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Abstract
A graph game is a two-player zero-sum game in which the players move a token throughout a graph
to produce an infinite path, which determines the winner or payoff of the game. In bidding games,
both players have budgets, and in each turn, we hold an “auction” (bidding) to determine which
player moves the token. In this survey, we consider several bidding mechanisms and study their
effect on the properties of the game. Specifically, bidding games, and in particular bidding games of
infinite duration, have an intriguing equivalence with random-turn games in which in each turn, the
player who moves is chosen randomly. We show how minor changes in the bidding mechanism lead
to unexpected differences in the equivalence with random-turn games.
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1 Introduction

Two-player zero-sum games on graphs games have deep connections to foundations of logic [31]
as well as numerous practical applications, e.g., verification [19], reactive synthesis [29], and
reasoning about multi-agent systems [2]. The game proceeds by placing a token on one of
the vertices and allowing the players to move it throughout the graph to produce an infinite
trace, which determines the winner or payoff of the game.

Several “modes of moving” the token have been studied. The most well-studied mode
is turn-based games, in which the vertices are partitioned between the players and whoever
controls the vertex on which the token is placed, decides its next position. Two other modes
of moving that will make appearances in this survey are stochastic games and concurrent
games. Stochastic games generalize turn-based games in that some vertices are controlled by
nature and from which the token moves probabilistically. In concurrent games, in each vertex,
the players simultaneously select actions, and the next location is determined according to
the joint (deterministic or probabilistic) action vector. For formal definitions, see [3] for
example.

We study the bidding mode of moving. Abstractly speaking, both players have budgets,
and in each turn, we hold an “auction” (bidding) to determine which player moves the token.
In this survey, we consider several concrete bidding mechanisms and study the properties of
the bidding games that they give rise to.
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2:2 A Survey of Bidding Games on Graphs

We emphasize that bidding is a mode of moving the token and bidding games can be
studied in combination with any objective. We focus on three objectives: reachability, parity,
and mean-payoff. We start by surveying results on reachability games that were obtained
in two papers in the 1990s [24, 23]. We then turn to summarize more recent results on
infinite-duration games. Our most interesting results are for mean-payoff games. In a nutshell,
reachability bidding games with a specific bidding mechanism called Richman bidding were
shown to be equivalent to a class of games called random-turn games, which are well-studied
in their own right since the seminal paper [27]. We show a generalized equivalence between
mean-payoff bidding games and random-turn games. While the equivalence for finite-duration
games holds only for Richman bidding, for mean-payoff games, equivalences with random-turn
games hold for a wide range of bidding mechanisms.

We keep the presentation in the survey relatively informal. For formal definitions, see the
cited papers.

Bidding mechanisms

In all mechanisms that we consider, both players simultaneously submit “legal” bids that do
not exceed their available budgets, and the higher bidder moves the token.

We mainly focus on two orthogonal distinctions between the mechanisms: who pays
and who is the recipient. To answer the latter, two mechanisms were defined in [23]: in
Richman bidding (named after David Richman), payments are made to the other player, and
in poorman bidding the payments are made to the “bank” thus the money is lost. A third
payment scheme called taxman spans the spectrum between Richman and poorman.

We make the payment schemes precise below. For i ∈ {1, 2}, suppose Player i’s budget is
Bi prior to a bidding and his bid is bi ∈ [0, Bi], and assume for convenience that Player 1
wins the bidding, thus b1 > b2. The budgets are updated as follows:

First-price: Only the higher bidder pays.
Richman: B′1 = B1 − b1 and B′2 = B2 + b1.
Poorman: B′1 = B1 − b1 and B′2 = B2.
Taxman: For a fixed τ ∈ [0, 1], we have B′1 = B1 − b1 and B′2 = B2 + (1− τ) · b1.

All-pay: Both players pay their bids.
Richman: B′1 = B1 − b1 + b2 and B′2 = B2 + b1 − b2. Thus, Player 1 pays Player 2
the difference between the two bids.
Poorman: B′1 = B1 − b1 and B′2 = B2 − b2.

Discrete vs. continuous bidding. A third orthogonal property of the bidding mechanism
concerns the type of bids that are allowed: in discrete bidding, the budgets are given in
coins and the minimal positive bid a player can make is one coin. In this survey, apart from
Section 5, we consider continuous bidding, in which bids can be arbitrary small.
I Remark 1 (Ties in biddings). In continuous bidding, we avoid the issue of ties in the
questions that we study (see Def. 3 for example). So while one needs to determine how ties
are resolved, our results do not depend on a specific tie-breaking mechanism (apart from
the corner cases in Thm. 32). Ties cannot be avoided in discrete bidding as we discuss in
Section 5. y

I Definition 2 (Budget ratio). For i ∈ {1, 2}, let Bi denote Player i’s budget. Player i’s
ratio is then Bi/(B1 + B2). In Richman bidding, since the bids only exchange hands, the
sum of budgets is constant and we normalize it to 1, so that a player’s ratio coincides with
his actual budget.
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2 Qualitative First-Price Bidding Games

We consider the following qualitative objectives:

I Definition 3 (Qualitative objectives). Consider a graph with a set V of vertices.
Reachability: There are two targets t1, t2 ∈ V . The game ends once a target ti is visited,
for i ∈ {1, 2}. Then, Player i is the winner.
Parity: A parity index function is p : V → N. Player 1 wins an infinite play iff the
maximal parity index that is visited infinitely often is odd.

I Remark 4. Note that the definition of reachability objectives is slightly different than the
typical definition in which only one player has a target and the second player (the safety
player) wins iff the target is not reached. The main difference is that in the two-target
version, there is no winner in a play in which both targets are not reached. As we show in
Thm. 7 below, such ties do not occur. Thus, the two types of reachability objectives coincide
in bidding games. See [4] for more details. y

The main question studied in qualitative bidding games is the following:

What is a necessary and sufficient initial budget ratio that guarantees winning the game?

We illustrate a solution to this question in the following example.

I Example 5. Consider the reachability first-price Richman bidding game that is depicted
in Figure 1. Player 1’s goal is to reach t1, and Player 2’s goal is to reach t2. We start with a
naive solution by showing that Player 1 wins when his1 budget exceeds 0.75. Suppose that
the budgets are 〈0.75 + ε, 0.25− ε〉, for Player 1 and 2, respectively, for ε > 0. In the first
turn, Player 1 bids 0.25 and wins the bidding since Player 2 cannot bid above 0.25− ε. The
budgets are updated to 〈0.5 + ε, 0.5− ε〉 (in first-price Richman, only the higher bidder pays
his bid to the other player). Player 1 moves the token to v2. In the second bidding, Player 1
bids all his budget, wins the bidding since Player 2 cannot bid above 0.5 − ε, moves the
token to t1, and wins the game.

A ratio of 0.75 thus suffices for winning, but is it necessary? No. The necessary and
sufficient budget is in fact 2/3. More formally, we show that for every ε > 0, Player 1 can win
when the initial budgets are 〈2/3 + ε, 1/3− ε〉. Player 1’s first bid is 1/3, thus he wins the
wins the bidding and moves the token to v2. The budgets are updated to 〈1/3 + ε, 2/3− ε〉.
Next, Player 1 bids all his budget, namely 1/3 + ε. If he wins the bidding, he proceeds to t1
and wins the game. Otherwise, Player 2 wins the bidding, and moves the token back to v0.
The key observation is that since Player 2 overbids, she bids at least 1/3 + ε, thus Player 1’s
new budget is at least 2/3 + 2ε. In other words, we are back to v0 only that Player 1’s
increases by ε. By continuing in a similar manner, Player 1 forces his budget to increase by
a constant every time we return to v0. Thus, eventually, his budget exceed 0.75 and he can
use the strategy above to force the game to t1. A symmetric argument shows that Player 2
wins when the budgets are 〈2/3− ε, 1/3 + ε〉. y

I Definition 6 (Threshold ratios). Consider a bidding game over a set of vertices V and let
B1 ∈ [0, 1] be Player 1’s initial budget ratio. The threshold ratio in a vertex v ∈ V , denoted
Th(v) ∈ [0, 1] is such that

when B1 > Th(v), Player 1 can win the game from v, and
when B1 < Th(v), Player 2 can win the game.

1 For fairness, we refer to Player 1/Max as he and Player 2/Min as she.
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v0 v1 t1t2

Richman 1 2/3 1/3 0

poorman 1
√
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0

Figure 1 A reachability bidding game with the
threshold ratios under first-price Richman and poor-
man bidding.
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Figure 2 The random-turn game that cor-
responds the game in Fig. 1 with the probab-
ilities to reach t1 from each vertex.

2.1 Reachability first-price bidding games
The following theorem identifies threshold ratios in reachability first-price bidding games.
See Fig. 1 for a specific instantiation of the theorem.

I Theorem 7 ([23]). Consider a reachability bidding game with target states t1 and t2.
Threshold ratios exist under taxman bidding. Moreover, Th(t1) = 0 and Th(t2) = 1, and for
all other vertices v, let v− and v+ be the neighbors of v such that Th(v−) ≤ Th(v′) ≤ Th(v+),
for every neighbor v′ of v. Then:

under Richman bidding, Th(v) = 1
2 (Th(v+) + Th(v−)),

under poorman bidding, Th(v) = Th(v+)
1−Th(v−)+Th(v+) , and

under taxman bidding with constant τ ∈ [0, 1], we have Th(v) = Th(v+)+Th(v−)−Th(v−)·τ
2−(1+Th(v−)−Th(v+))·τ .

Proof. We sketch the proof for Richman bidding to give a flavor of the techniques. Suppose
the initial vertex is v and that Player 1’s budget is B = Th(v) + ε. Player 1 maintains
the invariant that whenever the token is placed on a vertex u, his ratio exceeds Th(u).
The invariant holds initially. Suppose Player 1 bids b = 1

2 ·
(
Th(v+) − Th(v−)

)
, and upon

winning, moves the token to v−. If Player 1 wins the bidding, since Th(v)− b = Th(v−), the
invariant is maintained at v−. If he loses the bidding, Player 2 pays him at least b, and since
Th(v) + b = Th(v+) and Th(v+) ≥ Th(v′), for every neighbor v′, no matter where Player 2
moves, the invariant is maintained. The invariant implies that Player 1 does not lose. Indeed,
recall that the sum of budgets is 1 in Richman bidding. Since Th(t2) = 1, the game cannot
reach t2, since then Player 1 owns more than the sum of budgets. To win the game, Player 1
plays as in Example 5: he uses his “excess” budget ε to bid slightly more than b so that
he guarantees not losing while accumulating budget as the game proceeds. Eventually he
accumulates enough budget to win |V | biddings in a row and draws the game to t1. J

Thm. 7 implies an intriguing equivalence between reachability Richman-bidding games
and random processes. Before stating it in full generality, we illustrate the “plain vanilla”
version of the equivalence, which applies to games in which all vertices have out-degree at
most 2.

I Example 8. Consider the game depicted in Fig. 1. We construct a Markov chain by
labeling all edges with probability 0.5 (see Fig. 2). Consider the probability of reaching
the target t1 from a vertex u, denoted P[reach(u, t1)]. Clearly, we have P[reach(t1, t1)] =
1 and P[reach(t2, t1)] = 0. As for the other two vertices, we have P[reach(v0, t1)] =
1
2P[reach(v1, t1)]+ 1

2P[reach(t2, t1)], which is technically the same as the expression in Thm. 7
for threshold ratios in Richman bidding. Since the values for the targets are reversed, for
every vertex u, we have Th(u) = 1− P[reach(u, t1)]. y
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Graphs with out-degree 2 are easier to reason about since it is clear which vertices are
v− and v+ (which vertex is which does not matter, since we take a simple average between
the two). In general, however, determining which are the two “important” vertices out of all
the neighbors is not trivial.

I Definition 9 (Random-turn game). Consider a bidding game G that is played on a graph
over a set of vertices V . For p ∈ [0, 1], the random-turn game that corresponds to G w.r.t. p,
denoted RT(G, p), is a game in which instead of bidding, in each turn we toss a (biased) coin
to determine which player gets to move the token: Player 1 is chosen with probability p and
Player 2 with probability 1− p. Formally, RT(G, p) is a stochastic game [17]. Every vertex
v ∈ V , is replaced by three vertices vN , v1, and v2. The vertex vN simulates the coin toss,
thus it has two outgoing edges: one with probability p to v1 and a second with probability 1−p
to v2. For i ∈ {1, 2}, the vertex vi is controlled by Player i and there are deterministic edges
from vi to uN , for every neighbor u of v. The objective in RT(G, p) matches that of G. For
example, when G is a reachability bidding game, then RT(G, p) is a simple stochastic game.

A positional strategy f in a stochastic game is a function that maps each vertex to a
successor. When Player i, for i ∈ {1, 2}, plays according to f and the game reaches a
vertex v that he controls, he moves the token to f(v). Fixing two positional strategies in a
stochastic game gives rise to a Markov chain. We restrict attention to positional strategies
since in stochastic games with the objectives that we consider, existence of optimal positional
strategies is well known.

I Definition 10 (Values in simple stochastic games). Consider a simple stochastic game H
and a vertex v in H. The value of v in H, denoted val(H, v), is the probability that Player 1
reaches his target under optimal play of the two players.

We state the general equivalence between the two models in the following theorem.

I Theorem 11 ([24]). Consider a reachability first-price Richman bidding game G over the
vertices V . For every vertex v ∈ V , we have Th(v) = 1− val

(
RT(G, 0.5), v

)
.

I Remark 12. We note that in graphs of finite size, threshold ratios under Richman bidding
are always rational numbers; indeed, they coincide with values of a stochastic game, which
in turn are a solution to a linear program. Since for poorman bidding the thresholds can
be irrational (see Fig. 1), it seems unlikely that an equivalence with random-turn games
exists. y

2.2 Parity first-price bidding games
The solution to parity bidding games is based on the following lemma.

I Lemma 13 ([7]). Consider a reachability first-price taxman-bidding game G over the
vertices V such that from every vertex, only Player 1’s objective is reachable. Then, Player 1
wins with any positive initial budget from every vertex v ∈ V ; thus, Th(v) = 0.

We proceed to solve parity games.

I Theorem 14 ([7]). Parity first-price taxman-bidding games are linearly reducible to
reachability taxman-bidding games. In particular, threshold ratios exists.

CONCUR 2020



2:6 A Survey of Bidding Games on Graphs

Proof. Consider a bidding game G. we identify the bottom strongly-connected components
(BSCCs) of G. We claim that in each such BSCC S there is a unique winner. The claim
implies the theorem since the threshold ratios in the vertices of S are either all 0 or all 1.
We then construct a reachability game on the rest of the graph in which each player’s goal is
to draw the game to a BSCC that is winning for him.

To prove the claim, suppose the maximal parity index in a BSCC S is obtained in a
vertex t and that it is even, and the other case is dual. We think of S as a reachability game
in which Player 2’s target is t and Player 1 has no target. By Lem. 13, Player 2 can force a
visit to t with any positive initial budget. To force infinite many visits, she splits her initial
budget ε > 0 into infinite many parts ε1, ε2, . . ., and uses a budget of εi, for i ≥ 1, to force a
visit to t for the i-th time. J

2.3 Computational complexity and open problems
Intuitively, the computational problem that we would like to solve is finding the threshold
ratio in a vertex. Formally, one way to define the corresponding decision problem is given a
game G and a vertex v in G, decide whether Th(v) > 0.5.

I Theorem 15 ([23, 4, 5, 7]). For parity Richman bidding, finding threshold ratios is in
NP ∩ coNP, and it is in P when all vertices have outdegree at most 2 or when the graph is
undirected. For taxman and poorman bidding the problem is in PSPACE.

Proof (Sketch). The upper bound for Richman bidding immediately follows from the equi-
valence with random-turn games in Thm. 11. Indeed, random-turn games are a special case
of stochastic games, and solving the later is in NP ∩ coNP [17]. When the outdegree is 2,
the solution is obtained by solving a linear program. An algorithm for undirected graphs
was shown in [23] (and was extended recently to solve biased undirected random-turn games
[28]). For taxman bidding, the properties of threshold ratios in Thm. 7 are polynomial but
not linear, thus we reduce the problem to the existential theory of the reals [15]. J

I Open problem 1 (Tightening the computational complexity gap). There is a gap in our
understanding in terms of computational complexity. It is possible that solving Richman
bidding games is in P, and it is possible that they are as hard as solving stochastic games.
Possible lower bounds for poorman and taxman bidding include showing that the problem is
NP-hard or as hard as solving the existential theory of the reals.

3 Mean-Payoff First-Price Bidding Games

Before formalizing the mean-payoff objective, we motivate it in the following application.

I Example 16. Suppose an internet content-provider (e.g., New York Times) has one ad
slot for sale on its website. Two advertisers repeatedly (e.g., daily) compete to publish their
ad in a first-price auction that the content provider holds. Our goal is to find an optimal
bidding strategy for an advertiser that, given his budget constraints, maximizes the long-run
ratio of the time that his ad shows. To find such a strategy, we reason about the Bowtie
game in Fig. 3; we associate our advertiser with Player 1. Whenever Player 1 wins a bidding,
he moves to vMax, which represents his ad being shown that day. Informally, Player 1’s goal
is to maximize the time his ad shows (e.g., maximize the number of days his ad appears in a
year). y
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Formally, a mean-payoff game is played on a weighted graph 〈V,E,w〉, where w : V → Q.
Each infinite play has a payoff, which is Player 1’s reward and Player 2’s cost, thus we call
the players in a mean-payoff game Max and Min, respectively.

I Definition 17 (Payoff and energy). Consider an infinite path η = η0, η1, . . .. For n > 1,
let ηn = η0, . . . , ηn be a prefix of η. The energy of ηn, denoted energy(ηn), is the sum of
weights it traverses, thus energy(ηn) =

∑
0≤i<n w(ηi). The payoff of η, denoted payoff(η), is

payoff(η) = lim infn→∞ 1
n · energy(η

n). Note that the use of lim inf gives Min an advantage.

We consider the following main question when studying mean-payoff bidding games.

Given an initial budget ratio r, what is the optimal payoff a player can guarantee?
For example, consider the Bowtie game in Fig. 3. What is the optimal payoff Max can

guarantee with a budget ratio of 2/3 under Richman bidding? How does it compare with the
optimal payoff under poorman bidding? Does the answer change when the ratio is 1/3?

1 0

vMax vMin

Figure 3 The Bowtie mean-payoff game G./.

We answer the questions in full generality after the following definitions. The specific
solutions in the Bowtie game can be found in Example 21.

I Definition 18 (Mean-payoff value in bidding games). Consider a strongly-connected mean-
payoff bidding game G and a budget ratio r ∈ (0, 1). The mean-payoff value of G w.r.t. r,
denoted MP(G, r), is c ∈ R if independent of the initial vertex,

when Max’s initial ratio exceeds r, he1 has a strategy that guarantees a payoff of c− ε,
for every ε > 0, and
Max cannot do better: with a ratio that exceeds 1− r, Min can guarantee a payoff of at
most c+ ε, for every ε > 0.

I Definition 19 (Mean-payoff value in random-turn games). For p ∈ [0, 1], since G is a
mean-payoff game, the random-turn game RT(G, p) is a stochastic mean-payoff game. The
expected payoff under optimal play of the two players is called the mean-payoff value, which
we denote MP(RT(G, p)). The value is known to exist [30], and since G is strongly-connected,
the value does not depend on the initial vertex.

The theorem below states the equivalence between mean-payoff first-price bidding games
and random-turn games.

I Theorem 20 ([5, 4, 7]). Consider a strongly-connected mean-payoff game G and a ratio
r ∈ (0, 1). Then:

under Richman bidding, MP(G, r) = MP
(
RT(G, 0.5)

)
,

under poorman bidding, MP(G, r) = MP
(
RT(G, r)

)
, and

under taxman bidding with constant τ ∈ [0, 1], we have MP(G, r) = MP
(
RT(G, r+τ ·(1−r)

1+τ )
)
.

I Example 21. We apply Thm. 20 to the bowtie mean-payoff game G./ (Fig. 3). Since the
outdegree in G./ is 2, the random-turn game that corresponds to it is simple and depicted
in Fig. 4. Informally, we expect a random run to “stay” in vMax portion p of the time, and
since the weights are simple, we have MP(RT(GBowtie, p)) = p.

CONCUR 2020



2:8 A Survey of Bidding Games on Graphs

Under Richman bidding, the initial ratio does not matter, the equivalence is always with
the fair random-turn game, thus MP(G./, r) = 0.5, for every r ∈ (0, 1). We find the result for
mean-payoff poorman bidding more surprising, since no equivalence is known for reachability
poorman bidding games (see Remark 12). With an initial ratio of r ∈ (0, 1), the optimal
payoff under poorman bidding is r. Thus, Max prefers poorman over Richman when his
ratio is 2/3 and prefers Richman over poorman when the ratio is 1/3. Interestingly, when
the ratio is 1/2, the payoffs under poorman and Richman bidding coincide. y

1 0

vMax vMin

p 1− p

1− p

p

Figure 4 The random-turn game that corresponds to G./ in Fig. 3 w.r.t. p ∈ [0, 1].

I Remark 22 (Strategies in bidding games vs. in random-turn games). We point out that
strategies in bidding games are much more complicated than in stochastic games. At a
vertex v in a stochastic game, a strategy only needs to select a vertex u to move the token
to from v. In a bidding game, in addition to the choice of u, a strategy prescribes a bid
b. As the proof of Thm. 7 shows, in reachability games, knowing the threshold ratios and
assuming they are positive, immediately gives us both u and b. In mean-payoff games, this
is no longer the case. Indeed, the statement of Thm. 20 only tells us the optimal payoff
a player can guarantee. Knowing the optimal payoff does not hint at how to achieve it.
The proof of Lem. 23 demonstrates that finding the right bids is not a trivial task. In fact,
there is an alternative existential proof for the Richman part of Thm. 20 (see [4]). The
proof relies on the equivalence shown in [23] between reachability Richman bidding games
and random-turn games adapted to infinite graphs together with results on one-counter
simple-stochastic games [14, 13]. Beyond the lack of bidding strategy, since no equivalence is
known for reachability objectives apart from Richman bidding, the existential proof does not
extend to poorman or taxman bidding. y

3.1 Solving the Bowtie game
In the next two sections, we give a flavor of the techniques used to prove Thm. 20. In this
section, we solve G./ and in the next section, we describe a framework to extend a solution
to G./ to general SCCs. See Open problem 3 for a discussion on the asymmetry between
Min and Max in the following lemma.

I Lemma 23. Consider the mean-payoff game G./ (Fig. 3) under Richman bidding. Irre-
spective of the initial ratios:

Min has a strategy that guarantees a payoff of at most 0.5.
For every ε > 0, Max has a strategy that guarantees a payoff of at least 0.5− ε.

Proof. An optimal Min strategy. The details of the construction can be found in [4]. It is
convenient to re-normalize the weights and set w(vMin) = −1 so that MP

(
RT(G./, 0.5)

)
= 0.

Recall that the energy of a finite path, which we denote with k below, is the sum of weights
that it traverses. The construction is based on the following observation whose proof is a
simple exercise.
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Observation: Suppose Min plays according to a strategy that guarantees that in every
infinite play either the energy (1) equals 0 infinitely often, or (2) is bounded from above by a
constant. Then, the payoff is non-negative.

Suppose that the energy starts from k0 > 0 and Min’s initial budget is BIMin > 0. Min
chooses N ∈ N such that BIMin = k0/N + δ, for some δ > 0. This is possible since BIMin and
k0 are constants. We think of δ as “spare change” that Min does not use, but will be helpful
at the end of the proof. We call the rest of her budget the main budget.

Min’s strategy maintains the following invariant: when the energy of a finite play is k,
Min’s budget exceeds k

N . The invariant holds initially by our choice of N . Suppose that
Min’s main budget following a finite play with energy k is k

N . Min bids 1
N . We distinguish

between two cases. If Min wins the bidding, the energy drops to k − 1 and since she pays 1
N ,

her main budget drops to k−1
N . On the other hand, if she loses, the energy increases to k + 1,

and Max pays her at least 1
N , thus her main budget increases to k+1

N . The strict inequality
in the invariant is obtained from the spare change δ. Finally, recall that in Richman bidding
the sum of budgets is 1. Thus, the invariant ensures that the energy is bounded from above
by N , since by plugging k = N in the invariant, Min’s budget would exceed 1.

To conclude the construction, Min plays as follows. When the energy is 0, Min bids 0
and “waits” for the energy to increase. When it increases to k1

0, she plays according to the
strategy above to guarantee a bounded energy N1. When the energy drops to 0, Min “waits”
until the energy increases again to k2

0, and she plays to keep the energy bounded by N2, and
so on. If there is an n ≥ 1, such that the energy hits 0 only n − 1 times, then the energy
is bounded from above by Nn. Otherwise, the energy hits 0 infinitely often. Thus, by the
observation, the payoff is at most 0.
An optimal Max strategy. An explicit construction for Max was shown in [4] and an
existential one in [7]. We describe a simpler construction, which is due to Ismaël Jecker [9].

Let ε > 0. This time, we re-normalize the weights to be w(vMax) = c = 1 + ε and
w(vMin) = −1.
Observation: Suppose Max plays according to a strategy that guarantees that the energy is
bounded from below by a constant. Then, the payoff with the updated weights is non-negative,
and the payoff with the original weights is at least 1

2+ε .
Let α such that (1 + α) = (1 − α)−c, and such α exists since c > 1. Max maintains

the invariant that when the energy is k ∈ N, his budget exceeds (1 + α)−k. The invariant
implies k > 0, since otherwise, Max’s budget is greater than (1 + α)0 = 1, which, again, is
impossible since the sum of budgets in Richman bidding is 1. We choose an initial energy level
k0 ∈ N, thus the energy will in fact be bounded from below by −k0. We choose k0 such that
BIMax = B+ δ, where B = (1 +α)−k0 and δ > 0. This is possible since limk→∞(1 +α)−k = 0.
Again, the “spare change” δ is never used and we refer to B as Max’s main budget. Max
maintains the invariant that when the energy is k, his main budget is at least (1 + α)−k.
When Max’s main budget is B, he bids α ·B. We distinguish between the two outcomes of
a bidding. If Max loses, the energy decreases to k − 1. Moreover, Min overbids Max, thus
Max’s new main budget B′ is at least B + αB ≥ 1

(1+α)k + α
(1+α)k = (1 + α)k−1. On the

other hand, if Max wins, the energy increases to k + c and his new main budget B′ is at
least B − αB = 1−α

(1+α)k . Since (1 + α) = (1 − α)−c, we obtain (1 − α) = (1 + α)−c, thus
B′ = (1 + α)−(k+c), as required. J

Poorman bidding

An explicit construction of an optimal strategy for Max under poorman bidding was shown
in [5], an existential construction was shown in [7], and a significantly simpler explicit
construction was shown in [9]. Those constructions use similar ideas to the construction
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shown in Lem. 23 for Max, though they are technically more involved. We leave the
constructions out of this survey for sake of brevity. We would still like to convince the reader
that contrary to Richman bidding, the initial ratio matters in poorman bidding; i.e., with
a higher ratio a player can guarantee a better payoff. Below we show a simple strategy
construction that is optimal for Min in the Bowtie game.

I Lemma 24 ([5]). Suppose that Min’s initial budget is ` ∈ N and Max’s initial budget is 1.
Then, in G./, Min can guarantee a payoff of at most `

`+1 .

Proof. We re-normalize the weights so that w(vMin) = −1 and w(vMax) = 1. Suppose first
that both budgets are 1. We describe the “tit for tat” strategy for Min that, intuitively, copies
Max’s bidding strategy. We assume for simplicity that Min wins bidding ties. Formally,
Min’s strategy is based on a queue of numbers as follows: if the queue is empty, Min bids 0,
and otherwise she bids the maximal number in the queue. If Min wins with a bid of b > 0,
she removes b from the queue. If Max wins with a bid of b > 0, Min adds b to the queue.

We make several observations. (1) Min’s strategy is legal: it never bids higher than the
available budget; indeed, Max bids legally, the budgets are the same, and Min’s sum of
winning bids is at most Max’s sum of winning bids. (2) The size of the queue is an upper
bound on the energy; indeed, every bid in the queue corresponds to a Max winning bid that
is not “matched” (the size is an upper bound since Min might win biddings when the queue
is empty). (3) If Min’s queue fills, it will eventually empty; indeed, if b ∈ R is in the queue,
in order to keep b in the queue, Max must bid at least b, thus eventually his budget runs
out. Combining the three, since the energy is at most 0 when the queue empties, Min’s
strategy guarantees that the energy is at most 0 infinitely often and as in Lem. 23, the payoff
is non-positive.

Now, assume Min’s budget is ` ∈ N. Min’s strategy is the same only that whenever Max
wins with b > 0, Min adds ` copies of b to the queue. The strategy is legal since, intuitively,
we can think of Min’s budget as if it consists of ` parts of size 1, and each copy of the bid b
is paid out of a unique part. Legality then follows as in the simple case above. The other
two observations above still hold, only that now, since every Max win is matched by ` Min
wins, when the queue empties, the number of Min wins is at least ` times as much as Max’s
wins. It follows that the payoff is at most `

`+1 . J

3.2 Solving strongly-connected games
In this section, we describe a general framework that, intuitively, allows us to extend a
solution for G./ to any strongly-connected mean-payoff game. We describe the challenges of
the extension in the following example.

I Example 25. It is helpful to think about changes in the budget and energy throughout a
play as two “walks” on two sequences; a “budget sequence” and an “energy sequence”. We
preserve an invariant between the two walks. Recall, for example, that in Lem. 23, when the
energy is k, Max’s ratio is (1 + α)−k. When Max wins a bidding, the energy walk takes a
step to k + 1 and the budget walk takes a step down to (1 + α)−(k+1). The key idea that
concludes the proof is that the budget walk is bounded from above, e.g., in Richman bidding
the sum of budgets is 1. Due to the invariant, the bound on the budget implies a bound on
the energy and in turn a guarantee on the payoff.

The structure of G./ is convenient since in each bidding, both walks always take exactly
one step at a time. In general, this is not the case. For example, consider the game depicted
in Fig. 5. Cycling v4 decreases the energy by 2, so to even out, the budget walk should also



G. Avni and T. A. Henzinger 2:11

take two steps at once. Moreover, there are more involved cycles. Suppose the game starts
from v3. Note that Max always moves left (see the red edges) and Min moves to the right.
How should Max bid in v3 to maintain the invariant between budget and energy? On the
one hand, if he wins the first bidding and loses the second, the cycle v3, v2, v3 forms with a
change in energy of −2. On the other hand, if he loses the first bidding and wins the second,
the cycle v3v4v3 forms with a change of energy of −3. Finally, there is no guarantee that the
game returns to v3 y

To overcome these challenges, we introduce a measure of “importance” to vertices, which
we call the strength. We need several definitions. Let p ∈ [0, 1]. Inspired by the notation
in reachability games, we denote by v− and v+ the optimal vertices to move to from v for
Min and Max, respectively. Formally, for optimal memoryless strategies σMax and σMin in
RT(G, p), we define v− = σMin(v) and v+ = σMax(v). The concept of potentials was originally
defined in the context of the strategy iteration algorithm [20]. We denote the potential of v
by Potp(v) and the strength of v by Stp(v), and we define them as solutions to the following
equations:

Potp(v) = p · Potp(v+) + (1− p) · Potp(v−) + w(v)−MP(RT(G, p))
Stp(v) = p · (1− p) ·

(
Potp(v+)− Potp(v−)

)
We suggest an intuitive way to read the definition of potentials. Consider a weighted

Markov chain in which each vertex v has two neighbors v+ and v−, and the probability
of proceeding from v to v+ and v− is respectively p and 1 − p. Suppose there is a target
that is reached with probability 1. Let E(v) denote the expected energy in a path from
v to the target. We note that E(v) roughly coincides with Potp(v). Indeed, to compute
E(v), we take the current energy, i.e., w(v), and add, for each neighbor u, the probability
of proceeding from v to u multiplied by the expected energy to the target from u, thus we
obtain E(v) = w(v) + p · E(v+) + (1− p) · E(v−).

The following lemma connects potential, energy, and strength and thus gives rise to the
invariant between budget and energy. We need several definitions. Consider a finite path
η = v1, . . . , vn in G. We intuitively think of η as a play, where for every 1 ≤ i < n, the bid of
Max in vi is Stp(vi) and he moves to v+

i upon winning. Thus, when vi+1 = v+
i , we think of

Max as investing Stp(vi) and when vi+1 6= v+
i , we think of Min winning the bid thus Max

gains Stp(vi). We denote by I(η) and G(η) the sum of investments and gains, respectively.
Recall that the energy of η is energy(η) =

∑
0≤i<n w(vi).

I Lemma 26 ([4, 5, 7]). Consider a strongly-connected game G, and p = ν
ν+1 ∈ (0, 1), thus

Max’s budget is ν and Min’s budget is 1. For every finite path η = v1, . . . , vn in G, we have

Potp(v1)− Potp(vn) + (n− 1) ·MP(RT(G, p)) ≤ energy(η) +G(η) · ν − I(η).

1 −1 −1 −2

v1 v2 v3 v4

Potential: 6 3 0 −3

Strength: 1 2 2 1

Figure 5 A mean-payoff game G with MP(RT(G, 2/3)) = 0, Max’s optimal moves are depicted in
red, and Pot2/3 and St2/3 below the vertices.
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I Example 27. Consider the game depicted in Fig. 5. Max always proceeds left, that is, for
every vertex v, the vertex v+ is the one to its left. The potentials and the resulting strengths
are depicted below the vertices. It is not hard to verify that the stationary distribution of
RT(G, 2/3) is 〈 8

15 ,
4

15 ,
2

15 ,
1

15 〉. Multiplying by the weights, we obtain MP(RT(G, 2/3)) = 0.
It is clearest to exemplify Lem. 26 in cycles, where the left-hand side of the inequality

completely cancels out. Consider the cycle η = v3, v2, v1, v1, v2, v3 in which Max wins the
first three bids, thus I(η) = 2 + 2 + 1 = 5, and loses the last two biddings, thus G(η) = 1 + 2.
We have energy(η) = −1 since the last vertex on the path does not contribute to the energy.
As Lem. 26 predicts, we have I(η)−G(η) · ν = 5− 3 · 2 = −1 = energy(η). We encourage
the reader to verify that every cycle has this property. y

3.3 Solving general games, computational complexity, and open
problems

As in the case of qualitative objectives, there is a gap in our understanding of the computa-
tional complexity of mean-payoff games. We state the known upper bounds.

I Theorem 28 ([4, 5, 7]). Given a mean-payoff game G, a vertex v in G, a ratio r ∈ (0, 1),
and a constant c ∈ Q, deciding whether Max can guarantee a payoff greater than c from v

with an initial ratio that exceeds r is:
In PSPACE for taxman bidding and general graphs.
In NP ∩ coNP for Richman bidding, or with taxman bidding when G is strongly-connected.
In P when G is strongly-connected and the out-degree of all vertices is 2.

Proof (Sketch). Thm. 20 allows us to reduce general mean-payoff games to reachabil-
ity games. Under Richman bidding, the theorem implies that every bottom strongly-
connected component (BSCC) S of G has a “winner”: we say that S is winning for Max iff
MP
(
RT(S, 0.5)

)
> c. Indeed, all Max needs to do, is to reach S with a positive ratio. Upon

reaching S, he can switch to a strategy that guarantees MP
(
RT(S, 0.5)

)
. Thus, similarly to

Thm. 14, we construct a reachability game in which the targets for Max are his winning
BSCCs and the targets for Min are her winning BSCCs. Membership in NP and coNP
for Richman bidding is obtained by guessing the winning BSCCs and guessing positional
strategies both in the reachability random-turn game and the mean-payoff random-turn
games in the BSCCs. One can verify in polynomial time that the strategies are optimal and
calculate the mean-payoff values that they achieve. Verifying that a BSCC is winning is then
trivial.

For poorman and taxman bidding, the ideas are similar though more complicated. For
a BSCC S, we need to find a ratio r(S) such that Max can guarantee a payoff greater
than c with r(S). The reachability game we construct is more involved: the game ends
once a target S is reached, and Max wins iff his ratio is greater than r(S). Recall that in
reachability bidding games, the threshold ratios of the targets is Th(t1) = 0 and Th(t2) = 1,
and every other vertex it is some “average” of two of its neighbors that depends on the
bidding mechanism. The solution here in the intermediate vertices is the same average as in
reachability bidding games with the corresponding bidding mechanism. The only change is
in the targets; namely, the threshold ratio in a target S is r(S).

We turn to the last point. Under Richman bidding, since the random-turn game is
un-biased, for every vertex v with two neighbors v1 and v2, we can construct a linear program
without finding which of the vertices is v+ and which is v−. Indeed, the linear program
ensures that Th(v) = 1

2 · (Th(v1)+Th(v2)). A similar solution applies to mean-payoff Richman
bidding games. On the other hand, for poorman and taxman bidding, since the random-turn
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game is biased, we need to find which of the vertices is v+ and which is v−. Fortunately,
it is shown in [5] that when the out-degree is 2, it suffices to solve an MDP rather than a
stochastic game, hence the polynomial-time upper bound. J

Open problems

The bounds in Thm. 28 are not tight, thus Open problem 1 applies here as well. In addition,
we state the following open problem.

I Open problem 2 (The target-payoff problem). Study the dual of the problem that is studied
in Thm. 28: given a target payoff, find the minimal ratio that is required to guarantee it.

I Open problem 3 (ε-optimal vs. optimal strategies). Consider a strongly-connected mean-
payoff game G and an initial ratio r for Max. For all but Richman bidding, to prove Thm. 20,
we construct ε-optimal strategies for Max, namely strategies that guarantee a payoff of
MP(G, r)− ε, for every ε > 0. This is sufficient since the definition of mean-payoff (Def. 17)
gives Min an advantage, thus an ε-optimal strategy for Min is obtained by relating Min with
Max in the “dual” game in which the weights are multiplied by −1. We call a strategy optimal
if it guarantees a payoff of MP(G, r). This raises two open questions:

Find optimal strategies for Max.
Find optimal strategies for Min for poorman and taxman bidding.2

Energy games. An energy game is played on a weighted directed graph. Min wins iff there
is a prefix in which the energy hits 0. Energy games are qualitative games and so the main
question regards the threshold ratio: given an initial vertex v and an initial energy level k,
find the threshold ratio Th(v, k) that is necessary and sufficient for Min to win. Our solution
to mean-payoff games has some implications on energy games. Consider a strongly-connected
energy game G. It is not hard to adapt Min’s strategy in Lem. 23 to show that under
Richman bidding, when MP(RT(G, 0.5)) = 0, Min wins from every initial energy level and
with any positive initial budget, thus Th(v, k) = 0, for every v ∈ V and k ∈ N. On the other
hand, if MP(RT(G, 0.5)) > 0, then limk→∞ Th(v, k) = 1, thus for every initial ratio r > 0,
there is an initial energy level from which Max wins. A similar corollary holds for poorman
and taxman bidding. In [23], the threshold ratios for the Bowtie game are classified under
poorman bidding: for every k ∈ N, we have Th(v, k) = k+2

2k+2 .

I Open problem 4 (Energy bidding games). Find solutions to other energy bidding games.
For example, solving the Bowtie game with weights +2 and −1 under poorman bidding is
open. The only thing we know is that when Max’s budget exceeds 2/3, there is an initial
energy level from which he wins.

4 All-Pay Bidding Games

Before describing the theoretical properties of all-pay bidding games, we illustrate applications
of the model. Throughout the survey we always think of the players’ budgets as money.
Applications arise, however, from thinking of the budgets as bounded resources with little
or no inherent value that the players use in order to achieve some goal. Colonel Blotto
games, which date back to [12] and have been extensively studied since, have been used to

2 Note that Lem. 24 constructs an optimal strategy for the Bowtie game under poorman bidding. We do
not know how to extend this strategy to general strongly-connected games.
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model such settings; e.g., rent seeking [32], patent races (e.g., [10]), political campaigning
or lobbying, sport competitions, or biological auctions. The terminology there is that two
colonels own armies and compete in one-shot in n battlefields; the colonels need to distribute
their armies across the battlefields, in each battlefield the outnumbering army wins, and
possible goals include maximizing the number of battlefields won or the probability that at
least k < n battlefields are won. In our terminology, the colonels are performing n concurrent
biddings. It was argued in [21] that many of the examples above are actually dynamic in
nature. We thus argue that all-pay poorman bidding games, which are a dynamic version of
Colonel Blotto games, capture these settings in a more precise way.

Another application of bidding games is reasoning about systems in which the scheduler
accepts payment in exchange for priority. Blockchain technology is one such system, where
the miners accept payment and have freedom to decide the order of blocks they process based
on the proposed transaction fees. Transaction fees are not refundable, thus all-pay poorman
bidding is the most appropriate modelling. Manipulating transaction fees is possible and
can have dramatic consequences: such a manipulation was used to win a popular game on
Ethereum called FOMO3d3. There is thus ample motivation for reasoning and verifying
blockchain technology [16].

Rechability all-pay poorman games

Reachability all-pay poorman bidding games were studied in [8]. The bad news is that
reachability games under all-pay bidding are significantly more complicated than under
first-price bidding. In light of the technical difficulty, it is encouraging that simple yet
powerful results are obtained on this model. We focus mostly on the following class of games.

I Definition 29 (Race games). In the race game G(i, j), for i, j ∈ N, Player 1 wins iff he
wins i biddings before Player 2 wins j biddings.

I Example 30. Suppose for example that two NBA teams play a “best of 7” tournament.
The resources (the athletes’ strengths) need to be invested throughout the tournament so
as to maximize the probability that the tournament is won. Note that the resources have
no inherent value, that invested resources are exhausted rather than transferred between
the teams, and that the budgets need not be equal (one the teams can be fresher or have a
deeper bench). Thus, in order to find an optimal strategy to select how much to invest in
each game, we solve the race game G(4, 4) under all-pay poorman bidding. y

The simplest interesting reachability game is G(2, 1), in which Player 1 needs to win
two biddings in a row. Throughout all of this section we fix Player 2’s budget to 1. Under
first-price bidding, the solution to this game is almost trivial: the threshold ratios are 2 and
3 under poorman and Richman bidding, respectively. Let B1 be Player 1’s budget. It was
observed already in [23] that under all-pay poorman bidding, for B1 ∈ [1, 2], neither player
has a deterministic winning strategy. We thus need the following definitions.

I Definition 31. A mixed strategy assigns a probability distribution over bids in each
step. The lower value in an all-pay game G w.r.t. an initial ratio r is val↓(G, r) =
supf infg

∫
π∼D(f,g) P[π is winning for Player 1]. The upper value, denoted val↑(G, r) is

defined dually. It is always the case that val↓(G, r) ≤ val↑(G, r), and when val↑(G, r) =
val↓(G, r), we say that the value exists and we denote it by val(G, r).

3 https://bit.ly/2wizwjj

https://bit.ly/2wizwjj
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The following problem was left open in [23] already for G(2, 1):

Does the value exist in every vertex of every all-pay bidding game?
If it does, characterize the value.

We solve this problem for the game G(2, 1).

I Theorem 32 ([8]). Consider the all-pay bidding game G(2, 1) in which Player 1 needs to
win twice in a row. The value exists for every pair of initial budgets, the optimal Player 1
strategy has finite support, and the value as a function of Player 1’s budget is the following
step-wise function: if Player 1’s budget is B1 and Player 2’s budget is 1, then, when B1 > 2,
the value is 1, when B1 < 1, the value is 0, and when B1 ∈ (1 + 1

n+1 , 1 + 1
n ], for n ∈ N, then

the value is 1
n+1 .

Thm. 32 is positive in several aspects, however all-pay bidding games are not that simple.

I Theorem 33 ([8]). Consider the game G(3, 1) in which Player 1 needs to win three biddings
in a row. Suppose the initial budgets are 1.25 for Player 1 and 1 for Player 2. Then, an
optimal strategy for Player 1 requires infinite support in the first bidding.

We turn to present simple yet powerful positive news about all-pay bidding games.

An approximation algorithm. We obtain an approximation algorithm for the upper- and
lower-values in games played on DAGs. The algorithm is based on a discretization of the
budgets similar in spirit to discrete bidding. That is, we restrict the granularity of the bids
and require Player 1 to bid multiples of some ε > 0. The smaller the ε, the better the discrete
game approximates the continuous game (see [8] for the formal guarantees). A discrete
bidding game is a finite game (the smaller ε is, the larger the game). Finding values can
thus be done in polynomial time using linear programming.

We implemented the algorithm and ran it on several race games, see the plots in Fig. 6.
Each game is associated with two plots; a lower- and an upper-bound. It is encouraging that
the difference between the two plots is barely visible already for ε = 0.01. That is, the plots
hint that the lower- and upper-values coincide and that the value exists in the games that
we experiment with. It is also reassuring to find an experimental confirmation for Thm. 32
(see the red plots). While the statement in Thm. 33 cannot be confirmed by the plots, the
value function in the budget region of 1.25 seems involved (see the purple plots). For more
complicated games, the plots hint that the value as a function of the budgets is continuous
rather than step-wise as in G(2, 1).
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Figure 6 Approximations for the upper- and lower-values for several race games.
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Surely-winning threshold ratios. we considering the question of surely winning in all-pay
bidding games, namely winning with probability 1, and identify a threshold phenomena
similar to first-price bidding.

I Theorem 34 ([8]). Consider a reachability bidding game G played on a general graph.
Each vertex v in G has a surely-winning threshold ratio SThr(v) such that, when Player 1’s
budget is B and Player 2’s budget is 1:

If B > SThr(v), Player 1 has a deterministic surely-winning strategy.
If B < SThr(v), Player 2 wins with positive probability.

Moreover, when the targets are t1 and t2, then SThr(t1) = 0 and SThr(t2) =∞,4 and for
every other vertex v, we have SThr(v) = SThr(v−) + (1− SThr(v−)/SThr(v+)). Finding
the thresholds is in PSPACE in general and in linear time in games played on DAGs.

In DAGs, surely-winning threshold ratios are rational numbers. In general graphs,
however, Fig. 8 shows that this not the case. The algorithm for computing surely-winning
threshold ratios in DAGs is a simple backwards induction. We implemented it and used it to
solve the game tic-tac-toe. The solution of tic-tac-toe under first-price bidding is discussed
in the blog post https://bit.ly/2KUong4: with first-price Richman bidding, Player 1 can
guarantee winning when his ratio exceeds 133/123 ≈ 1.0183 [18] and with first-price poorman
bidding, when it exceeds roughly 1.0184. Under all-pay poorman bidding, the surely-winning
threshold ratio is 51/31 ≈ 1.65 (see Fig. 7). A reason for the slightly higher threshold in
all-pay is that contrary to first-price bidding, there is a gap between the surely-winning
thresholds of the two players; namely, in the range (31/51, 51/31) neither player surely wins
the game. For more unexpected phenomena that the solution points to, see [8].

wins

4/3
.
= 1.33 3/2 = 1.5 2

51/31
.
= 1.65 31/16

.
= 1.94 8/3

.
= 2.67

5/3
.
= 1.67 3

c4

c1 c2 c3

Figure 7 Surely-winning thresholds in all-pay
poorman tic-tac-toe. For example, the surely-
winning threshold budget in c4 is 3 since in order
to win the game, Player 1 must win three biddings
in a row.

P1

P2

1 +
√
2

2

A B C D

1 2 +
√
2

Figure 8 A reachability all-pay poorman
game with target Pi for Player i in which
surely-winning threshold ratios are irrational.

I Open problem 5. We provide a complete picture for the game G(2, 1). Solutions to more
complicated games are left open. In particular:

Show that the value exists in general.
Can the value as a function of the budget ratio be a continuous function?
Find closed-form solutions to other race games or other games on DAGs.

4 Recall that Player 2’s budget is normalized to 1 hence the different values in the targets compared with
first-price bidding.

https://bit.ly/2KUong4
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Infinite-duration all-pay bidding games

Recall that even though reachability first-price poorman games do not exhibit an equivalence
with random-turn games (Remark 12), an equivalence “pops up” in mean-payoff first-price
poorman games (Thm. 20). Inspired by this result, we study the following question:

Are mean-payoff all-pay bidding games equivalent to random-turn games?

This question is studied in [9] and answered positively. Moreover, we find the results
particularly surprising. We describe the key properties of mean-payoff games played on
strongly connected graphs. Under all-pay Richman bidding, a simple argument shows
that deterministic strategies cannot guarantee anything; e.g., in G./ (Fig. 3), Max cannot
deterministically guarantee any positive payoff. On the other hand, with mixed strategies,
all-pay and first-price Richman coincide: in both, the initial ratio does not matter, and the
optimal almost-sure payoff a player can guarantee under all-pay Richman coincides with
what he can guarantee deterministically under first-price Richman. In G./ this is 0.5.

Given these results, it seems safe to guess that poorman all-pay bidding would exhibit
similar properties: deterministic strategies are useless and with mixed strategies, first-price
and all-pay coincide. Both guesses, however, are wrong. Consider G./ and suppose Max’s
ratio is 0.75. As a baseline, recall that under first-price bidding, the mean-payoff value is
0.75. The first surprise is that deterministic strategies are useful under all-pay poorman
bidding when the ratio is greater than 0.5; Max can deterministically guarantee a payoff of
2/3 with a ratio of 0.75. The real surprise is with mixed strategies: given a choice between
first-price and all-pay bidding, Max strictly prefers all-pay bidding! In G./, with ratio 0.75,
Max can almost-surely guarantee a payoff of 5/6.

5 Discrete Bidding Games

In discrete bidding, the budgets are given in coins, and the minimal positive bid a player can
make is one coin. Discrete bidding is more natural with Richman bidding since with poorman
bidding, the budgets run out eventually. Motivated by recreational play, reachability discrete
bidding games were introduced and studied in [18] (see also [11, 22]). They showed existence
of threshold ratios, i.e., an adaption of Thm. 7 to discrete bidding.

Unlike continuous bidding, in discrete bidding, ties in biddings need to be addressed
explicitly. We thus assume a bidding game comes equipped with a tie-breaking mechanism.
A configuration of a bidding game consists of the current vertex the token is placed on,
the budgets of the two players, and the state of the tie-breaking mechanism. A game is
determined if from each configuration exactly one player has a winning strategy. It is not
hard to show that bidding games are a sub-class of concurrent games, which are not in general
determined. For example, the game “matching pennies” is a non-determined concurrent
game: both players concurrently choose a side of a coin, either 1 (“heads”) or 0 (“tails”),
and Player 1 wins iff the parity of the sum of the players’ choices is 0. Matching pennies is
not determined since if Player 1 reveals his choice first, Player 2 will choose opposite and
win the game, and dually for Player 2.

In [1], we studied the following question:

Which tie-breaking mechanisms admit determinacy of discrete bidding games?

We consider the following classes of tie-breaking mechanisms.

CONCUR 2020
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I Definition 35 (Tie-breaking mechanisms).
Transducer-based: Several natural tie-breaking mechanisms can be expressed using a
transducer. Examples include “Player 1 wins all ties”, “the players alternate turns in
winning ties”, “tie breaking depends on the vertex on which the token is placed”, “the player
with less budget wins ties”, and more. Formally, a transducer is T = 〈Σ, Q, q0,∆,Γ〉,
where Σ is a set of letters, Q is a set of states, q0 ∈ Q is an initial state, ∆ : Q×Σ→ Q

is a deterministic transition function, and Γ : Q → {1, 2} is a labeling of the states.
Intuitively, T is run in parallel to the bidding game and its state is updated according to
the outcomes of the biddings. Whenever a tie occurs and T is in state s ∈ Q, the winner
of the bidding is Γ(s). A critical point is the information according to which tie-breaking
is determined, and this is represented in the alphabet of the transducer.
Random-based: A tie is resolved by choosing the winner uniformly at random.
Advantage-based: Exactly one player holds the advantage. Suppose Player i holds the
advantage and a tie occurs. Then Player i chooses who wins the bidding. If he calls the
other player the winner, Player i keeps the advantage, and if he calls himself the winner,
the advantage switches to the other player. This is the main tie-breaking mechanism
studied in [18].

The following simple example shows that bidding games are not in general determined with
transducer-based tie-breaking. In [1], a more complicated example shows non-determinacy
for a particularly simple tie-breaking mechanism: the players alternate turns in winning ties,
that is, Player 1 wins the first tie, Player 2 the second tie, Player 1 the third, etc.

I Example 36. In a Büchi game, Player 1 wins a play iff it visits an accepting state infinitely
often. Consider the Büchi bidding game that is depicted on the left of Fig. 9, and assume
the players’ budgets are positive and equal. We claim that the game is not determined when
tie-breaking is resolved using the transducer on the right of the figure. That is, if a tie occurs
in the first bidding, Player 2 wins all ties for the rest of the game, and otherwise Player 1
wins all ties. First note that, for i ∈ {1, 2}, no matter what the budgets are, if Player i wins
all ties, he wins the game. A winning strategy for Player 1 always bids 0. Intuitively, Player 2
must invest a unit of budget for winning a bidding and leaving v1. Thus, if Player 2’s initial
budget is B, he can leave v1 only B times, and the game eventually stays in v1. So, the
winner is determined according to the outcome of the first bidding, and the players essentially
play a matching-pennies game in that round. y

v1 v2

1 21

s1 s0 s2

⊤,⊥ ⊤,⊥
⊤⊥

Figure 9 On the left, a Büchi game that is not determined when tie-breaking is determined
according to the transducer on the right, where the letters > and ⊥ respectively represent “tie” and
“no tie”.

The statement of the theorem below uses Müller objectives, which generalize parity
objectives.

I Theorem 37 ([1]). Discrete bidding games are a determined sub-class of concurrent games
in the following cases:

Müller bidding games that use a transducer that is not aware of ties are determined.
Reachability bidding games with random tie-breaking are determined.
Müller bidding games with advantage-based tie-breaking are determined.
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Determinacy implies an immediate upper bound on solving discrete bidding games in
which the budgets are given in unary.

I Theorem 38 ([1]). Let G be a discrete bidding game with objective γ and with either
transducer or advantage-based tie-breaking. The complexity of deciding whether Player 1 wins
from a given vertex with budgets N1 and N2 for the two players, given in unary, matches the
complexity of solving a turn-based game with objective γ.

I Open problem 6. Our understanding of infinite-duration discrete bidding games is far
from complete. We list specific directions for future work below:

Adapt the theory of infinite-duration continuous bidding games to discrete bidding:
Recall that the key property of parity continuous-bidding games is that exactly one
player wins a strongly-connected game (Lem. 13). This is not true for parity discrete-
bidding games. Find a classification for strongly-connected parity discrete-bidding
games that can serve a basis for a solution for games played on general graphs.
Mean-payoff discrete-bidding games were never studied. Can the equivalence with
random-turn games in continuous-bidding games be adapted to discrete-bidding?

Discrete bidding is especially suited for practical applications; find concrete applications
for this model, e.g., in verifying blockchain technology (see Sec. 4).
Preliminary results on discrete all-pay Richman bidding games were shown in [26] and it
is interesting to continue this line of work.
Study the computation complexity of discrete bidding games with budgets given in binary.

6 Conclusions

We studied three orthogonal dimensions of bidding mechanisms: who pays (first-price vs.
all-pay), who is paid (Richman, poorman, and taxman), and what types of bids are allowed
(continuous vs. discrete). Our results depict a relatively complete picture, especially for
continuous bidding. We believe that there is still ample room for future work on bidding
games. In addition to the open problems mentioned throughout the survey, we discuss several
orthogonal dimensions to the three mentioned above:

The underlying structure. Bidding games in this survey are always played on graphs. In [6],
we established initial results on bidding games that have stochastic behavior: the game is
played on an MDP and in each turn, we hold an auction to determine which action is chosen,
and the next position of the token is determined according to a probability distribution that
depends on the current vertex and the chosen action. Other possible structures to consider
include real-time systems or systems with counters.

Objectives. We focused on three objectives: reachability, parity, and mean-payoff. It is
interesting to study bidding games with other objectives. For example, in discounted-sum
bidding games, the players are encouraged to bid higher in the first rounds due to the
discounted payoffs. Another example is quantitative reachability, which is played on a
weighted directed graph, the game ends once a target is reached, and the payoff is the
(un-averaged) sum of the traversed weights.

One motivation to study bidding games is that they model ongoing auctions. In auctions,
and different from mean-payoff objectives, the budget has a value to the players. We thus
find it interesting to incorporate the budget in the payoff. For example, suppose that a play
in a quantitative reachability game, reaches the target after traversing weights with a sum of
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c, and leaving Player 1 with a budget of B. Then, we can define Player 1’s payoff as c+B.
That is, he gains a utility of c for the items he purchased and a utility of B from his left-over
money. A similar definition can be applied to infinite plays like in mean-payoff games.

Non-zero-sum games. To the best of our knowledge, non-zero-sum bidding games were
only studied in [25]. They consider two-player games on DAGs in which each leaf is labeled by
two (not necessarily contradicting) payoffs that the players gain when the game ends in the
leaf. They show existence of subgame perfect equilibrium in bidding games with out-degree 2.
We believe that their results encourage further study of non-zero-sum bidding games.

Multi-player games. To the best of our knowledge, a combination of bidding games with
multiple players has never been considered. While it is tempting to study non-zero-sum
multi-player games, we note that it is interesting to study a zero-sum version in the spirit of
[2]. For example, consider a reachability game with three players, where Player 1 has a target
and Players 2 and 3 win iff Player 1 does not reach his target. We hold a first-price bidding
in each round to determine who moves the token (say poorman bidding). The coalition can
coordinate their actions, but they are restricted compared with a “traditional” player in a
two-player bidding game: For example, if the budgets are 〈1.5, 1, 1〉, even though the sum of
budgets in the coalition is 2, the highest a member of the coalition can bid is 1, thus Player 1
can guarantee winning the bidding.

We mention a surprising result regarding this model. We say that B = 〈B1, B2, B3〉 ∈ R3

is a winning point if Player 1 wins when Player i’s budget is Bi, for i ∈ {1, 2, 3}. Ventsislav
Chonev showed that the set {B : B is a winning point} is not convex in the game in which
the coalition needs to win two biddings and Player 1 needs to win once.

Changes to the bidding mechanism. We list two examples of changes to the bidding
mechanism, and there are plenty of other interesting changes one can study. It is appealing,
especially in discrete poorman bidding, to add re-charging to the budgets. One way recharging
can be defined is by labeling each vertex with a pair 〈c1, c2〉 ∈ N2 and when the token lands
on a vertex, we add ci to Player i’s budget, for i ∈ {1, 2}. So, Player i’s available budget at
the end of a finite play is his initial budget, minus the sum of bids he pays, plus the sum of
recharges to his budget.

A second change to the bidding mechanism relaxes the requirement that the bidding
mechanism applies in the same manner to all vertices in the graph. A simple definition would
be to partition the vertices into vertices in which we hold a Richman bidding and those in
which we hold a poorman bidding. For example, consider the Bowtie game (Fig. 3) and
set one of the vertices to be Richman and the other to poorman. It is not clear whether
Max prefers his vertex being the poorman vertex, the Richman vertex, or whether he has no
preference. More generally, each vertex can be associated with its own taxman parameter.
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