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Abstract

Associating objects with their owners and tracking changes over time are essential1

capabilities for autonomous robots operating in cluttered, visually redundant, and2

dynamic environments. Yet existing benchmarks focus on static, uncluttered, and3

synthetic scenes that fail to capture real-world challenges such as inter-workspace4

ambiguity and subtle intra-workspace changes. To fill this gap, we introduce the5

Office Hours benchmark dataset: a large-scale, two-part video benchmark com-6

prising six robot-filmed walkthroughs of 23 cubicles over five temporal episodes7

(global subset) and handheld recordings of 10 cubicles across 20 temporal episodes8

(local subset). We annotate ∼1,500 object-level changes across four categories9

(Object Detection, Count, Localization, State Detection) and provide over 1,60010

multiple-choice visual question answering (VQA) questions spanning five comple-11

mentary tasks: Spatial Association VQA, Static Association–Semantic Mapping12

VQA, Temporal Association VQA, Single-Cubicle-Multi-Temporal VQA, and13

Multi-Cubicle-Multi-Temporal VQA.14

Using Gemini 2.5 Pro as a strong baseline, our experiments reveal persistent15

shortcomings: on Multi-Cubicle-Multi-Temporal VQA, the accuracy of local-16

ization barely exceeds the random guessing level (∼25%), on Single-Cubicle-17

Multi-Temporal VQA, overall accuracy reaches 56.8%, with object counting and18

object state change questions remaining challenging; These results, among others,19

highlight critical gaps in current VLMs’ ability in maintaining consistent object20

associations across space and time.21

1 Introduction22

The ability to identify and localize objects based on natural language descriptions is fundamental23

for autonomous robots to interact effectively with both their environment and human users. A core24

challenge in this process is object association—the ability to maintain consistent references to the25

same object in different spatial and temporal contexts. Consider a surveillance robot monitoring an26

open office space (Fig. 1). Its task is to track objects distributed across multiple cubicles. A user27

might ask, “How many monitors are on Daniel’s desk?” or “Is Jerry’s laptop still in his cubicle?”28

queries that require the robot to correctly associate named entities with their corresponding physical29

spaces and belongings. Successfully answering such questions demands not only visual recognition30

but also an understanding of spatial layout and entity grounding across time.31

Despite its importance, most existing datasets [9, 6, 12] for robotic scene understanding focus on32

static, uncluttered environments. In such settings, object associations are often straightforward, as the33

clean layout and low visual redundancy reduce ambiguity in both object identity and location. In34

contrast, real-world office environments—particularly open-plan cubicle farms—pose significantly35

greater challenges. These environments are densely populated with visually similar cubicles, each36
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Figure 1: Overview. Motivating use case of surveillance EQA, and example questions regarding
different types of changes in Office Hours benchmark dataset.

filled with a mix of standard office items and personal belongings arranged in unpredictable ways.37

Surveillance robots operating in these spaces must distinguish object ownership and track items38

across both time and space. Addressing this requires solving two interrelated challenges: spatial39

association and temporal association.40

The spatial association problem arises when visually redundant content coexists in a single frame or41

video sequence. Unlike the curated views of static benchmarks, robots in the real world perceive their42

surroundings through continuous video streams, often capturing multiple cubicles simultaneously43

in one frame. This introduces ambiguity when distinguishing which object belongs to which indi-44

vidual or cubicle. To perform robustly in these environments, robots must accurately infer spatial45

boundaries, associate objects with individuals using both visual and contextual cues, and maintain46

these associations even when explicit indicators, such as name on whiteboards, are intermittently47

occluded or only present in other frames. Leveraging Vision-Language Models (VLMs) pretrained48

on internet-scale datasets have become the leading paradigm to scene understanding and embodied49

question answering [3]. However, our experiments show that State of The Art (SoTA) VLMs struggle50

with such spatial association tasks. For example, as illustrated in “Video Day 1” of Fig. 2 , when a51

cubicle is labeled “Daniel” and the model is asked, “How many monitors does Jerry have?”—despite52

“Jerry” not appearing in the frame—the correct answer should be “Unable to answer.” Yet, both53

GPT-4o (05122025) and GPT-o3 (05122025) return the number of monitors visible in Daniel’s54

cubicle, incorrectly attributing them to Jerry. Gemini 2.5 Pro Preview (05062025) performs even55

worse, including a monitor from an adjacent cubicle and counting an iPad. These results reveal a key56

limitation: current VLMs fail to respect spatial boundaries and struggle to associate named entities57

with their corresponding physical spaces and belongings.58

The temporal association problem emerges when models attempt to link objects across different59

time steps, which often involve changes in camera viewpoint, lighting, and settings (e.g., landscape60

vs. portrait orientation). VLMs are particularly vulnerable to inconsistencies introduced by these61

variations. We identify three recurring failure modes: (1) tracking failure due to object misclassifica-62

tion, (2) incorrect associations caused by multiple instances of the same object, and (3) positional63

misalignment or object disappearance induced by slight changes in camera perspective.64

For instance, in “Video Day 2” of Fig. 2, a pile of cables at the cubicle’s left corner is misclassified65

as headsets or game controllers by GPT-o4-mini-high and Gemini 2.5 Pro. We hypothesize that66

low-confidence predictions vary between frames, leading to false temporal change detection. Another67

example shown is, when the cubicle’s keyboard count increases from one to two (when the original68

keyboard is removed and two new ones are added), yet the model mistakenly treats this as the69

original keyboard having simply been moved to a different position and another keyboard being70

added. Similarly, subtle changes in viewpoint can create the illusion of positional shifts.71

A cup visible in an initial wide shot (“Video Day 1”) is no longer present in a closer follow-up view72

(“Video Day 2”). Without robust spatial grounding, the model incorrectly infers that the cup was73

removed. A model with better spatial-temporal reasoning would recognize that the cup belongs to a74

neighboring cubicle and should be excluded from the current frame’s interpretation.75
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Figure 2: Illustration of the changes in Daniel’s cubicle in the dataset. Four primary object-change
categories are shown: Counting Change (purple; keyboard quantity increases from one to two),
Location Change (green; the iPad moved from the left desk to atop the black computer case), State
Change (blue; the poster shifts from lying flat to standing upright), and Object Appearance (orange;
a book newly appears). Light colors indicate initial states at timestamp t0, while darker colors
highlight updated states at t1, emphasizing temporal changes.

To address these gaps, we introduce the Office Hours benchmark dataset: a large-scale real-world76

dataset designed to evaluate VLM performance in complex, dynamic office environments from a77

robotic perspective. Office Hours contains ∼ 1,500 scene changes in total, including ∼ 500 changes78

across 23 cubicles captured over 5 episodes using a robot, and ∼ 1,000 changes across 10 cubicles79

collected manually over 20 episodes. Figure Fig. 2 provides an illustrative example of the changes.80

The dataset is accompanied by more than 1600 Visual Question Answering (VQA) questions assessing81

fundamental scene understanding, and evaluating a model’s ability to understand spatial and temporal82

association. Through extensive experiments, we primarily study how VLM performs in temporal and83

spatial association problems.84

2 Related Work85

The emergence of multimodal VLMs, such as RT-2 [1], has significantly advanced robotics by86

enabling agents to interpret visual scenes and reason about tasks in a generalizable manner. Unlike87

traditional rule-based systems, which struggle with out-of-distribution scenarios, VLMs [8] leverage88

joint vision-language representations to perform zero-shot inference across diverse tasks.89

Recent robotics-specific VLMs have rapidly evolved to support more complex behaviors. For exam-90

ple, Open X-Embodiment dataset [7] aggregates robot interaction data across varied embodiments,91

enabling the training of vision-language-action (VLA) models that support cross-embodiment gen-92

eralization. More recently, Physical Intelligence introduced Pi-0.5 [5], which integrates a VLM93

with an action expert model to perform long-horizon manipulation in real-world homes. In par-94

allel, navigation-centric VLMs, such as NaVILA [2], incorporate spatial reasoning into language-95

conditioned navigation, allowing agents to follow high-level instructions in complex, real-world96

environments.97

VQA is a long-standing benchmark for multimodal reasoning and is highly relevant to embodied98

scene understanding. EmbodiedQA [3] introduced a synthetic household dataset to benchmark spatial99

and attribute reasoning in closed environments. RoboVQA [11] captured long-horizon video-text100

demonstrations from humans and robots, focusing on manipulation tasks. HM-EQA [10], built on the101

Habitat-Matterport 3D (HM3D) dataset [9], improves realism through photorealistic indoor scenes.102

However, its environments remain overly clean and structured, lacking the clutter, occlusion, and103

redundancy commonly seen in real-world offices.104

To address more complex semantic queries, S-EQA [4] introduced questions involving multiple105

object states (e.g., "Is the kitchen ready for meal preparation?"), while OpenEQA [6] provides 1,600106

human-authored questions covering seven reasoning tasks such as spatial understanding, world107
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knowledge, and object localization. Nonetheless, most of these benchmarks remain static, feature108

sparse environments with minimal redundancy, and primarily target household settings that have109

ready-for-sale cleanness.110

The most closely related work to ours is IRef-VLA [12], which explores referential grounding in111

3D scenes, including scenarios with ambiguous or imperfect language queries. In contrast, our112

work focuses on 2D settings, which align more naturally with image-based VLA models trained on113

large-scale visual datasets. Furthermore, the absence of depth cues, variations in camera viewpoints,114

and inconsistencies in image quality introduce unique challenges for achieving accurate referential115

disambiguation in 2D.116

3 Office Hours: Data Curation117

We designed our data collection process to reflect the dynamic nature of real-world office environ-118

ments. Our goal is to enable robots to better understand scenes over time and perform everyday119

tasks-such as security checks, item retrieval, and deliveries-that require associating names or cubicles120

with objects across multiple time instances. We leverage these structured changes not only to capture121

realistic office dynamics, but also to systematically generate targeted questions that probe a VLM’s122

ability to track and reason about object persistence, movement, and identity across both time and123

space.124

We construct the Office Hours: A Multiday Office Cubicle Dataset for Associative Embodied125

VQA. This benchmark is split into complementary global and local subsets that share the same four126

categories of object-level changes listed in Table 2.127

Global Changes (inter-cubicle). We recorded six panoramic walk-through videos that each128

capture all 23 cubicles. Consecutive pairs of videos form five temporal episodes (episode e =129

(video e−1, video e)). Between episodes we applied object-level manipulations in the physical130

world in each of the four categories—Presence/Detection, Count, Location, and State/Condition. For131

instance, a laptop might appear in another cubicle, a set of pens could decrease from five to three, or132

a monitor could switch from off to on. Each change is recorded in a category-specific CSV file, and133

we use VLMs to automatically convert every entry into a multiple-choice question with four answer134

options plus a “none of the above” choice.135

We also introduce Static Association-Semantic Mapping questions, which target the VLM’s ability136

to resolve spatial ambiguities in a single video frame. The questions are generated from keyframes137

extracted from 1 global office video where multiple cubicles are visible and uses a semantic mapping138

that annotates the robot’s current location, visible cubicles from the robot’s location, and static139

landmarks (e.g., large whiteboards, room door numbers). This map is also used to prepend spatial140

prefixes (cubicle names, e.g. "From Amy’s cubicle...") to questions to provide frame-specific spatial141

context, testing whether VLMs can correctly associate objects with the appropriate cubicles in142

cluttered scenes.143

Local Changes (inter-cubicle). For fine-grained temporal reasoning we filmed 10 individual144

cubicles, capturing 21 short clips per cubicle and therefore 20 temporal episodes each. Here, the same145

four change categories are applied within a single cubicle: objects can newly appear or disappear,146

their counts can rise or fall, they can be moved to a different spot on the desk, or their state can change147

(e.g., a laptop lid opens). Each cubicle thus has four CSV logs—again one per category—yielding 40148

files in total, and each logged change is turned into a QA pair identical in format to the global subset.149

Table 1 summarizes the dataset scale, and Table 2 provides precise definitions of the four change150

categories for both subsets.151

3.1 Collecting Video Data152

Recording platforms. We used two complementary capture methods:153

• BracketBot - an open-source low-cost 3D printed robot–manually operated by a human154

pilot.155
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Table 1: Dataset composition and annotations. “Videos” counts raw clips; “Episodes” counts
successive video pairs (ve−1, ve); “CSV logs” counts files, one per change type.

Subset Videos Episodes CSV logs Changes Recorded

Global 6 (panoramic) 5 4 490
Local 215 20 per cubicle on average 40 992

Table 2: Categories of object-level changes captured in the dataset, organized by granularity: global
(across cubicles) and local (within a single cubicle).

Object-Level Change Global Local
Presence/Detection The appearance or disappearance of object in the video
Count changes in object count (including introducing or removing all instances

of an object e.g., going from zero to multiple items) from a single cubicle
Location changes in the location of identi-

fiable objects across cubicles
changes in the location of identi-
fiable objects with in a cubicles

State/Condition changes in object states, such as
orientation or condition and lo-
cation within a cubicle

changes in object states, such as
orientation or condition
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Figure 3: Left: Office map with robot video collecting trajectory. Right:Bracket Bot used for video
collection.

• Handheld smartphone – operated by a person, allowing slow, stable pans that fully reveal156

every surface inside a cubicle.157

Global changes (BracketBot). The global subset was filmed entirely with BracketBot. Following158

the route shown in Fig. 3, the robot completes a full loop of the office, recording all 23 cubicles.159

After every loop we introduced roughly 100 controlled edits—equally divided among the four change160

categories listed in Table 2—yielding about 500 annotated changes across five temporal episodes.161

Each change category is stored in its own CSV file (four files total) and later converted into multiple-162

choice (A–E) questions. Every video is ∼ 10 minutes long, 1080p, and shot with an iPhone 13 Pro163

Max wide-angle lens.164

Local changes (Handheld). We chose 10 cubicles and filmed 21 short clips of each, producing165

20 temporal episodes. A variety of smartphone models were used to mimic the heterogeneous166

cameras found on different robots. After each clip we introduced five edits—one per change167
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category—yielding ∼ 100 changes per cubicle, evenly distributed across the four categories. Every168

edit was logged immediately in four per-cubicle Excel sheets and later converted into multiple-choice169

(A–E) questions identical in format to those of the global subset.170

3.2 VQA Question Generation171

Manually crafting a question for every recorded change is time-consuming. As such we decided to172

employ a LLM to create the questions. We decided to use Gemini 2.5 Flash (preview 04-17) instead173

of its ChatGPT o3 due to its larger context window.174

Global Video Changes Questions: The global changes were partitioned by category into four CSV175

files: Object Counting, Object Detection, Object Location, and Object State. Each CSV and an176

accompanying prompt were supplied to Gemini, which generated one question per change. A random177

sample of 20 questions per category was subsequently validated by a human annotator for correctness178

and clarity.179

Every generated question was required to be in a five-option multiple-choice format (A–E) with180

choice E reading “None of the above” (or equivalent), to demand multimodal reasoning—so that the181

correct answer could not be inferred from the text description alone—and to hinge on the temporal182

comparison of two consecutive videos. Examples of the questions created by Gemini are shown in183

the supplementary material under the section sample questions.184

Static Association-Semantic Mapping Questions: Focuses on the VLM’s ability to associate static185

visual observations from a single global video with spatial context provided through a semantic186

map. In addition to the four primary global change categories, we introduce an additional fifth187

category, Cubicle/Room Location, which evaluates spatial reasoning in static scenes. Example of the188

new category created by Gemini is shown in the supplementary material under the section sample189

questions.190

Local Video Changes Questions: For the local changes, an identical pipeline was applied to the191

change logs of each cubicle, generating a set of fine-grained questions that evaluate object-centric192

reasoning within confined spatial contexts.193

Office Map Understanding: Focuses on the VLM’s spatial understanding on the global office194

videos.195

Time Scaled State Question: Focuses on the VLM’s temporal understanding on the local cubicle196

videos given to the VLM.197

4 Experiments198

Our benchmark is designed to probe how well state-of-the-art VLMs cope with real-world, cluttered199

office scenes that evolve over time—conditions faced daily by service robots. We evaluate five com-200

plementary tasks that together span object recognition, spatio-temporal association, and multi-video201

reasoning. Note all experiments conducted where done utilizing $300 dollars of free Google Cloud202

credits.203

Our benchmark comprises five complementary tasks:204

• Spatial Association VQA - question answering over individual episodes requiring the model205

to count cubicles and associate occupants with their cubicles in cluttered office scenes.206

• Static Association-Semantic Mapping VQA - question answering using individual207

keyframes from a global video, grounded with semantic metadata of the robot’s location,208

visible cubicles, and nearby landmarks.209

• Temporal Association VQA – question answering over pairs of local clips from the same210

cubicle requiring the model to list changes observed between two videos.211

• Single-Cubicle-Multi-Temporal VQA – question answering over pairs of local” clips from212

the same cubicle (intra-cubicle changes).213

• Multi-Cubicle-Multi-Temporal VQA – question answering over pairs of global” walk-214

through videos (inter-cubicle changes).215
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Table 3: Gemini 2.5 Pro (Temperature (T=0.0)) answers for cubicle counting and listing tasks for
global change videos in which the ground truth number of cubicles is 23.

Episode Counting MAPE Listing Precision Listing Recall
Average 27.5% 0.491 0.394

Details of each task are provided in the subsections below.216

As a first strong baseline, we benchmark Gemini 2.5 Pro Preview (05-06-2025), currently the217

top-performing public model on video-understanding leaderboards1. Gemini can ingest multiple218

videos in a single prompt, making it one of the few VLMs capable of handling our episode-pair219

inputs.220

4.1 Spatial Association VQA221

To quantify Gemini 2.5 Pro’s ability to resolve spatial associations in dynamic office scenes, we222

evaluated its performance on the six global change videos. For each video, the model was prompted223

to (1) count the number of visible cubicles and (2) list each cubicle’s ID alongside its occupant’s224

name. Counting accuracy was measured via Mean Absolute Percentage Error (MAPE) and listing225

performance was assessed using precision and recall, averaged across episodes.226

As shown in Table 3, Gemini 2.5 Pro’s counting MAPE is 27.5%, meaning its estimates deviate on227

average by over a quarter of the true values. On the listing subtask, Gemini 2.5 Pro achieves 0.491228

average precision and 0.394 recall—retrieving fewer than half of the true cubicle–name pairs, with229

limited false positives. These results underscore substantial spatial association challenges: although230

Gemini can sometimes enumerate and name cubicles correctly, its high error rates and frequent231

omissions reveal limitations when operating in cluttered, visually repetitive office environments.232

Results details are included in the supplementary.233

4.2 Static Association Semantic Mapping VQA234

To assess Gemini 2.5 Pro’s ability to leverage semantic spatial context for grounded reasoning, we235

evaluated its quantitative performance on the Static Association-Semantic Mapping VQA dataset236

using a single global video. Each question was categorized by question type and the model was237

prompted with the corresponding question, multiple choice options, and the global video (with no238

image ID association) as context and asked to answer each question accurately using the global video.239

Similar to Section 4.5, the global video prompted had 720 resolution.240

The results are summarized in Table 4. Gemini 2.5 Pro achieves 77.2% overall accuracy, substantially241

higher than in global-video score. Object Detection (93.0%), Object Location (84.3%), Object242

State/Attribute (83.3%) are the most accurate, suggesting that the model benefits from stable visual243

cues. In contrast, Cubical Location (46.7%) and Object Counting (65.5%) were the most challenging244

to answer, likely due to the difficulty of identifying cubicle boundaries or name tags or cluttered245

visual scenes.246

Table 4: Accuracy (%) of Gemini 2.5 Pro on the Static Association–Semantic Mapping VQA task.

Experiment Overall Cubicle
Location

Object
Detect

Object
Location

Object
Count

Object
State

Video 0 - 720p 77.24% 46.67% 93.02% 84.31% 65.51% 83.33%

4.3 Temporal Association VQA247

To evaluate Gemini 2.5 Pro’s capability to resolve temporal associations, we conducted an experiment248

involving pairs of local videos depicting the same cubicle at different timestamps. For each pair,249

1See the official announcement at https://developers.googleblog.com/en/gemini-2-5-video-u
nderstanding/.
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Gemini was prompted to identify observed changes and output them in JSON format. Human250

annotations served as ground truth, capturing actual changes between the video pairs.251

We aligned each human-annotated event with the corresponding VLM-generated event by semantically252

matching object descriptions. Matched events were categorized into three classes: Matched Change253

(True Positive), Only in Output (False Positives), and Only in Ground Truth (False Negatives).254

Example of the alignment result can be found in supplementary material in the section temporal255

change alignment example. Performance was quantified using precision, recall, and F1-score metrics.256

Gemini identified a total of 587 correctly matched changes but produced 667 additional incorrect257

detections and missed 412 genuine changes. This resulted in a precision of 0.47, recall of 0.59, and258

an overall F1-score of 0.52. These results highlight Gemini’s moderate performance in detecting259

temporal changes, indicating notable limitations in handling object associations accurately over time260

in dynamic office environments.261

4.4 Single-Cubicle-Multi-Temporal VQA262

For each temporal episode, we provide Gemini with the two walk-through videos of one cubicle263

⟨ve−1, ve⟩ and the set of multiple-choice questions derived from the local change logs for that episode264

and cubicle. Queries follow the structured prompt shown in the supplementary material under the265

section prompt; we enforce JSON output via Gemini’s structured-response schema.266

1. Prompting. We use the prompt template in supplementary material with temperature T=0.0 for267

deterministic output. If Gemini fails to return valid JSON, we retry with T=0.25.268

2. Video preprocessing. Videos are used at their original recording resolution (1080p) however to269

reduce the size of them we remove the audio and reduce the frame rate to 10 fps.270

3. Scoring. Gemini’s JSON answer list is compared against ground-truth keys; accuracy is reported271

per change category and overall.272

Results. Table 5 reports the aggregate mean across all cubicles. Gemini reaches 56.8 % overall273

accuracy—modestly above the global-video score—indicating that even within a single cubicle many274

changes remain challenging. Object Detection is easiest (63.6 %), followed by Location (61.9 %),275

State (53.1 %), and finally Counting (48.6 %). These trends align with intuition: estimating exact276

counts and subtle state changes (e.g., lid-open vs. lid-closed) demand finer spatio-temporal resolution277

than simply recognizing or localizing an object.278

Table 5: Accuracy (%) of Gemini 2.5 Pro on the Single-Cubicle-Multi-Temporal VQA task. Asterisks
(*) denote runs that required a higher sampling temperature (T=0.25) to obtain valid JSON output;
all other runs used T=0.0

Cubicle Total
Object
Detec-
tion

Object
Loca-
tion

Object
Count-

ing

Object
State

Mean 56.8% 63.6% 61.9% 48.6% 53.1%
Standard Deviation 9.4% 8.1% 14.1% 17.2% 17.4%

4.5 Multi-Cubicle-Multi-Temporal VQA279

The Multi-Cubicle-Multi-Temporal VQA evaluation mirrors the protocol in Section 4.4: Gemini 2.5280

Pro receives the two clips ⟨ve−1, ve⟩ of a temporal episode and must return a JSON list of answers to281

all multiple-choice questions. The key differences are:282

1. Video preprocessing: Gemini’s free tier limits each file to 100 MB. We therefore transcode both283

videos to 720p, 10 fps, a Constant Rate Factor of 28, and strip audio. To gauge the impact of284

resolution, we also run a subset of queries with 1080p videos (10 fps, CRF 20, audio removed)285

that exceed the 100 MB ceiling on paid accounts.286

2. Map cue variant: Because 720p footage makes white-board name tags hard to read, we test a287

second variant in which we append the office-layout map (Fig. 3(a)) alongside the two videos.288
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3. Question Batch: The question batch for an episode contains only one type of change out of all289

four change categories (Detection, Location, Counting, State).290

Table 6 shows that Gemini 2.5 Pro struggles most with Location questions, scoring just 25.0%, barely291

above the 20% guess rate. Detection and State exceed 50%. Adding an office map yields marginal292

gains—location improves by 3 points, but overall accuracy drops to 43.8%, suggesting poor use of293

spatial context. Raising the input resolution to 1080p improves location accuracy to 33.9% but causes294

sharp drops in Counting and State performance. It was expected that improving the resolution would295

not lead to any meaningful improvement because Gemini compresses every video frame to a fixed296

258-token representation regardless of resolution2. Even under the most favourable setting (720p),297

the model reaches only 45.2% overall, revealing that current state-of-the-art VLMs still struggle with298

multi-video reasoning in cluttered, dynamic office scenes.299

The Global-VQA task is substantially harder than Local-VQA, with the largest drop in object-location300

accuracy. This mirrors our spatial-association results (Section 4.1): without reliably identifying301

cubicles, the model struggles to track objects across workspaces.302

Table 6: Accuracy (%) of Gemini 2.5 Pro on the Multi-Cubicle-Multi-Temporal VQA task. Asterisks
(*) denote runs that required a higher sampling temperature (T=0.25) to obtain valid JSON output;
all other runs used T=0.0.

Experiment Overall
Object
Detec-
tion

Object
Loca-
tion

Object
Count-

ing

Object
State

720p 45.2% 54.8% 25.0% 40.5% 61.1 %
720p + Map 43.8% 47.0% 28.2% 40.5%* 59.5%
1080p 36.4% 47.0% 33.87% 22.2% 43.7%

5 Limitations303

While Office Hours provides a challenging benchmark for office-scene reasoning, it remains domain-304

specific—its focus on cubicle farms may not generalize to industrial, retail, or outdoor settings. The305

environment is essentially static, with no human actors or dynamic background elements, limiting the306

dataset’s applicability to interactions and real-world lighting changes.307

6 Conclusion308

Real-world robotic applications demand scene understanding that goes beyond static snapshots in309

controlled settings: robots must navigate cluttered workspaces, recognize both standard and personal310

items, and maintain object associations across space and time. To address this need, we introduce311

the “Office Hours” benchmark suite, explicitly designed to stress-test Vision–Language Models312

(VLMs) on spatial and temporal reasoning in dynamic office environments. We accompany “Office313

Hours” with a diverse suite of VQA tasks, ranging from change-specific question answering to314

spatial-association and temporal-tracking experiments.315

Evaluating Gemini 2.5 Pro on this benchmark reveals persistent gaps in current VLM capabilities.316

On inter-cubicle queries, its object-location accuracy hovers just above random chance, indicating317

severe spatial mislocalization and frequent confusion between neighbouring workspaces. Within318

single desks, the model struggles with exact counts and subtle state changes, underperforming on319

both counting and state-change tasks.320

These findings underscore critical limitations in the reasoning of today’s VLMs—particularly their321

difficulty in grounding named entities to specific workspaces and in maintaining object identity over322

time. We believe the “Office Hours” benchmark will provide a valuable resource for systematically323

quantifying these shortcomings and guiding the development of more robust, embodied scene-324

understanding models.325

2https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/video-understan
ding
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NeurIPS Paper Checklist367

1. Claims368

Question: Do the main claims made in the abstract and introduction accurately reflect the369

paper’s contributions and scope?370

Answer: [Yes]371

Justification: We review the abstract and introduction to make sure they accurately reflect372

the contribution and scope of the paper.373

Guidelines:374

• The answer NA means that the abstract and introduction do not include the claims375

made in the paper.376

• The abstract and/or introduction should clearly state the claims made, including the377

contributions made in the paper and important assumptions and limitations. A No or378

NA answer to this question will not be perceived well by the reviewers.379

• The claims made should match theoretical and experimental results, and reflect how380

much the results can be expected to generalize to other settings.381

• It is fine to include aspirational goals as motivation as long as it is clear that these goals382

are not attained by the paper.383

2. Limitations384

Question: Does the paper discuss the limitations of the work performed by the authors?385

Answer: [Yes]386

Justification: Yes, the main limitation of our benchmark is that it has only one setting, a387

graduate office.388

Guidelines:389

• The answer NA means that the paper has no limitation while the answer No means that390

the paper has limitations, but those are not discussed in the paper.391

• The authors are encouraged to create a separate "Limitations" section in their paper.392

• The paper should point out any strong assumptions and how robust the results are to393

violations of these assumptions (e.g., independence assumptions, noiseless settings,394

model well-specification, asymptotic approximations only holding locally). The authors395

should reflect on how these assumptions might be violated in practice and what the396

implications would be.397

• The authors should reflect on the scope of the claims made, e.g., if the approach was398

only tested on a few datasets or with a few runs. In general, empirical results often399

depend on implicit assumptions, which should be articulated.400

• The authors should reflect on the factors that influence the performance of the approach.401

For example, a facial recognition algorithm may perform poorly when image resolution402

is low or images are taken in low lighting. Or a speech-to-text system might not be403

used reliably to provide closed captions for online lectures because it fails to handle404

technical jargon.405

• The authors should discuss the computational efficiency of the proposed algorithms406

and how they scale with dataset size.407

• If applicable, the authors should discuss possible limitations of their approach to408

address problems of privacy and fairness.409

• While the authors might fear that complete honesty about limitations might be used by410

reviewers as grounds for rejection, a worse outcome might be that reviewers discover411

limitations that aren’t acknowledged in the paper. The authors should use their best412

judgment and recognize that individual actions in favor of transparency play an impor-413

tant role in developing norms that preserve the integrity of the community. Reviewers414

will be specifically instructed to not penalize honesty concerning limitations.415

3. Theory assumptions and proofs416

Question: For each theoretical result, does the paper provide the full set of assumptions and417

a complete (and correct) proof?418
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Answer: [NA]419

Justification: We do not have theoretical results in this paper.420

Guidelines:421

• The answer NA means that the paper does not include theoretical results.422

• All the theorems, formulas, and proofs in the paper should be numbered and cross-423

referenced.424

• All assumptions should be clearly stated or referenced in the statement of any theorems.425

• The proofs can either appear in the main paper or the supplemental material, but if426

they appear in the supplemental material, the authors are encouraged to provide a short427

proof sketch to provide intuition.428

• Inversely, any informal proof provided in the core of the paper should be complemented429

by formal proofs provided in appendix or supplemental material.430

• Theorems and Lemmas that the proof relies upon should be properly referenced.431

4. Experimental result reproducibility432

Question: Does the paper fully disclose all the information needed to reproduce the main ex-433

perimental results of the paper to the extent that it affects the main claims and/or conclusions434

of the paper (regardless of whether the code and data are provided or not)?435

Answer: [Yes]436

Justification: We provided details on how to conduct the experiment to reproduce our results.437

More details are given in the supplementary information. We also provide the dataset, and438

the code to reproduce the benchmarks.439

Guidelines:440

• The answer NA means that the paper does not include experiments.441

• If the paper includes experiments, a No answer to this question will not be perceived442

well by the reviewers: Making the paper reproducible is important, regardless of443

whether the code and data are provided or not.444

• If the contribution is a dataset and/or model, the authors should describe the steps taken445

to make their results reproducible or verifiable.446

• Depending on the contribution, reproducibility can be accomplished in various ways.447

For example, if the contribution is a novel architecture, describing the architecture fully448

might suffice, or if the contribution is a specific model and empirical evaluation, it may449

be necessary to either make it possible for others to replicate the model with the same450

dataset, or provide access to the model. In general. releasing code and data is often451

one good way to accomplish this, but reproducibility can also be provided via detailed452

instructions for how to replicate the results, access to a hosted model (e.g., in the case453

of a large language model), releasing of a model checkpoint, or other means that are454

appropriate to the research performed.455

• While NeurIPS does not require releasing code, the conference does require all submis-456

sions to provide some reasonable avenue for reproducibility, which may depend on the457

nature of the contribution. For example458

(a) If the contribution is primarily a new algorithm, the paper should make it clear how459

to reproduce that algorithm.460

(b) If the contribution is primarily a new model architecture, the paper should describe461

the architecture clearly and fully.462

(c) If the contribution is a new model (e.g., a large language model), then there should463

either be a way to access this model for reproducing the results or a way to reproduce464

the model (e.g., with an open-source dataset or instructions for how to construct465

the dataset).466

(d) We recognize that reproducibility may be tricky in some cases, in which case467

authors are welcome to describe the particular way they provide for reproducibility.468

In the case of closed-source models, it may be that access to the model is limited in469

some way (e.g., to registered users), but it should be possible for other researchers470

to have some path to reproducing or verifying the results.471

5. Open access to data and code472
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Question: Does the paper provide open access to the data and code, with sufficient instruc-473

tions to faithfully reproduce the main experimental results, as described in supplemental474

material?475

Answer: [Yes]476

Justification: Yes, we provided a preview URL (with the verified croissant file) and the code477

is in GitHub.478

Guidelines:479

• The answer NA means that paper does not include experiments requiring code.480

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu481

blic/guides/CodeSubmissionPolicy) for more details.482

• While we encourage the release of code and data, we understand that this might not be483

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not484

including code, unless this is central to the contribution (e.g., for a new open-source485

benchmark).486

• The instructions should contain the exact command and environment needed to run to487

reproduce the results. See the NeurIPS code and data submission guidelines (https:488

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.489

• The authors should provide instructions on data access and preparation, including how490

to access the raw data, preprocessed data, intermediate data, and generated data, etc.491

• The authors should provide scripts to reproduce all experimental results for the new492

proposed method and baselines. If only a subset of experiments are reproducible, they493

should state which ones are omitted from the script and why.494

• At submission time, to preserve anonymity, the authors should release anonymized495

versions (if applicable).496

• Providing as much information as possible in supplemental material (appended to the497

paper) is recommended, but including URLs to data and code is permitted.498

6. Experimental setting/details499

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-500

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the501

results?502

Answer: [Yes]503

Justification: Yes, we provide the prompts, version of Gemini, and temperature needed to504

reproduce the results.505

Guidelines:506

• The answer NA means that the paper does not include experiments.507

• The experimental setting should be presented in the core of the paper to a level of detail508

that is necessary to appreciate the results and make sense of them.509

• The full details can be provided either with the code, in appendix, or as supplemental510

material.511

7. Experiment statistical significance512

Question: Does the paper report error bars suitably and correctly defined or other appropriate513

information about the statistical significance of the experiments?514

Answer: [No]515

Justification: We use error bars or statistical results for our tests.516

Guidelines:517

• The answer NA means that the paper does not include experiments.518

• The authors should answer "Yes" if the results are accompanied by error bars, confi-519

dence intervals, or statistical significance tests, at least for the experiments that support520

the main claims of the paper.521

• The factors of variability that the error bars are capturing should be clearly stated (for522

example, train/test split, initialization, random drawing of some parameter, or overall523

run with given experimental conditions).524
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• The method for calculating the error bars should be explained (closed form formula,525

call to a library function, bootstrap, etc.)526

• The assumptions made should be given (e.g., Normally distributed errors).527

• It should be clear whether the error bar is the standard deviation or the standard error528

of the mean.529

• It is OK to report 1-sigma error bars, but one should state it. The authors should530

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis531

of Normality of errors is not verified.532

• For asymmetric distributions, the authors should be careful not to show in tables or533

figures symmetric error bars that would yield results that are out of range (e.g. negative534

error rates).535

• If error bars are reported in tables or plots, The authors should explain in the text how536

they were calculated and reference the corresponding figures or tables in the text.537

8. Experiments compute resources538

Question: For each experiment, does the paper provide sufficient information on the com-539

puter resources (type of compute workers, memory, time of execution) needed to reproduce540

the experiments?541

Answer: [Yes]542

Justification: Yes, all our experiments were completed using the free $ 300 credits provided543

by Google Cloud once you create an account.544

Guidelines:545

• The answer NA means that the paper does not include experiments.546

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,547

or cloud provider, including relevant memory and storage.548

• The paper should provide the amount of compute required for each of the individual549

experimental runs as well as estimate the total compute.550

• The paper should disclose whether the full research project required more compute551

than the experiments reported in the paper (e.g., preliminary or failed experiments that552

didn’t make it into the paper).553

9. Code of ethics554

Question: Does the research conducted in the paper conform, in every respect, with the555

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?556

Answer: [Yes]557

Justification: Our data set conforms to the code of ethics provided by NeurIPS.558

Guidelines:559

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.560

• If the authors answer No, they should explain the special circumstances that require a561

deviation from the Code of Ethics.562

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-563

eration due to laws or regulations in their jurisdiction).564

10. Broader impacts565

Question: Does the paper discuss both potential positive societal impacts and negative566

societal impacts of the work performed?567

Answer: [NA]568

Justification: Our works simply provide a way of benchmarking VLM. We do not produce569

anything.570

Guidelines:571

• The answer NA means that there is no societal impact of the work performed.572

• If the authors answer NA or No, they should explain why their work has no societal573

impact or why the paper does not address societal impact.574
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• Examples of negative societal impacts include potential malicious or unintended uses575

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations576

(e.g., deployment of technologies that could make decisions that unfairly impact specific577

groups), privacy considerations, and security considerations.578

• The conference expects that many papers will be foundational research and not tied579

to particular applications, let alone deployments. However, if there is a direct path to580

any negative applications, the authors should point it out. For example, it is legitimate581

to point out that an improvement in the quality of generative models could be used to582

generate deepfakes for disinformation. On the other hand, it is not needed to point out583

that a generic algorithm for optimizing neural networks could enable people to train584

models that generate Deepfakes faster.585

• The authors should consider possible harms that could arise when the technology is586

being used as intended and functioning correctly, harms that could arise when the587

technology is being used as intended but gives incorrect results, and harms following588

from (intentional or unintentional) misuse of the technology.589

• If there are negative societal impacts, the authors could also discuss possible mitigation590

strategies (e.g., gated release of models, providing defenses in addition to attacks,591

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from592

feedback over time, improving the efficiency and accessibility of ML).593

11. Safeguards594

Question: Does the paper describe safeguards that have been put in place for responsible595

release of data or models that have a high risk for misuse (e.g., pretrained language models,596

image generators, or scraped datasets)?597

Answer: [NA]598

Justification: The dataset was scraped from our own office we permission of the owners.599

Guidelines:600

• The answer NA means that the paper poses no such risks.601

• Released models that have a high risk for misuse or dual-use should be released with602

necessary safeguards to allow for controlled use of the model, for example by requiring603

that users adhere to usage guidelines or restrictions to access the model or implementing604

safety filters.605

• Datasets that have been scraped from the Internet could pose safety risks. The authors606

should describe how they avoided releasing unsafe images.607

• We recognize that providing effective safeguards is challenging, and many papers do608

not require this, but we encourage authors to take this into account and make a best609

faith effort.610

12. Licenses for existing assets611

Question: Are the creators or original owners of assets (e.g., code, data, models), used in612

the paper, properly credited and are the license and terms of use explicitly mentioned and613

properly respected?614

Answer: [NA]615

Justification: We do not use pre-existing assets.616

Guidelines:617

• The answer NA means that the paper does not use existing assets.618

• The authors should cite the original paper that produced the code package or dataset.619

• The authors should state which version of the asset is used and, if possible, include a620

URL.621

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.622

• For scraped data from a particular source (e.g., website), the copyright and terms of623

service of that source should be provided.624

• If assets are released, the license, copyright information, and terms of use in the package625

should be provided. For popular datasets, paperswithcode.com/datasets has626

curated licenses for some datasets. Their licensing guide can help determine the license627

of a dataset.628
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• For existing datasets that are re-packaged, both the original license and the license of629

the derived asset (if it has changed) should be provided.630

• If this information is not available online, the authors are encouraged to reach out to631

the asset’s creators.632

13. New assets633

Question: Are new assets introduced in the paper well documented and is the documentation634

provided alongside the assets?635

Answer: [Yes]636

Justification: The dataset is well documented637

Guidelines:638

• The answer NA means that the paper does not release new assets.639

• Researchers should communicate the details of the dataset/code/model as part of their640

submissions via structured templates. This includes details about training, license,641

limitations, etc.642

• The paper should discuss whether and how consent was obtained from people whose643

asset is used.644

• At submission time, remember to anonymize your assets (if applicable). You can either645

create an anonymized URL or include an anonymized zip file.646

14. Crowdsourcing and research with human subjects647

Question: For crowdsourcing experiments and research with human subjects, does the paper648

include the full text of instructions given to participants and screenshots, if applicable, as649

well as details about compensation (if any)?650

Answer: [NA]651

Justification: The paper does not involve crowdsourcing nor research with human subjects652

Guidelines:653

• The answer NA means that the paper does not involve crowdsourcing nor research with654

human subjects.655

• Including this information in the supplemental material is fine, but if the main contribu-656

tion of the paper involves human subjects, then as much detail as possible should be657

included in the main paper.658

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,659

or other labor should be paid at least the minimum wage in the country of the data660

collector.661

15. Institutional review board (IRB) approvals or equivalent for research with human662

subjects663

Question: Does the paper describe potential risks incurred by study participants, whether664

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)665

approvals (or an equivalent approval/review based on the requirements of your country or666

institution) were obtained?667

Answer: [NA]668

Justification: The paper does not involve crowdsourcing nor research with human subjects.669

Guidelines:670

• The answer NA means that the paper does not involve crowdsourcing nor research with671

human subjects.672

• Depending on the country in which research is conducted, IRB approval (or equivalent)673

may be required for any human subjects research. If you obtained IRB approval, you674

should clearly state this in the paper.675

• We recognize that the procedures for this may vary significantly between institutions676

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the677

guidelines for their institution.678

• For initial submissions, do not include any information that would break anonymity (if679

applicable), such as the institution conducting the review.680
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16. Declaration of LLM usage681

Question: Does the paper describe the usage of LLMs if it is an important, original, or682

non-standard component of the core methods in this research? Note that if the LLM is used683

only for writing, editing, or formatting purposes and does not impact the core methodology,684

scientific rigorousness, or originality of the research, declaration is not required.685

Answer: [Yes]686

Justification: We benchmark Gemini using our new dataset.687

Guidelines:688

• The answer NA means that the core method development in this research does not689

involve LLMs as any important, original, or non-standard components.690

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)691

for what should or should not be described.692
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