
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SANS: Efficient Densest Subgraph Discovery over Relational
Graphs without Materialization

Anonymous Author(s)

ABSTRACT
How canwe efficiently identify the densest subgraph over relational

graphs? Existing dense subgraph discovery (DSD) approaches as-

sume that a relational graph 𝐻 is already derived from a hetero-

geneous data source and they focus on efficient discovery of the

densest subgraph on the materialized 𝐻 . Unfortunately, materi-

alizing relational graphs can be resource-intensive, which thus

limits the practical usefulness of existing algorithms over large

datasets. To mitigate this, we propose a novel Summary-bAsed

deNsest Subgraph discovery (SANS) system. Our unique summary-
based peeling algorithm forms the core of SANS. Following the peel-

ing paradigm, it utilizes summaries of each node’s neighborhood to

efficiently estimate peeling coefficients and subgraph densities at

each peeling iteration and thus avoids materializing the relational

graph completely. Through extensive experiments, we demonstrate

the efficacy and efficiency of SANS, reaching orders of magnitude

speedups compared to the conventional baselines with materializa-

tion, while consistently achieving at least 95% accuracy compared

to peeling algorithms based on materialization.

1 INTRODUCTION
Discovering dense subgraphs in a given network has broad appli-

cations in different domains such as system optimization by social

piggybacking [12], discovery of protein complexes [26, 32], infor-

mation dissemination analysis to discover filter bubbles and echo

chambers [18, 19, 21], and forms a building block of many graph

problems including reachability queries [8]. Most prior studies on

densest subgraph discovery assume that a materialized data graph

is available and accessible with low latency. However, in many

applications, the underlying network on which to discover densest

subgraphs is not explicitly available and tends to be present implic-

itly in the form of complex relationships between entities induced

by meta-paths [9, 22, 28, 35]. Materializing relational graphs, either

offline or online, can be prohibitively expensive.

Company A (anonymized for double-blinded review), one of

the leading technology enterprises, provides various online ser-

vices such as digital payment transactions and food delivery and

collects and stores relational data in heterogeneous format. To sup-

port business needs, they often perform analyses on relational

graphs derived from the heterogeneous data using meta-paths.

For example, market segmentation relies on community detection

over a relational graph induced by the “(customer)→ (merchant)”,
while fraud detection over relational graphs induced by meta-path

“(customer)→(merchant)→ (delivery-person)” is used to detect po-

tential collusion between delivery persons and deal-hunters. Ma-

terializing these relational graphs online can be both time and

memory-prohibitive. Specifically, our experiments reveal that re-

lational graph construction accounts for up to 99.58% of the total

time needed for discovering dense subgraphs over relational graphs.

Additionally, businesses such as market segmentation often require

on-demand analysis over different time spans to track the changes

in customer preferences, making pre-materialization across all time

spans impractical.

To this end, in this work, we address the challenge of densest
subgraph discovery (DSD) within relational graphs shaped by a

specific meta-pathM, while avoiding the need to materialize them.

Our Contributions. To address these challenges, we propose a

novel system, Summary-bAsed deNsest Subgraph discovery (SANS)

for DSD. Our system distinguishes itself from prior studies by

introducing the following technical contributions.

Summary-based Peeling (Sec. 3).The core component of SANS is the

summary-based peeling algorithm. Specifically, instead of obtain-

ing the complete set of neighborhoods of each node, SANS directly
estimates densities utilizing neighborhood summaries of each node

in the relational graph, which can be constructed efficiently from

heterogeneous data sources through meta-path supervised sum-

mary propagation. This strategic approach sidesteps the extensive

resource demands typically associated with the materialization of

relational graphs. Combining with lazy maintenance of the neigh-

borhood summaries that becomes outdated due to removal of nodes

during peeling iterations, SANS showcases orders of magnitude of

superiority in terms of time and space efficiency over contemporary

methods for detecting the densest subgraph based on materialized

relational graphs.

Theoretical Results (Sec. 4). We prove that SANS provides a (2 + 𝜖)-
approximation to the corresponding DSD problem based on edge-

density metric. For triangle density, we devise a novel unbiased

estimator for the peeling coefficient, i.e., the number of triangles

containing each node and the triangle density for subgraphs gener-

ated during peeling iterations. Furthermore, our summary-based

peeling algorithm can support any density metric that can be com-

puted by the cardinality of node neighborhoods or cardinality of set

operations (union, intersection or difference supported by neigh-

borhood summaries [4]) of node neighborhoods.

Empirical Results (Sec. 5). Experiments on real-world datasets demon-

strate that the SANS system scales well to large relational graphs

where baselines fail to terminate in a reasonable time and achieves

orders of magnitude speedup in most cases over baselines, while

yielding subgraphs with at least 95% density and comparable size

to the subgraph returned by peeling algorithms based on material-

ization. We also deploy SANS for fraudulent account detection over

the heterogeneous data from company A. The results demonstrate

that SANS can identify frauds with precision over 97%.

2 PRELIMINARIES
2.1 Notations and Problem Formulation
For concreteness of exposition, we model a heterogeneous data

source as a knowledge graph (KG). Specifically, a KG is denoted

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

as G = (V, E,L), whereV and E represent the sets of nodes and

edges. An edge 𝑒 ∈ E connects two nodes 𝑢, 𝑣 ∈ V . The function L
maps each node or edge, 𝑣 or 𝑒 , to its type, L(𝑣) or L(𝑒). For
simplicity of exposition, we assume that L(𝑒) is solely determined

by the node types of it end nodes. Nevertheless, our methods can

directly handle multiple edge types between a pair of node types.

Note that our formulation and methods are orthogonal to the format
of the heterogeneous data and can be extended to support other data
sources such as relational databases.

Meta-paths, originally introduced in [28], are commonly used to

extract relational graphs from KGs [9, 17, 25, 35, 37].

Definition 1 (Meta-path). An 𝐿-hop meta-path is a sequence
of node types denoted as M = (𝑥0, 𝑥1, . . . , 𝑥𝐿−1, 𝑥𝐿), where 𝑥𝑖 is
the type of the 𝑖-th node. The inverse ofM is denoted asM−1 =

(𝑥𝐿, 𝑥𝐿−1, . . . , 𝑥1, 𝑥0).

Although our methods support any meta-pathM, following the

established convention [9, 15, 35], we consider symmetric meta-

paths which induces homogeneous relational graphs. A meta-path

M is symmetric ifM =M−1.

Definition 2 (Matching Instance). Amatching instance𝑀 of a
meta-pathM, denoted𝑀⊲M, is a sequence of nodes (𝑣0, 𝑣1, . . . , 𝑣𝐿−1, 𝑣𝐿)
in G satisfying:

• ∀𝑖 ∈ {0, . . . , 𝐿}, L(𝑣𝑖) = 𝑥𝑖 .
• ∀𝑖 ∈ {0, . . . , 𝐿 − 1}, (𝑣𝑖 , 𝑣𝑖+1) ∈ E.

We use𝑀 (𝑥𝑖) to denote node 𝑣𝑖 in instance𝑀 , of the node type 𝑥𝑖 .

Definition 3 (Relational Graph). For a given KG G, a sym-
metric meta-pathM induces a relational graph 𝐻M = (𝑉M , 𝐸M)
from G where:
• 𝑉M contains all nodes inV that match 𝑥0 in any instance ofM;
• 𝐸M contains all edges 𝑒 = (𝑢, 𝑣) for any two nodes 𝑢, 𝑣 ∈ 𝑉M such

that there are𝑀 ⊲M in G with𝑀 (𝑥0) = 𝑢 and𝑀 (𝑥𝐿) = 𝑣 .

�0 �2�1 �3 �4

�0 �1 �2

�0 �2�1 �3

(a) Exemplary KG G

�

�

�

�

�

(b) M

�0 �1 �4

�2 �3

(c) Relational graph 𝐻M

Figure 1: A relational graph 𝐻M derived from a KG G using
a symmetric meta-pathM.

Example 1. Fig. 1 presents an example e-commerce KG with three
node types U (“user”), A (“account”), D (“device”). Sequence (U, A, D,
A, U) denotes a symmetric meta-pathM, which induces the relational
graph𝐻M in Fig. 1(c). For instance, two nodes𝑢0 and𝑢2 are neighbors
in 𝐻M because there exist an instance𝑀 = (𝑢0, 𝑎0, 𝑑0, 𝑎1, 𝑢2) ofM.
More intuitively, two users 𝑢0 and 𝑢2 are connected since they ever
login through the same device 𝑑0.

Wedenote the set of neighbors of𝑢 in𝐻M asN(𝑢) and the degree
of 𝑢 in 𝐻M as 𝑁 (𝑢) = |N (𝑢) |. Furthermore, Λ = max𝑢∈𝐻 𝑁 (𝑢)
denotes the maximum node degree in 𝐻M . When the context is

clear, we drop the subscriptM and denote a relational graph as𝐻 =

(𝑉 , 𝐸) for simplicity.

Induced Subgraph. Let𝐻 = (𝑉 , 𝐸) be a relational graph and 𝑆 ⊆ 𝑉 .

The induced subgraph of𝐻 w.r.t. 𝑆 is the subgraph𝐻 [𝑆] = (𝑆, 𝐸 [𝑆]),

where 𝐸 [𝑆] = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆}. In the rest of the paper,

we abuse the notation 𝑆 to also denote the subgraph it induces.

Density Metrics 𝜌 (·). We define a density metric 𝜌 for a subset 𝑆

of vertices as 𝜌 (𝑆) = 𝑤 (𝑆)
|𝑆 | , where𝑤 (𝑆) represents the weight of the

induced subgraph 𝐻 [𝑆]. Our proposed system supports a variety of

density metrics, including those where𝑤 (𝑆) represents the number

of edges (edge-density) [13], number of triangles (Δ-density) [29],
or more generic functions w.r.t. node degrees [31] within 𝐻 [𝑆].

For example, we give the definitions of edge- and Δ-density.

Definition 4 (Edge-density). Given an induced subgraph𝐻 [𝑆] =
(𝑆, 𝐸 [𝑆]), its edge-density is defined as 𝜌𝑒 (𝑆) = |𝐸 [𝑆] ||𝑆 | .

Definition 5 (Δ-density). For an induced subgraph 𝐻 [𝑆] =

(𝑆, 𝐸 [𝑆]), its triangle-density, also denoted as Δ-density, is 𝜌Δ (𝑆) =
Δ(𝑆)
|𝑆 | , where Δ(𝑆) is the number of triangles in 𝐻 [𝑆].

The problem of densest subgraph discovery (DSD) over relational

graphs is formally defined as follows.

Problem 1 (DSD). Given a relational graph 𝐻 (not necessarily
materialized) and a density metric 𝜌 (·), find a set of vertices 𝑆∗ ⊆ 𝑉
such that 𝜌 (𝑆∗) is maximized i.e., 𝑆∗ = arg max

𝑆⊆𝑉
𝜌 (𝑆) .

For example, in Fig. 1(c), the subgraph induced by the node set

𝑆∗ = {𝑢0, 𝑢1, 𝑢2, 𝑢3, 𝑢4} forms the densest subgraph with density

1.6 over the relational graph 𝐻 in terms of the edge-density metric.

In this work, we focus on discovering the set of nodes 𝑆∗ forming

the densest subgraph instead of returning the induced subgraph

𝐻 [𝑆∗]. Note that after finding the set of nodes 𝑆∗, based on appli-

cation requirements, 𝐻 [𝑆∗] can be materialized quite efficiently by

disregarding nodes outside of 𝑆∗. Exact algorithms for DSD require

time-consuming max-flow computations. In this work, we follow

the efficient peeling paradigm, which returns an approximated

densest subgraph with theoretical guarantees.

Peeling Coefficient 𝜑𝑆 (𝑢). The peeling coefficient function, de-

noted by 𝜑𝑆 (𝑢), quantifies a node’s marginal contribution to the

density of the induced subgraph 𝐻 [𝑆]. Its calculation is dependent

on the chosen density metric. We define 𝜑𝑆 (𝑢) as follows:

𝜑𝑆 (𝑢) = 𝑤 (𝑆) −𝑤 (𝑆 \ {𝑢}) (1)

When the context is clear, we drop 𝑆 and denote the peeling coeffi-

cient as 𝜑 (𝑢) for simplicity.

Peeling Paradigm. The peeling paradigm is a general iterative ap-

proach for DSD. Given a relational graph𝐻 , it begins by computing

the initial peeling coefficient of each node in 𝐻 and then obtains a

sequence of subgraphs by peeling nodes iteratively. In each itera-

tion, it peels the node with minimum peeling coefficient, updates the
peeling coefficient for the set of nodes whose peeling coefficient is

influenced by the peeling, and maintains the subgraph with largest

density. Finally, the subgraph of the largest density is returned. The

peeling coefficient is determined by the density metric to achieve

good approximations of the optimal. Our work adopts the peeling

paradigm because it can efficiently recover approximate densest

subgraphs with constant approximation guarantees while avoiding

expensive max-flow or linear programming computations required

by exact approaches, as discussed in the related work below.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SANS: Efficient Densest Subgraph Discovery over Relational Graphs without Materialization Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 Related Work
Relational GraphMaterialization. A straightforward solution of

our problem is to first materialize the relational graph and then ex-

ecute DSD algorithms over it. Instead of enumerating all instances

of meta-paths, there has been a line of works on improving the effi-

ciency for relational graphmaterialization. For example, Chatzopou-

los et al. [7] proposed a method to enumerate instances of different

meta-paths through workload sharing. Guo et al. [14] proposed the

algorithm to materialize relational graphs by boolean matrix multi-

plication, specially optimized for graphs with locally dense regions.

The generic worst-case optimal join [1, 11, 24, 30] algorithm can

also be used for relational graph materialization through efficient

traversal of meta-path instances avoiding duplicate visit of nodes

in multiple meta-path instances. Our experiments (Sec. 5.2) reveal

that the materialization costs remain time-consuming and are the

bottleneck for DSD in relational graphs.

Densest Subgraph Discovery. There is a rich literature on the

problem of DSD. Exact DSD algorithms involve solving a max-

flow [10, 13] or linear programming [6] problem, which is not

scalable to large graphs. Thus, the peeling paradigm, which is effi-

cient with approximation guarantees, has been widely adopted in

the literature. Charikar [6] proposed the peeling algorithm for edge-

density, which iteratively removes nodes with smallest degree and

returns the subgraphwith largest edge-density generated during the

peeling iterations. Bahmani et al. [2] proposed to remove all nodes

with degree less than 2(1 + 𝜖)𝜌 at each peeling iteration and prove

that this algorithm achieves a solution of 2(1 + 𝜖)-approximation.

Boob et al. [5] proposed the multi-round peeling algorithm, which

obtains the densest subgraph by iteratively removing the node with

the smallest load, where the load of a node in each round is the sum

of its induced degree and its load in previous round. The peeling par-

adigm has also been extended to other density metrics. Tsourakakis

et al. [29] modeled the graph density as the number of 𝑘-cliques

contained in the graph and showed that the peeling algorithm of

repeatedly removing the node contained in the smallest number of

corresponding cliques achieves 𝑘-approximation.

Besides, graph reduction based optimizations [10, 34, 39] have

been explored for efficient densest subgraph discovery, which re-

stricts expensive max-flow or linear programming computations

within a subgraph containing the densest subgraph.

All these works assume that the relational graph is already materi-
alized and thus cannot scale to large heterogeneous data sources owing
to the requirement of materializing the relational graph. Specifically,
graph reduction-based optimizations still require relational graphs to
be fully materialized before reduction.

Community Search over Heterogeneous Information Net-
works (HIN). Recently, several works have focused on the com-

munity search problem over HINs based on meta-paths.

Fang et al. [9] proposed to reveal (𝑘,M)-core from HINs, which

is equivalent to the 𝑘-core in the relational graph induced by meta-

path M. The algorithm dynamically maintains 𝑘 neighbors for

each node in the relational graph through meta-path instances

and removes nodes with less than 𝑘 neighbors iteratively. Yang et

al. [35] introduced the (𝑘,M)-Btruss and (𝑘,M)-Ctruss models

for community search in KGs. The (𝑘,M)-Btruss is equivalent to

the 𝑘-truss in the relational graph induced byM, whereas (𝑘,M)-
Ctruss considers the overlaps between meta-path instances and

does not correspond to existing models of cohesive subgraphs in the

relational graphs. Jiang et al. [15] studied the nested meta-path core

(𝑘,Ψ)-core, which aims at finding a subgraph that is (𝑘,M)-core
for each meta-pathM ∈ Ψ.

The above methods focus on discovering subgraphs conforming

to certain topological community models with strict topological

constraints and can overlook relevant subgraphs with complex

topological structures [36]. Instead, our work focuses on finding

the subgraph optimizing the density metric, which is more flexible

than topology-driven community search methods.

Strouthopoulos and Papadopoulos [27] studied the discovery

of 𝑘-cores in hidden networks, where the existence of any edge

can only be decided via a probe operation. However, this work also

aims to find subgraphs that conform to the 𝑘-core model. Besides,

their method cannot handle large relational graphs since the probe

operations are time-consuming enumerations of meta-paths.

3 THE SANS SYSTEM
SANS is motivated by the observation that only the peeling coeffi-
cient of each node and the densities of the sequence of generated
subgraphs during peeling iterations, which can be computed based

on statistics such as degree or number of triangles within the neigh-

borhood rather than the exact set of neighbors for each node in the

relational graph, are required by the peeling paradigm. Specifically,

SANS avoids relational graph materialization by constructing and

maintaining neighborhood summaries for each node in the rela-

tional graph, which are capable of peeling coefficient and subgraph

density estimation during peeling iterations. Our system further
provides user defined APIs for peeling coefficient and subgraph density
estimation to streamline its deployment for various density metrics
(described in Appendix A.1 due to space limit).

Intuitively, the neighborhood summary is a 𝑘-sized subset of

each node’s neighbors, uniformly sampled from its complete neigh-

borhood in the relational graph.

Summary Construction. The neighborhood of each node in 𝐻

can be obtained by propagating nodes in the matching graph.

Definition 6 (matching graph). Given a KG G and a meta-
pathM = (𝑥0, 𝑥1, . . . , 𝑥𝐿−1, 𝑥𝐿), the matching graph ofM over G
is a multi-level graph G∗ (V∗, E∗) with node setV∗ = ⋃

0≤𝑖≤𝐿V𝑖
and edge set E∗ = ⋃

0≤𝑖<𝐿 E𝑖 , whereV𝑖 is the set of nodes of type 𝑥𝑖
contained in any matching instance ofM and E𝑖 consists of all edges
that connect nodes betweenV𝑖 andV𝑖+1.

Intuitively, each path from a node in V0 to V𝐿 represents an

instance of the query meta-pathM. By propagating all nodes inV0,

along the edges of the matching graph fromV0 toV𝐿 , each node in

V𝐿 receives all its neighbors in 𝐻 .
1
However, explicitly obtaining

all neighbors of each node leads to a prohibitive time complexity of

𝑂 (|𝑉 | · |E∗ |) since each node inV∗ potentially retains all the nodes
it has received and then propagates these nodes to its successors

through the edges in G∗.
To avoid such costs, we generate a random number uniformly

between interval (0, 1) for each node 𝑣 ∈ 𝑉 , denoted 𝑟 (𝑣). To begin

1
Note that both V0 and V𝐿 are equal to the node set𝑉 of relational graph 𝐻 .

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

with, each node inV0 maintains itself and the random number gen-

erated for it. During the propagation, each node inV𝑖−1 propagates
the nodes and random numbers it maintains to its successors and

each node inV𝑖 will only retain nodes corresponding to 𝑘-smallest

random numbers it receives. Finally, each node inV𝐿 will receive 𝑘

neighbors along with the corresponding random numbers forming

the summary of its neighborhood. Since the random numbers are

generated uniformly for each node in the relational graph and each

neighborhood summary contains the 𝑘 neighbors corresponding to

the smallest 𝑘 random numbers, the 𝑘 neighbors in the neighbor-

hood summary of a given node forms a uniformly sampled subset

of its neighborhood. Combined with the random number gener-

ated with each node, our neighborhood summary is a cardinality

sketch [3, 4], which can be used to estimate a variety of peeling

coefficients for DSD. As such, we circumvent the prohibitive costs

of materializing the relational graph.

To achieve good approximation for peeling coefficients and sub-

graph densities, we perform multiple (𝜃) independent propagations

and construct 𝜃 different neighborhood summaries for each node.

Coefficients estimation. In general, our summary-based peeling

algorithm can support any density metric that can be computed by

the cardinality of node neighborhoods or cardinality of set opera-

tions (union, intersection or difference supported by neighborhood

summaries [4]) of node neighborhoods. We describe edge-density

(cardinality of node neighborhoods) and Δ-density (intersection

of node neighborhoods) in detail as two representative metrics.

We also discuss the estimator for 𝑝-mean density [31] and density

metrics with general size functions [16] in Appendix A.2. Expecta-

tions in estimators are implemented by taking average over the 𝜃

independent summaries for each node.

Edge-density. The peeling coefficient of node 𝑣 , i.e. its degree

𝑁 (𝑣), and the density of subgraph 𝑆 generated during peeling itera-

tions are estimated by estimators �̃� (𝑣) and 𝜌𝑒 (𝑆) respectively [3, 4]

�̃� (𝑣) = 𝑘

E[𝜅 (𝑣)] − 1 𝜌𝑒 (𝑆) =
∑

𝑣∈𝑆 �̃� (𝑣)
2

(2)

where 𝜅 (𝑣) denotes the 𝑘-th smallest random number 𝑣 receives.

Δ-density. To estimate the peeling coefficients Δ(𝑣), we note that

Δ(𝑣) =
∑

𝑢∈N(𝑣) Δ(𝑢,𝑣)
2

, where Δ(𝑢, 𝑣) denote the number of trian-

gles containing edge (𝑢, 𝑣) and can be estimated through neighbor-

hood summaries of 𝑢 and 𝑣 as

Δ̃(𝑢, 𝑣) = �̃� (𝑣) + �̃� (𝑢) − (𝑘

E[𝜅 (𝑢, 𝑣)] − 1)

where 𝜅 (𝑢, 𝑣) denote the 𝑘-th smallest distinct random number

among the union of random numbers received 𝑢 or 𝑣 .

Thus, we estimate Δ(𝑣) as the multiplication of degree 𝑁 (𝑣) and
the average number of triangles containing an uniformly sampled

adjacent edge of 𝑣 . To ensure the unbiasedness of the estimator, we

divide 𝜃 summaries of each node into 3 partitions, and use each

partition to estimate 𝑁 (𝑣), Δ(𝑢, 𝑣) and to sample adjacent edge of

𝑣 respectively.

Δ̃(𝑣) = �̃� (𝑣) ·
∑
𝑢∈K𝑣 Δ̃(𝑢, 𝑣)
2 · |K𝑣 |

𝜌Δ (𝑆) =
∑

𝑣∈𝑆 Δ̃(𝑣)
3

(3)

whereK𝑣 denote the set of uniformly sampled neighbors contained

in the partition of summaries for adjacent edge sampling.

Example 2. Fig. 2(a) presents a running example of neighborhood
summary construction through propagation over the matching graph.

For clarity, we only present the propagation process of summary con-
struction for node 𝑢0. To begin with, we generate a random number
for each node inV0, and then propagate nodes inV0 along with corre-
sponding random numbers to 𝑢0 inV4. During the propagation, each
node in the matching graph will only keep the 2 nodes corresponding to
the smallest random numbers it receives. Specifically, 𝑑0 receives four
nodes {𝑢2, 𝑢1, 𝑢3, 𝑢0} from 𝑎0 and 𝑎1, but it will only keep two nodes
with 2-smallest random numbers. When propagation has finished,
𝑢0 in V4 receives its neighborhood summaries {(𝑢2, 0.2), (𝑢1, 0.4)}.
Neighborhood summaries of other nodes are constructed similarly and
depicted in Fig. 2(b), where they are utilized for coefficients estimation.

Suppose the edge-densitymetric is considered, the peeling coefficient
of 𝑢4 is estimated as �̃� (𝑢4) = 𝑘

𝜅 (𝑢4) − 1 = 2.33, which has smallest
estimated degree. Thus, node 𝑢4 is going to be removed in the first
peeling iteration. The density of the current remaining subgraph is
estimated as 𝜌𝑒 (𝑆0) =

∑
4

𝑖=0 �̃� (𝑢𝑖) = 1.83.

0.40.2
�1�2

0.40.2
�1�2

0.40.2
�1�2

0.90.6
�0�3

0.9
�0

0.90.4
�0�1

0.60.2
�3�2

0.40.2
�1�2

0.40.2
�1�2

0.4
�1

0.2
�2

0.6
�3

0.7
�4�0 �2�1 �3 �4

�0 �2�1 �3

�0 �2�1 �3 �4

�0 �1 �2

�0 �2�1 �3

�0 �1 �4

�2 �3

0.40.2
�1�2

0.60.4
�3�1

�(�4) =
2
0.6
− 1 = 2.33 ≈ �(�4) = 2

��(�0) =
�=0

4

�(��) = 1.83 ≈ ��(�0) = 1.6

0.40.2
�1�2

(a) neighborhood summary construction (b) coefficients estimation

Figure 2: Neighborhood summary construction (subfigure
(a)) and coefficient estimation (subfigure (b)) based on edge-
density metric and 𝑘 = 2. Subfigure (a) illustrates the detailed
propagation for neighborhood-summary construction of 𝑢0,
where elements with red strikethrough are discarded due to
𝑘-size limitation. Note that the relational graph in (b) is only
for demonstration and not materialized in our algorithm.
Summary-based Peeling with Lazy Maintenance. Summary-

based peeling algorithm employs neighborhood summaries for

DSD over relational graphs efficiently without materialization. To

begin with, the algorithm first constructs neighborhood summaries

through propagation over the matching graph. In each peeling

iteration, the algorithm estimates the peeling coefficients for each

node based on neighborhood summaries and removes the node

with minimum estimated peeling coefficients. After node peeling,

the algorithm estimates the density of the remained subgraph. The

algorithm proceeds until only one node is remained in the relational

graph. Finally, the subgraph generated during peeling iterations

with largest estimated density is returned. The detailed pseudo-code

is deferred to Appendix A.3 due to space limit.

During peeling iterations, nodes are iteratively removed and

the remaining subgraph is changed continuously. Thus, the neigh-

borhood summaries can become outdated. To avoid reconstruct

neighborhood summaries at each peeling iteration, we propose a

lazy summary maintenance approach for efficient maintenance of

neighborhood summaries. At each peeling iteration, when a node

𝑣 is peeled, we remove 𝑣 and the corresponding random number

𝑟 (𝑣) from neighborhood summaries containing 𝑣 . Since each origi-

nal neighborhood summary before maintenance retains neighbors

corresponding to the 𝑘 smallest random numbers, after removing

𝑣 , it still retains the 𝑘 − 1 neighbors corresponding to smallest

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SANS: Efficient Densest Subgraph Discovery over Relational Graphs without Materialization Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

random numbers, which can still be used for peeling coefficient

and subgraph density estimation with slightly reduced accuracy.

We reconstruct neighborhood summaries whenever their size falls

below a given threshold 𝑘− to strike a balance between the number

of reconstructions and estimation accuracy.

4 THEORETICAL ANALYSIS
In this section, we prove that the SANS system based on neighbor-

hood summaries provides good estimators for DSD with different

density metrics. Specifically, for DSD over relational graphs based

on edge density, we prove that SANS can return a subgraph with

constant approximated edge density compared to the optimal dens-

est subgraph. ForDSD based on Δ-density, we prove that SANS pro-
vides an unbiased estimation of peeling coefficients and Δ-densities
of subgraphs in each peeling iteration. The detailed all proofs are

deferred to Appendix A.4 due to space limit.

Edge-density. Charikar [6] shows that by using degree 𝑁 (𝑣) of
each node 𝑣 as the peeling coefficient, the peeling algorithm, run

on a materialized relational graph, can achieve a 2-approximation

guarantee for the densest subgraph based on edge-density. We ex-

tend Charikar’s result and prove that the summary-based algorithm

gives a 2(1+𝜖)-approximation ofDSDwith high probability (w.h.p.).

Theorem 1. Let 𝑆 denote the subgraph returned by SANS, we have
𝜌𝑒 (𝑆) ≥ 𝜌𝑒 (𝑆∗)

2(1+𝜖) w.p. at least (1 − 𝑝), provided 𝜃 = Θ(Λ
𝜖𝑘

log
|𝑉 |
𝑝).

Δ-density. We note that the intersection operation required by

estimating number of triangles breaks the probabilistic bounds of

our estimators. We can nevertheless prove that the estimator Δ̃(𝑣)
and 𝜌Δ (𝑆) based on neighborhood summaries are unbiased estima-

tors for the peeling coefficient Δ(𝑣) and density of any subgraph 𝑆

generated during peeling iterations.

Theorem 2. Given any subset 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑆 , we have Δ(𝑣) =
E[Δ̃(𝑣)] and 𝜌Δ (𝑆) = E[𝜌Δ (𝑆)].

Further, we give the analysis over the complexity of the summary-

based peeling algorithm for different density metrics.

Theorem 3. The time complexity of summary-based peeling is
𝑂 (𝑘 (𝜃 + 𝜃∗) (|E∗ | + |𝑉 |𝑓 (𝑘) + |𝑉 | log |𝑉 |)) and the space complexity
is 𝑂 (𝑘𝜃 |V∗ | + |E∗ |), where 𝑓 (𝑘) denotes the time complexity for
peeling coefficient estimation using neighborhood summaries and 𝜃∗

denotes the total number of neighborhood summaries reconstructed
during the peeling iterations.

The time complexity is significantly influenced by the number 𝜃

of summaries constructed as well as the number 𝜃∗ of summaries

reconstructed due to node removals during the peeling iterations.

The value of 𝜃 is theoretically bounded in the worst case so that

our method achieves approximation guarantees for edge-density

and triangle density. The value of 𝜃∗, which is influenced by both

the specific structure of the relational graph as well as the density

metric, is often small as indicated by our experiments. We leave the

theoretical study of𝜃∗ as a futurework. Function 𝑓 (𝑘) is determined

by the target density metric.

We then analyze in detail the complexity of our SANS system

when deploying it to edge-density and Δ-density respectively.

Edge-density. The time complexity of edge-density optimization

with the SANS system is 𝑂 (𝑘 (𝜃 + 𝜃∗) (|E∗ | + |𝑉 |𝑘 + |𝑉 | log |𝑉 |))

Table 1: Statistics of KGs used in the experiments, where
|L(V)| and |L(E)| denote the numbers of node and edge
types, and |M| is the number of evaluated meta-paths.

Dataset |V | | E | |L (V) | |L (E) | |M |
IMDB 21.4K 86.6K 4 6 679

ACM 10.9K 548K 4 8 20

DBLP 26.1K 239.6K 4 6 48

PubMed 63.1K 236.5K 4 10 172

FreeBase 180K 1.06M 8 36 151

according to Theorem 3 since peeling coefficient estimation re-

quires 𝑓 (𝑘) = 𝑂 (𝑘) time to find the largest random number in

the neighborhood summary. In practice, we find that 𝜃∗ is small

when optimizing the edge-density metric (see Sec. 5.2). The intu-

ition behind this is the following. The neighborhood summary of

a node will only be updated during those peeling iterations when

the removed node happens to correspond to a random number in

the neighborhood summary. For a node 𝑣 with large degree, the

update of its neighborhood summary will only take place with a

small probability 𝑘/𝑁 (𝑣) due to its large neighborhood. On the

other hand, for nodes with small degrees, since nodes are removed

in the ascending order of degrees, these nodes will be removed dur-

ing early peeling iterations and thus also do not require summary

reconstruction w.h.p.

Δ-density.The time complexity of triangle-densityDSDwith SANS

is𝑂 (𝑘 (𝜃 + 𝜃∗) (|E∗ | + |𝑉 |𝑘2 + |𝑉 | log |𝑉 |)) since peeling coefficient

estimation has complexity 𝑓 (𝑘) = 𝑂 (𝑘2). Specifically, computing

the intersection of two summaries has complexity𝑂 (𝑘), and 𝑘 inter-

sections are required since 𝑘 neighbors are sampled in the summary.

We empirically observed (see Table 2 in Sec. 5.2) that 𝜃∗ is small

when optimizing triangle-density. Although nodes are removed

in ascending order w.r.t. the number of triangles containing them

instead of degree, we can still expect a small 𝜃∗ in practice since

the triangle number is positively correlated with degree.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We conduct our experiments on five real-world datasets

consisting of KGs . The statistics of the datasets are reported in

Table 1. IMDB is a KG about actors and directors of movies. ACM
and DBLP are two academic KGs denoting the co-authorships be-

tween researchers through papers and publishing venues. PubMed
is a biomedical KG representing the relationships between genes,

chemicals, and diseases of different species. FreeBase is extracted

from a general-purpose KG developed by Google.

Meta-path Generation. We use AnyBURL [20] to extract a set

of candidate meta-pathsM. We set the confidence threshold to 0.1

for AnyBURL and take the snapshot at ten seconds. Note that our

proposed approaches are orthogonal to the method for meta-path

generation. Column |M| in Table 1 shows the number of meta-paths

found on each dataset.

Compared Methods. To our best knowledge, no prior works have
focused on DSD over unmaterialized relational graphs. We thus

compare peeling algorithms implemented through our SANS sys-

tem with algorithms based on explicitly materialized relational

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

graph. For fairness of comparison, we wanted to give the base-

lines the advantage of the most efficient materialization. We exper-

imented with various approaches for relational graph materializa-

tion including matrix multiplication [14] and Leapfrog TrieJoin [30]

(more details in Appendix A.5). We found Leapfrog TrieJoin to be

the most efficient and used it for materializing the relational graph

for the baselines.
2

• FlowE [13] and FlowT [23] apply the max-flow method to find

the optimal densest subgraph given the materialized relational

graph in terms of edge-density and Δ-density respectively.

• CoreExact [39] is a core-based exact algorithm forDSD in terms

of edge-density.

• KCCA [38] is a counting-based approach for exactDSD in terms

of Δ-density.
• PeelE [6] and PeelT [29] apply the peeling paradigm to find the

approximate densest subgraph given a materialized relational

graph, in terms of edge-density and Δ-density respectively.

• SansE and SansT are peeling algorithms implemented through

SANS in terms of edge-density and Δ-density respectively.

Fang et al. [9] propose to use edge- and vertex-disjoint core mod-

els for community search over meta-path induced relational graphs.

While effective for certain meta-paths, this model is not suitable

for general meta-paths with extra node constraints due to its rigid

topological restriction. For example, in IMDB, it will only return

an edge/vertex-disjoint 2-core for 28.7% and 26.8% meta-paths dis-

covered by AnyBURL respectively. Thus, we do not compare with

these models.

Parameter Setting. In our experiments, we set 𝑘 = 24, 𝑘− = 4 and

𝜃 = 1 for both SansE and SansT by default. We conduct parameter

sensitivity analysis of 𝑘 and 𝜃 for efficiency and effectiveness in

Sec. 5.2 and Sec. 5.3 respectively, and choose the default values

of hyperparameters to ensure that SansE and SansT return a sub-

graph with a density larger than 0.95 of the densities achieved by

methods based on materialized relational graphs on average across

datasets, while minimizing the time consumption. Results in Sec. 5.3

demonstrate that peeling algorithms based on our SANS system

with default parameters can in practice yield results comparable to

materialization-based peeling methods .

Evaluation Metrics. (1) For efficiency, we report the average run-

time of each algorithm to find the densest subgraph per meta-path.

(2) For effectiveness, we quantify by the ratio𝛾 between the density

of the subgraph returned by our methods (SansE and SansT) and

the density achieved by the corresponding materialization-based

peeling methods (PeelE and PeelT).

Environment. All experiments are conducted on a Linux Server

with AMD EPYC 7643 CPU and 256 GB memory running Ubuntu

20.04. All algorithms are implemented in C++with -O3 optimization

and executed in a single thread. We release the source code of SANS

in an anonymous repository
3
.

5.2 Efficiency Evaluation
Time Consumption. In Table 2, we present the execution time per

meta-path for each method. We have the following observations.

First, our methods SansE and SansT based on the SANS sys-

tem are much more efficient than materialization-based methods.

2
Leapfrog TrieJoin is also known to be worst-case optimal.

3
https://anonymous.4open.science/r/SANS-CFFC/README.md

Materialization-basedmethods cannot handle all experimental cases

in reasonable time. FlowE and FlowT can only handle small datasets:

FlowE does not terminate in 24 hours except on datasets IMDB and

ACM, while FlowT only completes on IMDB, due to time-consuming

global flow computations.CoreExact is more efficient than FlowE as

it performs flow computation only on dense cores. Nevertheless, it

still cannot handle datasets PubMed and FreeBase within 24 hours

due to time-consuming flow computations. Materialization-based

methods KCCA and PeelT for Δ-density do not complete on DBLP,
PubMed, and FreeBase due to the time consuming triangle counting

or enumeration operation. In contrast, our methods can handle all

experimental cases efficiently. SansE and SansT complete on the

largest dataset FreeBase within 0.34 and 3.64 seconds per meta-

path respectively on average. Compared to materialization-based

peeling methods, SansE achieves up to ∼53× speedup over PeelE

on PubMed and FreeBase, and SansT achieves up to 1063× speedup
over PeelT on ACM.

Second, we can observe that methods based on SANS system are

more robust to complex density metrics than prior peeling algo-

rithms based on materialization, in terms of efficiency. To see this,

notice that for PeelE optimizing edge-density metric, the relational

graph materialization stage dominates its time consumption. The

materialization time consistently occupies more than 85% of total

time of PeelE across datasets and up to 99.58% on dataset ACM. How-
ever, this ratio drops significantly for PeelT optimizing Δ-density,
which is much more time-consuming than PeelE. Specifically, on

dataset ACM, PeelE finds the densest subgraph based on edge-density
within 3.0141 seconds, whereas the corresponding method PeelT

requires 743.11 seconds for finding the densest subgraph based

on Δ-density on average due to time consuming triangle enumer-

ation. On the other hand, SansT can still find densest subgraphs

based on Δ-density efficiently. The reason is that leveraging the

neighborhood summaries of limited size, SansT can restrict the

time-consuming computations of peeling coefficients and thus the

running time becomes less sensitive to the density metrics.

Overall, SANS accelerates DSD by simultaneously avoiding the

high computational overhead of materialization and also expediting

the time-consuming peeling coefficient computation.

Memory Usage. Fig. 3 compares the memory usage of the ma-

terialized relational graph required by PeelE and PeelT with the

neighborhood summaries utilized by SansE and SansT. For each

dataset, we report the peak memory usage among all meta-paths.

We have the following observations.

First, the additional memory usage required by the neighborhood

summaries is consistently smaller than that of the materialized re-

lational graphs across all datasets. Furthermore, the gap between

the memory usage of neighborhood summaries and materialized

relational graphs increases with the increase in the sizes of datasets.

Specifically, on small datasets IMDB, neighborhood summaries re-

quires 7.7× less memory than the the materialized relational graphs,

whereas on the large dataset FreeBase, neighborhood summaries

require up to 471× less additional memory than materializing the

relational graphs explicitly. The reason is that the memory usage

of neighborhood summaries is linear in the number of nodes in the

dataset, whereas the materialized relational graph can consume up

to the square of number of nodes in the dataset in the worst case.

6

https://anonymous.4open.science/r/SANS-CFFC/README.md

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SANS: Efficient Densest Subgraph Discovery over Relational Graphs without Materialization Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Runtime of different algorithms. For algorithms based on materialization, the returning time of each dataset is
reported. For SansE and SansT, we additionally report the speedup ratios over PeelE and PeelT, and the number of reconstructed
summaries 𝜃∗. We also report the time consumption for relational graph materialization in the last column. Cells with a dash
line denote that the method cannot be finished within 24 hours.

Metric 𝜌𝑒 𝜌Δ
MaterializeMethod FlowE CoreExact PeelE

SansE

FlowT KCCA PeelT

SansT

Time Speedup 𝜃 ∗ Time Speedup 𝜃 ∗

IMDB 0.0017s 0.0018s 0.0013s 0.0008s 1.53× ⇑ 1.24 0.1430s 0.0570s 0.0020s 0.0018s 1.10× ⇑ 1.24 0.0011s

ACM 31.6030s 19.5700s 3.0141s 0.2400s 12.60× ⇑ 4.75 - 2779.63s 723.11s 0.6800s 1063× ⇑ 4.65 3.0014s

DBLP - 624.87s 4.8328s 0.1554s 31.00× ⇑ 10.02 - - - 1.5500s - 10.48 4.7200s

PubMed - - 4.5380s 0.0850s 53.40× ⇑ 5.22 - - - 1.0100s - 5.20 4.4173s

FreeBase - - 18.0464s 0.3400s 53.10× ⇑ 8.27 - - - 3.6400s - 9.32 17.4360s

Scalability test (Appendix A.5) over synthetic data generated

from TPCH benchmark demonstrate that SANS can handle KGs with

upto 29.6M nodes.

Relational Graph Neighborhood Summary

imdb acm dblp pubmed freebase

10 1
100
101
102
103
104

M
em

 (M
B)

7.7x

32x

194x 154x

471x

Figure 3: Memory consumption of relational graphs mate-
rialized in PeelE/PeelT, and neighborhood summaries con-
structed in SansE/SansT.

Parameter Analysis. We further study the influence of the neigh-

borhood summary parameters 𝑘 and 𝜃 over the efficiency of our

algorithms. Fig. 4(a)-4(e) reports the running time of SansE while

varying 𝑘 and 𝜃 across datasets. We can observe that with the in-

crease of 𝑘 , the running time of SansE decreases monotonically

across all datasets except ACM and PubMed, on which the time of

SansE first decreases when 𝑘 is varied from 8 to 12 (resp. 16) and

then increases (resp. slightly increases) with further increase of 𝑘 .

The reason is that with the increase of 𝑘 , the number of neighbor-

hood summaries to be reconstructed 𝜃∗ decreases and thus makes

the algorithm less time-consuming (detail in Appendix A.5). How-

ever, when the value 𝑘 reaches a break point (e.g., > 12 on ACM
and > 16 on PubMed), the time for neighborhood summaries con-

struction and peeling coefficient estimation based on neighborhood

summaries becomes the dominant factor and thus the running time

starts to increase with 𝑘 . For the other datasets, it is conceivable

that the break point will be reached at larger values of 𝑘 , i.e., 𝑘 > 24.

On the other hand, with the increase of 𝜃 , the running time of

SansE increases significantly. The reason is that the larger value of 𝜃

increases the time for summary construction and peeling coefficient

estimation and increases the number of summaries reconstructed

𝜃∗ during the peeling iterations.
Fig. 4(f)– 4(j) reports the running time of SansT while varying 𝑘

and 𝜃 across datasets. The running time of SansT increases mono-

tonically with 𝑘 across datasets except FreeBase. The reason is that
the time needed for peeling coefficient computation for Δ-density
metric is influenced by 𝑘 more significantly. As discussed in Sec. 4,

the time complexity of method SansT is𝑂 (𝑘3) due to the estimation

of triangles containing each node, compared with 𝑂 (𝑘2) for SansE.
Thus, the cost for peeling coefficient estimation starts to dominate

the running time of SansT even for relatively small values of 𝑘 and

it only increases with the increase of 𝑘 .

Due to the space limit, we leave the experiments for varying

parameter 𝑘− and asymptotic analysis of 𝜃∗ to our Appendix A.5.

5.3 Effective Evaluation
For gauging effectiveness, we compare the density of the subgraph

returned by SansE (resp. SansT) with that returned by PeelE (resp.

PeelT), the materialization based peeling algorithm. Fig. 5 reports

the average ratio 𝛾 between the edge-density of subgraph returned

by SansE and the edge-density of subgraph returned by PeelE across

datasets while varying parameters 𝑘 and 𝜃 .

We first observe that the value 𝛾 increases monotonically with

both 𝑘 and 𝜃 across all datasets and approaches 1, which is consis-

tent with Theorem 1 that SansE provides a (2 + 𝜖)-approximation

to the DSD problem based on edge-density 𝜌𝑒 .

Furthermore, the effectiveness of SansE is affected by the sum-

mary size 𝑘 more significantly than by the number of summaries 𝜃 .

Thus, in order to achieve better effectiveness, users may prefer to

increase the summary size 𝑘 instead of increasing the number of

summaries 𝜃 . For example, in FreeBase, increasing 𝑘 from 8 to 16,

fixing 𝜃 = 1, boosts 𝛾 from 90% to 95%, whereas increasing 𝜃 from

4 to 8, fixing 𝑘 = 8, boosts 𝛾 from 95% to 97%. Following this ob-

servation, we choose the default values of 𝑘 = 24 and 𝜃 = 1, which

ensures that SansE achieves 𝛾 > 95% across all datasets. For SansT,

we only compare the effectiveness of SansT with PeelT on IMDB
and ACM, the two datasets on which PeelT finishes in reasonable

time. We find that SansT returns subgraphs corresponding to a 𝛾 of

99.65% and 95.7% on IMDB and ACM respectively.
Overall, by setting the default value of 𝑘 = 24 and 𝜃 = 1, both

SansE and SansT are able to achieve 95%-approximation to the den-

sity of the subgraphs returned by the correspondingmaterialization-

based peeling methods. Further, our experiments in Appendix A.5

reveal that SansE and SansT return densest subgraphs with sizes

comparable to those returned by PeelE and PeelT.

5.4 Case Study
To further gauge the effectiveness of SANS over real-world ap-

plications, we apply SansE and SansT on heterogeneous data ob-

tained from our anonymous industrial collaborator company A. We

obtain three different types of nodes – account(𝐴), merchant(𝑀),

device(𝐷) and two types of edges account→merchant (“order”),

account→device (“login”). We choose the meta-path “(account)→
(device)” which induces a relational graph connecting two accounts

if they login through the same device. Such a relational graph tends

to form dense subgraphs containing fraudulent accounts. For each

account in the dataset, it contains a ground-truth label denoting

whether this account is a fraudster. In scenarios such as artificially

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

=1 =2 =4 =8 =16

8 12 16 20 24
k

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Ti
m

e
(1

0
3 s

)

(a) IMDB

8 12 16 20 24
k

0

1

2

3

4

5

6

Ti
m

e
(s

)
(b) ACM

8 12 16 20 24
k

0

2

4

6

8

10

Ti
m

e
(s

)

(c) DBLP

8 12 16 20 24
k

0

1

2

3

4

5

Ti
m

e
(s

)

(d) PubMed

8 12 16 20 24
k

0
10
20
30
40
50
60
70

Ti
m

e
(s

)

(e) FreeBase

8 12 16 20 24
k

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ti
m

e
(1

0
3 s

)

(f) IMDB

8 12 16 20 24
k

0
20
40
60
80

100
120

Ti
m

e
(s

)

(g) ACM

8 12 16 20 24
k

0
50

100
150
200
250
300

Ti
m

e
(s

)

(h) DBLP

8 12 16 20 24
k

0

50

100

150

200

250

Ti
m

e
(s

)

(i) PubMed

8 12 16 20 24
k

0
100
200
300
400
500
600
700

Ti
m

e
(s

)

(j) FreeBase

Figure 4: Efficiency analysis of SansE and SansT varying 𝑘 and 𝜃 . Subfigures (a)-(e) reports the running time of SansE; subfigures
(f)-(j) reports the running time of SansT.

8 12 16 20 24
k

0.90

0.92

0.94

0.96

0.98

1.00

(a) IMDB

8 12 16 20 24
k

0.90

0.92

0.94

0.96

0.98

1.00

(b) ACM

8 12 16 20 24
k

0.90

0.92

0.94

0.96

0.98

1.00

(c) DBLP

8 12 16 20 24
k

0.90

0.92

0.94

0.96

0.98

1.00

(d) PubMed

8 12 16 20 24
k

0.90

0.92

0.94

0.96

0.98

1.00

(e) FreeBase

Figure 5: Effectiveness analysis of SansE with varying parameters 𝑘 and 𝜃 (Share legend with Fig. 4).

inflating a merchant’s ranking and visibility through bulk order-

ing, fraudsters typically create numerous accounts to post positive

reviews. These fraudulent actions often lead to the creation of a

significant number of accounts, each logging in once, which results

in a sparse representation in the heterogeneous graph, making

many fraudulent accounts undetectable by DSD applied on the

heterogeneous graph directly. However, as long as these accounts

are connected through shared devices, they will form dense sub-

graphs on the relational graph, thus finding the densest subgraph

on the relational graph is more promising for finding the fraudulent

accounts.

Figure 6 illustrates the fraudulent community identified by our

method SansE (Fig. 6(a)) and a normal community (Fig. 6(b)) formed

through device sharing between family members. Traditional DSD

methods cannot distinguish the fraudulent community from the

normal one within the heterogeneous graph. Specifically, the nor-

mal community has density 1.875 in the original heterogeneous

data (Fig. 6(b) left), which is even larger than the density of fraud-

ulent community (Fig. 6(a) left). On the other hand, by finding

the communities on the relational graphs induced by “(account)

→ (device)”, the density of the fraudulent community (Fig. 6(a)

right) increases to 38.05, which is significantly larger than the cor-

responding density of the normal community (Fig. 6(b) right). Of

the 135 accounts flagged by SansE, 132 are genuinely fraudulent ac-

counts, with 3 being normal accounts (false positives), resulting in

a precision of 97.8%. Similarly, the Δ-density-based method, SansT,

identifies the same fraudulent community as SansE, along with

an additional component comprising 9 fraudulent accounts, thus

achieving a slightly higher precision of 98.6%.

�� = �. �� �� = ��. ��

�� = �. ��� �� = �

(a) The fraudulent community discovered by SansE (left) and the
corresponding relational graph (right).

(b) A normal community (left) and its corresponding relational graph (right)

device fraud account normal account

Figure 6: Fraudulent community returned by SansE (Subfig-
ure (a)) and a normal community (Subfigure (b)).

6 CONCLUSION
In this paper we introduce SANS, a materialization-free system for

DSD over relational graphs. Our system, grounded in the summary-
based peeling approach, facilitates efficient estimation of peeling

coefficients and subgraph density during peeling iterations directly

from heterogeneous data sources. We establish that SANS can

achieve constant approximation guarantees for DSD based on both

edge- and Δ-density. Extensive experiments show that peeling al-

gorithm based on the SANS system are significantly more efficient

than baselines across various datasets based on both edge- and

Δ-density, while returning subgraphs whose density is over 95%

that of the subgraphs found by traditional materialization-based

peeling algorithms.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SANS: Efficient Densest Subgraph Discovery over Relational Graphs without Materialization Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, Juan L. Reutter, Javiel Rojas-

Ledesma, and Adrián Soto. 2021. Worst-Case Optimal Graph Joins in Almost

No Space. In Proceedings of the 2021 International Conference on Management of
Data (SIGMOD ’21). Association for Computing Machinery, New York, NY, USA,

102–114.

[2] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph

in Streaming and MapReduce. Proc. VLDB Endow. 5, 5 (2012), 454–465.
[3] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. 2002.

Counting distinct elements in a data stream. In Randomization and Approxima-
tion Techniques in Computer Science: 6th International Workshop, RANDOM 2002
Cambridge, MA, USA, September 13–15, 2002 Proceedings 5. Springer, 1–10.

[4] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer

Gemulla. 2007. On Synopses for Distinct-Value Estimation under Multiset Op-

erations. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’07). Association for Computing Machinery, New

York, NY, USA, 199–210.

[5] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos E.

Tsourakakis, Di Wang, and Junxing Wang. 2020. Flowless: Extracting Dens-

est Subgraphs Without Flow Computations. InWWW ’20: The Web Conference
2020, Taipei, Taiwan, April 20-24, 2020. ACM / IW3C2, 573–583.

[6] Moses Charikar. 2000. Greedy approximation algorithms for finding dense com-

ponents in a graph. In Approximation Algorithms for Combinatorial Optimization,
Third International Workshop, APPROX 2000, Saarbrücken, Germany, September
5-8, 2000, Proceedings (Lecture Notes in Computer Science), Vol. 1913. Springer,
84–95.

[7] Serafeim Chatzopoulos, Thanasis Vergoulis, Dimitrios Skoutas, Theodore Dala-

magas, Christos Tryfonopoulos, and Panagiotis Karras. 2023. Atrapos: Real-time

Evaluation of Metapath Query Workloads. In Proceedings of the ACM Web Con-
ference 2023 (WWW ’23). Association for Computing Machinery, New York, NY,

USA, 2487–2498.

[8] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2002. Reachability

and distance queries via 2-hop labels. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco,
CA, USA. ACM/SIAM, 937–946.

[9] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.

Effective and Efficient Community Search over Large Heterogeneous Information

Networks. Proc. VLDB Endow. 13, 6 (2020), 854–867.
[10] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks VS Lakshmanan, and Xuemin

Lin. 2019. Efficient algorithms for densest subgraph discovery. Proceedings of
the VLDB Endowment 12, 11 (2019), 1719–1732.

[11] Michael J. Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and

Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational

Database Systems. Proc. VLDB Endow. 13, 11 (2020), 1891–1904.
[12] Aristides Gionis, Flavio Junqueira, Vincent Leroy, Marco Serafini, and Ingmar

Weber. 2013. Piggybacking on Social Networks. Proc. VLDB Endow. 6, 6 (2013),
409–420.

[13] A. V. Goldberg. 1984. Finding a Maximum Density Subgraph. Technical Report.
USA.

[14] Yucan Guo, Chenhao Ma, and Yixiang Fang. 2024. Efficient Core Decomposition

over Large Heterogeneous Information Networks. In 40th IEEE International
Conference on Data Engineering (ICDE). IEEE, to appear.

[15] Yangqin Jiang, Yixiang Fang, Chenhao Ma, Xin Cao, and Chunshan Li. 2022.

Effective Community Search over Large Star-SchemaHeterogeneous Information

Networks. Proc. VLDB Endow. 15, 11 (2022), 2307–2320.
[16] Yasushi Kawase and Atsushi Miyauchi. 2018. The Densest Subgraph Problem

with a Convex/Concave Size Function. Algorithmica 80, 12 (2018), 3461–3480.
[17] Jonathan Kuck, Honglei Zhuang, Xifeng Yan, Hasan Cam, and Jiawei Han. 2015.

Query-based outlier detection in heterogeneous information networks. In Ad-
vances in database technology: proceedings. International Conference on Extending
Database Technology, Vol. 2015. NIH Public Access, 325.

[18] Laks V. S. Lakshmanan. 2022. On a Quest for Combating Filter Bubbles and

Misinformation. In SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022. ACM, 2.

[19] Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi.

2023. A Survey on the Densest Subgraph Problem and its Variants. arXiv preprint
arXiv:2303.14467 (2023).

[20] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner

Stuckenschmidt. 2019. Anytime Bottom-Up Rule Learning for Knowledge Graph

Completion. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial

Intelligence Organization, 3137–3143.

[21] Shahan Ali Memon and Kathleen M Carley. 2020. Characterizing covid-19

misinformation communities using a novel twitter dataset. arXiv preprint
arXiv:2008.00791 (2020).

[22] Changping Meng, Reynold Cheng, Silviu Maniu, Pierre Senellart, and Wangda

Zhang. 2015. Discovering meta-paths in large heterogeneous information net-

works. In Proceedings of the 24th international conference on world wide web.
754–764.

[23] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable large near-clique detection in large-scale

networks via sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 815–824.

[24] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case

Optimal Join Algorithms. J. ACM 65, 3, Article 16 (2018), 40 pages.

[25] Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S Yu, Yading Yue, and Bin Wu. 2015.

Semantic path based personalized recommendation on weighted heterogeneous

information networks. In Proceedings of the 24th ACM international on conference
on information and knowledge management. 453–462.

[26] Sriganesh Srihari and HonWai Leong. 2013. A Survey of Computational Methods

for protein Complex Prediction from protein Interaction Networks. J. Bioinform.
Comput. Biol. 11, 2 (2013).

[27] Panagiotis Strouthopoulos and Apostolos N Papadopoulos. 2019. Core discovery

in hidden networks. Data & Knowledge Engineering 120 (2019), 45–59.

[28] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. Proc. VLDB Endow. 4, 11 (2011), 992–1003.
[29] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

Proceedings of the 24th International Conference on World Wide Web, WWW 2015,
Florence, Italy, May 18-22, 2015, Aldo Gangemi, Stefano Leonardi, and Alessandro

Panconesi (Eds.). ACM, 1122–1132.

[30] Todd L. Veldhuizen. 2014. Triejoin: A Simple,Worst-Case Optimal Join Algorithm.

In Proceedings of the 17th International Conference on Database Theory (ICDT).
OpenProceedings.org, 96–106.

[31] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. 2021. The Generalized Mean

Densest Subgraph Problem. In KDD ’21: The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18,
2021. ACM, 1604–1614.

[32] MinWu, Xiaoli Li, Chee Keong Kwoh, and See-KiongNg. 2009. A core-attachment

based method to detect protein complexes in PPI networks. BMC Bioinform. 10
(2009).

[33] Konstantinos Xirogiannopoulos and Amol Deshpande. 2017. Extracting and

Analyzing Hidden Graphs from Relational Databases. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD ’17). Association
for Computing Machinery, New York, NY, USA, 897–912.

[34] Yichen Xu, Chenhao Ma, Yixiang Fang, and Zhifeng Bao. 2023. Efficient and

effective algorithms for generalized densest subgraph discovery. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–27.

[35] Yixing Yang, Yixiang Fang, Xuemin Lin, and Wenjie Zhang. 2020. Effective and

Efficient Truss Computation over Large Heterogeneous Information Networks.

In 36th IEEE International Conference on Data Engineering (ICDE). IEEE, 901–912.
[36] Niu Yudong, Yuchen Li, Ju Fan, and Zhifeng Bao. 2022. Local Clustering over

Labeled Graphs: An Index-Free Approach. In 2022 IEEE 38th International Con-
ference on Data Engineering (ICDE). IEEE, 2805–2817.

[37] Yingli Zhou, Yixiang Fang, Wensheng Luo, and Yunming Ye. 2023. Influential

Community Search over Large Heterogeneous Information Networks. Proceed-
ings of the VLDB Endowment 16, 8 (2023), 2047–2060.

[38] Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma. 2024. A Counting-

based Approach for Efficient k-Clique Densest Subgraph Discovery. Proceedings
of the ACM on Management of Data 2, 3 (2024), 1–27.

[39] Yingli Zhou, Qingshuo Guo, Yi Yang, Yixiang Fang, Chenhao Ma, and Laks

Lakshmanan. 2024. In-depth Analysis of Densest Subgraph Discovery in a

Unified Framework. arXiv preprint arXiv:2406.04738 (2024).

A APPENDIX
A.1 APIs in SANS
Crafting the complete SANS system for different density metrics

can be cumbersome for data engineers, given the significant effort

required to construct and maintain the summaries within the sys-

tem. SANS streamlines this endeavor and provides a set of interfaces

to efficiently implement peeling algorithms for different density

metrics. This allows data engineers to concentrate on selecting the

best density metric and the corresponding peeling coefficient for

their particular real-world application.

Application Programming Interfaces (APIs). Listing 1 presents
the key APIs in SANS system through which users can deploy

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1 class SANS{

2 virtual double coefficient(int v, summarySet K);

3 virtual double density(vector <int > S, summarySet K);

4 // S represents the subgraph induced by nodes in it

5 double val(summary k);

6 }

Listing 1: APIs of SANS

the SANS system for DSD based on various density metrics over

relational graphs. Parameter summarySet K contains the set of

summaries corresponding to each node in 𝑉 , whereas summary k
denotes one specific summary within K.
• coefficient() estimates the peeling coefficient for node v utiliz-

ing summaries in K. This API is called when computing the initial

peeling coefficients as well as updating the peeling coefficient of

influenced nodes after each removal during peeling iterations.

• density() estimates the density of the given subgraph S uti-

lizing the summaries of nodes in S according to density met-

rics implemented by the user. This API is called to estimate the

density of the sequence of subgraphs generated during peeling

iterations.

• val() gives the estimation of the cardinality of the collection

represented by the summary k. This API can be used by users

for implementing the APIs coefficient() and density().
Implementations for 𝜌𝑒 (·). Class EdgeSANS in Listing 2 imple-

ments the corresponding peeling algorithm in the SANS system.

The API coefficient(v, K) performs function val on the neigh-

borhood summary of node v to obtain an estimation of its degree

(Line 3). For each subgraph S generated during peeling iterations,

the API density(S, K) estimates its edge-density as the average

degree of each node in S divided by 2 (Lines 6-8).

1 class EdgeSANS: public SANS{

2 double coefficient(int v, summarySet K) {

3 return val(K[v]);

4 }

5 double density(vector <int > S, summarySet K){

6 double den;

7 for(int v: S) den += coefficient(v, K);

8 return den / (S.size() * 2);

9 }

10 }

Listing 2: Edge-densest Subgraph Discovery in SANS

Implementation of 𝜌Δ (·). Listing 3 gives the implementation

of the SANS system for triangle-densest subgraph discovery. The

operator & (Line 4) is reloaded as the intersection between two

summaries. The function coefficient(v, K) first estimates the

degree of node 𝑣 (Line 3), and then for each neighbor of 𝑣 sampled

within the summary K[v], it counts the number of triangles con-

taining edge (𝑢, 𝑣) based on summary intersections and records the

total number of triangles in variable t (Line 4). Finally, the estima-

tor is computed according to Eq. 3 and returned (Line 5). The API

density(S, K) is implemented to estimate the triangle-density of

a given subgraph S by calling coefficient for each node in S.

1 class TriangleSANS: public SANS{

2 double coefficient(int v, summarySet K) {

3 double d = val(K[v]), t = 0, s = 0;

4 for(int u: K[v].nbr()) t += val(K[u] & K[v]);

5 return (t * d) / (K[v].size() * 2);

6 }

7 double density(vector <int > S, summarySet K) {

8 double t = 0;

9 for(int v: S) t += coefficient(v, K);

10 return t / (S.size() * 3);

11 }

12 }

Listing 3: Triangle-densest Subgraph Discovery in SANS

A.2 SANS for Additional Density Metrics
In this section, we further briefly describe how to deploy SANS to

other density metrics including 𝑝-mean density 𝜌𝑝 (𝑆) and density

metrics with convex/concave size functions 𝜌𝑔 (𝑆).
𝑝-mean density 𝜌𝑝 (𝑆) was first proposed by Veldt et al. [31] as a

generalization of edge-density.

Definition 7 (𝑝-mean density). Given a graph 𝑆 = (𝑉𝑆 , 𝐸𝑆)
and parameter 𝑝 ∈ R, the 𝑝-mean density of 𝑆 is defined as 𝜌𝑝 (𝑆) =
(1

|𝑉𝑆 |
∑

𝑣∈𝑆 𝑁𝑆 (𝑣)𝑝)1/𝑝 .

According to the definition of the peeling coefficient in Eq. 1,

we can obtain the corresponding peeling coefficient for 𝑝-mean

density as:

𝜑 (𝑢) = 𝑁 (𝑢)𝑝 +
∑︁

𝑣∈N(𝑢)
(𝑁 (𝑣)𝑝 − (𝑁 (𝑣) − 1)𝑝) (4)

Veldt et al. [31] proved that for any 𝑝 ≥ 1, the peeling algo-

rithm based on the above peeling coefficient can yield a (1 + 𝑝)1/𝑝 -
approximation densest subgraph in terms of 𝑝-mean density.

To deploy our SANS system on 𝑝-mean density metric, we pro-

vide the following estimator for 𝜑𝑆 (𝑢) based on neighborhood

summaries:

�̃� (𝑢) = �̃� (𝑢)𝑝 +
�̃� (𝑢) ·∑𝑣∈K𝑢

(�̃� (𝑣)𝑝 − (�̃� (𝑣) − 1)𝑝)
|K𝑢 |

(5)

The estimator for the 𝑝-mean density of each subgraph 𝑆 gener-

ated during the peeling iterations can be defined as:

𝜌𝑝 (𝑆) = (
1

|𝑉𝑆 |
∑︁
𝑣∈𝑆

�̃�𝑆 (𝑣)𝑝)1/𝑝 (6)

List 4 gives the implementation of the SANS system for 𝑝-mean

densest subgraph discovery based on the peeling coefficient esti-

mator in Eq. 5 and density estimator in Eq. 6.

Density metric 𝜌𝑔 (𝑆) with general size function 𝑔(𝑆). We fur-

ther discuss how to deploy SANS system for the optimization of

density metrics with general size functions, which generalize the

edge-density in another direction.

Definition 8. Given a subgraph 𝑆 = (𝑉𝑆 , 𝐸𝑆) and a monotoni-
cally non-decreasing function 𝑔 : N+ → R with 𝑔(0) = 0, the size
function based density based on 𝑔 of 𝑆 is defined as 𝜌𝑔 (𝑆) = |𝐸𝑆 |

𝑔 (|𝑉𝑆 |) .

Kawase and Miyauchi [16] proved that when the function 𝑔 is

either convex or concave, the peeling algorithm with degree as

peeling coefficient can be used for 𝜌𝑔 (𝑆) optimization with certain

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

SANS: Efficient Densest Subgraph Discovery over Relational Graphs without Materialization Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1 class PmeanSANS: public SANS{

2 double coefficient(int v, summarySet K) {

3 double d = val(K[v]), t = 0;

4 for(int u: K[v].nbr())

5 t += (pow(val(u), p) - pow(val(u)-1, p));

6 return pow(d, p) + d * t / K[v].size();

7 }

8 double density(vector <int > S, summarySet K){

9 double density;

10 for(int v: S) density += pow(val(K[v]), p);

11 return pow(density / S.size(), 1 / p);

12 }

13 }

Listing 4: 𝑝-mean densest Subgraph Discovery in SANS

approximation guarantees. Class GeneralSizeSANS in Listing 5

implements the corresponding peeling algorithm in the SANS sys-

tem. The API coefficient(v, K) returns the estimated degree of

node v. For each subgraph S, the API density(S, K) estimates its

density as the summation of the degree of each node in S divided
by 2 times 𝑔(|𝑉𝑆 |).

1 class GeneralSizeSANS: public SANS{

2 double coefficient(int v, summarySet K) {

3 return val(K[v]);

4 }

5 double density(vector <int > S, summarySet K){

6 double den;

7 for(int v: S) den += coefficient(v, K);

8 return den / 2 * g(S.size());

9 }

10 }

Listing 5: Densest Subgraph Discovery in SANS with
generalized size function

A.3 Pseudo-code
Alg. 1 gives the pseudocode for the summary-peeling algorithm. It

receives a KG G, a meta-pathM, the number of summaries 𝜃 ∈ Z+
and the summary size bounds𝑘, 𝑘− ∈ Z+ as input, and returns a sub-
set 𝑆 of 𝑉 maximizing the density of 𝐻 [𝑆] for DSD. The algorithm
takes the average of estimations obtained through 𝜃 neighborhood

summaries for each node in 𝐻 to achieve good approximation guar-

antees for peeling coefficients and subgraph densities. It first initial-

izes the empty buffer K for storing the neighborhood summaries

and array 𝐼 indicating the index of summaries to be constructed

and then constructs the 𝜃 summaries (Lines 1–2). Then, the peel-

ing iterations proceed until only one node remains (Lines 3–9). In

each iteration, the algorithm selects and removes the node with the

smallest peeling coefficient by calling API coefficient (Lines 4–5).
Then, the algorithm calls procedure update to perform lazy main-

tenance of the summaries and obtains the indices 𝐼 of summaries

that need to be reconstructed (Line 6). Then it reconstructs the sum-

maries indicated in 𝐼 over the current remaining subset 𝑆 ′ (Line 7).
At the end of each iteration, API density is called to estimate the

density of 𝐻 [𝑆 ′] (Line 8) and the subset that induces larger density

is maintained in 𝑆 (Line 9). Finally, the subset 𝑆 inducing the largest

density obtained during the peeling iterations is returned as the

result (Line 10).

Algorithm 1: Summary-based Peeling

Input: KG G, meta-pathM, number of summaries 𝜃 , summary

size bounds 𝑘, 𝑘−

Output: A set of nodes 𝑆 ⊆ 𝑉

1 𝑆 ← ∅, 𝜌 ← 0, 𝑆 ′ ← 𝑉 , 𝐼 ← {1, 2, 3, ..., 𝜃 } and K[] [] ← ∅;
2 construct(K,𝑉 , 𝐼);

3 while |𝑆 ′ | > 1 do
4 𝑣 ← arg min

𝑢∈𝑆 ′
coefficient(𝑢, K);

5 remove 𝑣 from 𝑆 ′;

6 𝐼 ←update(K, 𝑣);
7 construct(K, 𝑆 ′, 𝐼);
8 𝜌 ′ ←density(𝑆 ′,K);

9 if 𝜌 ′ > 𝜌 then 𝑆 ← 𝑆 ′, 𝜌 ← 𝜌 ′;

10 return 𝑆 ;

11 Function construct(K, 𝑆, 𝐼):
12 for 𝜏 ∈ 𝐼 do
13 if 𝑢 ∈ 𝑆 do K[𝑢] [𝜏] ← Rand(0, 1) ;
14 for 𝑖 = 1 to 𝐿 do
15 for 𝑢 ∈ V𝑖 do K[𝑢] [𝜏] ← ⊕𝑣∈V− (𝑢)K[𝑣] [𝜏];
16 for 𝑖 = 𝐿 − 1 to 0 do
17 for 𝑢 ∈ V𝑖 do K[𝑢] [𝜏] ← ⊕𝑣∈V+ (𝑢)K[𝑣] [𝜏];

18 Function update(K,𝑢):
19 𝐼 ← ∅;
20 for 𝜏 = 1 to 𝜃 do
21 for 𝑣 ∈ 𝑆 ′ do
22 remove 𝑟𝜏 (𝑣) from K[𝑣] [𝜏];
23 if |K [𝑣] [𝜏] | < 𝑘− then 𝐼 ← 𝐼 ∪ {𝜏 };

24 return 𝐼 ;

A.4 Theorems and Proofs
Theorem 1. Let 𝑆 denote the subgraph returned by SANS, we have

𝜌𝑒 (𝑆) ≥ 𝜌𝑒 (𝑆∗)
2(1+𝜖) w.p. at least (1 − 𝑝), provided 𝜃 = Θ(Λ

𝜖𝑘
log
|𝑉 |
𝑝).

To prove Theorem 1, we first give the following lemma. We use

𝑆𝑡 to denote the subgraph generated at the 𝑡-th peeling iteration.

Lemma 1. For any 0 ≤ 𝑡 < |𝑉 |, we have 𝜌𝑒 (𝑆𝑡)
1+𝛿 ≤ 𝜌𝑒 (𝑆𝑡) ≤

𝜌𝑒 (𝑆𝑡)
1−𝛿 holds w.p. at least (1 − 𝑝), provided 𝜃 = Θ(Λ

𝛿𝑘
log
|𝑉 |
𝑝).

Proof Sketch. We first show that for any 𝛿, 𝑝 ∈ (0, 1) and any

node 𝑣 ∈ 𝑆𝑡 , if 𝜃 = Θ(Λ
𝛿𝑘

log
1

𝑝), then (1 − 𝛿) · 𝑁𝑆𝑡 (𝑣) ≤ 𝑁𝑆𝑡 (𝑣) ≤
(1 + 𝛿) · 𝑁𝑆𝑡 (𝑣) holds w.p. at least 1 − 𝑝 . Then, by using the union

bound over all nodes in 𝑆𝑡 , we have 𝜌𝑒 (𝑆𝑡) =

∑
𝑢∈𝑆𝑡 𝑁𝑆𝑡 (𝑢)
2· |𝑉𝑆𝑡 |

≥∑
𝑢∈𝑆𝑡 𝑁𝑆𝑡 (𝑢)
2(1+𝛿) |𝑉𝑆𝑡 |

=
𝜌𝑒 (𝑆𝑡)
1+𝛿 and similarly 𝜌𝑒 (𝑆𝑡) ≤

∑
𝑢∈𝑆𝑡 𝑁𝑆𝑡 (𝑢)
2(1−𝛿) |𝑉𝑆𝑡 |

=

𝜌𝑒 (𝑆𝑡)
1−𝛿 holds simultaneously w.p. (1 − 𝑝). □

Based on Lemma 1, we give the proof of Theorem 1.

Proof of Theorem 1. For a node 𝑣 ∈ 𝑆∗, since 𝑆∗ is the dens-
est subgraph of 𝐻 , we have 𝜌𝑒 (𝑆∗) ≥ 𝜌𝑒 (𝑆∗ − {𝑣}), i.e., |𝐸𝑆∗ ||𝑉𝑆∗ | ≥

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

|𝐸𝑆∗ |−𝑁𝑆∗ (𝑣)
|𝑉𝑆∗ |−1 . Thus,

𝑁𝑆∗ (𝑣) ≥
|𝐸𝑆∗ |
|𝑉𝑆∗ |

= 𝜌𝑒 (𝑆∗) . (7)

Consider the first iteration in which a node 𝑢 ∈ 𝑆∗ is going to be

removed by Alg. 1 and let 𝑆𝑡 denote the subgraph just before 𝑢 is

removed. According to Lemma 1, for any node 𝑣 ′ ∈ 𝑆𝑡 , we have

𝑁𝑆𝑡 (𝑣
′) ≥

𝑁𝑆𝑡 (𝑣 ′)
(1 + 𝛿) ≥

𝑁𝑆𝑡 (𝑢)
(1 + 𝛿) ≥

(1 − 𝛿)
(1 + 𝛿) · 𝑁𝑆𝑡 (𝑢) (8)

holds w.p. at least (1 − 𝑝), given 𝜃 = Θ(Λ
𝛿𝑘

log
1

𝑝). The second

inequality in (8) holds since the nodes in 𝐻 are removed in the

ascending order of estimated degrees. Then, by applying union

bounds over all nodes in 𝑆𝑡 , we have

𝜌𝑒 (𝑆𝑡) =
∑

𝑣′∈𝑆𝑡 𝑁𝑆𝑡 (𝑣′)
2 |𝑉𝑆𝑡 |

≥
(1 − 𝛿) ∑𝑣′∈𝑆𝑡 𝑁𝑆𝑡 (𝑢)

2(1 + 𝛿) |𝑉𝑆𝑡 |
≥ (1 − 𝛿)

2(1 + 𝛿) 𝜌𝑒 (𝑆
∗)

(9)

holds with probability at least (1 − 𝑝) provided 𝜃 = Θ(Λ
𝛿𝑘

log
|𝑉 |
𝑝).

The last inequality holds since 𝑁𝑆𝑡 (𝑢) ≥ 𝜌𝑒 (𝑆∗) according to Eq. 7.

Let 𝑆 = arg max

0≤𝑡≤ |𝑉 |
𝜌𝑒 (𝑆𝑡) denote the subgraph returned by Alg. 1.

Then according to Lemma 1, we have

𝜌𝑒 (𝑆) ≥ (1−𝛿)𝜌𝑒 (𝑆) ≥ (1−𝛿)𝜌𝑒 (𝑆𝑡) ≥
1 − 𝛿
1 + 𝛿 𝜌𝑒 (𝑆𝑡) ≥

(1 − 𝛿)2
2(1 + 𝛿)2 𝜌𝑒 (𝑆

∗)
(10)

For any 𝜖 ∈ (0, 1), we can set 𝛿 = (3 − 2

√
2)𝜖 < 1 + 2−2

√
1+𝜖

𝜖 ,

i.e., 𝜃 = Θ(Λ
𝜖𝑘

log
|𝑉 |
𝑝). So we have

1

2(1+𝜖) <
(1−𝛿)2
2(1+𝛿)2 and thus

𝜌𝑒 (𝑆) > 𝜌𝑒 (𝑆∗)
2(1+𝜖) w.p. at least (1 − 𝑝). The theorem follows. □

Theorem 2. Given any subset 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑆 , we have Δ(𝑣) =
E[Δ̃(𝑣)] and 𝜌Δ (𝑆) = E[𝜌Δ (𝑆)].

Proof. By dividing 𝜃 neighborhood summaries of node 𝑣 into 3

partitions and estimating the degree �̃� (𝑣), edge support Δ̃(𝑢, 𝑣) and
sampling adjacent edges of 𝑣 with different independent partition

of neighborhood summaries, we have

E[Δ̃(𝑣)] =
E[�̃� (𝑣)] · E[∑𝑢∈K𝑣

Δ̃(𝑢, 𝑣)]
2|K𝑣 |

= E[�̃� (𝑣)] ·
∑
𝑢∈N(𝑣)

|K𝑣 |
𝑁 (𝑣) E[Δ̃(𝑢, 𝑣)]
2|K𝑣 |

= 𝑁 (𝑣) ·
∑
𝑢∈N(𝑣)

|K𝑣 |
𝑁 (𝑣) Δ(𝑢, 𝑣)

2|K𝑣 |

=

∑
𝑢∈N(𝑣) Δ(𝑢, 𝑣)

2

= Δ(𝑣)

(11)

The first equality is due to the independence between �̃� (𝑣) and∑
𝑢∈K𝑣

Δ̃(𝑢, 𝑣); the second equality is due to the independence of

adjacent edge sampling and the estimation of Δ̃(𝑢, 𝑣); the third

equality is due to the unbiasedness of estimation based on the

neighborhood summaries according to [4]. Thus, the estimator

˜Δ(𝑣) is unbiased. The unbiasedness of 𝜌Δ (𝑆) follows trivially from

the addition rule of expectation. □

Theorem 3. The time complexity of summary-based peeling is
𝑂 (𝑘 (𝜃 + 𝜃∗) (|E∗ | + |𝑉 |𝑓 (𝑘) + |𝑉 | log |𝑉 |)) and the space complexity

Table 3: Time consumption of relational graph material-
ization based on boolean matrix multiplication (BoolAP,
BoolAP+) and Leapfrog TrieJoin.

Dataset BoolAP BoolAP
+

Leapfrog TrieJoin

IMDB 0.00017s 0.004s 0.0011s

ACM 19.33s 0.3s 3.0014s

DBLP 4.75s 3.43s 4.7200s

PubMed 15.36s 10.9s 4.4173s

FreeBase 177.04s 110.7s 17.4360s

is 𝑂 (𝑘𝜃 |V∗ | + |E∗ |), where 𝑓 (𝑘) denotes the time complexity for
peeling coefficient estimation using neighborhood summaries and 𝜃∗

denotes the total number of neighborhood summaries reconstructed
during the peeling iterations.

Proof. Time complexity. There are mainly two contributors

to the time complexity of the summary-peeling algorithm. First,

the algorithm needs to construct the neighborhood summaries. The

construction of neighborhood summaries requires propagating at

most 𝑘 random numbers over the matching graph with |E∗ | edges,
which takes 𝑂 (𝑘 · |E∗ |) time. The algorithm constructs 𝜃 neighbor-

hood summaries at the beginning of the algorithm and reconstructs

𝜃∗ summaries that are disabled by node removals during peeling

iterations. Thus, the time complexity of summary construction is

𝑂 ((𝜃 + 𝜃∗)𝑘 · |E∗ |). Then, at each peeling iteration, the algorithm

updates the neighborhood summaries by removing from K the

random number corresponding to the removed node, re-estimates

the peeling coefficients with updated neighborhood summaries,

and maintains the min-heap for identifying the node with small-

est peeling coefficient. Since (𝜃 + 𝜃∗) neighborhood summaries

are constructed for each node, at most 𝑂 (𝑘 |𝑉 | (𝜃 + 𝜃∗)) neighbor-
hood summary updates will be performed. For each neighborhood

summary update, it will takes 𝑓 (𝑘) time to re-estimate the peeling

coefficient and𝑂 (log |𝑉 |) time tomaintain themin-heap. The neigh-

borhood summary update itself can be performed in 𝑂 (1) utilizing
an inverted list from random numbers to neighborhood summaries.

Thus, the time complexity is𝑂 (𝑘 |𝑉 | (𝜃 +𝜃∗) (𝑓 (𝑘) + log |𝑉 |)). There-
fore, the total time complexity of the summary-peeling algorithm

is 𝑂 (𝑘 (𝜃 + 𝜃∗) (|E∗ | + |𝑉 |𝑓 (𝑘) + |𝑉 | log |𝑉 |)).
Space complexity. The firsts term 𝑂 (𝑘𝜃 |V∗ |) is the memory con-

sumption of neighborhood summaries and the second term𝑂 (|E∗ |)
is the memory consumption of the matching graph G∗. □

A.5 Additional Experiments
Time consumption of materialization. Table 3 reports the time

consumption ofmethodsBoolAP andBoolAP
+
[14] based on boolean

matrix multiplication as well as Leapfrog TrieJoin for relational

graph materialization across datasets. We can observe that over

large datasets PubMed and FreeBase, Leapfrog TrieJoin is signifi-

cantly faster than BoolAP and BoolAP
+
. Thus, we adopt Leapfrog

TrieJoin to materialize the relational graph for all baselines.

Scalability. We test the scalability of methods based on SANS

through experiments over large synthetic datasets generated by the

TPCH benchmark with scale factors 𝜆 ∈ {1, 2, 4, 8, 16}. The number

of nodes in these generated TPCH datasets varies from 1.85M∼29.6M,

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

SANS: Efficient Densest Subgraph Discovery over Relational Graphs without Materialization Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

=1 =2 =4 =8 =16

8 12 16 20 24
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

*

(a) IMDB

8 12 16 20 24
k

0
5

10
15
20
25
30
35

*

(b) ACM

8 12 16 20 24
k

0

20

40

60

80

100

120

*

(c) DBLP

8 12 16 20 24
k

0

10

20

30

40

50

60

*

(d) PubMed

8 12 16 20 24
k

0
20
40
60
80

100
120
140
160

*

(e) FreeBase

8 12 16 20 24
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

*

(f) IMDB

8 12 16 20 24
k

0
5

10
15
20
25
30
35

*

(g) DBLP

8 12 16 20 24
k

0

20

40

60

80

100

120

*

(h) PubMed

8 12 16 20 24
k

0
10
20
30
40
50
60

*

(i) ACM

8 12 16 20 24
k

0
20
40
60
80

100
120
140
160

*

(j) FreeBase

Figure 7: Number of reconstructed summaries during 𝜃∗ during peeling iterations of SansE and SansT varying 𝑘 and 𝜃 . Subfigures
(a)-(e) reports the number of reconstructed summaries of SansE; subfigures (f)-(j) reports the number of SansT.

the number of edges varies from 7.5M to 120M. We conduct our

experiments with the meta-path (customer)→ (order)→(product),

which includes a relational graph connecting pairs of customers

who bought the same product [33]. We can observe that both the

running time and the memory usage of neighborhood summaries

are linear in the size of the dataset, which verifies the scalability of

SANS based methods. Specifically, our method SansE and SansT can

handle the largest TPCH dataset with ∼30M nodes within 260 sec-

onds and 436 seconds respectively with 7.72GB additional memory

for neighborhood summaries.

SansE SansT

1 2 4 8 16
0

1

2

3

4

Ti
m

e
(x

10
2 s

)

(a) Running Time

1 2 4 8 16

1
2
3
4
5
6
7
8

M
em

or
y

(G
B)

(b) Memory Usage

Figure 8: The running time and memory usage of methods
SansE and SansT. The 𝑥 axis uses a log scale.

Number of reconstructed summaries 𝜃∗. Fig. 7 reports the num-

ber of reconstructed summaries for each dataset during the peeling

iterations varying 𝑘 and 𝜃 . We can observe that the number of

reconstructed summaries decrease monotonically with the increase

of 𝑘 , while increase with the increase of 𝜃 .

Varying 𝑘− . Fig. 9 reports the time consumption and the number

of neighborhood summaries reconstructed 𝜃∗ of SansE and SansT

varying parameter 𝑘− across datasets. We can observe that both the

time consumption of SansE and SansT grows exponentially with

the increase of parameter 𝑘− due to the exponential increase of

number of summaries reconstructed during the peeling iterations.

Synthetic Analysis of 𝜃∗. In addition to reporting the parameter

𝜃∗ for the real-world datasets, we explore possible factors that may

influence the number of summary reconstructions 𝜃∗ in our SANS

based peeling algorithms. To that end, we perform an analysis of 𝜃∗

over synthetic graphs generated with different models. Specifically,

we examine the random binomial graphs and the scale-free graphs

generated with the Erdős–Rényi (ER) model and Barabási–Albert

imdb acm dblp pubmed freebase

4 8 12 16 20
k

10 3

10 2

10 1

100

101

Ti
m

e
(s

)

(a) Running Time of SansE

4 8 12 16 20
k

100

101

102

*

(b) Number of summaries reconstructed

𝜃 ∗ of SansE

4 8 12 16 20
k

10 3

10 2

10 1

100

101

102

Ti
m

e
(s

)

(c) Running time of SansT

4 8 12 16 20
k

100

101

102

*

(d) Number of summaries reconstructed

𝜃 ∗ of SansT

Figure 9: Efficiency Analysis of SansE and SansT varying
parameter 𝑘− across datasets. Subfigure (a) and (b) reports
the time consumption and the number of summaries recon-
structed 𝜃∗ of SansE; subfigure (c) and (d) reports the corre-
sponding evaluation metrics of SansT.

(BA) model respectively. Fig. 10 reports the value of 𝜃∗ while vary-
ing the number of nodes |𝑉 | in the graph exponentially from 1000

to 16000. The value of 𝜃∗ grows logarithmically with the num-

ber of nodes |𝑉 | in the synthetic graphs on both binomial graphs

(Fig. 10(a) and 10(b)) and scale-free graphs (Fig. 10(c) and 10(d)),

for both methods SansE and SansT. Based on this observation, we

conjecture that the number of reconstructed summaries required

by the peeling algorithm SansE and SansT are logarithmic in the

number of nodes in the graph regardless of the specific structure of

the relational graphs. We leave a formal proof (or counterexample)

of this conjecture as a future work.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

K=8 K=12 K=16 K=20 K=24

1 2 4 8 16
|V|(x103)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

*

(a) 𝜌𝑒 on ER model

1 2 4 8 16
|V|(x103)

0

5

10

15

20

25

*
(b) 𝜌Δ on ER model

1 2 4 8 16
|V|(x103)

5

10

15

20

25

*

(c) 𝜌𝑒 on BA model

1 2 4 8 16
|V|(x103)

5

10

15

20

25

*

(d) 𝜌Δ on BA model

Figure 10: Number of summaries reconstructed 𝜃∗ during
peeling iteration with varying sizes of synthetic graphs.

Table 4: The ratio between the size of densest subgraph dis-
covered by SansE and PeelE.

Dataset IMDB ACM DBLP PubMed FreeBase

Size ratio 101.6% 102.9% 102.1% 101.9% 102.5%

Size Comparison. Table 4 reports the average ratio between the

size of densest subgraphs discovered by our method SansE and the

materialization-based peeling method PeelE. We can observe that

our method SansE reveals densest subgraphs with comparable sizes

(consistently less than 3% relative differences across datasets) to

the densest subgraphs discovered by PeelE.

14

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and Problem Formulation
	2.2 Related Work

	3 The SANS System
	4 Theoretical Analysis
	5 Experiments
	5.1 Experimental Setup
	5.2 Efficiency Evaluation
	5.3 Effective Evaluation
	5.4 Case Study

	6 Conclusion
	References
	A Appendix
	A.1 APIs in SANS
	A.2 SANS for Additional Density Metrics
	A.3 Pseudo-code
	A.4 Theorems and Proofs
	A.5 Additional Experiments

