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Abstract

Associating objects with their owners and tracking changes over time are essential
capabilities for autonomous robots operating in cluttered, visually redundant, and
dynamic environments. Yet existing benchmarks focus on static, uncluttered, and
synthetic scenes that fail to capture real-world challenges such as inter-workspace
ambiguity and subtle intra-workspace changes. To fill this gap, we introduce the
Office Hours benchmark dataset: a large-scale, two-part video benchmark com-
prising six robot-filmed walkthroughs of 23 cubicles over five temporal episodes
(global subset) and handheld recordings of 10 cubicles across 20 temporal episodes
(local subset). We annotate ~1,500 object-level changes across four categories
(Object Detection, Count, Localization, State Detection) and provide over 1,600
multiple-choice visual question answering (VQA) questions spanning five comple-
mentary tasks: Spatial Association VQA, Static Association—Semantic Mapping
VQA, Temporal Association VQA, Single-Cubicle-Multi-Temporal VQA, and
Multi-Cubicle-Multi-Temporal VQA.

Using Gemini 2.5 Pro as a strong baseline, our experiments reveal persistent
shortcomings: on Multi-Cubicle-Multi-Temporal VQA, the accuracy of local-
ization barely exceeds the random guessing level (~25%), on Single-Cubicle-
Multi-Temporal VQA, overall accuracy reaches 56.8%, with object counting and
object state change questions remaining challenging; These results, among others,
highlight critical gaps in current VLMs’ ability in maintaining consistent object
associations across space and time.

1 Introduction

The ability to identify and localize objects based on natural language descriptions is fundamental
for autonomous robots to interact effectively with both their environment and human users. A core
challenge in this process is object association—the ability to maintain consistent references to the
same object in different spatial and temporal contexts. Consider a surveillance robot monitoring an
open office space (Fig. 1). Its task is to track objects distributed across multiple cubicles. A user
might ask, “How many monitors are on Daniel’s desk?” or “Is Jerry’s laptop still in his cubicle?”
queries that require the robot to correctly associate named entities with their corresponding physical
spaces and belongings. Successfully answering such questions demands not only visual recognition
but also an understanding of spatial layout and entity grounding across time.

Despite its importance, most existing datasets [9, 6, 12] for robotic scene understanding focus on
static, uncluttered environments. In such settings, object associations are often straightforward, as the
clean layout and low visual redundancy reduce ambiguity in both object identity and location. In
contrast, real-world office environments—particularly open-plan cubicle farms—pose significantly
greater challenges. These environments are densely populated with visually similar cubicles, each
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Figure 1: Overview. Motivating use case of surveillance EQA, and example questions regarding
different types of changes in Office Hours benchmark dataset.

filled with a mix of standard office items and personal belongings arranged in unpredictable ways.
Surveillance robots operating in these spaces must distinguish object ownership and track items
across both time and space. Addressing this requires solving two interrelated challenges: spatial
association and temporal association.

The spatial association problem arises when visually redundant content coexists in a single frame or
video sequence. Unlike the curated views of static benchmarks, robots in the real world perceive their
surroundings through continuous video streams, often capturing multiple cubicles simultaneously
in one frame. This introduces ambiguity when distinguishing which object belongs to which indi-
vidual or cubicle. To perform robustly in these environments, robots must accurately infer spatial
boundaries, associate objects with individuals using both visual and contextual cues, and maintain
these associations even when explicit indicators, such as name on whiteboards, are intermittently
occluded or only present in other frames. Leveraging Vision-Language Models (VLMs) pretrained
on internet-scale datasets have become the leading paradigm to scene understanding and embodied
question answering [3]. However, our experiments show that State of The Art (SoTA) VLMs struggle
with such spatial association tasks. For example, as illustrated in “Video Day 1” of Fig. 2, when a
cubicle is labeled “Daniel” and the model is asked, “How many monitors does Jerry have?”’—despite
“Jerry” not appearing in the frame—the correct answer should be “Unable to answer.” Yet, both
GPT-40 (05122025) and GPT-03 (05122025) return the number of monitors visible in Daniel’s
cubicle, incorrectly attributing them to Jerry. Gemini 2.5 Pro Preview (05062025) performs even
worse, including a monitor from an adjacent cubicle and counting an iPad. These results reveal a key
limitation: current VLMs fail to respect spatial boundaries and struggle to associate named entities
with their corresponding physical spaces and belongings.

The temporal association problem emerges when models attempt to link objects across different
time steps, which often involve changes in camera viewpoint, lighting, and settings (e.g., landscape
vs. portrait orientation). VLMs are particularly vulnerable to inconsistencies introduced by these
variations. We identify three recurring failure modes: (1) tracking failure due to object misclassifica-
tion, (2) incorrect associations caused by multiple instances of the same object, and (3) positional
misalignment or object disappearance induced by slight changes in camera perspective.

For instance, in “Video Day 2” of Fig. 2, a pile of cables at the cubicle’s left corner is misclassified
as headsets or game controllers by GPT-04-mini-high and Gemini 2.5 Pro. We hypothesize that
low-confidence predictions vary between frames, leading to false temporal change detection. Another
example shown is, when the cubicle’s keyboard count increases from one to two (when the original
keyboard is removed and two new ones are added), yet the model mistakenly treats this as the
original keyboard having simply been moved to a different position and another keyboard being
added. Similarly, subtle changes in viewpoint can create the illusion of positional shifts.

A cup visible in an initial wide shot (“Video Day 1) is no longer present in a closer follow-up view
(“Video Day 2”). Without robust spatial grounding, the model incorrectly infers that the cup was
removed. A model with better spatial-temporal reasoning would recognize that the cup belongs to a
neighboring cubicle and should be excluded from the current frame’s interpretation.
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Figure 2: Illustration of the changes in Daniel’s cubicle in the dataset. Four primary object-change
categories are shown: Counting Change (purple; keyboard quantity increases from one to two),
Location Change (green; the iPad moved from the left desk to atop the black computer case), State
Change (blue; the poster shifts from lying flat to standing upright), and Object Appearance (orange;
a book newly appears). Light colors indicate initial states at timestamp ¢(, while darker colors
highlight updated states at ¢;, emphasizing temporal changes.

To address these gaps, we introduce the Office Hours benchmark dataset: a large-scale real-world
dataset designed to evaluate VLM performance in complex, dynamic office environments from a
robotic perspective. Office Hours contains ~ 1,500 scene changes in total, including ~ 500 changes
across 23 cubicles captured over 5 episodes using a robot, and ~ 1,000 changes across 10 cubicles
collected manually over 20 episodes. Figure Fig. 2 provides an illustrative example of the changes.
The dataset is accompanied by more than 1600 Visual Question Answering (VQA) questions assessing
fundamental scene understanding, and evaluating a model’s ability to understand spatial and temporal
association. Through extensive experiments, we primarily study how VLM performs in temporal and
spatial association problems.

2 Related Work

The emergence of multimodal VLMs, such as RT-2 [1], has significantly advanced robotics by
enabling agents to interpret visual scenes and reason about tasks in a generalizable manner. Unlike
traditional rule-based systems, which struggle with out-of-distribution scenarios, VLMs [8] leverage
joint vision-language representations to perform zero-shot inference across diverse tasks.

Recent robotics-specific VLMs have rapidly evolved to support more complex behaviors. For exam-
ple, Open X-Embodiment dataset [7] aggregates robot interaction data across varied embodiments,
enabling the training of vision-language-action (VLA) models that support cross-embodiment gen-
eralization. More recently, Physical Intelligence introduced Pi-0.5 [5], which integrates a VLM
with an action expert model to perform long-horizon manipulation in real-world homes. In par-
allel, navigation-centric VLMs, such as NaVILA [2], incorporate spatial reasoning into language-
conditioned navigation, allowing agents to follow high-level instructions in complex, real-world
environments.

VQA is a long-standing benchmark for multimodal reasoning and is highly relevant to embodied
scene understanding. EmbodiedQA [3] introduced a synthetic household dataset to benchmark spatial
and attribute reasoning in closed environments. RoboVQA [11] captured long-horizon video-text
demonstrations from humans and robots, focusing on manipulation tasks. HM-EQA [10], built on the
Habitat-Matterport 3D (HM3D) dataset [9], improves realism through photorealistic indoor scenes.
However, its environments remain overly clean and structured, lacking the clutter, occlusion, and
redundancy commonly seen in real-world offices.

To address more complex semantic queries, S-EQA [4] introduced questions involving multiple
object states (e.g., "Is the kitchen ready for meal preparation?"), while OpenEQA [6] provides 1,600
human-authored questions covering seven reasoning tasks such as spatial understanding, world
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knowledge, and object localization. Nonetheless, most of these benchmarks remain static, feature
sparse environments with minimal redundancy, and primarily target household settings that have
ready-for-sale cleanness.

The most closely related work to ours is IRef-VLA [12], which explores referential grounding in
3D scenes, including scenarios with ambiguous or imperfect language queries. In contrast, our
work focuses on 2D settings, which align more naturally with image-based VLA models trained on
large-scale visual datasets. Furthermore, the absence of depth cues, variations in camera viewpoints,
and inconsistencies in image quality introduce unique challenges for achieving accurate referential
disambiguation in 2D.

3 Office Hours: Data Curation

We designed our data collection process to reflect the dynamic nature of real-world office environ-
ments. Our goal is to enable robots to better understand scenes over time and perform everyday
tasks-such as security checks, item retrieval, and deliveries-that require associating names or cubicles
with objects across multiple time instances. We leverage these structured changes not only to capture
realistic office dynamics, but also to systematically generate targeted questions that probe a VLM’s
ability to track and reason about object persistence, movement, and identity across both time and
space.

We construct the Office Hours: A Multiday Office Cubicle Dataset for Associative Embodied
VQA. This benchmark is split into complementary global and local subsets that share the same four
categories of object-level changes listed in Table 2.

Global Changes (inter-cubicle). We recorded six panoramic walk-through videos that each
capture all 23 cubicles. Consecutive pairs of videos form five temporal episodes (episode e =
(video e—1, video e)). Between episodes we applied object-level manipulations in the physical
world in each of the four categories—Presence/Detection, Count, Location, and State/Condition. For
instance, a laptop might appear in another cubicle, a set of pens could decrease from five to three, or
a monitor could switch from off to on. Each change is recorded in a category-specific CSV file, and
we use VLMs to automatically convert every entry into a multiple-choice question with four answer
options plus a “none of the above” choice.

We also introduce Static Association-Semantic Mapping questions, which target the VLM’s ability
to resolve spatial ambiguities in a single video frame. The questions are generated from keyframes
extracted from 1 global office video where multiple cubicles are visible and uses a semantic mapping
that annotates the robot’s current location, visible cubicles from the robot’s location, and static
landmarks (e.g., large whiteboards, room door numbers). This map is also used to prepend spatial
prefixes (cubicle names, e.g. "From Amy’s cubicle...") to questions to provide frame-specific spatial
context, testing whether VLMs can correctly associate objects with the appropriate cubicles in
cluttered scenes.

Local Changes (inter-cubicle). For fine-grained temporal reasoning we filmed 10 individual
cubicles, capturing 21 short clips per cubicle and therefore 20 temporal episodes each. Here, the same
four change categories are applied within a single cubicle: objects can newly appear or disappear,
their counts can rise or fall, they can be moved to a different spot on the desk, or their state can change
(e.g., a laptop lid opens). Each cubicle thus has four CSV logs—again one per category—yielding 40
files in total, and each logged change is turned into a QA pair identical in format to the global subset.

Table 1 summarizes the dataset scale, and Table 2 provides precise definitions of the four change
categories for both subsets.

3.1 Collecting Video Data
Recording platforms. We used two complementary capture methods:

* BracketBot - an open-source low-cost 3D printed robot—-manually operated by a human
pilot.
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Table 1: Dataset composition and annotations. ‘“Videos” counts raw clips; “Episodes” counts
successive video pairs (ve—1, v, ); “CSV logs” counts files, one per change type.

Subset Videos Episodes CSV logs Changes Recorded
Global 6 (panoramic) 5 4 490
Local 215 20 per cubicle on average 40 992

Table 2: Categories of object-level changes captured in the dataset, organized by granularity: global
(across cubicles) and local (within a single cubicle).

Object-Level Change | Global \ Local

Presence/Detection The appearance or disappearance of object in the video

Count changes in object count (including introducing or removing all instances
of an object e.g., going from zero to multiple items) from a single cubicle

Location changes in the location of identi- | changes in the location of identi-
fiable objects across cubicles fiable objects with in a cubicles

State/Condition changes in object states, such as | changes in object states, such as
orientation or condition and lo- | orientation or condition
cation within a cubicle
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Figure 3: Left: Office map with robot video collecting trajectory. Right:Bracket Bot used for video
collection.

* Handheld smartphone — operated by a person, allowing slow, stable pans that fully reveal
every surface inside a cubicle.

Global changes (BracketBot). The global subset was filmed entirely with BracketBot. Following
the route shown in Fig. 3, the robot completes a full loop of the office, recording all 23 cubicles.
After every loop we introduced roughly 100 controlled edits—equally divided among the four change
categories listed in Table 2—yielding about 500 annotated changes across five temporal episodes.
Each change category is stored in its own CSV file (four files total) and later converted into multiple-
choice (A-E) questions. Every video is ~ 10 minutes long, 1080p, and shot with an iPhone 13 Pro
Max wide-angle lens.

Local changes (Handheld). We chose 10 cubicles and filmed 21 short clips of each, producing
20 temporal episodes. A variety of smartphone models were used to mimic the heterogeneous
cameras found on different robots. After each clip we introduced five edits—one per change
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category—yielding ~ 100 changes per cubicle, evenly distributed across the four categories. Every
edit was logged immediately in four per-cubicle Excel sheets and later converted into multiple-choice
(A-E) questions identical in format to those of the global subset.

3.2 VQA Question Generation

Manually crafting a question for every recorded change is time-consuming. As such we decided to
employ a LLM to create the questions. We decided to use Gemini 2.5 Flash (preview 04-17) instead
of its ChatGPT 03 due to its larger context window.

Global Video Changes Questions: The global changes were partitioned by category into four CSV
files: Object Counting, Object Detection, Object Location, and Object State. Each CSV and an
accompanying prompt were supplied to Gemini, which generated one question per change. A random
sample of 20 questions per category was subsequently validated by a human annotator for correctness
and clarity.

Every generated question was required to be in a five-option multiple-choice format (A-E) with
choice E reading “None of the above” (or equivalent), to demand multimodal reasoning—so that the
correct answer could not be inferred from the text description alone—and to hinge on the temporal
comparison of two consecutive videos. Examples of the questions created by Gemini are shown in
the supplementary material under the section sample questions.

Static Association-Semantic Mapping Questions: Focuses on the VLM’s ability to associate static
visual observations from a single global video with spatial context provided through a semantic
map. In addition to the four primary global change categories, we introduce an additional fifth
category, Cubicle/Room Location, which evaluates spatial reasoning in static scenes. Example of the
new category created by Gemini is shown in the supplementary material under the section sample
questions.

Local Video Changes Questions: For the local changes, an identical pipeline was applied to the
change logs of each cubicle, generating a set of fine-grained questions that evaluate object-centric
reasoning within confined spatial contexts.

Office Map Understanding: Focuses on the VLM’s spatial understanding on the global office
videos.

Time Scaled State Question: Focuses on the VLM’s temporal understanding on the local cubicle
videos given to the VLM.

4 Experiments

Our benchmark is designed to probe how well state-of-the-art VLMs cope with real-world, cluttered
office scenes that evolve over time—conditions faced daily by service robots. We evaluate five com-
plementary tasks that together span object recognition, spatio-temporal association, and multi-video
reasoning. Note all experiments conducted where done utilizing $300 dollars of free Google Cloud
credits.

Our benchmark comprises five complementary tasks:
* Spatial Association VQA - question answering over individual episodes requiring the model
to count cubicles and associate occupants with their cubicles in cluttered office scenes.

 Static Association-Semantic Mapping VQA - question answering using individual
keyframes from a global video, grounded with semantic metadata of the robot’s location,
visible cubicles, and nearby landmarks.

» Temporal Association VQA — question answering over pairs of local clips from the same
cubicle requiring the model to list changes observed between two videos.

* Single-Cubicle-Multi-Temporal VQA — question answering over pairs of local” clips from
the same cubicle (intra-cubicle changes).

* Multi-Cubicle-Multi-Temporal VQA — question answering over pairs of global” walk-
through videos (inter-cubicle changes).



216

217
218
219
220

221

222
223
224
225
226

227
228
229
230
231
232
233

234

235
236
237
238
239
240

241
242
243
244
245
246

247

248
249

Table 3: Gemini 2.5 Pro (Temperature (7'=0.0)) answers for cubicle counting and listing tasks for
global change videos in which the ground truth number of cubicles is 23.

Episode Counting MAPE Listing Precision Listing Recall
Average 27.5% 0.491 0.394

Details of each task are provided in the subsections below.

As a first strong baseline, we benchmark Gemini 2.5 Pro Preview (05-06-2025), currently the
top-performing public model on video-understanding leaderboards'. Gemini can ingest multiple
videos in a single prompt, making it one of the few VLMs capable of handling our episode-pair
inputs.

4.1 Spatial Association VQA

To quantify Gemini 2.5 Pro’s ability to resolve spatial associations in dynamic office scenes, we
evaluated its performance on the six global change videos. For each video, the model was prompted
to (1) count the number of visible cubicles and (2) list each cubicle’s ID alongside its occupant’s
name. Counting accuracy was measured via Mean Absolute Percentage Error (MAPE) and listing
performance was assessed using precision and recall, averaged across episodes.

As shown in Table 3, Gemini 2.5 Pro’s counting MAPE is 27.5%, meaning its estimates deviate on
average by over a quarter of the true values. On the listing subtask, Gemini 2.5 Pro achieves 0.491
average precision and 0.394 recall—retrieving fewer than half of the true cubicle-name pairs, with
limited false positives. These results underscore substantial spatial association challenges: although
Gemini can sometimes enumerate and name cubicles correctly, its high error rates and frequent
omissions reveal limitations when operating in cluttered, visually repetitive office environments.
Results details are included in the supplementary.

4.2 Static Association Semantic Mapping VQA

To assess Gemini 2.5 Pro’s ability to leverage semantic spatial context for grounded reasoning, we
evaluated its quantitative performance on the Static Association-Semantic Mapping VQA dataset
using a single global video. Each question was categorized by question type and the model was
prompted with the corresponding question, multiple choice options, and the global video (with no
image ID association) as context and asked to answer each question accurately using the global video.
Similar to Section 4.5, the global video prompted had 720 resolution.

The results are summarized in Table 4. Gemini 2.5 Pro achieves 77.2% overall accuracy, substantially
higher than in global-video score. Object Detection (93.0%), Object Location (84.3%), Object
State/Attribute (83.3%) are the most accurate, suggesting that the model benefits from stable visual
cues. In contrast, Cubical Location (46.7%) and Object Counting (65.5%) were the most challenging
to answer, likely due to the difficulty of identifying cubicle boundaries or name tags or cluttered
visual scenes.

Table 4: Accuracy (%) of Gemini 2.5 Pro on the Static Association—Semantic Mapping VQA task.

Cubicle

Location Detect Location Count State

Video 0-720p | 77.24% | 46.67% | 93.02% | 84.31% | 65.51% | 83.33%

Experiment ‘ Overall ‘

Object ‘ Object Object ‘ Object

4.3 Temporal Association VQA

To evaluate Gemini 2.5 Pro’s capability to resolve temporal associations, we conducted an experiment
involving pairs of local videos depicting the same cubicle at different timestamps. For each pair,

!See the official announcement at https://developers.googleblog. com/en/gemini-2-5-video-u
nderstanding/.
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Gemini was prompted to identify observed changes and output them in JSON format. Human
annotations served as ground truth, capturing actual changes between the video pairs.

We aligned each human-annotated event with the corresponding VLM-generated event by semantically
matching object descriptions. Matched events were categorized into three classes: Matched Change
(True Positive), Only in Output (False Positives), and Only in Ground Truth (False Negatives).
Example of the alignment result can be found in supplementary material in the section temporal
change alignment example. Performance was quantified using precision, recall, and F1-score metrics.

Gemini identified a total of 587 correctly matched changes but produced 667 additional incorrect
detections and missed 412 genuine changes. This resulted in a precision of 0.47, recall of 0.59, and
an overall Fl-score of 0.52. These results highlight Gemini’s moderate performance in detecting
temporal changes, indicating notable limitations in handling object associations accurately over time
in dynamic office environments.

4.4 Single-Cubicle-Multi-Temporal VQA

For each temporal episode, we provide Gemini with the two walk-through videos of one cubicle
(Ve—1, ve) and the set of multiple-choice questions derived from the local change logs for that episode
and cubicle. Queries follow the structured prompt shown in the supplementary material under the
section prompt; we enforce JSON output via Gemini’s structured-response schema.

1. Prompting. We use the prompt template in supplementary material with temperature 7'=0.0 for
deterministic output. If Gemini fails to return valid JSON, we retry with T'=0.25.

2. Video preprocessing. Videos are used at their original recording resolution (1080p) however to
reduce the size of them we remove the audio and reduce the frame rate to 10 fps.

3. Scoring. Gemini’s JSON answer list is compared against ground-truth keys; accuracy is reported
per change category and overall.

Results. Table 5 reports the aggregate mean across all cubicles. Gemini reaches 56.8 % overall
accuracy—modestly above the global-video score—indicating that even within a single cubicle many
changes remain challenging. Object Detection is easiest (63.6 %), followed by Location (61.9 %),
State (53.1 %), and finally Counting (48.6 %). These trends align with intuition: estimating exact
counts and subtle state changes (e.g., lid-open vs. lid-closed) demand finer spatio-temporal resolution
than simply recognizing or localizing an object.

Table 5: Accuracy (%) of Gemini 2.5 Pro on the Single-Cubicle-Multi-Temporal VQA task. Asterisks
(*) denote runs that required a higher sampling temperature (7'=0.25) to obtain valid JSON output;
all other runs used 7=0.0

Object | Object | Object Obiect
Cubicle Total Detec- | Loca- | Count- J
. . . State
tion tion ing
Mean 56.8% | 63.6% | 619% | 48.6% | 53.1%
Standard Deviation | 9.4% 8.1% 141% | 172% | 17.4%

4.5 Multi-Cubicle-Multi-Temporal VQA

The Multi-Cubicle-Multi-Temporal VQA evaluation mirrors the protocol in Section 4.4: Gemini 2.5
Pro receives the two clips (v._1,v) of a temporal episode and must return a JSON list of answers to
all multiple-choice questions. The key differences are:

1. Video preprocessing: Gemini’s free tier limits each file to 100 MB. We therefore transcode both
videos to 720p, 10 fps, a Constant Rate Factor of 28, and strip audio. To gauge the impact of
resolution, we also run a subset of queries with 1080p videos (10 fps, CRF 20, audio removed)
that exceed the 100 MB ceiling on paid accounts.

2. Map cue variant: Because 720p footage makes white-board name tags hard to read, we test a
second variant in which we append the office-layout map (Fig. 3(a)) alongside the two videos.
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3. Question Batch: The question batch for an episode contains only one type of change out of all
four change categories (Detection, Location, Counting, State).

Table 6 shows that Gemini 2.5 Pro struggles most with Location questions, scoring just 25.0%, barely
above the 20% guess rate. Detection and State exceed 50%. Adding an office map yields marginal
gains—location improves by 3 points, but overall accuracy drops to 43.8%, suggesting poor use of
spatial context. Raising the input resolution to 1080p improves location accuracy to 33.9% but causes
sharp drops in Counting and State performance. It was expected that improving the resolution would
not lead to any meaningful improvement because Gemini compresses every video frame to a fixed
258-token representation regardless of resolution?. Even under the most favourable setting (720p),
the model reaches only 45.2% overall, revealing that current state-of-the-art VLMs still struggle with
multi-video reasoning in cluttered, dynamic office scenes.

The Global-VQA task is substantially harder than Local-VQA, with the largest drop in object-location
accuracy. This mirrors our spatial-association results (Section 4.1): without reliably identifying
cubicles, the model struggles to track objects across workspaces.

Table 6: Accuracy (%) of Gemini 2.5 Pro on the Multi-Cubicle-Multi-Temporal VQA task. Asterisks
(*) denote runs that required a higher sampling temperature (7'=0.25) to obtain valid JSON output;
all other runs used 7'=0.0.

Object Object Object Obiect
Experiment | Overall | Detec- Loca- Count- S J
. . . tate
tion tion ing
720p 45.2% 54.8% 25.0% 40.5% 61.1 %
720p + Map 43.8% 47.0% 28.2% 40.5%* 59.5%
1080p 36.4% 47.0% 33.87% 22.2% 43.7%

5 Limitations

While Office Hours provides a challenging benchmark for office-scene reasoning, it remains domain-
specific—its focus on cubicle farms may not generalize to industrial, retail, or outdoor settings. The
environment is essentially static, with no human actors or dynamic background elements, limiting the
dataset’s applicability to interactions and real-world lighting changes.

6 Conclusion

Real-world robotic applications demand scene understanding that goes beyond static snapshots in
controlled settings: robots must navigate cluttered workspaces, recognize both standard and personal
items, and maintain object associations across space and time. To address this need, we introduce
the “Office Hours” benchmark suite, explicitly designed to stress-test Vision—Language Models
(VLMs) on spatial and temporal reasoning in dynamic office environments. We accompany “Office
Hours” with a diverse suite of VQA tasks, ranging from change-specific question answering to
spatial-association and temporal-tracking experiments.

Evaluating Gemini 2.5 Pro on this benchmark reveals persistent gaps in current VLM capabilities.
On inter-cubicle queries, its object-location accuracy hovers just above random chance, indicating
severe spatial mislocalization and frequent confusion between neighbouring workspaces. Within
single desks, the model struggles with exact counts and subtle state changes, underperforming on
both counting and state-change tasks.

These findings underscore critical limitations in the reasoning of today’s VLMs—particularly their
difficulty in grounding named entities to specific workspaces and in maintaining object identity over
time. We believe the “Office Hours” benchmark will provide a valuable resource for systematically
quantifying these shortcomings and guiding the development of more robust, embodied scene-
understanding models.

*https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/video-understan
ding


https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/video-understanding
https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/video-understanding
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We review the abstract and introduction to make sure they accurately reflect
the contribution and scope of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, the main limitation of our benchmark is that it has only one setting, a
graduate office.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not have theoretical results in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided details on how to conduct the experiment to reproduce our results.
More details are given in the supplementary information. We also provide the dataset, and
the code to reproduce the benchmarks.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provided a preview URL (with the verified croissant file) and the code
is in GitHub.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide the prompts, version of Gemini, and temperature needed to
reproduce the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We use error bars or statistical results for our tests.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, all our experiments were completed using the free $ 300 credits provided
by Google Cloud once you create an account.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our data set conforms to the code of ethics provided by NeurIPS.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our works simply provide a way of benchmarking VLM. We do not produce
anything.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The dataset was scraped from our own office we permission of the owners.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use pre-existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

15


paperswithcode.com/datasets

629
630

631

633

634
635

636

637

638

639
640
641
642
643
644
645
646

647

648
649
650

652

653

654
655
656
657
658
659
660
661

662
663

664
665
666
667

668

669

670

671

672
673
674
675
676
677
678
679
680

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The dataset is well documented
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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681 16. Declaration of LLLM usage

682 Question: Does the paper describe the usage of LLMs if it is an important, original, or
683 non-standard component of the core methods in this research? Note that if the LLM is used
684 only for writing, editing, or formatting purposes and does not impact the core methodology,
685 scientific rigorousness, or originality of the research, declaration is not required.

686 Answer: [Yes]

687 Justification: We benchmark Gemini using our new dataset.

688 Guidelines:

689 * The answer NA means that the core method development in this research does not
690 involve LLMs as any important, original, or non-standard components.

691 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
692 for what should or should not be described.

17


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Office Hours: Data Curation
	Collecting Video Data
	VQA Question Generation

	Experiments
	Spatial Association VQA
	Static Association Semantic Mapping VQA 
	Temporal Association VQA
	Single-Cubicle-Multi-Temporal VQA
	Multi-Cubicle-Multi-Temporal VQA

	Limitations
	Conclusion

