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ABSTRACT

Sharpness-aware minimization (SAM) methods have gained increasing popularity
by formulating the problem of minimizing both loss value and loss sharpness as
a minimax objective. In this work, we increase the efficiency of the maximiza-
tion and minimization parts of SAM’s objective to achieve a better loss-sharpness
trade-off. By taking inspiration from the Lookahead optimizer, which uses multi-
ple descent steps ahead, we propose Lookbehind, which performs multiple ascent
steps behind to enhance the maximization step of SAM and find a worst-case
perturbation with higher loss. Then, to mitigate the variance in the descent step
arising from the gathered gradients across the multiple ascent steps, we employ
linear interpolation to refine the minimization step. Lookbehind leads to a myriad
of benefits across a variety of tasks. Particularly, we show increased generaliza-
tion performance, greater robustness against noisy weights, as well as improved
learning and less catastrophic forgetting in lifelong learning settings.

1 INTRODUCTION

Improving the optimization methods used in deep learning is a crucial step to enhance the per-
formance of current models. Notably, building upon the long-recognized connection between the
flatness of the loss landscape and generalization (Hochreiter & Schmidhuber, 1994; Keskar et al.,
2016; Dziugaite & Roy, 2017; Neyshabur et al., 2017; Izmailov et al., 2018), sharpness-aware train-
ing methods have gained recent popularity due to their ability to significantly improve generalization
performance compared to minimizing the empirical risk using stochastic gradient descent (SGD).
Particularly, sharpness-aware minimization (SAM) (Foret et al., 2021) was recently proposed as
an effective means to simultaneously minimize both loss value and loss sharpness during training.
Given a neural network with parameters ϕ, some loss function L(ϕ), SAM seeks parameters in flat
regions by formulating the problem as a minimax optimization:

min
ϕ

max
∥ϵ∥2≤ρ

L(ϕ+ ϵ) , (1)

where worst-case perturbations ϵ are applied to parameters ϕ, with the distance between original
and perturbed parameters being controlled by ρ. SAM approximates the maximization step by first
performing a single gradient ascent step and then using the gradient of the loss to do a single descent
step from the original solution. This leads to finding a low-loss parameter configuration ϕ such that
the loss is also low in the neighborhood ρ which will lead to flatter solutions. Several follow-up
methods have emerged to further enhance its performance (Kwon et al., 2021; Zhuang et al., 2022;
Kim et al., 2022) and reduce its computation overhead (Du et al., 2022a;b; Liu et al., 2022a).

Despite the recent success, improving upon SAM requires a delicate balance between loss value and
sharpness. Ideally, the optimization process would converge towards minima that offer a favorable
compromise between these two aspects, thereby leading to high generalization performance. How-
ever, naively increasing the neighborhood size ρ used to find the perturbed solutions in SAM leads
to a considerable increase in training loss, despite improving sharpness (Figure 1, full circles). In
other words, putting too much emphasis on finding the worst-case perturbation is expected to bias
convergence to flat but high-loss regions and negatively impact generalization performance.

Instead of performing a single ascent step akin to SAM, performing multiple ascent steps is a promis-
ing way of increasing the neighborhood region to find perturbed solutions, and thus further reduc-
ing sharpness. However, this is not what is observed empirically (Figure 1, empty circles). In
fact, previous works (Foret et al., 2021; Andriushchenko & Flammarion, 2022) have shown that
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such a multistep variant may hurt performance. A possible cause is the increased gradient insta-
bility originating from moving farther away from our original solution (Liu et al., 2022b). Note
that such instability may also be present when using a high ρ, even in single-ascent step SAM. In
this case, applying a variance reduction technique such as Lookahead (Zhang et al., 2019) with
SAM as inner optimizer may help mitigate the performance loss when using larger ρ. How-
ever, as we demonstrate in our experiments, this is also not helpful (Figure 1, empty triangles).
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Figure 1: Loss and sharpness trade-off us-
ing ResNet-34 trained on CIFAR-10. Darker
shades indicate training with higher neighbor-
hood sizes ρ ∈ {0.05, 0.1, 0.2}. Lookbehind
achieves both lower loss and sharpness.

In this work, we present a novel optimization
method, called Lookbehind, that leverages the ben-
efits of multiple ascent steps and variance reduc-
tion to improve the efficiency of the maximiza-
tion and minimization parts of equation 1. This
leads to Lookbehind successfully reducing both
loss and sharpness across small and large neighbor-
hood sizes (Figure 1, full triangles), achieving the
best loss-sharpness trade-off.

In practice, improving the loss and sharpness trade-
off results in a myriad of benefits across sev-
eral training regimes. Particularly, when applying
Lookbehind to SAM and ASAM, we show a con-
siderable improvement in terms of generalization
performance across several models and datasets.
Moreover, models trained with Lookbehind have
increased robustness against noisy weights at infer-
ence time. Lastly, we evaluate Lookbehind in the
context of lifelong learning and show an improve-
ment both in terms of learning and catastrophic for-
getting on multiple models and datasets.

2 BACKGROUND: SHARPNESS-AWARE
MINIMIZATION

Our method, Lookbehind, builds upon sharpness-aware minimization (SAM) methods with the goal
of solving the inner maximization problem of SAM more accurately while stabilizing the outer
minimization part of SAM’s objective. We will start by briefly introducing the sharpness-aware
minimization methods used throughout the paper.

To solve the problem in equation 1 using standard stochastic gradient methods, SAM (Foret et al.,
2021) proposes to estimate the gradient of the minimax objective in two steps. The first step is to
approximate the inner maximization ϵ(ϕ) using one step of gradient ascent; the second is to compute
the loss gradient at the perturbed parameter ϕ+ ϵ(ϕ). This leads to the following parameter update:

ϕt = ϕt−1 − η∇ϕL(ϕt−1 + ϵ(ϕt−1)), ϵ(ϕ) := ρ
∇L(ϕ)
||∇L(ϕ)||2

. (2)

Several follow-up sharpness-aware methods have been proposed to further improve upon the origi-
nal formulation. Notably, a conceptual drawback of SAM is the use of a fixed-radius Euclidean ball
as maximization neighborhood, which is sensitive to re-parametrizations such as weight re-scaling
(Dinh et al., 2017; Stutz et al., 2021). To address this problem, ASAM (Kwon et al., 2021) was pro-
posed as an adaptive version of SAM, which redefines the maximization neighborhood in equation 1
as component-wise normalized balls ∥ϵ/|ϕ|∥2 ≤ ρ. This leads to the modified parameter update:

ϕt = ϕt−1 − η∇ϕL(ϕt−1 + ϵ(ϕt−1)), ϵ(ϕ) := ρ
T 2
ϕ(∇L(ϕ))

||Tϕ(∇L(ϕ))||2
(3)

where Tϕ(v) := ϕ⊙ v denotes the component-wise multiplication operator associated to ϕ. In what
follows, we use both SAM and ASAM as our baseline sharpness-based learning methods.
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(a) Multistep-SAM. (b) Lookbehind+SAM (ours).

Figure 2: Illustration of Multistep-SAM (a) and Lookbehind-SAM (b) using k = 2.

3 LOOKBEHIND OPTIMIZER

Our algorithm, Lookbehind (+SAM), presents a novel way to improve the solution found by SAM’s
objective (equation 1). The intuition of Lookbehind is two-fold. First, we improve the maximization
part of SAM’s objective by performing multiple ascent steps to find a worst-case weight perturbation
that has a higher loss than the original, single-step SAM within a given neighborhood of the original
point. We refer to such maximization of the loss as we perform multiple ascent steps in SAM as
looking behind. In other words, we are looking behind in the sense that we are climbing the loss
landscape. (This term is inspired by the Lookahead optimizer (Zhang et al., 2019), where looking
ahead refers to the minimization of the loss as they perform multiple descent steps.)

Second, to improve the minimization part of SAM’s objective, we reduce the variance derived from
the multiple ascent steps by aggregating the gradients along the way for the descent step and per-
forming linear interpolation in the parameter space. This results in an alleviation of the instability
that arises from (1) performing multiple ascent steps due to the various gradients gathered in the as-
cent phase not being aligned with each other and (2) the substantial departure away from the original
point as performing ascent steps, which negatively impacts SAM’s minimization objective and con-
sequent loss-sharpness trade-off (Figure 1). Lookbehind combines instead the gradients computed at
intermediate distances, improving upon the multiple ascent step variant of SAM (Multistep-SAM).
A visual comparison between Multistep-SAM and Lookbehind is illustrated in Figure 2.

While Multistep-SAM performs k ascent steps (ϕ′
t,1, · · · , ϕ′

t,k) and uses the gradient from the last
step (ϕ′

t,k) for the final update, Lookbehind uses slow weights (ϕt, ϕt+1, · · · ) and fast weights

Algorithm 1 Lookbehind+SAM

Require: Parameters ϕ0, loss L, inner steps k,
slow and fast weights step sizes α and η, neigh-
borhood size ρ, training set D

1: for t = 1, 2, . . . do
2: ϕt,0 ← ϕt−1

3: ϕ′
t,0 ← ϕt−1

4: Sample mini-batch d ∼ D
5: for i = 1, 2, . . . , k do

6: ϵ← ρ
∇Ld(ϕ

′
t,i−1)

∥∇Ld(ϕ′
t,i−1)∥2

7: ϕ′
t,i ← ϕ′

t,i−1 + ϵ
8: ϕt,i ← ϕt,i−1 − η∇Ld

(ϕ′
t,i)

9: end for
10: ϕt ← ϕt−1 + α(ϕt,k − ϕt−1)
11: end for
12: return ϕ

(ϕt,1, · · · , ϕt,k), where fast weights are up-
dated using the gradients from k ascent SAM
steps. Then, the slow weights are updated to-
ward the fast weights through linear interpo-
lation. Even though both methods entail the
same number of gradient computations, Look-
behind has a stabilizing effect over Multistep-
SAM by combining the gradient information.

The pseudo-code for Lookbehind is presented
in Algorithm 1. After synchronizing the fast
weights (line 2) and the perturbed weights
(line 3), we sample a minibatch (line 4) and
perform k ascent steps of SAM by preserv-
ing the previously perturbed slow weights (line
7) and introducing further perturbations in the
subsequent inner step (line 6); corresponding
descent steps are tracked and the fast weights
are updated accordingly (line 8). After k
steps, a linear interpolation of the fast and slow
weights is conducted (line 10).
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4 EXPERIMENTAL RESULTS

In this section, we start by introducing our baselines (Section 4.1), and then we conduct several
experiments to showcase the benefits of achieving a better sharpness-loss trade-off in SAM methods.
Particularly, we test the generalization performance on several models and datasets (Section 4.2) and
analyze the loss landscapes at the end of training in terms of sharpness (Section 4.3). Then, we study
the robustness provided by the different methods in noisy weight settings (Section 4.4). Lastly, we
analyze how the ability to continuously learn is affected in sequential training settings (Section 4.5).

For the following experiments, we use residual networks (ResNets) (He et al., 2016) and wide resid-
ual networks (WRN) (Zagoruyko & Komodakis, 2016) models trained from scratch on CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). We report the mean and
standard deviation over 3 different seeds throughout the paper unless noted otherwise. Additional
training and hyperparameter search details are provided in Appendices A.3 and A.4.

4.1 BASELINES

On top of the previously discussed Lookbehind+SAM method, we note that our algorithm can be
easily extended to ASAM by using the component-wise rescaling (equation 3) in the inner loop
updates. We call this variant Lookbehind+ASAM. Additionally to SGD, vanilla SAM, and vanilla
ASAM, we compare Lookbehind+SAM/ASAM to the following methods:

• Multistep-SAM/ASAM: As previously discussed in Section 3, this corresponds to perform-
ing multiple ascent steps to the vanilla SAM and ASAM algorithms, with the final update
using the gradient from the last step.

• Lookahead+SAM/ASAM: We use Lookahead with sharpness-aware methods by applying
single-step SAM and ASAM as the inner optimizers. A detailed description of Looka-
head+SAM/ASAM is provided in Appendix A.2.

• Lookahead+SGD: For the sake of completeness, we also apply the Lookahead optimizer to
SGD, as originally proposed by Zhang et al. (2019).

4.2 GENERALIZATION PERFORMANCE

We start by reporting the generalization performance on several models and datasets in Table 1. We
observe that models trained with Lookbehind achieve the best generalization performance across
all architectures and datasets. This is observed for both SAM and ASAM. Moreover, we see the
Lookbehind+SAM/ASAM variants always outperform Lookahead+SGD, which further validates
applying Lookbehind to sharpness-aware minimization methods. Importantly, we note that Lookbe-
hind is the only method to outperform vanilla SAM and ASAM on ImageNet. We note, however,
that the improvement of the loss-sharpness trade-off achieved by Lookbehind leads to a myriad of
benefits on top of increased generalization performance, as demonstrated next.

Table 1: Generalization performance (validation accuracy %) of the different methods on several
models trained on CIFAR-10, CIFAR-100, and ImageNet.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 WRN-28-2 ResNet-50 WRN-28-10 ResNet-18
SGD 95.84±.13 93.58±.11 74.35±1.23 78.80±.08 69.91±.04

Lookahead + SGD 95.59±.21 94.01±.02 75.96±.12 78.53±.18 69.63±.12

SAM 95.80±.07 93.93±.20 76.57±.59 80.50±.06 70.01±.06

Multistep-SAM 95.72±.15 94.39±.09 77.03±.65 80.55±.06 69.92±.07

Lookahead + SAM 95.80±.11 93.97±.17 76.16±.98 80.09±.10 69.99±.07

Lookbehind + SAM 96.27±.0796.27±.0796.27±.07 94.81±.2294.81±.2294.81±.22 78.62±.4878.62±.4878.62±.48 80.99±.0280.99±.0280.99±.02 70.16±.0870.16±.0870.16±.08

ASAM 96.32±.02 94.41±.09 78.62±.67 81.67±.28 70.15±.06

Multistep-ASAM 95.91±.14 95.06±.15 77.81±.52 81.67±.06 70.06±.01

Lookahead + ASAM 96.01±.15 94.28±.04 77.55±1.10 80.97±.17 70.00±.11

Lookbehind + ASAM 96.54±.2196.54±.2196.54±.21 95.23±.0195.23±.0195.23±.01 78.86±.2978.86±.2978.86±.29 82.16±.0982.16±.0982.16±.09 70.23±.2270.23±.2270.23±.22
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4.3 SHARPNESS ACROSS LARGE NEIGHBORHOOD REGIONS

We move on to analyzing the sharpness of the minima found at the end of training for each method.
To do this, we measure the sharpness of the trained models using m-sharpness (Foret et al., 2021)
by computing

1

n

∑
M∈D

max
∥ϵ∥2≤r

1

m

∑
s∈M

Ls(ϕ+ ϵ)− Ls(ϕ) (4)

and
1

n

∑
M∈D

max
∥ϵ/|ϕ|∥2≤r

1

m

∑
s∈M

Ls(ϕ+ ϵ)− Ls(ϕ) (5)

for SAM and ASAM, respectively, where D represents the training dataset, which is composed of
n minibatches M of size m. To avoid ambiguity, we denote the radius used by m-sharpness as r.
Instead of only measuring sharpness in close vicinity to the found solutions, i.e. using r = 0.05 as
in Figure 1, we vary the radius r over which m-sharpness is calculated. Particularly, we iterate over
r ∈ {0.05, 0.5, 1.0, . . . , 5.0} for SAM and r ∈ {0.5, 1.0, . . . , 5.0} for ASAM.

The sharpness over different radii of the different methods, when also trained with different ρ, are
shown in Figure 3. We observe that on top of Lookbehind improving sharpness at the nearby neigh-
borhoods (as previously shown in Figure 1), SAM and ASAM models trained with Lookbehind also
converge to flatter minima at the end of training, as measured on an extensive range of tested radii.
This is consistent across training with different ρ on both SAM and ASAM. Even though the minima
found by the Lookahead and Multistep variants tend to have low sharpness when training with the
default ρ, such benefits diminish at higher ρ.
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Figure 3: Sharpness at multiple m-sharpness’s radius r using ResNet-34 trained on CIFAR-10.
Darker shades indicate training with higher neighborhood sizes ρ, ranging from ρ ∈ {0.05, 0.1, 0.2}
for SAM and ρ ∈ {0.5, 1.0, 2.0} for ASAM. Lower sharpness is better.

4.4 MODEL ROBUSTNESS

We now assess model robustness against noisy weights. This is a particularly important use case
when deployment models in highly energy-efficient hardware implementations that are prone to
variabilities and noise (Xu et al., 2013; Kern et al., 2022; Spoon et al., 2021). Similar to previous
works (Joshi et al., 2020; Mordido et al., 2022), we apply a multiplicative Gaussian noise to the
model parameters ϕ after training in the form of ϕ × δ, with δ ∼ N (1, σ2) and update the batch
normalization statistics after the noise perturbations. Robustness results are presented in Figure 4.

We see that Lookbehind shows the highest robustness observed by preserving the most amount of
validation accuracy across the tested noise levels. This is observed for both SAM and ASAM on all
models and datasets. We note that the benefits of using sharpness-aware minimization methods to
increase model robustness to noisy weights were shown by previous works (Mordido et al., 2022).
Our results share these findings and further show that Lookbehind considerably boosts the robustness
benefits of training with SAM and ASAM across several models and datasets.
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Figure 4: Robustness against noisy weights at inference time. We plot the mean and standard
deviation over 10 and 3 inference runs for CIFAR-10/100 and ImageNet, respectively.

4.5 LIFELONG LEARNING

Lastly, we evaluate the methods in lifelong learning where a model with a limited capacity is trained
on a stream of tasks. The goal is then to maximize performance across tasks without having access
to previous data. In our experiments, we replicate the same setup used in Lookahead-MAML (Gupta
et al., 2020), which is a lifelong learning method that combines the concept of slow and fast weights
of Lookahead with meta-learning principles (Finn et al., 2017). Moreover, we replace Lookahead
with Lookbehind, creating a novel algorithm called Lookbehind-MAML. Since meta-learning is out
of the scope of this work, we implemented only the constant learning rate setting for simplicity, i.e.
the C-MAML variant (Gupta et al., 2020).

We train a 3- and a 4-layer convolutional network on Split-CIFAR100 and Split-TinyImageNet, re-
spectively. We report the following metrics by evaluating the model on the held-out data set: average
accuracy (higher is better) and forgetting (lower is better). Additional details about the algorithms,
training, and datasets are provided in Appendix A.5. The results are presented in Table 2. In the
first setting, we do not use ER and directly compare our method with SGD, SAM, and Multistep-
SAM. We observe that Lookbehind achieves the best performance both in terms of average accuracy
and forgetting. In the second setting, we apply ER to the previous methods. Once again, we see
an improvement when using our variant. Finally, we directly compare Lookahead-C-MAML with
Lookbehind-C-MAML and also notice an overall performance improvement.

Table 2: Lifelong learning performance in terms of average accuracy (higher is better) and forgetting
(lower is better) on Split-CIFAR100 and Split-TinyImageNet.

Dataset Split-CIFAR100 Split-TinyImagenet
Metric Avg. accuracy ↑ Forgetting ↓ Avg. accuracy ↑ Forgetting ↓
SGD 58.41±4.95 22.74±4.85 43.48±0.80 26.51±0.71

SAM 57.81±1.05 23.27±0.57 56.34±1.72 20.39±1.83

Multistep-SAM 59.58±0.34 15.09±0.48 56.09±1.17 20.70±1.05

Lookbehind + SAM 59.93±1.5459.93±1.5459.93±1.54 14.10±0.9814.10±0.9814.10±0.98 56.60±0.6856.60±0.6856.60±0.68 18.99±0.6218.99±0.6218.99±0.62

ER + SGD 64.84±1.29 12.96±0.23 49.19±0.93 19.06±0.26

ER + SAM 68.28±1.30 13.98±0.42 65.59±0.19 9.89±0.14

ER + Multistep-SAM 65.49±4.10 15.20±2.53 65.75±0.16 9.90±0.09

ER + Lookbehind + SAM 68.87±0.7968.87±0.7968.87±0.79 12.37±0.1112.37±0.1112.37±0.11 65.91±0.2765.91±0.2765.91±0.27 9.11±0.639.11±0.639.11±0.63

Lookahead-C-MAML 65.44±0.99 13.96±0.86 61.93±1.55 11.53±1.11

Lookbehind-C-MAML 67.15±0.7467.15±0.7467.15±0.74 12.40±0.4912.40±0.4912.40±0.49 62.16±0.8662.16±0.8662.16±0.86 11.21±0.4411.21±0.4411.21±0.44
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5 SENSITIVITY ANALYSIS

In this section, we analyze the sensitivity of Lookbehind to different hyper-parameter settings in
terms of generalization performance (Sections 5.1, 5.2, and 5.3). For the following experiments,
we used ResNet-34 and ResNet-50 models trained from scratch on CIFAR-10 and CIFAR-100,
respectively. Training and hyperparameter search details are provided in Appendices A.3 and A.4.

5.1 SENSITIVITY TO THE INNER STEP k

Validation accuracies of the different methods when using different k are presented in Figure 5.
We observe that Lookbehind is the only method that consistently outperforms the SAM and ASAM
baselines on both CIFAR-10 and CIFAR-100, across all the tested inner steps k. Interestingly, our
method tends to keep improving when increasing k, while this trend is not observed for either the
Lookahead or the Multistep variants. Moreover, we see that Multistep-SAM/ASAM does not pro-
vide a clear improvement over the respective SAM and ASAM baselines, as previously discussed in
prior work (Foret et al., 2021; Andriushchenko & Flammarion, 2022). On the other hand, the Looka-
head variants show a slight improvement over Multistep, particularly when combining Lookahead
with SAM and ASAM on CIFAR-10 and SAM on CIFAR-100. Overall, we see that Lookbehind
reaches the highest validation accuracy on every tested model and dataset configuration when com-
bined with both SAM and ASAM.
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Figure 5: Comparison of generalization performance (validation accuracy %) between Multistep-
SAM/SAM, Lookahead + SAM/ASAM, and Lookbehind + SAM/ASAM. The vanilla SAM and
ASAM baselines with default ρ are represented by the horizontal, dotted line.

5.2 SENSITIVITY TO THE OUTER STEP SIZE α

The validation accuracies of Lookbehind across different α and k are presented in Figure 6. We
see that Lookbehind always improves over the baselines when considering the full grid search. This
is also reflected in a finer-grained manner, where Lookbehind improves over the baselines in all k,
except k = 2 on SAM and CIFAR-10. We notice a diagonal trend, suggesting there is a relation
between α and k. Specifically, the results suggest that a higher α is better when increasing k. These
results show that Lookbehind is robust to the choice of k and α and while tuning these hyper-
parameters may improve performance, using a default high α (e.g. 0.5 or 0.8) with high k (e.g. 5 or
10) often results in good performance.

5.3 SENSITIVITY TO THE NEIGHBORHOOD SIZE ρ

We now analyze the effects of training with increasing ρ with the different methods. Results are
presented in Figure 7. We see that our method is the only one that consistently outperforms SAM
and ASAM across all the tested ρ. As previously suggested, significantly increasing ρ in the SAM
and ASAM baselines, e.g. ρ = 0.5 and ρ = 5.0, respectively, decreases performance relative to
their default ρ, e.g. ρ = 0.05 and ρ = 0.5, respectively. Notwithstanding, we note that ASAM
shows higher relative robustness to higher ρ than SAM, indicated by ASAM’s ability to continue
increasing performance on up to 4× the default neighborhood size, i.e. from ρ = 0.5 to ρ = 2.0.
Lastly, we note that the Lookbehind and Multistep variants show similar trends as the SAM and
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Figure 6: Sensitivity of Lookbehind to α and k when combined with SAM and ASAM in terms
of generalization performance (validation accuracy %). The validation accuracies of the SAM and
ASAM variants are presented in the middle of the heatmap (white middle point). All models were
trained with the default ρ. Blue represents an improvement in terms of validation accuracy over such
baselines, while red indicates a degradation in performance.
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Figure 7: Validation accuracies with different trained ρ for the different methods using ResNet-34
trained on CIFAR-10. Darker shades represent larger inner steps k, ranging from k ∈ {2, 5, 10}.

ASAM baselines. Overall, we observe that Lookbehind is more robust to the choice of ρ compared
to the other methods.

6 ADAPTIVE α

Lookbehind adds two additional hyperparameters to SAM/ASAM – just as the Lookahead optimizer
adds two hyperparameters to SGD - which introduces additional hyperparameter tuning on top of ρ
and η. To mitigate this added complexity in settings where computational resources are scarce, we
investigate if we can remove the need to tune α by instead computing it analytically during training.
We refer to this adaptive formulation of α as α∗. The main idea is to set α∗ proportionally to the
alignment of the gradients obtained during the multiple ascent steps:

α∗ = (cos (θ) + 1)/2 , (6)

where θ is defined by the angle between the first gathered gradient and the final update direction:

θ =
(ϕt,1 − ϕt) · (ϕt,k − ϕt)

∥ϕt,1 − ϕt∥2 · ∥ϕt,k − ϕt∥2
. (7)

If the gradients are completely aligned, then α∗ = 1. On the other hand, if the gradients are not
aligned, then 0 ≤ α∗ < 1, with lower values representing lower alignment.

Results when using Lookbehind with a static α and a dynamic α∗ are presented in Table 3. Overall,
we observe that using an adaptive α is a viable alternative to tuning a static α in instances where
compute is scarce. Note that our goal with adaptive α is not necessarily to outperform static α
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Table 3: Generalization performance (validation acc. %) of Lookbehind with static and adaptive α.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 WRN-28-2 ResNet-50 WRN-28-10 ResNet-18
Lookbehind + SAM 96.27±.07 94.81±.22 78.62±.4878.62±.4878.62±.48 80.99±.0280.99±.0280.99±.02 70.16±.0870.16±.0870.16±.08

+ adaptive α 96.33±.0496.33±.0496.33±.04 94.88±.1294.88±.1294.88±.12 78.33±.36 80.86±.13 70.07±.12

Lookbehind + ASAM 96.54±.21 95.23±.0195.23±.0195.23±.01 78.86±.29 82.16±.0982.16±.0982.16±.09 70.23±.2270.23±.2270.23±.22

+ adaptive α 96.57±.0396.57±.0396.57±.03 95.08±.15 78.89±.4578.89±.4578.89±.45 81.86±.22 70.16±.08

but instead to achieve competitive performance while having one less hyperparameter. Importantly,
we emphasize that Lookbehind with adaptive α consistently outperforms all the compared methods
presented in Table 1, similarly to static α. Due to space constraints, we refer the reader to Appendix
A.1.4 for additional analysis on how α∗ varies during training. Moreover, additional discussions are
provided in Appendix A.1.

7 RELATED WORK

Sharpness-aware minimization (SAM) (Foret et al., 2021) is an attempt to improve generalization by
finding solutions with both low loss value and low loss sharpness. This is achieved by minimizing
an estimation of the maximum loss over a neighborhood region around the parameters. There is
currently a lot of active work that focuses on improving SAM. More specifically, modifications of
the original SAM algorithm were proposed to further improve generalization performance (Zhuang
et al., 2022; Kim et al., 2022; Kwon et al., 2021; Liu et al., 2022b) and efficiency (Du et al., 2022c;
Zhou et al., 2022; Liu et al., 2022a). Performing multiple ascent steps was present in Foret et al.
(2021), however, the improvements over single ascent step SAM were either insignificant or even
shown to degrade performance in some settings (Andriushchenko & Flammarion, 2022).

SAM’s benefits have transcended improving generalization performance, ranging from higher ro-
bustness to label noise (Foret et al., 2021; Kwon et al., 2021), lower quantization error (Liu et al.,
2021b), and less sensitivity to data imbalance (Liu et al., 2021a). Here, on top of analyzing the
benefits of Lookbehind on generalization performance, we focused on further improving the re-
cently observed benefits of SAM on improving robustness against noisy weights (Kim et al., 2022;
Mordido et al., 2022) and reducing catastrophic forgetting in lifelong learning (Mehta et al., 2021).

Closest to our work, Kim et al. (2023) concurrently conducted a similar study by averaging the
gradients obtained during multiple SAM ascent steps. One of the differences is the decoupling of the
inner step k and the outer step size α in our approach, which allows us to seek optimal combinations
between these two hyperparameters. In fact, as depicted in Figures 6 and 13, α = 1/k is generally
not the best overall α to use, including when determining α∗ (Figure 10). We also extend the
empirical discussions by applying our method with ASAM, which often produces superior results
(as shown in Table 1). Additionally, we explore the applicability of our approach to lifelong learning
(by applying our method with MAML) and robustness settings.

8 CONCLUSION

In this work, we proposed the Lookbehind optimizer, which can be plugged on top of existing
sharpness-aware training methods to improve performance over a variety of benchmarks. Our ex-
periments show that our method improves the generalization performance on multiple models and
datasets, increases model robustness, and promotes the ability to continuously learn in lifelong learn-
ing settings. Even though the goal of this work is to tackle the lack of performance due to a poor
sharpness-loss trade-off, another important issue inherent to any multiple ascent step SAM method
is the computational overhead which increases training time by a factor k. In the future, it would be
interesting to investigate how to improve the efficiency of multiple ascent steps, e.g. by switching
the minibatch at each inner step of Lookbehind.
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Jonathan Kern, Sébastien Henwood, Gonçalo Mordido, Elsa Dupraz, Abdeldjalil Aı̈ssa-El-Bey,
Yvon Savaria, and François Leduc-Primeau. MemSE: Fast MSE prediction for noisy memristor-
based DNN accelerators. In IEEE International Conference on Artificial Intelligence Circuits and
Systems, 2022.

10



Under review as a conference paper at ICLR 2024

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2016.

Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee. Exploring the effect of multi-
step ascent in sharpness-aware minimization. arXiv preprint arXiv:2302.10181, 2023.

Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information geometry
and sharpness aware minimisation. In International Conference on Machine Learning, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. ASAM: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International Con-
ference on Machine Learning, 2021.

Hong Liu, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more robust
to dataset imbalance. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and
Applications, 2021a.

Jing Liu, Jianfei Cai, and Bohan Zhuang. Sharpness-aware quantization for deep neural networks.
arXiv preprint arXiv:2111.12273, 2021b.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scal-
able sharpness-aware minimization. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022a.

Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
sharpness-aware minimization. In Advances in Neural Information Processing Systems, 2022b.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, 2017.

Sanket Vaibhav Mehta, Darshan Patil, Sarath Chandar, and Emma Strubell. An empirical investiga-
tion of the role of pre-training in lifelong learning. arXiv preprint arXiv:2112.09153, 2021.
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A APPENDIX

Here, we provide additional discussions (Section A.1) and more information on the Looka-
head+SAM baseline (Section A.2). Moreover, we present further details on the training procedures
(Section A.3) and the lifelong learning setup (Section A.5). We also provide additional sensitiv-
ity analysis across all tested models (Section A.6). Lastly, we present further comparisons with
additional methods (Section A.7) and training setups (Section A.8).

A.1 ADDITIONAL DISCUSSIONS

In this Section, we analyze additional limitations of our work (Section A.1.1) as well as additional
studies to better understand the behavior of Lookbehind. In particular, we showcase the benefits of
Lookbehind at different training stages (Section A.1.2), the advantage of going farther away from
the original solution as performing multiple ascent steps instead of staying within a neighborhood
size ρ (Section A.1.3), and how the values of α∗ evolve during training (Section A.1.4).

A.1.1 LIMITATIONS

One drawback of our approach is the introduction of two new hyperparameters to SAM/ASAM.
This was partially addressed in Section 6 by removing the need to fine-tune α. Nevertheless, even
with the adaptive α variant, our method still introduces one more hyperparameter. Since tuning
hyperparameters requires more compute, the comparison with baselines with less hyperparameters
is only reasonable to the extent that the baselines are not subject to computational constraints that
might limit their performance, e.g. by not training for long enough. However, we argue that this
was not the case in our experimental setup, and additional training would be unlikely to improve
the performances reported for the SAM/ASAM baselines. To corroborate this, we show the average
number of epochs at which the best SAM and ASAM baseline configurations achieved the best
validation accuracy in Table 4. We observe that the best-performing model checkpoints were not
completed at the very end of training (e.g. last epoch) across our experimental setup, suggesting
there was prior performance saturation before training finished.

Table 4: Average number of epochs at which the SAM and ASAM baselines achieved the best
validation accuracy across the different models and datasets. The models were trained for a total of
200 epochs for CIFAR-10/100 and 90 epochs for ImageNet.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 WRN-28-2 ResNet-50 WRN-28-10 ResNet-18
SAM 164.66±9.87 141.33±15.45 167.66±21.06 172.00±9.00 83.66±2.05

ASAM 164.00±12.83 158.66±29.45 178.66±3.77 179.50±4.50 86.00±2.16

A.1.2 BENEFITS OF LOOKBEHIND AT DIFFERENT STAGES DURING TRAINING

SAM has been shown to find better generalizable minima within the same basin as SGD. In other
words, SAM’s implicit bias mostly improves the generalization of SGD when switching from SGD
to SAM toward the end of training (Andriushchenko & Flammarion, 2022). Interestingly, the afore-
mentioned results also suggest that SAM and SGD do not guide optimization toward different basins
from early on in training. Here, we conduct a similar study by analyzing how switching from
SAM/ASAM to Lookbehind+SAM/ASAM, and vice-versa, impacts generalization performance at
different stages during training.

The generalization performances of starting training with SAM/ASAM and switching to Lookbe-
hind at different training stages are shown in Figure 8a. We observe that Lookbehind’s benefits
are mostly achieved early on in training, suggesting that Lookbehind guides the optimization to
converge to a different basin of the loss landscape than SAM. Such findings are confirmed by also
switching from Lookbehind to SAM/ASAM (Figure 8b).
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(a) SAM/ASAM → Lookbehind
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Figure 8: Impact of switching from SAM/ASAM to Lookbehind + SAM/ASAM (a), and vice-versa
(b), at different epochs throughout training in terms of validation accuracy using ResNet-34 trained
on CIFAR-10. Darker shades represent larger inner steps k, ranging from k ∈ {2, 5, 10}. For
Lookbehind, we pick the best α configuration for each k ∈ {2, 5, 10} using the default ρ, which is
also used for the SAM/ASAM baselines.
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Figure 9: Comparison of generalization performance (validation accuracy %) on ResNet-34 trained
on CIFAR-10 between staying up to a neighborhood ρ or ρ × k. We also plot the performance of
adaptive α in the latter setting.

A.1.3 STAYING WITHIN A NEIGHBORHOOD SIZE ρ OR ρ/k

As a wrapper to SAM methods, Lookbehind’s practicality is enhanced when there is no need to re-
tune the default ρ of the sharpness-aware minimizer. To study this, we used the default ρ suggested
by SAM and ASAM and investigated if staying within a neighborhood ρ of the original solution is
more advantageous than increasing the neighborhood up to ρ × k, as presented so far throughout
our paper. For this new variant, we reduce the neighborhood size to ρ/k as the step size for each
ascent step. Hence, after k ascent steps we will be at a maximum distance ρ from the original point
if all gradients align. We also remove linear interpolation and simply set the descent step size to η.
Results using the default ρ for SAM and ASAM are presented in Figure 9.

We observe that going farther away as we perform the ascent steps consistently outperforms staying
within a neighborhood ρ of the original solution. In other words, ρ × k is better than ρ/k when
using the default ρ of SAM and ASAM. This is a convenient insight since we show that tuning the
hyperparameter ρ is not necessary when using the former setting. Moreover, this also allows us to
learn α dynamically, which is shown to enhance performances in some settings. This suggests that it
is beneficial to not only ”look behind” within a neighborhood of ρ×k, but also that taking a dynamic
descent step size to perform the final update based on the alignment of the aggregated gradients is
an effective way of enhancing performance across different k.

A.1.4 CHANGE OF α∗ DURING TRAINING

We show how adaptive α changes throughout training in Figure 10. We notice an expected trend
based on the values of k, with higher k leading to lower α∗ due to less gradient alignment. Even
though α is independent of the inner step learning rate η, we are decreasing η by a factor of 10
every 50 epochs in our training setup, which leads to drastic changes in model performance and loss
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(a) ResNet-34 on CIFAR-10.
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(b) ResNet-50 on CIFAR-100.
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(c) WRN-28-2 on CIFAR-10.
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(d) WRN-28-10 on CIFAR-100.

Figure 10: Analysis of how adaptive α evolves during training.

Algorithm 2 Lookahead+SAM

Require: Initial parameters ϕ0, loss function L, inner steps
k, slow weights step size α, fast weights step size η,
neighborhood size ρ, training set D

1: for t = 1, 2, . . . do
2: ϕt,0 ← ϕt−1

3: for i = 1, 2, . . . , k do
4: Sample mini-batch d ∼ D

5: ϵ← ρ
∇Ld(ϕt,i−1)

∥∇Ld(ϕt,i−1)∥2
6: ϕt,i ← ϕt,i−1 − η∇Ld

(ϕt,i−1 + ϵ)
7: end for
8: ϕt ← ϕt−1 + α(ϕt,k − ϕt−1)
9: end for

10: return ϕ

Figure 11: Combination of Lookahead with SAM.

landscape. This in turn seems to lead to an increase in the misalignment of the aggregated gradients
which decreases the adaptive α values later on in training.
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A.2 LOOKAHEAD+SAM

Lookahead (Zhang et al., 2019) was introduced to reduce variance during training, with the end goal
of improving performance and robustness to hyper-parameter settings. Given an optimizer, Looka-
head uses slow and fast weights to improve its training stability. The algorithm ”looks ahead” by
updating the fast weights k times in an inner loop, while the slow weights are updated by performing
a linear interpolation to the final fast weights (after the inner loop ends). In our analysis and experi-
ments, we use Lookahead with sharpness-aware methods by applying single-step SAM and ASAM
as the inner optimizers. The main goal of these baselines is to use Lookahead to stabilize sharpness-
aware optimizers when training with large ρ. An illustration of Lookahead+SAM is presented in
Figure 11 (right).

Similarly to our method, Lookahead+SAM uses slow weights (ϕt, ϕt+1, · · · ) and fast weights (ϕt,1,
· · · , ϕt,k). However, the slow weights are updated after each SAM update (composed of a single
ascent and descent step), while the slow weights are updated toward the fast weights through lin-
ear interpolation after k steps (ϕt+1). In contrast, Lookbehind+SAM’s fast and slow weights are
obtained during a given iteration. In particular, while the fast weights are updated as we ”look
behind”, the slow weights are updated after k ascent steps are performed (c.f. Figure 2).

The pseudo-code for combining Lookahead with SAM is presented in Figure 11 (left). Just like
Lookahead, Lookahead+SAM maintains a set of slow weights and fast weights, which are syn-
chronized at the beginning of every outer step (line 2). Then, the fast weights are updated k times
(looking forward) using a standard SAM update with a single ascent (line 5) and descent step (line
6). After k such SAM steps, the slow weights are updated by linearly interpolating to the final fast
weights (line 8) (1 step back). It is worth noting that a new minibatch is sampled at every inner
step (line 4). Combining Lookahead with ASAM follows the same procedure, except using the
component-wise rescaling (equation 3) in line 5.

Although Lookbehind+SAM and Lookahead+SAM share a similar nature, they exhibit notable dis-
tinctions. Firstly, in addition to synchronizing the fast weights, Lookbehind also synchronizes the
perturbed fast weights. Furthermore, the minibatch is sampled before the inner loop. Moreover,
at each inner step, Lookbehind performs k ascent steps of SAM. The distinction between the two
algorithms leads to divergent behavior in the training objective and is related to Lookahead+SAM
and Lookbehind+SAM having different goals: while Lookahead+SAM aims at stabilizing single-
step SAM with large neighborhood sizes ρ, Lookbehind aims to perform multiple ascent steps while
maintaining a good balance between sharpness and training accuracy.

In other words, Lookbehind focuses on curbing the variance arising from gradients gathered during
multiple ascent steps within a single iteration. In contrast, Lookahead+SAM targets variance stem-
ming from sequential descent steps performed across iterations. Hence, our goal is to reduce the
variance of looking behind, not ahead.

A.3 TRAINING DETAILS

For CIFAR-10/100, we trained each model for 200 epochs with a batch size of 128, starting with
a learning rate of 0.1 and dividing it by 10 every 50 epochs. For ImageNet, we use 1000 classes
and an image size of 224x224 and trained each model for 90 epochs with a batch size of 400,
starting with a learning rate of 0.1 and dividing it by 10 every 30 epochs. All models were trained
using SGD with momentum set to 0.9 and weight decay of 1e-4. We trained the CIFAR-10/100
models using one RTX8000 NVIDIA GPU and 1 CPU core, and the ImageNet models using one
A100 GPU and 6 CPU cores. For CIFAR-10/100, we used the architecture implementations in
https://github.com/kuangliu/pytorch-cifar. For ImageNet, we used the ResNet-
18 implementation provided by PyTorch 1.

A.4 HYPERPARAMETER SEARCH

For Table 1, we only perform hyperparameter search for ρ ∈ {0.05, 0.1, 0.2} for all vanilla SAM
and ρ ∈ {0.5, 1.0, 2.0} for all vanilla ASAM baselines, and report the validation results with the

1https://pytorch.org/vision/main/models/generated/torchvision.models.
resnet18.html
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best ρ. For the rest of the methods, we used the default ρ, i.e. as presented in the original SAM
Foret et al. (2021) and ASAM Kwon et al. (2021) papers. Particularly we used ρ of 0.05, 0.1,
and 0.05 for SAM and 0.5, 1.0, and 1.0 for ASAM when training on CIFAR-10, CIFAR-100, and
ImageNet, respectively. For CIFAR-10/100, we use k ∈ {2, 5, 10} and α ∈ {0.2, 0.5, 0.8} (when
applicable) for the multiple step methods. For ImageNet, we use k = 2 and α ∈ {0.2, 0.5, 0.8}
(when applicable).

For Figure 3, we report the best k and α configurations for all methods, i.e. with the lowest sharpness
at the highest r.

For Figure 4, we report the most robust model using k ∈ {2, 5, 10} and α ∈ {0.2, 0.5, 0.8} for
CIFAR-10/100. For ImageNet, we use k = 2 and α ∈ {0.2, 0.5, 0.8}. For the SAM and ASAM
baselines, we pick the most robust ρ ∈ {0.05, 0.1, 0.2, 0.5} and ρ ∈ {0.5, 1.0, 2.0, 5.0}, respectively.

For Figure 5 we report the default neighborhood sizes for the SAM (ρ = 0.05 and 0.1 for CIFAR-10
and CIFAR-100, respectively) and ASAM baselines (ρ = 0.5 and 1.0 for CIFAR-10 and CIFAR-
100, respectively). We show the best hyper-parameter configuration over k ∈ {2, 5, 10} and α ∈
{0.2, 0.5, 0.8} for Lookbehind and Lookahead, and k ∈ {2, 5, 10} for Multistep.

For Figure 7, we report the best α configuration for Lookahead and Lookbehind.

A.5 LIFELONG LEARNING

We replicated the experimental setup from Lookahead-MAML (Gupta et al., 2020) and report the
results for all baselines where the models were trained for 10 epochs per task. Additionally, we
combined the different methods with episodic replay (ER) (Chaudhry et al., 2019), which maintains
a memory of a subset of the data from each task and uses it as a replay buffer while training on
new tasks. We test both settings (with and without ER) in our experiments. We used two datasets:
Split-CIFAR100 and Split-TinyImageNet. The Split-CIFAR100 benchmark is designed by splitting
the 100 classes in CIFAR-100 into 20 5-way classification tasks. Similarly, Split-TinyImageNet is
designed by splitting 200 classes into 40 5-way classification tasks. In both cases, the task identities
are provided to the model along with the dataset. Each model has multi-head outputs, i.e. each task
has a separate classifier.

We provide the grid search details for finding the best set of hyper-parameters for both datasets and
all baselines in Table 5. We train the model on the training set and report the best hyper-parameters
based on the highest accuracy on the test set in Table 6. Here, we report the hyper-parameter set for
each method (with or without ER) as follows:

• SGD: {η}
• SAM: {η, ρ}
• Multistep-SAM: {η, ρ, k}
• Lookbehind + SAM: {η, ρ, k, α}
• Lookbehind-C-MAML: {η, ρ, k, α}

We refer to Gupta et al. (2020) for the best hyper-parameters of Lookahead-C-MAML. We evaluated
all models using the following metrics:

• Average accuracy (Lopez-Paz & Ranzato, 2017): the average performance of the model

across all the previous tasks is defined by 1
t

t∑
τ=1

at,τ , where at,τ is the accuracy on the test

set of task τ when the current task is t.
• Forgetting (Chaudhry et al., 2018): the average forgetting that occurs after the model is

trained on several tasks is computed by 1
t−1

t−1∑
τ=1

maxt′∈{1,...,t−1}(at′,τ − at,τ ), where t

represents the latest task.

We report the average accuracy and forgetting after the models were trained on all tasks for both
datasets.

The pseudo-code for Lookahead-C-MAML and Lookbehind-C-MAML is presented in Figure 12.
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Algorithm 3 Lookahead-C-MAML (Gupta et al., 2020)

Require: Initial parameters ϕ0
0, inner loss function ℓ, meta

loss function L, step size η, training set Dt of task t,
number of epochs E

1: j ← 0
2: R← {}
3: for t = 1, 2, . . . do
4: Sample batch dt ∼ Dt

5: for e = 1, 2, . . . , E do
6: for mini-batch b in dt do
7: k ← sizeof(b)
8: bm ← Sample(R) ∪ b
9: for k′ = 0 to k − 1 do

10: Push b[k′] to R
11: ϕj

k′+1 ← ϕj
k′ − η∇ϕj

k′
ℓt(ϕ

j
k′ , b[k′])

12: end for
13: ϕj+1

0 ← ϕj
0 − η∇ϕj

0
Lt(ϕ

j
k, bm)

14: j ← j + 1
15: end for
16: end for
17: end for
18: return ϕ

Algorithm 4 Lookbehind-C-MAML (ours)

Require: Initial parameters ϕ0
0,0, inner loss function ℓ, meta loss function L, inner steps k, step

size η, outer step size α, neighborhood size ρ, training set Dt of task t, number of epochs
E

1: j ← 0
2: R← {}
3: for t = 1, 2, . . . do
4: ϕj

t,0 ← ϕj
t−1,0

5: Sample batch dt ∼ Dt

6: for e = 1, 2, . . . , E do
7: ϕ′j

t,0 ← ϕj
t,0

8: for k′ = 0 to k − 1 do
9: Sample mini-batch b ∼ dt of size k without replacement

10: bm ← Sample(R) ∪ b
11: Push b[k′] to R

12: ϵ← ρ
∇ℓt(ϕ

′j
t,k′ , b[k′])

∥∇ℓt(ϕ
′j
t,k′ , b[k′])∥2

13: ϕj
t,k′+1 ← ϕj

t,k′ − η∇ℓt(ϕ
′j
t,k′ + ϵ, b[k′])

14: end for
15: ϕj

t,k ← ϕj
t,0 + α(ϕj

t,k − ϕj
t,0)

16: ϵ← ρ
∇ϕj

t,0
Lt(ϕ

j
t,k, bm)

∥∇ϕj
t,0
Lt(ϕ

j
t,k, bm)∥2

17: ϕj+1
t,0 ← ϕj

t,0 − η∇ϕj
t,0
Lt(ϕ

j
t,0 + ϵ, bm)

18: j ← j + 1
19: end for
20: end for
21: return ϕ

Figure 12: Implementations of Lookahead-C-MAML (top) and Lookbehind-C-MAML (bottom).
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Table 5: Details on the hyper-parameter grid search used for the lifelong learning experiments.

Hyper-parameters Values

step size (η) {0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}
inner steps (k) {2, 5, 10}

outer step size (α) {0.1, 0.2, 0.5, 0.8, 1.0}
neighborhood size (ρ) {0.005, 0.01, 0.05, 0.1}

Table 6: Best hyper-parameter settings for the different lifelong learning methods.

Methods Split-CIFAR100 Split-TinyImagenet

SGD {0.03} {0.03}
SAM {0.03, 0.05} {0.03, 0.05}

Multistep-SAM {0.01, 0.01, 2} {0.03, 0.05, 2}
Lookbehind + SAM {0.1, 0.05, 10, 0.1} {0.01, 0.05, 10, 0.1}

ER + SAM {0.1, 0.05} {0.03, 0.1}
ER + Multistep-SAM {0.1, 0.05, 10} {0.03, 0.1, 10}

ER + Lookbehind + SAM {0.03, 0.05, 10, 0.2} {0.01, 0.1, 5, 0.5}
Lookbehind-C-MAML {0.03, 0.005, 2, 1} {0.03, 0.1, 2, 1}

A.6 SENSITIVITY TO α AND k

We measure the sensitivity to α and k of Lookbehind and Lookahead on additional models in Figures
13 and 14, respectively. Similarly to the sensitivity results presented in the main paper, we observe
that Lookbehind is more robust to the choice of α and k and is able to improve on the SAM and
ASAM baselines more significantly and consistently than Lookahead.
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Figure 13: Sensitivity of Lookbehind to α and k when combined with SAM and ASAM in terms
of generalization performance (validation accuracy %). The validation accuracies of the SAM and
ASAM variants are presented in the middle of the heatmap (white middle point). All models were
trained with the default ρ. Blue represents an improvement in terms of validation accuracy over
such baselines, while red indicates a degradation in performance. Experiments represented as ”N/A”
indicate instances where at least one seed failed to converge.

A.7 ADDITIONAL METHOD COMPARISONS

We compare Lookbehind with the Multistep-SAM/ASAM with gradient averaging (Kim et al., 2023)
in Table 7. We observe that both our method variants, i.e. Lookbehind with and without an adaptive
α, consistently outperform the additional baseline on all tested models and datasets.
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Figure 14: Sensitivity of Lookahead to α and k when combined with SAM and ASAM in terms
of generalization performance (validation accuracy %). The validation accuracies of the SAM and
ASAM variants are presented in the middle of the heatmap (white middle point). All models were
trained with the default ρ. Blue represents an improvement in terms of validation accuracy over such
baselines, while red indicates a degradation in performance.

Table 7: Generalization performance (validation accuracy %) of the different methods on several
models trained on CIFAR-10 and CIFAR-100. The best and second-best methods are shaded in dark
gray and gray, respectively.

Dataset CIFAR-10 CIFAR-100
Model ResNet-34 WRN-28-2 ResNet-50 WRN-28-10
Multistep-SAM 95.72±.15 94.39±.09 77.03±.65 80.55±.06

+ average grads 95.74±.25 94.55±.22 76.97±.57 80.58±.21

Lookbehind + SAM 96.27±.0796.27±.0796.27±.07 94.81±.2294.81±.2294.81±.22 78.62±.4878.62±.4878.62±.48 80.99±.0280.99±.0280.99±.02

+ adaptive ααα 96.33±.0496.33±.0496.33±.04 94.88±.1294.88±.1294.88±.12 78.33±.3678.33±.3678.33±.36 80.86±.1380.86±.1380.86±.13

Multistep-ASAM 95.91±.14 95.06±.15 77.81±.52 81.67±.06

+ average grads 95.91±.24 94.92±.09 78.39±.52 81.35±.36

Lookbehind + ASAM 96.54±.2196.54±.2196.54±.21 95.23±.0195.23±.0195.23±.01 78.86±.2978.86±.2978.86±.29 82.16±.0982.16±.0982.16±.09

+ adaptive ααα 96.57±.0396.57±.0396.57±.03 95.08±.1595.08±.1595.08±.15 78.89±.4578.89±.4578.89±.45 81.86±.2281.86±.2281.86±.22

A.8 ADDITIONAL TRAINING SETUPS

To further illustrate the superiority of our approach with stronger baselines, we replicated the setup
originally used by ASAM described in Kwon et al. (2021). The main difference between this new
setup and our previous setup is the use of a cosine learning rate scheduler and label smoothing which
leads to an increase in generalization performance. To avoid any hyperparameter tuning, we used
k = 2 with an adaptive α for Lookbehind and used SAM and ASAM’s default ρ values of 0.1 and
1.0, respectively, as reported in Kwon et al. (2021).

Results over 5 seeds using a WRN-28-2 model trained on CIFAR-100 for 200 epochs are presented
in Table 8. We observe that Lookbehind is able to further improve upon the high-accuracy SAM and
ASAM baseline models. This supports our conclusions when using the setup used in the experiments
in the main paper showcasing the superiority of our method.
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Table 8: Generalization performance (test accuracy %) of the different methods on WRN-28-10
trained on CIFAR-100 using the same setup as ASAM. Results for SGD, SAM, and ASAM (⋆) are
the ones reported by Kwon et al. (2021).

Model WRN-28-10
SGD⋆ 81.56±.13

SAM⋆ 83.42±.04

Lookbehind + SAM 83.72±.1083.72±.1083.72±.10

ASAM⋆ 83.68±.12

Lookbehind + ASAM 84.00±.1884.00±.1884.00±.18
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