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Abstract. Abdominal multi-organ and tumors segmentation can pro-
vide anatomical structure information for doctors and is an important
step in computer-aided diagnosis. However, accurate segmentation of ab-
dominal multi-organ and tumors is still an urgent problem due to par-
tially labeled issue and variable tumor position. To address these prob-
lems, we propose a cascaded approach using cascaded nnU-Net to handle
the task of multi-organ and tumors segmentation. Since tumors located
in different organs have different gray value and textures, we train seg-
mentation models for each tumor to improve the tumor segmentation
accuracy. We also combine semi-supervised method while training to
makes full use of the unlabeled data. In addition, we postprocess the
segmentation results to refine segmentation based on anatomical prior
knowledge. We improve the inference speed by replacing the interpola-
tion function and cropping the probability map. We obtain an average
DSC of 90.28% on abdominal multi-organ segmentation and 42.87% on
pan-tumor segmentation, with an average inference time of 23.77s per
case on validation set.

Keywords: Semi-supervised learning · Multi-Organ segmentation · Tu-
mor segmentation.

1 Introduction

Abdominal multi-organ segmentation is a fundamental task in the field of med-
ical image analysis, providing crucial anatomical information for physicians and
serving as a vital step in facilitating clinical diagnosis and surgical planning.
However, due to variations in organ sizes and the prevalence of partially labeled
organ datasets with significant differences between them, making automatic ab-
dominal multi-organ segmentation remains a formidable challenge. Given that
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abdominal organs are frequently affected by tumors, accurate tumor segmenta-
tion is also necessary, which is crucial for early cancer detection, disease pro-
gression monitoring, intraoperative assistance, and treatment effect evaluation.
However, the difficulty of tumor segmentation lies in the diversity of shape, size,
and location of cancer lesions in different cases, as well as the blurred bound-
aries with healthy tissues, which make tumor segmentation more challenging. To
address these problems, we propose a cascaded nnU-Net to handle abdominal
multi-organ and tumor segmentation.

In terms of abdominal multi-organ segmentation, early studies mostly em-
ployed atlas-based methods[11,24], wherein the general framework involved de-
forming selected atlas images with segmentation structures onto the target im-
age. However, in comparison to other body regions (e.g. brain), the abdominal
region exhibits significant inter-subject variation, which seriously affects final ac-
curacy. Recently, The Fast and Low-resource Semi-supervised Abdominal Organ
Segmentation Challenge 2022 (FLARE22)[17] demonstrated that nnU-Net[9] can
achieve excellent results in supervised learning, and when combined with pseudo
labeling framework, it can attain state-of-the-art performance in semi-supervised
tasks. Therefore, we also adopted the method of nnU-Net with pseudo labeling
framework in our work.

The segmentation of tumors can be broadly categorized into two approaches
in existing research: one involves training a separate segmentation model for
each organ tumor and subsequently segmenting the tumor within the region of
interest (ROI) of that particular organ; the other approach entails training a
general model to segment all tumors in the entire abdominal imaging scan at
once[12,23,2]. The latter method offers advantages in terms of model complex-
ity and computing time, while the former method requires longer training and
inference time. However, currently, the first method has achieved superior re-
sults compared to the second method because it performs segmentation on a
smaller scale with individual models for each tumor. Therefore, we adopt the
first method in our work and also utilize a pseudo labeling framework for tumor
segmentation using unlabeled data.

In this paper, we propose a two-stage model for segmenting abdominal organs
and tumors, along with an improved inference strategy based on nnU-Net to
accelerate inference speed and reduce computational resources.

The contributions of this article can be summarized as follows:

– We employ pseudo-labeling-based semi-supervised learning for abdominal
multi-organ and tumor segmentation, effectively utilizing unlabeled data.

– We introduce a coarse-to-fine segmentation framework that enhances tumor
segmentation results at a fined scale.

– We leverage prior anatomical knowledge, and post-process the segmentation
results to effectively minimize erroneous segmentation area.

– We replacing the interpolation function of nnU-Net and implementing GPU
acceleration calculation as well as multi-process computation, which signifi-
cantly accelerate the inference speed of our model.
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2 Method

2.1 Preprocessing

We first crop the non-zero region of the image, then resample the cropped image
to the median resolution of all data. Finally we normalize image using Z-Score
normalization strategy. Z-Score normalization formula is as follows:

Z = x− µ/δ (1)

µ is the mean of the CT values of the image foreground and δ is the variance of
the CT values of the image foreground.

2.2 Proposed Method

Our method composes of two two 3D nnU-Net: Organ Segmentation Networks
and Tumor Segmentation Networks, as can be seen in Fig1.

Fig. 1. Overview of cascaded nnU-Net framework. Organ segmentation model and
tumor segmentation model are trained with pseudo-labeled and partially labeled data.
First get the organ segmentation, then crop image according to organ mask to get the
organ minimum box for tumor segmentation.
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We propose a coarse-to-fine frame which is commonly used in small-target
segmentation task. The overall architecture of the method is shown in Fig1. It
consists of organ segmentation network and tumor segmentation network. In the
organ segmentation stage, we use nnU-Net network with the same setting as
the FLARE22 best algorithm [8] to generate 13 abdominal organ segmentation
masks. In the tumor segmentation stage, we crop the image according to organ
mask obtained by organ segmentation net to get organ minimum box which is
used as input in tumor segmentation network. In inference stage, we use the
same strategy, i.e., segment organs first and then get tumor segmentation mask
based on organ mask. Finally we merge organ masks and corresponding tumor
masks to get final prediction.

Loss function. we combine the Dice Similariy Coefficient(DSC) loss and cross-
entropy loss because compound loss functions have been proven to be robust in
various medical image segmentation tasks [13].

L = LDSC + LCE (2)

Strategies for using partially labeled and unlabeled data. To obtain
complete organ annotations that meet the training requirements, we use pseudo
labels generated by the FLARE22 winning algorithm [8]. Specifically, for each
training example of partially labeled data we replaced the missing organ labels
in the ground truth with the organ labels provided by the pseudo-labels. For
unlabeled data, we directly used the provided pseudo-labels.

2.3 Training strategy

The overall training strategy of our proposed method is as follows:
1. Train the organ segmentation model on all data obtained by strategy men-
tioned above.
2. Collect data containing tumor label and crop them to minimal box containing
organ as training data to train the tumor segmentation model.
3. Generate tumor pseudo-label on unlabelled data using tumor segmentation
model.
4. Combine data with ground truth label and data with pseudo label to train
final tumor segmentation model.

2.4 Anatomical prior Post-processing

Aorta-based cropping. Due to the inclusion of non-abdominal organs such
as the lungs and pelvis in a significant portion of the data, false segmentation
of these organs, for example mistaking the bladder for the liver or stomach,
can occur easily. To leverage anatomical prior knowledge and minimize false
segmentation, we employed a cropping approach by defining the upper boundary
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as the highest position of the aorta and setting the lower boundary as 20 layers
below its lowest position. This strategy allows us to focus on abdominal organ
segmentation while reducing errors.

Tumor connectivity analysis. In reality, tumors are typically connected to
their corresponding organs rather than existing independently outside them.
Although free tumor components may appear in segmentation results due to
undersegmentation at junctions, we implemented an additional step to identify
and remove disconnected tumor components from their respective organs. By
doing so, we effectively mitigate false segmentation issues associated with free
tumor structures.

2.5 Acceleration for inference

Interpolating functions. In the process of nnU-Net inference, the process of
downsampling-inference-upsampling of the results is required, and we find that
this part consumes a lot of time. Therefore, we replace the interpolation method
of nnU-Net with the pytorch based interpolation function, which adopts the area
mode for downsampling and the trilinear mode for upsampling.

GPU acceleration. We find that using the GPU during interpolation can
greatly accelerate the computation, but due to the large size of most CT scans,
this would take up a lot of GPU resources, making it impossible to run on
more devices. Therefore, we adopted the cropping probability map-interpolation-
merge process, which can accelerate the calculation while running in a smaller
GPU occupancy.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [15][16],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [3], LiTS [1], MSD [20], KiTS [6,7],
autoPET [5,4], TotalSegmentator [21], and AbdomenCT-1K [18]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [22], nnU-Net [10], and
MedSAM [14].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
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measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.1
CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) Four Nvidia GeForce RTX 3090 24GB
CUDA version 11.7
Programming language Python 3.9.17
Deep learning framework torch 2.0.1, torchvision 0.15.2
Specific dependencies nnU-Net 2.1.1
Code https://github.com/w58777/FLARE23

Training protocols The training protocols for the organ segmentation net-
work and the tumor segmentation network are listed in Tables 2 and 3, re-
spectively. During training, we used additive luminance transformation, gamma
transformation, rotation, scale transformation, and elastic deformation for data
augmentation.

4 Results and discussion

4.1 Quantitative results on validation set

The overall quantitative results are shown in Table 4. We performed ablation
experiments on tumor segmentation to validate the effect of unlabeled data.
Table 5 shows the results with or without the use of unlabeled data. It can be
noticed that semi-supervised model outperforms fully supervised model using
only labeled data. This is due to the fact that semi-supervised methods utilize
unlabeled data which greatly enhance the generalization of model. This also
confirms the data-driven of deep learning.

https://github.com/w58777/FLARE23 
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Table 2. Training protocols for organ segmentation.

Network initialization “He” normal initialization
Batch size 2
Patch size 96×160×160
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy:(1− epoch/1000)0.9

Training time 26 hours
Loss function Dice loss and cross entropy loss
Number of model parameters 36.99M
Number of flops 248G
CO2eq 7.8 Kg

Table 3. Training protocols for tumor segmentation.

Network initialization “He” normal initialization
Batch size 4
Patch size 56×112×176
Total epochs 1000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Poly learning rate policy:(1− epoch/1000)0.9

Training time 22.8hours
Number of model parameters 48.88M
Number of flops 291G
CO2eq 5.5 Kg
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Table 4. Quantitative evaluation results, the public validation denotes the performance
on the 50 validation cases with ground truth, the online validation denotes the leader-
board results. All results are presented with the mean score and standard deviation of
DSC and NSD.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 97.94 ± 0.48 98.88 ± 1.09 98.08 99.04
Right Kidney 96.33 ± 2.58 96.52 ± 4.15 94.26 95.47
Spleen 97.11 ± 2.63 98.26 ± 3.50 96.86 98.27
Pancreas 86.40 ± 5.23 96.56 ± 4.23 85.65 95.96
Aorta 96.43 ± 3.63 98.58 ± 3.44 97.36 99.26
Inferior vena cava 92.97 ± 4.62 94.00 ± 5.19 93.23 94.16
Right adrenal gland 84.68 ± 12.78 94.68 ± 13.78 85.84 95.81
Left adrenal gland 83.64 ± 5.76 95.45 ± 3.91 84.86 94.92
Gallbladder 86.07 ± 19.47 86.83 ± 20.62 86.55 86.97
Esophagus 81.68 ± 16.65 90.73 ± 16.99 83.87 93.26
Stomach 93.84 ± 4.09 97.01 ± 4.66 94.58 97.47
Duodenum 82.63 ± 7.72 94.53 ± 5.48 83.79 95.19
Left kidney 93.95 ± 11.06 94.21 ± 12.44 94.43 94.96
Tumor 42.87 ± 35.86 38.41 ± 32.76 41.89 36.14
Average 66.57 66.75 87.23 91.20

Table 5. Ablation experiments on tumor segmentation to validate the effect of unla-
beled data.

method Organ DSC Organ NSD Tumor DSC Tumor NSD
w/ unlabeled data 90.28 95.10 42.87 38.41
w/o unlabeled data 89.44 94.97 41.89 34.76

Table 6. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 23.57 3192 18634
0051 (512, 512, 100) 21.74 4748 32704
0017 (512, 512, 150) 27.93 2298 38197
0019 (512, 512, 215) 27.32 2220 34973
0099 (512, 512, 334) 28.49 2278 38045
0063 (512, 512, 448) 35.54 2276 51162
0048 (512, 512, 499) 44.31 2248 58454
0029 (512, 512, 554) 47.68 2260 63090
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4.2 Qualitative results on validation set

Examples of good segmentation and poor segmentation are given in Fig 2. The
qualitative results show that our method performs well in segmenting organs
such as liver, kidney, etc. Meanwhile, there are problems in recognizing and
segmenting organs such as duodenum and adrenal gland. This may be due to
the fact that large organs such as liver and kidney have more obvious boundaries
in CT images, while some organs such as duodenum and adrenal gland are
closely connected with other organs anatomically and have low contrast with
their surroundings, making it difficult to separate them from the background and
other organs. In addition, in tumor segmentation stage, our proposed algorithm
can identify and segment liver tumors as well as kidney tumors, however, it
performs poorly in segmenting giant tumors and boundary diffuse tumors.

Fig. 2. Segmentation examples of good and poor cases. Our model performs well in
segmenting most of the organs. At the same time, it has problems in segmenting small
organs with low contrast and unusually large tumors.
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4.3 Segmentation efficiency results on validation set

We ran our model on a docker with NVIDIA GeForce RTX 3090 (24G) and 28
GB RAM for inference on 100 validation cases. The average inference time per
case is 23.77 s, the average maximum GPU memory used for inference is 2755.8
MB, and the average GPU- time AUC area under the curve is 29,484.24. Table
6 shows the inference efficiency parameters of our model on some examples.

4.4 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI
(2023.10.8).

4.5 Limitation and future work

Qualitative and quantitative results show that our method performs well for most
of organs segmentation, but for some small organs and tumors, our segmentation
method is not robust enough. In addition, for cases with more CT slices, the
abdominal region is difficult to extract and the segmentation efficiency is not
satisfactory. Meanwhile, although the coarse-to-fine segmentation improves the
accuracy of tumor segmentation, it also increases the inference time to some
extent. Our future work will focus on the segmentation of small organs and
tumors to develop more accurate segmentation algorithms for small targets.

5 Conclusion

In this study, we present a coarse-to-fine model for multi-organ and pan-tumor
segmentation in abdominal CT. By using unlabeled data, our methods can im-
prove segmentation performance. Our method also balances inference efficiency
and segmentation accuracy to achieve accurate and fast multi-organ and pan-
cancer segmentation. Quantitatively evaluated, our method achieves an average
DSC of 90.28% on multi-organ and 42.87% on tumor, with an average process
time of 23.77s per case in the validation dataset.
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