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Abstract

Transfer learning has been a widely used technique to adapt a deep learning model
trained for one task to another when there is a data distribution shift between
these tasks. To improve the effectiveness of transfer learning and to understand
relationships between tasks, we consider the problem of transferability estimation
between regression tasks and propose two novel transferability estimators that are
simple, computationally efficient, yet effective and theoretically grounded. We
test our proposed methods extensively in various challenging, practical scenarios
and show they significantly outperform existing state-of-the-art regression task
transferability estimators in both accuracy and efficiency.

1 Introduction

Transfer learning [15, 21] has been a popular technique to adapt a deep learning model trained for
one task to another when there is a data distribution shift between these tasks. To improve transfer
learning and to understand task relationships, transferability estimation [3, 18, 24] has recently been
studied. The aim of transferability estimation is to derive a computationally efficient metric (a score)
that can predict the effectiveness of transferring a deep learning model from source to target tasks.
This problem has recently gained attention as a means for model and task selection [3, 6, 18, 24, 29]
that can potentially improve the performance and reduce the cost of transfer learning. Transferability
estimators were also developed and used for checkpoint ranking [12, 14] and few-shot learning [23].

Nearly all existing methods consider only the transferability of classification tasks [3, 8, 13, 14, 17,
18, 22, 24] with very few designed for regression tasks [13, 29]. Furthermore, those few methods
proposed for estimating regression model transferability have so far been either complex and ineffi-
cient [29] or ineffective [13], as we will show in our experiments. Compared to these previous work,
we offer efficient and theoretically grounded transferability estimation for regression problems.

Specifically, we propose two families of simple transferability estimators that utilize the penalized
mean squared error (MSE) of a linear regression model computed from the source and target training
sets. The first family, Linear MSE, uses features extracted from a model trained on the source task
(the source model), while the second family, Label MSE, uses the dummy labels obtained from the
source model. In special cases where the source and target data share the inputs, the Label MSE
estimators can be computed efficiently from true labels without a source model. Besides simplicity,
our methods also have theoretical properties relating to the expected risk of the target model.

We conduct experiments on two real-world keypoint detection datasets, CUB-200-2011 [26] and
OpenMonkey [28], to show the advantages of our methods. The results clearly demonstrate that the
proposed methods outperform recently published, state-of-the-art (SotA) transferability estimators for
regression problems, such as LogME [29] and TransRate [13], in both effectiveness and efficiency.

• Other Related Work. Besides transferability estimation, our paper is also related to previous
work that developed theoretical bounds for transfer learning [2, 4, 5, 16, 25, 27]. These bounds are
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usually hard to compute in practice and thus unsuitable for transferability estimation. Some previous
transferability estimators have theoretical bounds on the empirical loss [18, 24], but they were shown
for classification and did not bound the expected loss. Our work, on the other hand, focuses on
regression and proves generalization bounds for the expected loss.

2 Transferability Between Regression Tasks

• Transfer learning settings. Consider a source training set Ds = {(xs
i , y

s
i )}

ns
i=1 and a target

training set Dt = {(xt
i, y

t
i)}

nt
i=1 consisting of ns and nt examples respectively, where xs

i , x
t
i ∈ Rd

are d-dimensional input vectors, ysi ∈ Rds is a ds-dimensional source label vector, and yti ∈ Rdt is a
dt-dimensional target label vector. Note that we allow multi-output regression tasks where ds, dt > 1.

From the source dataset Ds, we train a deep learning model (w∗, h∗) consisting of a feature ex-
tractor w∗ and a regression head h∗ that minimizes the empirical MSE loss. That is, w∗, h∗ =
argminw,h L(w, h;Ds), where w : Rd → Rdr is a feature extractor network, h : Rdr → Rds is a
source regression head network, and L(w, h;Ds) =

1
ns

∑ns

i=1 ∥ysi − h(w(xs
i ))∥2 is the empirical

MSE loss of the whole model (w, h) on Ds, with ∥ · ∥ being the ℓ2 norm. In practice, we usually
consider the source model as a whole (e.g., a ResNet model [11]) and use its first l layers from the
input (for some chosen number l) as the feature extractor w. The regression head h is the remaining
part of the model from the l-th layer to the output layer, and the prediction for any input x is h(w(x)).

After training the optimal source model (w∗, h∗), we perform transfer learning to the target task
by freezing the optimal feature extractor w∗ and re-training a new regression head k∗ using the
target dataset Dt, also by minimizing the empirical MSE loss: k∗ = argmink L(w∗, k;Dt) =
argmink

{
1
nt

∑nt

i=1 ∥yti − k(w∗(xt
i))∥2

}
, where k : Rdr → Rdt is a target regression head network

that may have a different architecture than that of h. In general, the regression heads h and k may
contain multiple layers and are not necessarily linear. This transfer learning setting is usually called
head re-training [9, 19, 20] and will be used in our theoretical analysis. In our experiments, we also
consider another transfer learning setting called fine-tuning, where we fine-tune the trained feature
extractor w∗ on the target set in addition to re-training k∗ [1, 7, 10].

• Transferability Estimators. A transferability estimator measures the effectiveness of transfer
learning given a pair of source and target tasks. Intuitively, we can use the MSE of the transferred
target model L(w∗, k∗;Dt) as an estimator. However, that means we need to run the actual transfer
learning algorithm, which could be expensive if the network architecture of the target regression
heads (e.g., k and k∗) is complex. A simple way to reduce this computational cost is to approximate
L(w∗, k∗;Dt) using an ℓ2 regularized linear regression (or Ridge regression) head; that is, we
consider the family of Linear MSE estimators below. In our definitions, ∥ · ∥F is the Frobenius norm.
Definition 1. A Linear MSE transferability estimator between a source dataset Ds and a
target dataset Dt, with a regularization parameter λ ≥ 0, is defined as: T lin

λ (Ds,Dt) :=
minA,B

{
1
nt

∑nt

i=1 ∥yti −Aw∗(xt
i)−B∥2 + λ∥A∥2F

}
, where A ∈ Rdr×dt and B ∈ Rdt .

We use a regularizer in the estimator to avoid overfitting when Dt is small. Previous work such as
LogME [29] prevents overfitting by taking a more complicated and expensive Bayesian approach.
Here we argue that a simple regularization can tackle this issue effectively and more efficiently.
Given a pre-trained feature extractor w∗, we can compute T lin

λ (Ds,Dt) efficiently by solving a Ridge
regression problem. If the target head is restricted to only linear regression model, the non-regularized
Linear MSE T lin

0 (Ds,Dt) is equal to the MSE of the transferred target model (w∗, k∗) on Dt. If
the target head has more than one layer with a non-linear activation function, T lin

λ (Ds,Dt) can be
regarded as using a regularized linear model to approximate this non-linear head.

Although Linear MSE scores can be computed efficiently, they may still be expensive if the feature
vectors w∗(xt

i) are high-dimensional. Furthermore, in many cases, we need to compute and compare
the scores for several pairs of datasets, resulting in high computational costs. To further reduce the
costs, we propose the Label MSE transferability estimators below, which replaces w∗(xt

i) by the
“dummy” source label zi = h∗(w∗(xt

i)). Using dummy labels from the trained source model (w∗, h∗)
is a technique previously used in the LEEP transferability scores for classification tasks [18].
Definition 2. A Label MSE transferability estimator between a source dataset Ds and a target dataset
Dt, with a regularization parameter λ ≥ 0, is defined as: T lab

λ (Ds,Dt) := minA,B

{
1
nt

∑nt

i=1 ∥yti −
Azi −B∥2 + λ∥A∥2F

}
, where A ∈ Rds×dt , B ∈ Rdt , and zi = h∗(w∗(xt

i)),∀i.
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Table 1: Correlation coefficients when transferring from OpenMonkey to CUB-200-2011.

Transfer setting Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Head re-training 0.958 0.165 0.992* 0.992* 0.969 0.121 0.982 0.988*
Half fine-tuning 0.706 0.392 0.882* 0.882* 0.870 0.304 0.865 0.872*
Full fine-tuning 0.691 0.410 0.870* 0.870* 0.861* 0.311 0.854 0.861*

From our definitions, the lower the Linear MSE or Label MSE, the better the transferability. Since
the size of zi is usually much smaller than that of w∗(xt

i) (i.e., ds ≪ dr), computing the Label MSE
is usually cheaper than computing the Linear MSE. We prove novel properties of Label MSE below.

• Theoretical Results. We prove some theoretical properties (in the form of generalization bounds)
for the Label MSE with ReLU feed-forward neural networks. We first make the standard assumption
that the source data and the target data are drawn iid from the unknown distributions P(Xs, Y s)
and P(Xt, Y t) respectively. Given any model (w, k) for the target task, the expected risk of (w, k)
is defined as R(w, k) = E(xt,yt)∼P(Xt,Y t)

{
∥yt − k(w(xt))∥2

}
. Our main theoretical result is

Theorem 1 below. In this theorem, L is the number of layers of the ReLU feed-forward neural
network (w, k), and we assume the number of hidden nodes and parameters in each layer are upper
bounded by H and M ≥ 1 respectively.

Theorem 1. For any λ ≥ 0 and δ > 0, with probability at least 1 − δ, we have: R(w∗, k∗) ≤
T lab
λ (Ds,Dt) + C(d, dt,M,H,L, δ)/

√
nt.

This theorem shows that the expected risk is upper bounded by the Label MSE plus a complexity
term C(d, dt,M,H,L, δ)/

√
nt that depends on the architecture of the target network and the target

dataset (i.e., the input/output dimensions and the dataset size). When the complexity term is small
(e.g., when nt is large), the Label MSE will be a tighter bound for the expected risk.

• Setting with Shared Inputs. When the source and target data have the same inputs, i.e., xs
i =

xt
i = xi and ns = nt = n, we can compute the Label MSE directly from the labels without training

the source model (w∗, h∗) or computing the dummy labels. Formally, we can use the following new
definition for the Label MSE: T̂ lab

λ (Ds,Dt) := minA,B

{
1
n

∑n
i=1 ∥yti − Aysi − B∥2 + λ∥A∥2F

}
,

where we train a Ridge regression model directly from the corresponding label pairs (ysi , y
t
i). This

new transferability estimator is less expensive since we do not need to train the source model. We can
also prove similar generalization bounds with T̂ lab

λ (Ds,Dt).

3 Experiments

We evaluate our transferability estimators on the keypoint regression tasks using two large-scale
public datasets: (1) CUB-200-2011 [26]: This dataset contains 11,788 bird images with 15 labeled
keypoints indicating 15 different parts of a bird body, and (2) OpenMonkey [28]: This dataset
contains over 100,000 monkey images in natural contexts, annotated with 17 body keypoints.

We use ResNet34 [11] as the model backbone due to its good performance. Following [18, 24], we
investigate how well our transferability estimators correlate (using Pearson correlation) with the test
MSE of the target model obtained from actual transfer learning. We consider three transfer learning
algorithms: (1) head re-training: We fix all layers of the source model up until the penultimate
layer and re-train the last fully-connected (FC) layer; (2) half fine-tuning: We fine-tune the last
convolutional block and all the FC layers of the source model (around half of the parameters in the
network), while keeping all other layers fixed; and (3) full fine-tuning: We fine-tune the whole
source model using the target training set.

For our methods, we consider λ = 0 (LinMSE0 and LabMSE0) and λ = 1 (LinMSE1 and
LabMSE1). We compare with two recent SotA baselines for regression: LogME [29] and Tran-
sRate [13]. Besides their usual versions, we also consider the label-based versions where these
estimators are computed from dummy labels and target labels (LabLogME and LabTransRate).
As in [13], we divide the target label values into 5 equal-sized bins to compute TransRate and
LabTransRate.

• General Transfer Between Two Different Domains. We first consider the general case where
source models are trained on OpenMonkey and then transferred to CUB-200-2011. Specifically, we
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Table 2: Correlation coefficients when transferring between tasks with shared inputs. The last row
shows the average running time (in milliseconds) on CUB-200-2011.

Dataset Transfer setting Label-based method Feature-based method

LabLogME LabTransRate LabMSE0 LabMSE1 LogME TransRate LinMSE0 LinMSE1

Open
Mon-
key

Head re-training 0.890 0.666 0.973* 0.973* 0.646 0.711 0.949 0.981*
Half fine-tuning 0.615 0.340 0.754* 0.754* 0.391 0.488 0.893* 0.787
Full fine-tuning 0.569 0.269 0.705* 0.705* 0.352 0.439 0.852* 0.739

CUB-
200-
2011

Head re-training 0.547 0.008 0.916* 0.916* 0.889 0.029 0.921 0.932*
Half fine-tuning 0.400 0.006 0.536* 0.536* 0.560 0.006 0.628* 0.607
Full fine-tuning 0.120* 0.001 0.056 0.056 0.099 0.100* 0.097 0.093

Average running time (ms) 3.55 4.11 2.87 2.58* 112.99 94.57 107.48 27.41*

train a source model for each of the 17 OpenMonkey keypoints and transfer them to each of the 15
CUB-200-2011 keypoints, resulting in a total of 255 final models. Since each keypoint consists of
x and y positions, all source and target tasks in this experiment have two dimensional labels. The
actual MSEs of these models are computed on the respective test sets and then used to calculate the
Pearson correlation coefficients with the transferability estimators. In this experiment, the label-based
estimators are computed from the dummy labels and the actual target labels.

Table 1 shows the results for this experiment.1 From the results, TransRate and LabTransRate perform
poorly in this regression setting, while our methods are equal or better than LogME and LabLogME in
all cases, especially when using λ = 1 (LinMSE1) or dummy labels (LabMSE0 and LabMSE1). We
observe that adding a regularizer in LabMSE1 does not significantly change its correlation coefficient
compared to LabMSE0. This is because we scaled the labels to [0, 1] as a pre-processing step, so a
regularizer with λ = 1 has negligible effect on the scores. It is also surprising that LabMSE0 and
LabMSE1 are better than LinMSE0 and LinMSE1. One possible explanation for this phenomenon is
that the dummy labels (i.e., body parts of monkeys) give more information about the target labels
(i.e., body parts of birds) than the extracted features.

• Transfer Between Tasks with Shared Inputs. In this experiment, we consider the setting
where the source and target tasks have the same inputs. Since each image in our datasets contains
multiple keypoints, we can use any two different keypoints on the same dataset as source and
target tasks. In total, we can construct 210 source-target pairs for CUB-200-2011 and 272 pairs
for OpenMonkey. The labels for all source and target tasks are also 2-dimensional real values. We
repeat the previous experiment with these source-target pairs for each dataset. The main difference
in this experiment is that we use the true source labels (instead of dummy labels) when computing
LabLogME, LabTransRate, LabMSE0, and LabMSE1. Thus, these estimators can be computed
without any source models in this setting, and hence incurring very low computational costs.

Results for this experiment are in Table 2. Here both versions of TransRate perform poorly on
CUB-200-2011, while TransRate is slightly better than LogME on OpenMonkey. In the first 5
settings of Table 2, LabMSE0 and LabMSE1 both outperform LabLogME and LabTransRate, while
LinMSE0 and LinMSE1 both outperform LogME and TransRate. In these settings, the LinMSE
methods achieve the best correlations overall. In the last setting (full fine-tuning on CUB-200-2011),
all methods perform poorly.

• Efficiency of Our Methods. In the last row of Table 2, we compare the average running time of
different methods in the shared inputs setting on CUB-200-2011. We can observe that LabMSE0,
LabMSE1, LinMSE0, and LinMSE1 are all faster than the corresponding label-based or feature-based
baselines. Overall, LabMSE1 and LinMSE1 achieve the best running time among the label-based
and feature-based methods respectively.

4 Conclusion
We proposed Linear MSE and Label MSE, two families of simple but effective transferability
estimation methods for regression, and proved novel theoretical bounds for the expected risk of the
target models using these estimators. Our experiments showed that the proposed methods are superior
to recent, relevant SotA methods in terms of both effectiveness and efficiency.

1In our tables, bold numbers indicate the best results in each row, while asterisks (*) indicate the best results
among the corresponding label-based or feature-based methods.
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