-Distance Datasets

Methods A2.1→A2.2 A2.1→A2.3 A2.2→A2.1 A2.2→A2.3 A2.3→A2.1 A2.3→A2.2
Source-Only 21.20 (1.69) 17.15 (1.50) 19.14 (3.86) 9.35 (3.62) 10.57 (2.12) 13.35 (2.43)
Fine-Tuning(3-layers) 82.98 (2.03) 81.34 (1.95) 68.15 (2.36) 75.95 (2.45) 66.62 (2.82) 73.04 (2.41)
Fine-Tuning 85.67 (2.11) 84.26 (2.43) 72.28 (2.76) 76.61 (2.27) 71.36 (3.71) 72.51 (2.59)

(b) VIBeID A3 Multi Floor Datasets

Methods A3.1→A3.2 A3.1→A3.3 A3.2→A3.1 A3.2→A3.3 A3.3→A3.1 A3.3→A3.2
Source-Only 2.00 (1.12) 3.12 (2.53) 3.8 (0.92) 5.05 (1.70) 3.41 (1.24) 7.40 (2.50)
Fine-Tuning(3-layers) 75.36 (1.20) 76.70 (0.46) 82.14 (2.4) 79.64 (3.40) 80.24 (1.02) 80.13 (1.05)
Fine-Tuning 80.00 (0.50) 76.60 (2.03) 86.03 (1.00) 79.79 (3.20) 85.24 (1.21) 82.70 (1.80)

4.2 DOMAIN ADAPTATION ON DIFFERENT DISTANCE AND FLOOR TYPES

Building on Section 2.1, we address the limitations of existing methods that assume consistent data
distributions between training and testing. We explore person identification using deep learning on
12 cross-domain datasets (6 from VIBeID A2, and 6 from VIBeID A3). We present results for both
the source domain and the fine-tuned models.

Baselines: We use only the ResNet18 (M) for domain adaptation use-case because of its fast
computation compared to other baseline models. We use a 70-20-10 split for the train-test-validation
process, where 70% of data are used for source model training, 20% of target data is used for
fine-tuning and 10% of target data is used for model evaluation. Our approach are as follows:

• Source-Only: This baseline approach trains a model solely on data from the source domain
(70% Source data) and is tested on the target domain (10% target domain). This represents
the lower bound of performance achievable in our domain adaptation task.

• Fine-tuning with limited Target Data: Following standard transfer learning principles, we
fine-tuned a pre-trained source model (trained on 70% Source data) with limited labeled
data from the target domain (20% target domain) and evaluated the performance (10% target
domain). We experimented with two fine-tuning approaches: a) unfreezing and fine-tuning
the last three layers, and b) unfreezing the entire model. The hyper-parameters remained
consistent with those used for training the source model.

Results: Analysis of Table 6 shows that both multi-distance (Table 6a) and multi-floor (Table 6b) data
perform well during fine-tuning with limited labeled data, indicating the approach’s effectiveness in
adapting to domain variations. For scenarios with limited computational resources, fine-tuning with
only the last three layers unfrozen is a viable alternative, offering faster training time while maintaining
comparable accuracy. We observe variations in model performance across structures (multi-floor)
and sensor distances (multi-distance). This likely arises from (a) material non-homogeneity, and
(b) background noise. Despite these challenges, fine-tuning with limited data has achieved accurate
person identification using standard classification methods.
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Table 7: Identification accuracy (%) and Mean Average Precision (mAP) comparison for multi-modal
datasets (A1s, A4.1, A4.2a, and A4.2b).

Models
ResNet-18 ResNet-50

None Pre-trained None Pre-trained
Accuracy mAP Accuracy mAP Accuracy mAP Accuracy mAP

A4.1 84.31 0.7655 82.35 0.8450 66.67 0.6444 86.27 0.7105
A1s 83.74 0.6628 80.33 0.7364 78.08 0.6298 87.44 0.6392

A4.2a 82.86 0.3713 77.48 0.3342 38.66 0.2485 65.21 0.3344
A4.2b 82.05 0.4243 78.80 0.4214 47.13 0.2565 75.38 0.3801

4.3 MULTI-MODAL ANALYSIS

Baselines: Our goal is to compare two modalities aka structural vibration-based spectograms and
Gait Energy Image (GEIs), for person identification. We compute the GEI for the camera modality
and treat each GEI as a sample, regardless of viewpoint. We also use a subset of the VIBeID A1
dataset, denoted as VIBeID A1s, containing only individuals whose data was also recorded in the
outdoor environment. Spectrograms used are ten consecutive footstep events.

Results: Table 7 presents identification accuracy (%) comparisons across four datasets: A1, A1s

(spectrograms), and A4.2a, A4.2b (Gait Energy Images captured from two camera perspectives).
For spectrogram datasets, ResNet-50 with pre-trained weights achieves the highest accuracy on A1s

(87.44%), reflecting a 3.7% improvement over the best ResNet-18 configuration (83.74%) and a
20.77% improvement over ResNet-50 without pre-training (66.67%). A1s consistently outperforms
A1, with up to a 1.17% improvement (87.44% vs. 86.27%) under the best pre-trained ResNet-50
configuration, indicating the positive impact of enhanced preprocessing.

When considering the mean Average Precision (mAP), spectrogram datasets exhibit superior results,
especially under pre-trained models. For A4.1, pre-trained ResNet-18 achieves the highest mAP
(0.8450), while A1s with pre-trained ResNet-50 closely follows (0.7364), further highlighting the
advantage of pre-training. GEI datasets, on the other hand, report significantly lower mAP values.
The highest mAP for A4.2a is only 0.3713 (ResNet-18, no pre-training), and A4.2b achieves 0.4243
(ResNet-18, no pre-training). This discrepancy suggests that spectrograms are inherently better
suited for accurate and reliable identification in this experimental framework, while GEIs suffer from
increased sensitivity to cross-view variations and limited discriminative capacity, particularly in mAP
performance.

5 LIMITATIONS AND CONCLUSION

This work establishes a foundation for exploring structural vibrations in soft biometrics for person
identification. We are committed to actively maintaining and expanding both the VIBeID dataset and
its benchmark. we recognize opportunities for growth, such as increasing the number of participants
and exploring a broader range of environments, we view these as exciting challenges. Our goal is to
enhance the dataset’s robustness by including more individuals and expanding into diverse domains,
incorporating varied environments, materials, and conditions to unlock new possibilities and drive
innovation in this field.

VIBeID offers a significant leap forward in data volume, containing over 88.66 hours of vibration
recordings and also provides a baseline using established methods. We anticipate open-sourcing
the dataset will accelerate future research to explore more efficient approaches. VIBeID can serve
as a springboard for significant advancements in the field of deep learning and structural vibration
based person identification. Beyond person identification, VIBeID’s value extends to structural
vibration analysis. The metadata, including subject age, gender, height, weight, and structural
details, is invaluable for researchers exploring applications in bio-mechanics, where understanding
the relationship between body characteristics and structural vibration is crucial.
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6 APPENDIX

The supplementary materials consist of:

• Details of the rooms used in the dataset.
• Statistical attributes of the dataset.
• Procedures for data collection and preprocessing.
• Details of the baseline implementations.
• Limitations, discussions, and potential impact.
• Analysis on variation of speed.
• URL to data and miscellaneous information.
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Figure 6: (a) Empty wooden floor room, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P14 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P14 walking signal, highlighting the transformed features.

6.1 LOCATION DETAILS

6.1.1 WOODEN FLOOR

The data collection environment is a ground-floor classroom with wooden flooring. The walking area
measured 50 -100 m2. Raspberry Pi 3B+ was placed in the podium, while a geophone sensor was
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placed on the floor. This room is used for data collection of dataset VIBeID A1, and A3.1. Figure 6
shows a photo of the room, a sample of noise distribution within the room, and a visualization of data
collected from a walking person.
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Figure 7: (a) Empty carpet floor room, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P15 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P15 walking signal, highlighting the transformed features

6.1.2 CARPET FLOOR

The room is a ground-floor conference room with carpeted flooring overlying concrete. The thickness
of the carpet is 9mm. The room is furnished with chairs and a table. Participants are asked to walk
within a radius of 50-100 m2. This room is used for data collection of dataset VIBeID A3.2, where 40
person walked for 15 minutes each. The figure 7 illustrates the data collection setup for VIBeID A3.2,
including a room photo, noise distribution sample, and walking person data visualization.

6.1.3 CEMENT FLOOR

The room is a research lab on the third floor, covered in tiles. The room measures 50-100 m2 as
walking area. It is an active research lab with regular activities occurring in the background. This
room is used for data collection of dataset VIBeID A3.3, and VIBeID A2 (1.5 m, 2.5 m, and 4.0 m),
to study the effect of sensing distance and how effective our system can be when people walk far
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Figure 8: (a) Empty cement floor room, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P15 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P14 walking signal, highlighting the transformed features.

away from the sensors. Figure 8 shows a photo of the room, a sample of noise distribution within the
room, and a visualization of data collected from a walking person.

6.1.4 OUTDOOR GROUND

The data collection environment is an open outdoor playground where the vibration signals of 15
individuals were recorded. Due to the open nature of the space, extraneous noise from activities
such as people walking, running, and playing cricket was unavoidable. While we tried to minimize
background movement within the 50-100 m2 sensing area, the camera’s wide field of view did
capture some additional human activity in the video data. While this presented an initial challenge
for extracting clean human figures (due to residual background noise), it also offered a valuable
opportunity to test the robustness of the GEI formation process under slightly non-uniform conditions.
We opted for outdoor data collection for two primary reasons. First, to establish a control group as all
previous data recordings were conducted indoors. Secondly, the outdoor data collection served as
a foundation for comparative analysis of our method against established soft biometric techniques,
such as gait recognition, in a more realistic setting. Open ground is used for data collection of
two modalities, structural and vision based; the structural based vibration collected data named as
VIBeID A4.1 and vision based collected data is used to formulate VIBeID A4.2. Figure 9 shows the
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Figure 9: (a) Empty outdoor ground, (b) Participant walking in front of the sensor during data
collection, (c) Raw noise signal acquired from the geophone sensor, (d) Raw vibration signal recorded
from participant P9 walking, (e) Continuous Wavelet Transform (CWT) of the noise signal, (f) CWT
of the P9 walking signal, highlighting the transformed features.

location setup, a sample of noise distribution and a visualization of data collected from a walking
person.

6.1.5 OTHER COMMENTS

Figure 4-7(c), clearly demonstrates the variation in noise distribution across different rooms and
outdoor environment. Notably, the signal-to-noise ratio (SNR) exhibits significant dependence on
the floor level, with ground floor locations typically having high SNR compared to the third floor.
Additionally, we observed that the amplitude of the source signal exhibits an inverse relationship
with distance from the sensor. To achieve effective event extraction from the signal, scenario-specific
training data is used.

6.2 EXPERIMENTAL SETUP AND DATA COLLECTION PROTOCOL

6.2.1 HARDWARE DETAILS

We collected structural vibration data, with a single geophone for Multiple Indoor (VIBeID A1, A2,
A3) and outdoor (VIBeID A4) environment, along with two cameras.
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• Geophone : Geophone is a sensor that converts the ground movement into voltage, which
can be recorded by using any microcontroller or microprocessor having an analog-to-
digital converter (ADC). The used geophone has a sensitivity of 2.88 V/m/sec and a pre-
amplification gain of 10.

• Raspberry Pi 3B+ : For indoor experiments (VIBeID A1, A2, and A3), we have used
raspberry Pi 3B+ featuring BCM2837B0 64-bit ARM-based Cortex-A53 processor running
at 1.4 GHz with 1 GB of RAM and 16 GB of storage. The geophone sensor was interfaced
with raspberry Pi 3B+ using a logic sound card hat equipped with a 16-bit analog-to digital
converter (ADC) at a sampling rate of 8 KHz.

• Sony spresense Board : In our outdoor experiments (VIBeID A4.1), we used the Sony
CXD5602 Spresense board. This board features an ARM Cortex-M4F processor with six
cores running at 156 MHz and a 16-bit A/D conversion output. We opted for the Sony
Spresense board due to its low power consumption—only 1 W (5 V @ 200 mA)—compared
to the Raspberry Pi 3B+, which requires approximately 7.5 W (5 V @ 1.5 A). This energy ef-
ficiency makes the Sony Spresense board well-suited for outdoor data collection experiments.
However, it has a limitation: it can only record signals at 16 KHz and 32 KHz. Therefore,
we initially recorded vibrational signals at 16 KHz and subsequently downsampled the data
to 8 KHz to maintain consistency with the indoor datasets (VIBeID A1, A2, and A3).

• Camera : For (VIBeID A4.2) dataset, we have used 2 cameras that have a CMOS sensor
(0.84667 cm) with 3 MP, 95◦ viewing angle, with frame rate of 20 fps. It supports Wi-fi
protocol to remotely view the recorded video and save it to smartphone or cloud services.

Figure 10 shows the images of geophone sensor, raspberry pi 3B+, and camera.

(a) Geophone (b) Raspberry Pi 3B+ (c) Camera

Figure 10: Hardware Components: (a) Geophone sensor for capturing structural vibrations, (b)
Raspberry Pi 3B+ board for data acquisition, and (c) Camera for outdoor data collection.

6.2.2 DATA COLLECTION PROTOCOL

Prior to data collection, participants were briefed for 5 minutes, about the task to ensure clear
understanding. We instructed the participants to complete a repetitive walking task. They were
asked to walk from a designated starting point (Point A) to another designated endpoint (Point
B) at a natural pace, turn around at Point B, and then repeat the walk back to Point A. Each
session lasted for five minutes. Multiple such sessions were conducted, depending on the sub-task.
Participants were informed that they could stop and rest at any point during the session (if they feel
uncomfortable); the recording would be paused and restarted upon resuming the walk. Apart from
intended walking activity any additional human activities were strictly prohibited. This controlled
environment minimized background noise and ensured the capture of pure walking patterns. It
is important to note that while we focused on minimizing human activity-related noise, structural
vibrations from non-human activities were not controlled.

6.3 DATA PRE-PROCESSING TOOLKIT

The raw vibration signal undergoes data pre-processing (Figure 11), where we extract events from
the raw signal. This events are further converted to CWT images. We have used the toolkit provided
by (Anchal et al., 2020) to extract footstep events. It uses Gaussian Mixture Model (GMM), as an
unsupervised clustering technique to extract footstep events from noise. Each recording is divided
into equal parts using a sliding window approach (375 ms), and we extract features from this window
(see Table 8). The steps are as follows:
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(a) Raw vibration signal (b) Pre-processed signal (c) CWT image

Figure 11: Data Processing Steps: (a) Raw vibration signal acquired from the geophone sensor. (b)
Pre-processed signal after noise reduction and event segmentation. (c) Extracted events converted
into a CWT image for further analysis.

• Modeling Footstep Events : Each feature vector, fi, is modeled as:
C∑

c=1

ϕm · N (fi|µm,Σm) (1)

where,
– C (number of clusters) is set to 2
– N is the number of training samples
– ϕm is the weight of the mth cluster (represents its probability)
– µm is the mean vector of the mth cluster
– Σm is the covariance matrix of the mth cluster

• Training the GMM : We train the GMM by maximizing the log-likelihood of the training
data:

ln p(F|Θ) =

N∑
i=1

ln

(
2∑

m=1

ϕmN (fi|µm,Σm)

)
(2)

where,
– F = [fT1 , fT2 , . . . , fTN ]T is the feature matrix
– Θ = {ϕ1, ϕ2, µ1, µ2,Σ1,Σ2} [Θ is maximised by log-likelihood using the EM algo-

rithm]
• Classifying Footsteps: The GMM generates two clusters, C1 and C2. We assign labels

based on the determinants value (absolute value of the determinant) of the covariance
matrices:

Cluster =

{
E → C1, Ê → C2 : |Σ1| > |Σ2|
E → C2, Ê → C1 : |Σ2| > |Σ1|

(3)

where,
– where the event and noise class are represented by E and Ê , respectively,
– Σm is the determinant of the covariance matrix of the m-th cluster
– Ê are parameterized by sets (ϕ1, µ1,Σ1) and (ϕ2, µ2,Σ2) when |Σ1| > |Σ2|

Table 8: Features used for event detection

Statistical Features Spectral Features (Energy bins)
f1
i f2

i f3
i f4

i f5
i

Std. Kurtosis 40-80 Hz 80-120 Hz 120-160 Hz

After training the GMM model, we extract footsteps events from each recordings. We train the GMM
model using recording of a single person (i.e. person 14’s data is used for training model VIBeID A1).
Note that changing the training data will affect the GMM model and the number of events extracted.
The resulting datasets (pre-processed signal dataset) each has row representing a single footstep event,
containing 1500 data points. This pre-processed dataset has been shared for replication of results.
The pre-processed event data is simply a denoised signal which exhibits a clearer representation of
the underlying events compared to the raw signal.
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(a) (b)

Figure 12: Clustering results using a Gaussian Mixture Model (GMM): (a) clustering for concurrent
non-human activities, and (b) clustering for concurrent human activities. Data points are partitioned
into three clusters—Cluster 1 (blue), Cluster 2 (orange), and Cluster 3 (green). Cluster centroids are
represented by red ‘X’ markers.

6.4 WILD SET EVALUATION INVOLVING CONCURRENT HUMAN AND NON-HUMAN ACTIVITY

To evaluate scenarios involving concurrent human and non-human activities, we conducted additional
experiments that yielded an additional 30 minutes of data. We named it “Wild set”. For such
mixed-activity data, we modified the Gaussian Mixture Model (GMM) to three clusters, denoted as
Ci where i ∈ {1, 2, 3}. Each cluster Ci is parameterized by its mixing coefficient πi, mean vector µi,
and covariance matrix Σi. The decision process relies on the determinant of the covariance matrices,
|Σi|, which provides a measure of the spread or variance of the cluster in the feature space. The
following procedure is adopted:

1. For each cluster Ci (i ∈ {1, 2, . . . , k}), compute the determinant of its covariance matrix,
denoted as |Σi|, where:

|Σi| = det(Σi),

and Σi ∈ Rd×d is the covariance matrix of cluster Ci in d-dimensional feature space.

2. Identify the two clusters, Cmax1 and Cmax2, corresponding to the largest and second-largest
covariance determinants:

|Σmax1| = max(|Σi|), |Σmax2| = max(|Σi| \ |Σmax1|),

where |Σmax1| and |Σmax2| are associated with complex noise or human activities due to their
higher variability in the feature space.

3. Extract the signal segments corresponding to the clusters,Cmax1 and Cmax2, where j ̸=
{max1,max2}. Convert the footstep events into spectrogram representations.

This iterative comparison ensures that clusters with higher variance are robustly separated from
those with lower variance, enabling segmentation of human and non-human activities. As shown
in Figure 12, the data points are grouped into three distinct clusters within the feature space. The
horizontal axis (Feature 1) and vertical axis (Feature 2) represent extracted features derived from
statistical and spectral analysis of the input signal. The centroids of each cluster, indicated as red
crosses, demonstrate the separation between noise, human activities, and non-human activities,
ensuring dynamic adaptability to mixed data scenarios.

6.4.1 EVALUATION SETUP

Model Configuration : A pretrained ResNet-18 (IMAGENET1K_V1) (S) was modified by replac-
ing the final fully connected layer with a custom embedding layer of size 512. This enabled the model
to extract latent features of spectrogram data.
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Data Preparation : We considered data from two individuals. Spectrogram data was organized
into two categories:

• Pure Data: Spectrograms collected from VIBeIDA1, representing a clean dataset, with
normal background noise.

• Activity Data: Spectrograms extracted using an unsupervised event detection method based
on Gaussian Mixture Models (GMM) with k = 3, incorporating either non-human or human
noise.

• Group Activity Data: Spectrograms obtained through an unsupervised event detection
strategy employing Gaussian Mixture Models (GMM) with k = 3, capturing ambient noise
from two individuals and person-of-interest walking in the vicinity.

Statistical Testing : A two-sample t-test was performed to quantify the difference between the
embeddings of pure and noisy clusters. The embeddings were flattened into 1D arrays, and the
t-statistic and p-value were computed to evaluate statistical significance.

Table 9: Statistical Test Results for Pure vs. Activity Data

Comparison T-Statistic P-Value
Pure & Non-Human Activity Data −0.772 0.440

Pure & Human Activity Data −1.750 0.080

Pure & Group Activity Data −1.329 0.183

Pure & Random Noise −237.97 0.0

The statistical test results, as shown in Table 9 indicate that embeddings generated from noisy data
using our GMM-based event extraction approach closely align with embeddings derived from cleaner
distributions. Specifically, the two-sample t-test demonstrated no significant difference (p ≥ 0.05)
difference between embeddings from pure data and those obtained from activity data processed
with our method. This finding suggests that the GMM-based event extraction effectively isolates
meaningful features, ensuring that the embeddings remain robust and consistent with the underlying
characteristics of the cleaner dataset. Additionally, we have compared the p-value and t-test with a
random noise data, to show how it impacts the statistical measurements.

Table 10: Classification Accuracy (%) of datasets on machine learning methods. Accuracy is in
“mean (std.)” format.

Classifier Dataset/Events 2 5 7 10

Random Forest A1 81.77(4.52) 88.10(4.69) 87.35(4.61) 90.45(4.25)
A2.1 80.86(5.27) 88.24(4.20) 90.92(3.46) 92.75(3.42)
A2.2 83.85(5.33) 89.85(4.45) 92.17(3.36) 93.79(3.36)
A2.3 85.43(2.65) 93.55(1.83) 95.42(1.99) 97.02(1.47)
A3.1 80.41(3.50) 87.31(3.57) 89.81(3.44) 92.46(3.38)
A3.2 84.54(2.91) 91.55(2.67) 93.98(2.54) 95.54(2.39)
A3.3 80.34(4.54) 88.06(4.54) 91.48(3.18) 93.70(3.35)
A4.1 74.63(2.70) 79.48(3.07) 80.58(2.73) 82.45(6.35)

SVM A1 74.06(3.26) 85.52(3.33) 89.44(3.59) 92.25(3.77)
A2.1 48.74(1.58) 58.55(2.21) 61.88(3.21) 67.04(3.70)
A2.2 58.29(3.31) 70.70(4.99) 73.22(5.13) 76.43(5.19)
A2.3 56.82(1.71) 68.74(2.53) 72.16(2.99) 75.61(2.54)
A3.1 22.06(1.24) 86.42(3.13) 89.12(2.78) 92.26(2.55)
A3.2 59.03(1.88) 87.91(2.62) 90.01(2.44) 91.96(2.07)
A3.3 81.19(0.25) 88.08(0.29) 89.53(0.21) 91.60(0.23)
A4.1 40.37(1.88) 46.85(1.25) 44.40(2.67) 45.49(2.65)
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6.5 BASELINE DETAILS AND ADDITIONAL RESULTS

6.5.1 MACHINE LEARNING APPROACH

We have conducted experiments with machine learning approach for person identification using two
feature sets. The first set contains 134 features described in section 4.1 (main paper), while the second
set contains 104 features from (Pan et al., 2017) (see Table 10). We extract additional 104 features for
classifying sequences of 2, 5, 7 and 10 footstep events. These features are calculated by averaging the
data points across consecutive features in the original dataset. We normalise the feature sets and then
implement machine learning algorithms SVM and RF. We have used the same hyper-parameters as in
section 4.1 (main paper). A key finding is that the model performs worse on outdoor data compared
to indoor data. This is likely because the features in both sets were designed for indoor environments.

Figure 13: Vibration event and corresponding Continuous Wavelet Transform (CWT) images using
different wavelet functions. Data is of P29 participant walking on a cement floor. The CWT with the
“morlet” wavelet (morl) function yields the clearest representation of the event.

6.5.2 DEEP LEARNING APPROACH

We converted the vibration signal into a time-frequency representation using the Continuous Wavelet
Transform (CWT) 0-256 scales. This allows us to analyze the signal’s frequency content over time. As
shown in the figure 13, we experimented with different wavelet functions to find the best visualization.
The “ Morlet” wavelet gives the clearest representation of the vibration signal compared to other
options.

To evaluate the impact of multi-channel inputs on M models (Table 11), we performed additional
experiments using configurations with 2, 7, and 10 events as input, each with an additional Conv2d
layer with input channel sizes of 6, 21, and 30, respectively. All input images are in RGB (3-channel)
format. While ResNet-18 achieves superior performance in most configurations, this analysis revealed
a key trend: M models performs better when large samples are available. Acquiring large datasets and
training on it often presents challenges in real-world applications. Therefore, transfer learning can be
a promising alternative. To facilitate this approach, we have shared our pre-trained models weights in
our GitHub repository. We have used approximately 800 hours of compute power for entire analysis.
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Table 11: Classification Accuracy (%) of datasets using deep learning methods. Accuracy is in “mean
(std.)” format.

Classifier Dataset/Events 2 7 10

Resnet-18(M) A1 84.31 (1.54) 87.35 (3.01) 93.65 (1.90)
A2.1 82.23 (2.40) 89.23 (2.18) 91.71 (2.60)
A2.2 84.11 (1.31) 85.74 (2.78) 89.36 (2.00)
A2.3 84.39 (1.74) 90.70 (2.09) 91.03 (3.10)
A3.1 85.57 (1.06) 93.70 (2.44) 94.90 (1.08)
A3.2 83.92 (1.51) 90.77 (2.60) 92.41 (2.31)
A3.3 83.02 (2.54) 83.10 (2.83) 88.34 (2.04)
A4.1 86.55 (1.24) 86.92 (3.57) 80.56 (2.63)

Resnet-50(M) A1 82.35 (2.24) 88.51 (2.61) 94.70 (2.00)
A2.1 81.15 (1.41) 86.67 (2.12) 87.71 (2.50)
A2.2 81.52 (0.22) 84.28 (2.80) 86.17 (2.00)
A2.3 83.65 (1.34) 90.23 (1.71) 88.37 (2.14)
A3.1 81.20 (0.60) 92.08 (0.81) 91.07 (1.92)
A3.2 82.93 (1.52) 89.81 (2.10) 89.72 (2.44)
A3.3 81.26 (0.12) 86.07 (1.50) 85.95 (1.27)
A4.1 81.22 (2.02) 77.57 (2.71) 83.33 (3.09)

6.5.3 GAIT ENERGY IMAGE DETAILS

To ensure participant privacy, we have opted to share a curated subset of the video data. This dataset
comprises approximately 5,000 normalized human silhouette figures for each 15 participants. Our
system extracts individual frames from the video recordings. These frames are then fed into a Mask
R-CNN model, to obtain normalised human silhouettes. Sequences of these silhouettes are then
directly used to create Gait Energy Images (GEIs). Subsequently, these GEIs are used to train deep
learning models for person identification.

6.5.4 ANALYSIS ON VARIATION OF SPEED

We conducted an additional sub-experiment with 15 participants (11 males and 4 females) to incorpo-
rate different walking speeds: slow (80-90 SPM), normal (90-120 SPM), and fast (120-140 SPM).
This experiment yielded 7.5 hours of data, comprising 39,035 total samples. The Baseline results
demonstrate that even with variations in walking speed, we achieved good classification accuracy
(Table 10 and 11). Participants walked to metronome beats for the slow and fast speeds, while
walking at their natural pace for the normal category. Data was collected on a wooden floor, with
each participant walking for 10 minutes at each speed, split into two sessions of 5 minutes. The
participants’ average age is 28 ± 11.80 years, height is 1.67 ± 0.056 m, and weight is 60.22 ± 8.63
kg. Individual details are available on GitHub. We used the same hyperparameters as outlined in
Section 4.1 of the main paper. The VIBeID A5 dataset consists of data from 15 participants, walking
at different speeds (slow, normal and fast).

• VIBeID A5.1 : Data of participants walking at fast speed (120-140 steps per min).

• VIBeID A5.2 : Data of participants walking at their normal pace (90-120 steps per min).

• VIBeID A5.3 : Data of participants walking at slow speed (80-90 steps per min).

For each comparison, the two-sample t-test was applied to the flattened embeddings to compute the
following metrics:

• T-Statistic: Measures the difference in means relative to the variation within the embeddings.

• P-Value: Indicates whether the observed differences are statistically significant. A p-value
< 0.05 suggests significant differences.

The results are summarized in Table 12.
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Table 12: Pairwise t-Test Results for VIBeID Classes

Comparison T-Statistic P-Value
A5.2 → A5.1 0.9212 0.356
A5.2 → A5.3 -0.069 0.944

We have trained a ResNet-18 model with normal (A5.2) speed and tested it with the fast(A5.1) and
slow(A5.3). The Table 12, shows results indicate that there is no statistically significant difference
between the embeddings of the compared classes (p-values (p>0.05)).

Table 13: Classification Accuracy(%) of datasets on machine learning methods. Accuracy is in “mean
(std.)” format.

Feature Extraction Method Classifier Dataset/Events 1 2 5 7 10
(Anchal et al., 2020) Random Forest A5.1 89.95 (2.72) 93.59 (1.67) 96.68 (2.51) 97.75 (1.11) 97.49(2.05)

A5.2 87.18 (1.54) 92.74 (0.98) 96.35 (0.96) 97.38 (1.13) 99.01 (0.33)
A5.3 86.22 (1.72) 91.38 (1.87) 94.45 (2.19) 96.33 (1.88) 97.55 (1.63)

SVM A5.1 49.87 (3.83) 51.73 (2.17) 55.85 (3.71) 60.55 (3.94) 67.21 (3.47)
A5.2 38.70 (2.01) 47.95 (1.33) 56.46 (1.95) 62.22 (1.54) 67.73 (1.65)
A5.3 35.79 (1.52) 39.38 (2.04) 41.91 (1.88) 45.48 (1.97) 49.68 (2.05)

(Pan et al., 2017) Random Forest A5.1 89.16 (1.28) 93.08 (1.61) 96.32 (1.52) 97.25 (1.17) 97.49 (2.20)
A5.2 86.34 (1.58) 91.54 (1.12) 95.20 (1.68) 95.76 (1.52) 98.12 (0.86)
A5.3 84.86 (1.54) 90.30 (1.85) 94.50 (1.95) 96.77 (1.58) 97.46 (1.63)

SVM A5.1 24.27 (1.78) 35.41 (2.51) 37.36 (2.61) 39.29 (2.53) 39.37 (1.38)
A5.2 20.90 (1.19) 25.21 (1.00) 21.54 (1.93) 18.85 (0.72) 19.69 (1.89)
A5.3 20.61 (2.23) 16.09 (4.74) 16.76 (2.75) 13.36 (3.62) 11.76 (4.27)

Table 14: Classification Accuracy(%) of datasets on deep learning models. Accuracy is in “mean
(std.)” format.

Methods A5.1 A5.2 A5.3
ResNet-18(S) 91.69 (0.61) 93.49 (0.75) 90.62 (1.11)
ResNet-50(S) 90.39 (0.18) 91.43 (1.57) 85.32 (0.15)
ResNet-18(M) 90.06 (1.25) 89.96 (1.14) 81.68 (0.34)
ResNet-50(M) 86.55 (1.6) 85.30 (1.47) 75.16 (0.68)

6.5.5 QUALITATIVE COMPARISON WITH VISION MODALITY

To evaluate the performance of our geophone-based sensing system relative to vision-based modalities,
we designed a series of experiments targeting scenarios where vision systems typically face challenges.
The focus is on conditions that compromise the reliability of visual sensing but where geophones
exhibit robust and consistent performance. Data was collected under the following scenarios:

• Normal Conditions: Environments with stable and adequate lighting, serving as the base-
line.

• Low-Light Conditions: Scenarios characterized by insufficient illumination.
• Half Obstructions: Situations involving physical obstructions that partially occlude the

visual field, under normal lighting.
• Full Obstructions: Scenarios where physical obstructions completely block the visual field,

under normal lighting.

As shown in figure 14, we have used green screen to create obstructions to the line-of-sight of the
camera. We performed simultaneous data acquisition for both the geophone and camera systems
in these scenarios. Subsequently, feature embeddings were extracted from the collected data and
subjected to statistical analysis to compare the performance of each modality under normal and
challenging conditions. The analysis utilized an event ratio metric, defined as:

Event Ratio =
Events Extracted under specific Condition

Events Extracted under “Normal” condition
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Figure 14: Visual depiction of data collection setup: (a) the camera’s field of view is partially
obstructed by obstacle, and (b) the camera’s field of view is entirely blocked by obstacle.

In this context, an “event” refers to the extraction of meaningful features or representations from the
collected data, such as GEI (Gait Energy Image) or spectrograms derived from human silhouettes
(in the case of cameras) or geophone signal patterns. These extracted features depend heavily on
pre-processing, which varies based on the availability and quality of input data. For embeddings, a
pretrained ResNet-18 (IMAGENET1K_V1) (S) was employed by replacing the final fully connected
layer with a custom embedding layer of size 512.

For vision-based modalities, the event ratio can be influenced significantly by the quality of the
human silhouette extracted from the images. For example:

• Under low-light or partial obstruction conditions, fewer reliable silhouettes may be extracted,
leading to a lower event ratio.

• Under full obstruction conditions, where the visual field is completely blocked, no events
can be extracted, resulting in an event ratio of zero.

In contrast, geophones are unaffected by visual obstructions or lighting conditions, and their event
ratio remains consistent across scenarios. This stability highlights the geophone’s robustness in
environments where vision-based systems struggle, reinforcing its value as an alternative or comple-
mentary modality.

Table 15: Performance comparison of three sensing modalities (Camera 1, Camera 2, and Geophone)
across different environmental conditions. Metrics include T-statistics, p-values, and the ratio of
events extracted.

Comparison Camera 1 Camera 2 Geophone
Modality T-Stat. P-Value Event Ratio T-Stat. P-Value Event Ratio T-Stat. P-Value Event Ratio
Normal to Normal 0.0 1.0 1.00 0.0 1.0 1.00 0.0 1.0 1.00
Normal to Low Light -4.60 0.004 0.50 -2.09 0.036 0.51 0.53 0.59 1.01
Normal to Half Obstruction -2.52 0.016 0.42 -1.31 0.187 0.68 0.53 0.59 1.02
Normal to Full Obstruction - - - - - - 0.461 0.644 1.00

Table 15 provides a comparison of three sensing modalities: Camera 1 (4.2a), Camera 2 (4.2b), and the
Geophone (4.1), under varying environmental conditions. Performance is analyzed using T-statistics,
p-values, and event extraction ratios. The p-values indicate the statistical significance of differences
between data collected under normal and challenging conditions, with values below 0.05 signifying
statistically significant performance degradation. Under normal conditions, all modalities achieve
consistent performance with an event extraction ratio of 1.00. However, in low-light conditions,
Camera 1 exhibits the most significant degradation, with its event ratio decreasing by 50% compared
to the baseline, while Camera 2 shows a similar reduction of 49%. Both reductions are statistically
significant (p-values below 0.05). The geophone, in contrast, maintains robust performance, with its
event ratio increasing by 1%, highlighting its resilience to lighting changes.

In scenarios involving partial or full obstruction, the limitations of vision-based systems become
evident. Partial obstruction reduces the event ratios of 4.2a and 4.2b by 58% and 32%, respectively.
Meanwhile, the Geophone remains unaffected, demonstrating a slight improvement in its event ratio
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(2%). Under full obstruction, visual modalities fail entirely due to the absence of visible human
silhouettes, resulting in undefined event ratios. Conversely, the geophone maintains its baseline
performance across all tested conditions, underscoring its robustness and reliability in scenarios
where visual systems are compromised.

The analysis of p-values further emphasizes the susceptibility of vision-based systems to environmen-
tal factors. 4.2a demonstrates statistically significant degradation under low-light (p = 0.004) and
partial obstruction (p = 0.016), while 4.2b shows moderate sensitivity with a p-value of p = 0.036
in low-light and no significant differences (p = 0.187) under partial obstruction. The geophone
consistently achieves high p-values (p > 0.05), such as p = 0.59 in low-light and partial obstruction,
and p = 0.644 under full obstruction, indicating stable performance. These results highlight the
geophone’s potential as a complementary or alternative sensing modality, particularly in challenging
environments where vision-based systems fail.

6.6 POWER CONSUMPTION AND ENVIRONMENTAL IMPACT

We computed the power consumption of both devices based on their power ratings and usage scenarios,
assuming 24/7 operation for one year. The geophone is a passive sensor, meaning it does not require
an external power source for operation. The geophone operates within a voltage range of 4.5V to
5.5V, which is compatible with the 5V output provided by the USB port of the Raspberry Pi 3 B+.
When powered at 5V, the geophone’s current consumption, measured using the Nordic Power Profiler
v2 kit, ranges from 5 mA to 10 mA. Therefore, its maximum power consumption by geophone is
calculated as:

5V × 10mA = 50mW or 0.05W

The results are summarized in the table below:

Table 16: Comparison of Power Consumption and Environmental Impact

Modality Load Power (W) Daily Energy (kWh/day) Annual Energy (kWh/year) Equivalent Annual CO2e (kg/year, Global)
Vision-based Basic (PoE) 6.3 0.1512 55.188 26.71

Maximum (PoE) 18.9 0.4536 165.204 78.47
Geophone-based Basic 1.95 0.0468 17.082 8.11

Maximum 5.15 0.1236 45.114 21.43

EQUATIONS AND METHODOLOGY

Power to Energy Conversion: Convert Power (W) to Kilowatts (kW):

kW =
W

1000

Daily Energy Consumption: Daily kWh = kW × hours per day Assuming continuous operation:
Daily kWh = kW × 24 Annual Energy Consumption: Annual kWh = Daily kWh × 365 Carbon
Emissions: Annual CO2e Emissions (kg/year) = Annual kWh × Carbon Intensity (kg CO2e/kWh)
Global average carbon intensity: 0.475 kg CO2e/kWh (International Energy Agency, 2022).

The operational details of the devices in question highlight their energy consumption profiles and
environmental impact. CCTV cameras and Raspberry Pis are designed to operate continuously, 24/7,
at specified power levels. For the CCTV camera, the power consumption ranges between a basic load
of 6.3W and a maximum load of 18.9W. Similarly, the Raspberry Pi 3B+ operates at a basic load
of 1.95W and can go up to a maximum load of 5.15W. To assess the environmental impact of these
operations, a global average carbon intensity of 0.475 kg CO2e/kWh is used. It’s assumed that the
power consumption remains stable during operation, providing a consistent basis for calculating the
energy usage and its associated environmental footprint.

As shown in the Table 16, the geophone-based system, with its associated Raspberry Pi, has signifi-
cantly lower power consumption and carbon emissions compared to the CCTV-based system. This
highlights the eco-friendliness of the geophone modality, especially in scenarios requiring continuous
operation in an indoor setting. Additionally, a single Raspberry Pi can be modified to record multiple
geophone sensors, with very little carbon emission of around 0.208 kg/year per geophone.
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6.7 LIMITATIONS AND DISCUSSIONS

Structural Vibration-based person identification is an emerging behavioral bio-metric technology.
However, we observed it has many limitations, this are as follows:

• Footwear Dependency: Our current research focuses on soft-soled flat footwears. Vari-
ations in footwear design can alter the induced vibrations. To address this limitation, in
the future we will build a comprehensive different footwear dataset. This would enable the
model to learn features that are invariant to footwear type, enhancing identification accuracy
across diverse footwear choices.

• Surface Heterogeneity: Our experiments involved data collection on different floor types
and at varying distances from the sensor, which has never been addressed in such details
before. We observed a corresponding change in identification accuracy. This highlights
the need for further research on domain adaptation techniques within the deep learning
community. By leveraging these techniques, the model’s ability to generalize across diverse
floor surfaces could be significantly improved.

• Simultaneous person identification: While our current work focuses on single-person
identification, we see substantial potential in extending it to recognize multiple individuals.
This would require the development of advanced signal processing and deep learning
algorithms inspired by techniques employed in speech recognition and anomaly detection.

Our dataset can serve as a valuable starting point for research in large-scale structural-vibration
based person identification. It holds potential for future development, enabling researchers to address
current limitations in this field.

6.8 POTENTIAL IMPACT TO SOCIETY

Structural-vibration based person identification presents a promising technology for applications in
healthcare settings, particularly assisted living communities and nursing homes. These environments
prioritize privacy-preserving and non-intrusive monitoring systems. This technology offers a unique
advantage by utilizing one-dimensional vibration signals, capturing essential information without
requiring intrusive visual data. Our research is ultimately driven by the desire to improve human
well-being. By open-sourcing our dataset, we aim to foster greater research interest and accelerate
advancements in this field. This approach will contribute to the development of even more robust and
effective monitoring systems, ideal for privacy-sensitive applications.

6.9 URL TO DATASET

Our project page is hosted at : https://vibeidiclr.github.io/. Open-Science Forum:
https://osf.io/4fvnj/. We have also provided the Human Silhouettes used for experimen-
tation. Each dataset is labelled and annotated. No instance is missing. Complete metadata records for
raw data are found in the github page.
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