
GRILL: Grounded Vision-language Pre-training via Aligning
Text and Image Regions

Anonymous ACL submission

Abstract

Cross-task generalization is an important abil-001
ity for few-shot learners to achieve better zero-002
/few-shot performance on diverse tasks. How-003
ever, such generalization to vision-language004
tasks including grounding and generation tasks005
has been under-explored. Furthermore, exist-006
ing few-shot VL models struggle to handle007
tasks that involve object grounding and multi-008
ple images such as visual commonsense reason-009
ing (Zellers et al., 2019) or NLVR2 (Suhr et al.,010
2019). In this paper, we introduce GRILL,011
GRounded vIsion Language aLigning, a novel012
VL model that learns object grounding and lo-013
calization in pre-training and can adapt to di-014
verse grounding tasks with no or very few train-015
ing instances. Specifically, GRILL exploits016
object-text alignments and learns to ground ob-017
jects in pre-training, which enables it to trans-018
fer to tasks such as referring expression com-019
prehension (Mao et al., 2016) and visual com-020
monsense reasoning (Zellers et al., 2019) in a021
zero-/few-shot fashion. We evaluate our model022
on various zero-/few-shot VL tasks and show023
that it consistently surpasses the state-of-the-art024
few-shot methods.025

1 Introduction026

Cross-task generalization has been explored and027

investigated on zero-/few-shot NLP tasks by per-028

forming multi-task learning and generalizing un-029

seen tasks with task-specific prompts (Sanh et al.,030

2021) or pre-training huge language models on031

a massive dataset and using a few examples as032

demonstrations for generalization (Brown et al.,033

2020). Similarly, few-shot learning methods aim034

to leverage the pre-trained language models and035

their powerful generalization abilities to adapt to036

vision-language (VL) domains and learn new tasks037

from zero or a few examples (Tsimpoukelli et al.,038

2021; Radford et al., 2021; Jin et al., 2021; Alayrac039

et al., 2022).040

While few-shot learning methods can overcome041

the challenges of data-hungry supervised learning042

Visual Commonsense Reasoning (VCR)

Flickr30k-entities

VQA

Why do [person1] and 
[person2] look so scared?
[person1] is holding a gun

Output:
False

A man in a plaid shirt is 
looking at flowers.

Output:
True

What are the people 
riding? 

Output:
Motorcycles

Figure 1: Examples of inputs and outputs of our
task setup. GRILL can generalize to diverse VL tasks
including grounding tasks in a zero-/few-shot manner.

and avoid the need for task-specific fine-tuning, 043

existing few-shot VL learners do not address the 044

challenge of grounding tasks that require not only 045

understanding the image and the language, but also 046

locating and identifying relevant regions or objects 047

in images, such as visual commonsense reasoning 048

(VCR) (Zellers et al., 2019), where the model has to 049

reason about the actions, intentions, and emotions 050

of agents in the image; or Flickr30k-entities (Plum- 051

mer et al., 2015), where the model has to align 052

the mentions of entities in the captions with their 053

corresponding regions in the image. These tasks 054

are essential for VL models to achieve human-like 055

reasoning and understanding. However existing 056

few-shot methods lack the skills to address the chal- 057

lenge, as they do not explicitly model the spatial 058

and visual information of the regions or objects. 059

On the other hand, existing fine-tuning methods 060

for grounding tasks rely on special representations 061

for regions or objects, such as special tokens that 062

mark the regions or objects in the captions and the 063

images (Cho et al., 2021); object features extracted 064

from a pre-trained object detector (Su et al., 2020; 065
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Chen et al., 2019) and concatenated with the image066

features, etc. These methods achieve good results067

with fine-tuning, but they are not compatible with068

zero-/few-shot learning, due to the different designs069

of object representation for each task and the de-070

pendence on external object detectors that may not071

cover all the relevant concepts.072

In this paper, we introduce GRILL, GRounded073

vIsion Language aLigning, a new VL model that074

can learn object grounding and localization dur-075

ing pre-training and generalize to a wide range076

of VL tasks including grounding tasks in a zero-077

/few-shot fashion. Our model is a sequence-to-078

sequence transformer model (Vaswani et al., 2017)079

that uses a vision transformer (ViT) (Dosovitskiy080

et al., 2021; Liu et al., 2021) to process images with081

patch embeddings, where each patch represents a082

fixed-size region of the image. We represent a vi-083

sual concept (object or region) that corresponds084

to a group of patches by aggregating information085

across the patches. This enables our model to gen-086

erate better representations for any kind of regions087

or images without relying on pre-trained object088

detectors, which may be noisy, incomplete, or bi-089

ased. We construct our pre-training dataset from090

MS-COCO (Lin et al., 2014; Chen et al., 2015)091

and Visual Genome (Krishna et al., 2017), where092

each caption contains images or bounding boxes093

within them, which provide rich and diverse infor-094

mation for the model to learn object grounding and095

localization. Given the dataset, we pre-train our096

model with prefix language modeling (PrefixLM)097

and masked language modeling (MaskedLM) ob-098

jectives, which encourage the model to generate099

natural language from images and fill in the miss-100

ing words in captions, respectively; and a discrim-101

inative objective, which encourages the model to102

distinguish between correct and incorrect captions103

for the same image.104

We test our GRILL on 7 zero-/few-shot105

vision-language tasks including Visual Com-106

monsense Reasoning (VCR) (Zellers et al.,107

2019), RefCOCOg (Mao et al., 2016), Flickr30k-108

entities (Plummer et al., 2015), NLVR2 (Suhr et al.,109

2019), SNLI-VE (Xie et al., 2019), visual ques-110

tion answering (Goyal et al., 2017), and Flickr30k111

captioning (Young et al., 2014). We observe that112

our model demonstrates better zero-/few-shot gen-113

eralization on diverse tasks compared to baselines.114

We also notice that the discriminative objective and115

hybrid sequences in pre-training are vital for better116

A

Transformer Encoder Decoder

<text_1> motorcycle

Vision Transformer

sitting
on a <text_1>

Figure 2: Illustration of GRILL. Our model is a
sequence-to-sequence transformer that uses a vision
transformer (ViT) (Dosovitskiy et al., 2021; Liu et al.,
2021) to process images with patch embeddings, where
each patch represents a fixed-size region of the image.
We replace the referring words with the corresponding
visual patches.

zero-/few-shot performance. 117

2 Generalization to Diverse Grounded 118

Visual-language Tasks 119

Various VL tasks require phrase and object ground- 120

ing and their task formats are different, which 121

makes few-shot models challenging to generalize. 122

In this work, we introduce a model that can gener- 123

alize to grounded VL tasks with no or a few labeled 124

examples. We first introduce the background, for- 125

mal problem definition, and challenges. 126

2.1 Background: Visual Grounding 127

Visual grounding refers to the ability to link lin- 128

guistic concepts (sentences, phrases, or words) 129

to visual concepts (images and regions) (Chandu 130

et al., 2021). Here we consider two types of visual 131

grounding: image grounding and object grounding. 132

Image grounding refers to the linking of textual 133

concepts to image concepts (Chandu et al., 2021). 134

In this work, we consider image grounding as link- 135

ing any type of text including sentences, phrases, 136

and words to an entire image (e.g., image caption- 137

ing, and image retrieval). Given an image and 138

a corresponding caption, object grounding aims 139

to localize objects in the image as mentioned by 140

a noun phrase in the caption (or the entire cap- 141

tion sentence). Such object grounding occurs at 142

word, phrase, and sentence levels in the language 143

modality. Many VL tasks require object grounding 144

implicitly or explicitly and we consider tasks that 145

explicitly require localization as object grounding 146

tasks. Referring expression comprehension (Re- 147

fCOCOg (Mao et al., 2016)), phrase grounding 148

(Flickr30k-entities (Plummer et al., 2015)), and vi- 149
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sual commonsense reasoning (Zellers et al., 2019)150

are examples of localization tasks151

2.2 Problem Formulation152

In this work, we re-formulate the widely used pre-153

training task for image-caption datasets such that154

each caption may have one or more images in-155

cluding bounding boxes or regions in itself as a156

part of the text, denoted by (T, {Vj}N ), in addi-157

tion to the associated images. Note that some cap-158

tions may not have images in themselves, N = 0.159

We refer to learning on the captions with images160

grounded learning. For pre-training, a VL model is161

pre-trained on image-caption datasets where cap-162

tions include images or bounding boxes. For zero-163

shot tasks, the pre-trained model L cannot access164

training data Dtrain and validation data Dval. We165

directly evaluate the model on the test data Dtest.166

For few-shot tasks, the model has access to K in-167

stances of training data for fine-tuning. For hyper-168

parameter tuning and model selection, we assume169

validation data Dval which has an equal number of170

instances to Dtrain to simulate a real-world low-171

resource environment and compose the validation172

data from training data. The sizes of Dtrain and173

Dval are 32 in our study.174

Challenges Our goal is to pre-train a VL model175

that seamlessly transfers to various tasks not lim-176

ited to visual commonsense reasoning, referring177

expression comprehension, and phrase grounding178

in a zero-shot or few-shot manner. Different tasks,179

especially grounding tasks, have different input180

and output formats, and thus the main challenge of181

this work is to generalize the zero-/few-shot abil-182

ity to diverse tasks. Existing works on grounding183

tasks introduce special representations to depict184

regions such as special tokens (Cho et al., 2021)185

or object representations by an object detector (Su186

et al., 2020; Chen et al., 2019). While these works187

perform well on grounding tasks via expensive fine-188

tuning on labeled data, they have to design differ-189

ent object representations for different task formats.190

This makes it difficult to generalize to new tasks in191

a zero-shot fashion. For example, the object rep-192

resentations from an object detector are difficult193

to transfer to a task that refers to multiple images194

such as NLVR2 (Suhr et al., 2019). In this work,195

we tackle these challenges by introducing patch196

embeddings to represent objects, regions, and im-197

ages; and pre-training our model with grounded198

sequences that contain captions and multiple im-199

ages per caption. 200

3 Pre-training for Better Cross-Task 201

Generalization 202

In this section, we introduce GRILL, a few-shot 203

VL model for jointly learning contextualized repre- 204

sentations from vision and language tasks. We first 205

present an overview of GRILL (§3.1), our model 206

architecture (§3.2), pre-training objectives (§3.3), 207

and pre-training data (§3.4) in this section. 208

3.1 Overview 209

We propose GRILL, a new VL model that can 210

learn object grounding and localization in pre- 211

training and generalize to a wide range of VL tasks 212

including grounding tasks in a zero-/few-shot man- 213

ner. Our model is a sequence-to-sequence trans- 214

former (Vaswani et al., 2017) and takes a hybrid 215

sequence, denoted by (I, T, {Vj}N ), consisting of 216

text T , an image I and visual concepts or regions 217

{Vj}N as input and the output is a text sequence. 218

We represent an input image with image patches 219

by vision transformer (Dosovitskiy et al., 2021; 220

Liu et al., 2021) and represent a region that cor- 221

responds to a set of patches by aggregating infor- 222

mation among the patches. Given sequences with 223

paired text outputs, we pre-train our model with 224

prefix language modeling, masked language model- 225

ing, and a discriminative objective. We discuss how 226

we create the hybrid sequences from image-caption 227

datasets in §3.4. 228

3.2 Model Architecture 229

We adopt an encoder-decoder architec- 230

ture (Vaswani et al., 2017) to encode visual 231

and text inputs to generate target text. We represent 232

an input image with a sequence of image patches 233

by a vision transformer (Dosovitskiy et al., 2021; 234

Liu et al., 2021). We adopt Swin transformer (Liu 235

et al., 2021) as our vision transformer. It first splits 236

an image into non-overlapping patches and linearly 237

embeds all patches. Then, these patches are passed 238

to the transformer layers, yielding {v1, ..., vm}. 239

For an image of resolution of 224× 224 and patch 240

size of 32× 32, we have m = 49. We assume that 241

vi encodes the information of the corresponding 242

patch pi. Therefore, we represent a visual concept 243

(object or region) Vj that corresponds to a set 244

of patches by aggregating information among 245

the patches as shown in Figure 2. In addition, 246

the entire patch representations are fed into the 247

encoder by appending them to the text to encode 248

the whole image. We train the model parameters θ 249
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A giraffe standing near 
some rocks on the grass A                  standing near some rocks on the grass

A                  standing near some <text_1> on the grass

A                 standing near some

A                  standing near some rocks on the grass

<text_1> rocks

rocks on the grass

False

Prefix LM

Masked LM

Discriminative

Figure 3: Pre-training objectives. We illustrate our
pre-training objectives. We include masked language
modeling, prefix language modeling, and the discrimi-
native objective as our pre-training objectives.

by minimizing the negative log-likelihood of target250

text y tokens given input text x and image v:251

Lθ = −
|y|∑
i=1

logPθ(yi|y<i, x, v). (1)252

3.3 Pre-training Objectives253

Given images and captions with regions, we254

pre-train the models with prefix language mod-255

eling (PrefixLM), masked language modeling256

(MaskedLM), and a discriminative objective. We257

aim to learn grounding and localization through258

pre-training. Note that our model takes an image259

and text with regions as inputs and generates target260

text. In addition to the hybrid sequences, we also261

include raw text and raw images as our pre-training262

data. Fig. 3 illustrates the pre-training objectives.263

Prefix language modeling. We include prefix lan-264

guage modeling (PrefixLM) following (Raffel et al.,265

2020; Jin et al., 2021). The objective randomly266

splits the text with regions input into two separate267

sequences. The first part may contain regions and268

is used as an input with an image to the encoder,269

and the second part does not contain regions and270

is used as target text to be generated by the de-271

coder. The target text is not allowed to have region272

representations since our model generates text only273

Masked language modeling. Masked language274

modeling (Cho et al., 2021; Jin et al., 2021) is to275

mask out random spans with numbered sentinel276

tokens, e.g., <text_1>, and then the masked se-277

quence is fed into the encoder. Then the decoder278

generates the masked spans as target text. We ran-279

domly mask 15% of input text tokens and replace280

them with sentinel tokens. Note that the input se-281

quence may include region representations in ad-282

dition to a paired image and the region representa-283

tions are not allowed to be masked.284

Discriminative objective. This discriminative ob- 285

jective is important so that our model can do clas- 286

sification tasks where it has to determine whether 287

the given sequence is correct or not. Thus, we pre- 288

train GRILL with the discriminative objective and 289

the model generates target texts, “true” for positive 290

pairs and “false” for negative pairs. We consider 291

an image and its captions with associated regions 292

(if any) as positive pairs. With a probability of 293

50%, we replace the referring words with random 294

region representations from the given image and 295

treat this as a negative pair. The negative samples 296

let the model learn the correct bindings of referring 297

words and corresponding regions. For the raw text 298

and raw image pairs, we randomly sample another 299

training caption to create a negative pair. 300

3.4 Pre-training Data 301

To pre-train GRILL, we collect image-caption data 302

from MS COCO (Lin et al., 2014; Chen et al., 303

2015) and Visual Genome (VG) (Krishna et al., 304

2017). The pre-training datasets contain 9.18M 305

image-text pairs and 180K distinct images. From 306

the image-caption pairs, we create our dataset for 307

grounded image-caption pre-training, where each 308

caption may have one or more region representa- 309

tions. We also include raw text and raw images 310

as our pre-training data. To obtain captions with 311

region representations, we introduce object-word 312

alignments representing correspondence between 313

words and objects. Given the object-word align- 314

ments, we replace words in a caption with a corre- 315

sponding region representation so that the caption 316

has a region representation as a substitute for the 317

aligned word. With the object-word alignments, 318

we prepare our dataset for pre-training. In addition, 319

we include region descriptions and the aligned re- 320

gions as hybrid sequences in Visual Genome for 321

our pre-training. 322

3.4.1 Object-word Alignments 323

Given image-caption pairs, the process of getting 324

object-word alignments consists of three steps: (1) 325

object detection on images, (2) object tag-word 326

matching, and (3) object-word alignments. We 327

illustrate the process in Fig. 4. 328

Object detection on images. The first step is to de- 329

tect objects in images and tags for the objects. We 330

use the state-of-the-art object detector (Zhang et al., 331

2021) to get object bounding boxes and tags, yield- 332

ing {(V1, l1), ..., (Vm, lm)} where Vi is a bounding 333

box and li is a tag for the box. Given the set of 334

tags {l1, ..., lm}, we find correspondence between 335
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Object detection

Object tag – word matching

Object – word alignment

A giraffe standing near 
some rocks on the grass

giraffe rock

giraffe – giraffe  
rock – rocks

giraffe rocks

Figure 4: Object-word alignments.To create pre-
training data, we use object-word alignments which
is to replace referring words with corresponding bound-
ing boxes.

the tags and words {w1, ..., wn} in a caption in the336

next step.337

Object tag-word matching. The second step338

is basically to find similar words between tags339

{l1, ..., lm} and words {w1, ..., wn}. We define340

rules to find similar words as follows:341

• Exact token matching342

• Plural - Singular exact token matching343

• Word vector similarity (Mikolov et al., 2013)344

• WordNet Synonyms (Miller, 1995)345

If one of the rules is satisfied, then we mark them346

as aligned tags and words {(li, wj)}. Note that a347

word can be matched to multiple tags.348

Object-word alignments. In the last step, we349

find alignments between object bounding boxes350

and words {(oi, wj)} given the alignments be-351

tween tags and words {(li, wj)} and an object list352

{(o1, l1), ..., (om, lm)}. We simply find the object-353

word alignments since each tag is mapped to each354

bounding box, yielding {(oi, li, wj)}. However,355

note that some object bounding boxes share the356

same object tag; thus the alignments can include357

noisy correspondence between object boxes and358

words. We run CLIP (Radford et al., 2021) be-359

tween aligned words and objects to find the most360

plausible alignment.361

4 Experiments362

4.1 Experiment Details363

For pre-training, we use 1,280 batch size for364

GRILL and set learning rate 1e-4 with 5% linear365

warmup in pre-training. For the few-shot setting,366

we train models with 100 epochs and learning rate367

1e-4, and choose the best checkpoint on the valid368

set. The model size of GRILL is 310M parame-369

ters. For baselines, we use their official codes to370

get zero-shot and few-shot performance. 371

4.2 Evaluation Setup 372

To evaluate few-shot performance, we randomly 373

sample 5 different training and dev splits and mea- 374

sure the average performance on the 5 splits. We 375

fine-tune the vision-language models with 100 376

epochs for the few-shot setup and choose the best 377

checkpoint on the dev set. We report the model per- 378

formance on the test set for RefCOCOg, NLVR2, 379

Flickr30k-entities, SNLI-VE, and Flickr30k cap- 380

tioning (Karpathy split (Karpathy and Li, 2015)), 381

and the validation set for VCR and VQAv2. We 382

adopt accuracy for VCR, RefCOCOg, SNLI-VE, 383

NLVR2, and VQA datasets; Recall@1,5,10 for 384

Flickr30k-entities; and CIDEr (Vedantam et al., 385

2015) as evaluation metrics for captioning. 386

4.3 Baselines 387

For baselines, we include existing VL models: 388

UNITERlarge (Chen et al., 2019), VL-T5 (Cho 389

et al., 2021), GLIP-L (Li et al., 2022; Zhang et al., 390

2022), MDETR-ENB3 (Kamath et al., 2021); and 391

few-shot VL models: FewVLM (Jin et al., 2021), 392

Flamingo (Alayrac et al., 2022), and CPT (Yao 393

et al., 2021). We exclude VQA datasets for VL-T5 394

for fair comparisons and pre-train the model us- 395

ing their code. Parameter sizes of each model are 396

303M for UNITERlarge, 224M for VL-T5, 231M 397

for GLIP-L, 152M for MDETR, 224M and 740M 398

for FewVLMbase and FewVLMlarge, 3B and 80B 399

for Flamingo, and 113M for CPT. 400

4.4 Downstream Tasks and Datasets 401

In this section, we compare our GRILL on a di- 402

verse set of 7 downstream tasks. We mainly fo- 403

cus on tasks that require phrase/object grounding: 404

Visual Commonsense Reasoning, referring expres- 405

sion comprehension, and phrase grounding. Addi- 406

tionally, we evaluate our model on SNLI-VE, VQA, 407

and captioning. VQA and captioning require gen- 408

eration for our method, while other datasets are 409

classification tasks. 410

Visual Commonsense Reasoning (VCR) Visual 411

Commonsense Reasoning (VCR) (Zellers et al., 412

2019) is a multiple-choice question-answering task 413

that requires commonsense reasoning between ob- 414

jects in images. The task is decomposed into two 415

sub-tasks, question answering (Q → A) and ratio- 416

nale prediction (QA → R). In the holistic setting (Q 417

→ AR), models have to predict answers and ratio- 418

nales. Following VL-T5 (Cho et al., 2021), we rank 419

the choices with P (true)/(P (true) + P (false)). 420
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Method Size VCR RefCOCOg Flickr30k-entities NLVR2 SNLI-VE VQAv2 Flickr30k

Q → A QA → R Q → AR Acc R@1 R@5 R@10 Acc Acc Acc CIDEr

Random - 25.0 25.0 6.3 19.0 6.5 27.7 47.8 50.0 33.3 0.0 -
UNITERlarge 303M 32.6 26.1 8.7 10.0 - - - 49.1 17.9 0.0 -
VL-T5 224M 28.2 27.5 8.2 0.0 0.0 0.0 1.1 48.7 - 13.5 4.4
FewVLMbase 224M 25.9 25.4 6.5 0.0 0.0 0.0 0.0 50.6 - 43.4 31.0
FewVLMlarge 740M 27.0 26.1 7.4 0.0 0.0 0.0 0.0 51.2 - 47.7 36.5

GRILL 310M 40.6 39.3 16.2 47.5 18.9 53.4 70.3 56.1 46.9 42.3 25.6

Table 1: Zero-shot results. We report performance on downstream tasks without any training data. Our model
surpasses all baselines on classification tasks.

Method Size VCR RefCOCOg Flickr30k-entities NLVR2 SNLI-VE VQAv2 Flickr30k

Q → A QA → R Q → AR Acc R@1 R@5 R@10 Acc Acc Acc CIDEr

Random - 25.0 25.0 6.3 19.0 6.5 27.7 47.8 50.0 33.3 0.0 -
UNITERlarge 303M 29.1 28.6 8.4 45.4 - - - 58.5 40.7 24.2 -
VL-T5 224M 29.7 28.0 8.7 56.9 48.8 72.8 78.6 48.7 - 35.6 18.9
FewVLMbase 224M 29.1 28.4 8.5 16.0 4.2 18.7 31.7 50.3 - 47.8 37.5
FewVLMlarge 740M 30.0 30.1 9.3 17.4 5.1 22.7 38.0 51.3 - 52.3 38.4

GRILL 310M 41.1 40.4 16.7 48.1 25.4 61.3 76.0 56.2 48.4 46.8 37.1

Table 2: Few-shot results. We report performance on downstream tasks with 32 labeled examples for fine-tuning.

and choose the one with the highest score. VCR421

provides bounding boxes around entities, with ex-422

plicit groundings between those entities and refer-423

ences in questions.424

Referring Expression Comprehension Referring425

expression comprehension is to localize an object426

given a referring expression. We adopt the Ref-427

COCOg dataset (Mao et al., 2016) for this task.428

We present a referring phrase and candidate re-429

gions from the image to our model; and our model430

finds the most plausible region to the given phrase431

by ranking the regions with P (true)/(P (true) +432

P (false)). Following VL-T5 (Cho et al., 2021),433

we use Mask R-CNN (Anderson et al., 2018) to434

find region detections as candidates for inference.435

We consider the selected region to be correct if436

its intersection over union (IoU) with the ground437

truth region is greater than 0.5. The upper bound438

performance on the test set by the Mask R-CNN439

is 86.09%. We get the performance of the random440

predictor by randomly choosing the bounding box441

from the object detector.442

Phrase Grounding Given one or more phrases,443

phrase grounding is to provide a set of bound-444

ing boxes for each phrase. We use the Flickr30k-445

entities dataset (Plummer et al., 2015) for this446

task. Following BAN (Kim et al., 2018) and447

VisualBERT (Li et al., 2019), we adopt Faster448

R-CNN (Ren et al., 2015) pre-trained on Visual449

Genome to detect regions as candidates for infer-450

ence. The predicted region is correct if its inter-451

section over union (IoU) with the ground-truth re-452

gion is greater than 0.5. The upper bound per-453

formance on the test set by the Faster R-CNN is 454

87.45%. Similar to Refcoco, we pass a referring 455

phrase and candidate regions from the image to 456

our model; and our model finds the most plausible 457

region to the given phrase by ranking the regions 458

with P (true)/(P (true) + P (false)). We use the 459

any-box-protocol from MDETR (Kamath et al., 460

2021). 461

NLVR2 The task of NLVR2 (Suhr et al., 2019) is to 462

determine whether a text description is true given 463

two images. The task requires understanding two 464

images and comparing them. To apply our model 465

to this task, we create one image by concatenating 466

the two images, and then our model generates text 467

labels “true” and “false” for inference. 468

Visual Entailment Visual entailment, SNLI- 469

VE (Xie et al., 2019) is to determine whether the 470

image semantically entails the text given an image- 471

sentence pair. The task is a 3-way classification 472

where labels are “entailment”, “neutral”, and “con- 473

tradiction.” We define label words for the classifi- 474

cation as “entailment”: “true”, “neutral”: “maybe”, 475

“contradiction”: “false.” We choose the classifi- 476

cation label by measuring the probability of each 477

word and picking the highest one. 478

Visual Question Answering The visual question 479

answering task (Goyal et al., 2017) requires mod- 480

els to answer a question to a given context image. 481

We approach the visual question answering task as 482

a generation task so that the model can produce 483

the answers without introducing any task-specific 484

heads as in (Jin et al., 2021; Cho et al., 2021). We 485

adopt the following input prompt, “question: {ques- 486
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Method Size RefCOCOg Flickr30k-entities

0 32 0 32

Random - 19.0 19.0 6.5 6.5
UNITERlarge (Chen et al., 2019) 303M 10.0 45.4 - -
VL-T5 (Cho et al., 2021) 224M 0.0 56.9 0.0 48.8
FewVLMlarge (Jin et al., 2021) 740M 0.0 17.4 0.0 5.1
CPT (Yao et al., 2021) (Yao et al., 2021) 113M 36.5 - - -
MDETR-ENB3 (Kamath et al., 2021) 152M 54.0† - 84.8‡ -
GLIP-L (Li et al., 2022; Zhang et al., 2022) 231M - - 87.1‡ -

GRILL 310M 47.5 48.1 18.9 25.4

Table 3: Results on RefCOCOg and Flickr30k-
entities with 0 and 32 examples. We report recall@1
for Flickr30k-entities. †This model used the RefCOCOg
dataset in the pre-training. ‡These models used the
Flickr30k-entities dataset in the pre-training while ours
did not.

Model size 0-shot 32-shot

Random - 0.0 0.0
UNITERlarge (Chen et al., 2019) 303M 0.0 24.2
VL-T5 (Cho et al., 2021) 224M 13.5 35.6
FewVLMlarge (Jin et al., 2021) 740M 47.7 52.3
Flamingo-3B (Alayrac et al., 2022) 3B 49.2 57.1
Flamingo-80B 80B 56.3 67.6

GRILL 310M 42.3 46.8

Table 4: VQA results with 0 and 32 examples. We
report zero-/32-shot performance on the VQAv2 dataset.
Flamingo has 3B or 80B parameters and uses in-context
examples for inference while our model has 310M pa-
rameters and use the examples for fine-tuning.

tion} answer: <text_1>,” where <text_1> is487

a sentinel token, from (Jin et al., 2021) for the gen-488

eration.489

Captioning The captioning task is to generate a490

caption given an image. In Flickr30k (Young et al.,491

2014), we use “an image of ’ as our input prompt492

from (Jin et al., 2021).493

4.5 Results494

Zero-shot performance. We evaluate the exist-495

ing models in a zero-shot manner, where models496

do not have access to any training data. Table 1497

shows the performance on diverse tasks. Note that498

VCR, RefCOCOg, NLVR2, Flickr30k-entities re-499

quire phrase or region grounding. Firstly, GRILL500

shows the best performance on all the grounding501

tasks while baselines show worse performance than502

the random predictor on many of the grounding503

tasks. This suggests that competitors have difficulty504

generalizing to grounding tasks that need phrase505

or region grounding in a zero-shot way. On Ta-506

ble 3, we additionally include baselines, GLIP-L507

and MDETR-ENB3, that are targeted for ground-508

ing tasks. These models include the correspond-509

ing task-specific datasets in pre-training so they510

demonstrate great performance without additional511

fine-tuning. Note that we do not include task-512

specific datasets in the pre-training. Our method 513

also exhibits decent performance on VQAv2 and 514

Flickr30k captioning. By comparing Flamingo, a 515

3B or 80B-sized vision-language model, our model 516

demonstrates good accuracy considering our model 517

size. On Flickr30 captioning, our model underper- 518

forms FewVLMbase which is a bit smaller model 519

than ours. 520

Few-shot performance. We observe interesting 521

results on few-shot performance (Table 2). We use 522

32 labeled examples in total for fine-tuning. While 523

our model, GRILL, improves the performance on 524

all the tasks, baseline methods outperforms our 525

model on RefCOCOg and Flickr30k-entities un- 526

like zero-shot results. We conjecture that baseline 527

methods include the phrase grounding task in their 528

pre-training, so they achieves good performance. 529

However, the models still struggle on the VCR task, 530

while our model surpasses the models on the task. 531

Interestingly, our model achieves the comparable 532

result to FewVLM on the Flickr30k captioning on 533

the few-shot setup. 534

4.6 Ablations 535

Here, we study ablations for our method. Table 5 536

and Fig. 5 show the ablations on the pre-training 537

objectives and hybrid sequences, and different in- 538

put formats during inference on the zero-shot setup, 539

respectively. 540

Pre-training objectives and hybrid sequences. 541

Firstly, we study the ablation of pre-training ob- 542

jectives and hybrid sequences in pre-training. On 543

Table 5. our model without hybrid sequences af- 544

fects the performance a lot on many tasks. Specifi- 545

cally, results on RefCOCOg and Flickr30k-entities 546

are significantly degraded suggesting that hybrid 547

sequences in pre-training play a vital role in im- 548

proving grounding. Among pre-training objectives 549

in GRILL, we notice that the discriminative objec- 550

tive is important for the results. We conjecture that 551

the tasks in the table are classification tasks so the 552

discriminative objective is the most useful for the 553

tasks. 554

Input formats for inference. We investigate the 555

input formats during inference on Fig. 5. On VCR, 556

we replace the referring words with bounding boxes 557

for text input (hybrid sequences), or we do not re- 558

place them and use original text input (original se- 559

quences). On NLVR2, we replace the “left” word 560

with the left image and the “right" word with the 561

right image (hybrid sequences), or we do not re- 562

place them and use the original text input (original). 563
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Model VCR Ref-
COCOg NLVR2 Flickr30k-

entities

Zero-shot
GRILL 16.2 47.5 56.1 18.9
No hybrid sequences 12.9 18.9 55.7 5.7
No discriminative 6.8 30.5 50.4 12.7
No PrefixLM 14.4 48.5 55.8 18.5
No MLM 15.6 47.8 56.0 19.3

32-shot
GRILL 16.7 47.4 56.2 25.4
No hybrid sequences 14.3 16.3 55.9 18.7
No discriminative 7.2 42.0 50.5 15.3
No PrefixLM 14.7 48.7 55.9 21.9
No MLM 16.3 47.9 56.1 23.5

Table 5: Ablations on the pre-training objectives and
hybrid sequences in pre-training. We report Q → AR
for VCR, and R@1 for Flick30k-entities.

VCR NLVR2 Flickr30k-entities
Datasets

0

10

20

30

40

50

Ac
cu

ra
cy

hybrid
original

Figure 5: Performance with different input formats
for inference on the zero-shot setup. We report Q →
AR for VCR, and R@1 for Flick30k-entities.

On Flickr30k-entities, we do the same thing as564

on VCR (hybrid sequences), or we use the refer-565

ring words and bounding boxes for model input566

(original). Counter-intuitively, we observe that our567

model with original input formats during inference.568

shows better performance on all the datasets. We569

conjecture that introducing the grounding informa-570

tion may disturb the model predictions since the571

model needs to judge whether the grounding infor-572

mation is correct or not. We leave the sophisticated573

design for future work.574

5 Related Work575

Vision-language few-shot learning. There have576

been attempts to address the challenge of data-577

hungry supervised learning in vision-language do-578

mains: FewVLM (Jin et al., 2021), Frozen (Tsim-579

poukelli et al., 2021), Flamingo (Alayrac et al.,580

2022), GLIP (Li et al., 2022; Zhang et al., 2022),581

FewVLM (Jin et al., 2021) improves the few-shot582

performance of VQA and captioning by prompt-583

ing the model and its performance is on par with584

large few-shot learners. Frozen (Tsimpoukelli et al.,585

2021) adapts a few-shot language model (Radford586

et al., 2019) to vision-language tasks with soft587

prompting for images. Flamingo (Alayrac et al.,588

2022) achieves state-of-the-art results on few-shot 589

VQA and captioning tasks by prompting the model 590

with task-specific examples. While these models 591

achieve improvement on few-shot tasks, they are 592

not applicable to grounding tasks. Lastly, GLIP (Li 593

et al., 2022; Zhang et al., 2022) unifies object detec- 594

tion and phrase grounding and it achieves great per- 595

formance on zero-shot object detection and phrase 596

grounding tasks. Unlike our method, GLIP used 597

grounding datasets including Flickr30k-entities in 598

pre-training so it achieved great performance on the 599

phrase grounding without fine-tuning. Our method 600

is not applicable to object detection since it requires 601

bounding box regression. We leave this extension 602

for future work. 603

Grounded Vision-language Learning. Grounded 604

vision-language learning has been explored to learn 605

grounding between objects in images and phrases 606

in sentence (Li et al., 2020; Zhang et al., 2021; 607

Kamath et al., 2021; Li et al., 2022; Zhang et al., 608

2022). MDETR is a modulated detector that de- 609

tects objects in an image conditioned on a raw 610

text query (Kamath et al., 2021). The model 611

exhibits remarkable results on object detection, 612

phrase grounding, and referring expression com- 613

prehension by pre-training the model on object de- 614

tection data. GLIP followed a similar direction and 615

it unifies object detection and phrase grounding (Li 616

et al., 2022; Zhang et al., 2022). While the methods 617

rely on object detection datasets to improve ground- 618

ing, our method utilizes grounded sequences from 619

image-caption datasets and an object Our model 620

does not only work on grounding tasks but also on 621

visual question answering and captioning tasks. 622

6 Conclusion 623

In this work, we proposed GRILL, a new VL 624

model that can learn object grounding and localiza- 625

tion during pre-training and generalize to a variety 626

of VL tasks including grounding tasks. Our model 627

is a sequence-to-sequence transformer model that 628

uses a vision transformer for versatile image pro- 629

cessing on zero-shot tasks. To pre-train our model, 630

we introduced our dataset using object-word align- 631

ments and pre-train it with masked language mod- 632

eling, prefix language modeling, and the discrim- 633

inative objective. On the empirical analysis, we 634

observed that our model demonstrated good zero- 635

/few-shot generalization on diverse tasks. We also 636

observed that the discriminative objective and hy- 637

brid sequences in pre-training were vital for better 638

zero-/few-shot performance. 639
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