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ABSTRACT

Recent advances in Large Language Model (LLM)-based agents have enabled
strong performance in deep research tasks, yet they remain limited in the med-
ical domain. Leading proprietary systems achieve only modest results on com-
plex medical benchmarks, revealing two critical limitations: (1) insufficient dense
medical knowledge for clinical reasoning, and (2) a lack of specialized retrieval
mechanisms for authoritative medical sources. We introduce MedResearcher-R1,
a medical deep research agent that addresses these challenges with two key in-
novations. First, we propose a novel Knowledge-Informed Trajectory Synthe-
sis (KISA) approach that builds medical knowledge graphs to construct com-
plex multi-hop question—answer pairs around rare medical entities, overcoming
the scarcity of high-quality training data. Second, we integrate a custom-built
private medical retrieval engine alongside general-purpose tools, enabling accu-
rate and reliable evidence synthesis. Our approach yields over 2,100 diverse
trajectories across 12 medical specialties. Trained with supervised fine-tuning
and reinforcement learning with composite rewards, our MedResearcher-R1-32B
achieves state-of-the-art performance on MedBrowseComp (27.5/50 vs. 25.5/50
for o03-deepresearch) while demonstrates strong general performance on GAIA
and xBench benchmarks. To the best of our knowledge, we present the first high-
quality, tool-using medical dataset and a domain-specific deep-research agent, to-
gether enabling smaller open-source models to outperform much larger propri-
etary systems in specialized medical tasks.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have catalyzed widespread adoption of LLM-
based agents across diverse domains, including software engineering (Wang et al.| [2024; |Jimenez
et al} [2023) and deep research systems (Xu & Peng, [2025)). These agents exhibit impressive capa-
bilities in processing environmental observations, maintaining context across multiple interactions,
and executing complex multi-step reasoning tasks.

However, the medical domain presents unique challenges that current general-purpose deep research
agents fail to address adequately. The recently introduced MedBrowseComp benchmark (Chen
et al.| [2025b)) reveals this critical gap: even OpenAI’s o3-deepresearch, the leading proprietary deep
research system, scores only 25.5 out of 50 on complex medical queries requiring multi-hop rea-
soning across medical knowledge sources. We identify two fundamental limitations that contribute
to this performance gap: (1) general-purpose agents lack the dense, specialized medical knowledge
required for accurate clinical reasoning. Meanwhile, there is an absence of high-quality medical
tool-using dataset. (2) they rely on generic retrieval tools that fail to capture the nuanced relation-
ships in medical information.

The core challenge lies in the sparse medical knowledge problem. Specifically, medical research of-
ten requires connecting rare diseases, emerging treatments, and specialized clinical findings through
non-obvious pathways—connections that exist in specialized medical literature but remain inacces-
sible to general search tools. While existing medical Al systems have made progress in structured
tasks like diagnosis, they primarily focus on common medical scenarios with well-established rea-
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Question: Identify the specific chemical
compound based on the following multi-

layered description: Begin with a major

Swiss life-sciences company, known for its /
origins in Basel, which ceased to exist as an
independent entity after a landmark

corporate fusion in the final decade of the /
20th century, creating a new /
pharmaceutical giant. This new

conglomerate manufactures a branded
prescription tablet designed to reduce
hospitalization risk for a specific type of

cardiac insufficiency. The primary active
ingredient within this tablet has a mass per

unit, measured in milligrams, that is a prime
number whose two digits sum to a value
equivalent to a perfect square minus three,

and is one greater than a multiple of ten.

This ingredient's therapeutic effect is

achieved by selectively antagonizing the

primary receptor of a key octapeptide =2

1. Lack of authoritative medical data source verification.
2. Inadequate knowledge integration capabilities.

/

— R — g Verify Answer

hormone that regulates vasoconstriction. M ——
The common three-letter clinical acronym ledResearcherRs
for this ingredient's drug class is
homonymous with the trademark of an
Australian-founded company renowned for " . - . N
its protective steel equip?ner)\’t for off-road 1. Direct access to FDA databases, official prescription data, and clinical trials ensures accurate Valsartan
vehicles. Finally, a significant potential information rather than relying on potentially incorrect public sources.
mfé?\?e‘;"gnsg:‘z:zg' :;rg::]sffr:gzg";gﬁon of 2. Evidence-based engine systematically validates the complete chain: "corporate merger — heart failure
the chemical element with atomic number drug = chemical composm_on — receptor mechanism — side effects," ensuring clinical accuracy and
avoiding general Al reasoning errors.

19.
Answer: Valsartan

Figure 1: Comparison of medical reasoning agents. MedResearcher-R1 resolves the Valsartan iden-
tification case that defeats general-purpose agents, demonstrating the strength of specialized medical
database access and evidence-based reasoning integration.

soning patterns. These systems fail to develop the capability for exploratory medical research that
characterizes expert clinicians: simultaneously pursuing multiple hypotheses, synthesizing evidence
from disparate sources, and identifying subtle connections between rare medical entities.

To address these limitations, we propose a comprehensive approach that fundamentally rethinks how
medical agents should be trained. Our key insight is that effective medical reasoning requires expo-
sure to genuinely complex medical scenarios during training rather than simplified approximations.
We achieve this through three interconnected innovations:

First, we develop a novel Knowledge-Informed Trajectory Synthesis approach (KISA) that generates
training examples of exceptional complexity through a systematic pipeline. Inspired by large-scale
efforts to construct knowledge graphs from biomedical literature (Kostis et al.l [2020), we begin by
extracting medical entities from over 30 million PubMed abstracts, then apply frequency analysis to
identify candidates with occurrence rates below 1076 in medical corpora. Through LLM-assisted
evaluation, we filter these candidates to select genuinely rare yet clinically significant entities, avoid-
ing both trivial typos and overly common conditions. Around these carefully selected rare medical
entities, we construct knowledge graphs and extract the longest reasoning chains for multi-hop ques-
tion generation. This approach creates questions that mirror real medical research challenges and
cannot be answered through simple retrieval but require systematic exploration and synthesis across
multiple medical information sources.

Second, we introduce proprietary medical domain tools that address retrieval gaps in general sys-
tems. As illustrated in Figure[I] while general agents often fail when encountering medical-specific
queries, particularly those involving rare diseases or complex chemical compounds, MedResearcher-
R1 can iteratively invoke specialized medical tools alongside general-purpose tools to ensure accu-
rate information retrieval. Unlike conventional search engines that rely on general web crawling,
our custom-built private medical retrieval engine directly accesses authoritative medical databases,
including FDA databases, official prescription data, clinical trial registries, and peer-reviewed med-
ical publications. The comparison in Figure [I] demonstrates how MedResearcher-R1 dynamically
switches between general and medical-specific tools, enabling systematic validation of the complete
evidence chain: from corporate merger information to heart failure drug development, to chemical
composition and mechanism, ultimately ensuring clinical accuracy while avoiding the reasoning er-
rors that plague general-only approaches. The system employs medical ontology-aware ranking to
prioritize clinical authority and relevance over general web popularity metrics, effectively combin-
ing the breadth of general-purpose search with the precision of domain-specific medical expertise.

Third, we implement a training methodology specifically designed for medical domains. Unlike
recent work advocating pure reinforcement learning approaches, we find that medical tasks require
knowledge-anchored learning: initial supervised fine-tuning on high-quality medical trajectories is
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highly effective for learning tool usage patterns and significantly improves final performance. To
achieve this, we introduce Masked Trajectory Guidance (MTG), which guides the model to learn
genuine reasoning rather than memorization. MTG works by masking entities in reasoning paths,
forcing the model to focus on selecting appropriate tools and reasoning through the process, rather
than simply recalling answers. This approach promotes two key behaviors: (1) learning when to use
specialized medical tools versus general search tools, and (2) preventing memorization, ensuring
that the model develops robust and transferable reasoning capabilities.

Our evaluation spans both medical and general-purpose deep research settings: (1) MedResearcher-
R1 achieves state-of-the-art medical agent performance with 27.5/50 tasks solved on MedBrowseC-
omp as is shown in Table[I] surpassing 03-deepresearch (25.5/50). (2) Beyond the medical setting,
MedResearcher-R1 exhibits strong general capability, scoring 53.4 on GAIA (Shinn et al., [2023)
and 54.0 on XBench (Chen et al., [2025a) (Table @) These results challenge the assumption that
domain specialization requires sacrificing general capabilities, demonstrating that medical training
can enhance rather than limit the versatility of agents.

We make three key contributions:

1. Dual Enhancement Framework: Internal enhancement through graph-based trajectory synthe-
sis from rare entities, and external enhancement via specialized medical retrieval tools.

2. Novel Training Methodology: Graph-based longest-path extraction and MTG that shows in-
creasing benefits with reasoning complexity (14% improvement on 5+ hop questions).

3. State-of-the-art Performance: New benchmark records on medical tasks while preserving gen-
eral capabilities, with released code and datasets for reproducibility.

2 MEDRESEARCHER-R1: MEDICAL DEEP RESEARCH AGENT FRAMEWORK

2.1 PROBLEM DEFINITION

We formalize the medical deep research task as a sequential decision-making problem where an
agent must navigate complex medical knowledge sources to answer multi-hop queries that character-
ize the sparse medical knowledge problem identified in Section 1. Given a medical question ¢ € Q,
the agent operates with a heterogeneous toolset 7 = Tgenerat U Tmedical> Where Tgenerat = {7, ..., %}
comprises general-purpose tools (web search, document analysis) and Tnedicar = {t7", - - ., 1"} con-
tains our proprietary medical domain tools that directly access authoritative medical databases.

The agent maintains an evolving state s; = (¢, k¢, ht) at timestep ¢, where:

* ¢; € C: dialogue context encoding the current query and response history
* k; € K: accumulated medical knowledge from retrieved sources, structured as a knowledge graph

* h; € H: reasoning history tracking explored knowledge paths and hypothesis evolution

This state representation enables tracking of multi-hop reasoning chains essential for connecting
rare medical entities through non-obvious pathways. At each timestep, the agent selects an action
according to a learned policy: a; ~ my(a | s¢, T,q) where 7 is trained through our knowledge-
anchored learning approach to dynamically switch between general and medical-specific tools based
on query requirements.

2.2 AGENT ARCHITECTURE

Our design targets two gaps in general-purpose agents—insufficient medical knowledge density and
generic retrieval. The agent follows a ReAct-style reason—act—observe loop (Yao et al., [2023a):
Thought identifies knowledge gaps and selects a tool type; Action invokes a tool with medically
tuned parameters; Observation converts raw outputs into structured evidence and updates (k¢, i ).

Tool Suite. We employ two categories of tools:

General Tools: (1) WebSearch for general medical information and organizational data; (2) Docu-
mentRead for processing clinical reports using high-capacity LLMs.
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Medical-Specific Tools: (1) PrivateMedicalRetriever queries authoritative medical sources includ-
ing FDA datasets, prescription databases, trial registries, and PubMed. Retrieved candidates are
ranked using a relevance-authority trade-off scoring mechanism (detailed in Appendix [C). (2) Clin-
icalReasoningEngine enables evidence-based differential diagnosis through Bayesian inference, up-
dating hypothesis probabilities given observed symptoms and clinical context (formulation provided
in Appendix [C).

Dynamic tool selection. A lightweight selector conditions on features such as entity rarity, es-
timated hop depth, and medical terminology to route between 7 medical and 7 general; we use a
logistic policy over tool families with learned weights (derivation in Appendix [C). This enables
switching—from broad web search to high-authority medical retrieval and back—for end-to-end
evidence chains.

Summary. Together, the ReAct loop, medical tool suite, and dynamic routing allow
MedResearcher-R1 to (i) surface authoritative, domain-specific evidence when general tools fail,
and (ii) maintain exploratory, hypothesis-driven workflows needed for multi-hop medical research.

3 KISA: KNOWLEDGE-INFORMED TRAJECTORY SYNTHESIS APPROACH

To address the critical challenge of training data scarcity for medical deep-research agents, we
propose a Knowledge-Informed Trajectory Synthesis Approach (KISA) that generates complex,
multi-hop medical reasoning trajectories. Our framework directly tackles the limitations of general-
purpose agents by creating training data that emphasizes: (1) rare medical entity connections requir-
ing dense domain knowledge, and (2) effective utilization of medical-specific retrieval tools.

3.1 AGENTIC DATASET CONSTRUCTION

Our dataset construction pipeline consists of three interconnected components designed to generate
genuinely complex medical queries that robustly stress-test agent capabilities:

3.1.1 ENTITY-CENTRIC KNOWLEDGE GRAPH CONSTRUCTION

We construct medical knowledge graphs specifically optimized for generating complex reasoning
chains. Unlike traditional approaches that focus on common concepts, we prioritize rare medical
entities .4 with frequency below threshold Tye = 107° in general medical corpora. Focusing
on rare entities ensures that the questions generated require deep medical knowledge, as opposed to
surface-level information that is available through a general search.

The graph expansion follows an iterative process:

.. Uniform(N(e;))  with probability 0.5
B Discover(&pew|e;)  with probability 0.5

where N (e;) denotes the set of neighbors of e; and Discover(-) identifies novel entities via our
private medical retrieval engine, ensuring that new connections are both medically valid and chal-
lenging.

Each relation follows an augmented format r = (esubj + P, €obj tremporal, Ispatial Celinical) With additional
contextual information, where cjinica; €ncodes the clinical context (e.g., disease stage, demographic
data of the patient), temporal Captures temporal aspects, and lspa denotes spatial context. This
enriched representation improves multi-hop reasoning accuracy by 12.3% compared to standard
triplets.

3.1.2 MULTI-HOP QUESTION GENERATION VIA LONGEST-PATH EXTRACTION

Our key innovation lies in extracting longest chains from subgraphs to generate maximally com-
plex queries. For each rare entity subgraph Gy, we compute the longest valid reasoning path:
P* = argmaxpcp(q,,) Length(p) s.t. MedicallyValid(p), where P(Gyp) is the set of all paths in
Gsub'

sub)
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Figure 2: Knowledge graph-based question generation pipeline: extracting longest chains from rare
entity subgraphs to create complex multi-hop medical queries.

Step 1: Swiss Pharmaceutical History

+ Started with Ciba-Geigy - a major Swiss life-sciences company

from Basel
* The clue mentioned it "ceased to exist after a landmark
corporate fusion" in the 1990s
Step 2: Corporate Merger Investigation
« Ciba-Geigy identified the 1996 merger of Ciba-Geigy and
Sandoz
« This created Novartis Pharmaceuticals Corporation
Step 3: Medication Identification
+ Searched for Novartis heart failure medications that reduce
hospitalization

* Led to Valentas 100 Tablet - a branded prescription for cardiac

insufficiency
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:_1": *The mechanism of an angiotensin Il receptor
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*Event_A": "Novartis formed by merger of Ciba-Geigy and
Sandoz",
"Target_Entity": "Valsartan"

Step 1: Swiss Pharmaceutical History
« Started with "Entity_A" - a major Swiss life-sciences
company from Basel
* The clue mentioned it "ceased to exist after a landmark
corporate fusion" in the 1990s
Step 2: Corporate Merger Investigation
+ "Event_A"identified the 1996 merger of Entity_A and
Sandoz
« This created "Entity_B" - the new pharmaceutical giant
Step 3: Medication Identification
« Searched for Entity_B heart failure medications that
reduce hospitalization
+ Ledto "Entity_C" - abranded prescription for cardiac
insufficiency

Step 8: Final Convergence Step 8: Final Convergence

Al evidence pointed to Valsartan « Al evidence pointed to Target_Entity

Origin Reasoning Path Entity Mapping Masked Hint

Figure 3: Masked Trajectory Guidance: a structural scaffold that enables reasoning without shortcut
learning by masking entities.

This longest-path strategy ensures that questions require multiple reasoning hops (average 4.2 per
trajectory), rather than being answerable via simple lookups. These paths are subsequently trans-
formed into natural language questions that require sequential tool invocations to reconstruct the
complete reasoning chain.

3.1.3 QUALITY CONTROL AND DIFFICULTY CALIBRATION

To ensure that generated questions remain challenging for current systems, we implement adaptive
difficulty calibration. Each question is evaluated against OpenAl-03 deep research and GPT-4. If
either model achieves > 50% accuracy, the question is automatically regenerated with increased
complexity:

if max(Accos(q), Accgpra(q)) < 0.5

r )4
7= {Regenerate(q,complexity +1) otherwise

This approach ensures our dataset remains challenging even for state-of-the-art systems, directly
addressing the 25.5% performance ceiling previously observed in MedBrowseComp.

3.2 TRAJECTORY SYNTHESIS WITH MEDICAL TOOL INTEGRATION

3.2.1 MASKED TRAJECTORY GUIDANCE (MTG)

To generate high-quality training trajectories that effectively utilize our medical-specific tools,
we introduce Masked Trajectory Guidance(MTG). Given a reasoning graph path 7T =
{(e1,71,€2),...,(en—1,Tn—1,€n)} extracted from the knowledge graph, we create a structural scaf-
fold by masking the entities: Tmaskea = {([MASK], r;, [MASK]) ?:_11 . This masking process serves
two main purposes: (i) Tool selection learning: Encourages the model to determine when medical-
specific retrieval tools are required versus when general search suffices; (ii) Prevention of shortcuts:
Prevents answer memorization while maintaining the underlying reasoning process.
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3.2.2 HYBRID STRATEGY FOR TOOL DIVERSITY

To promote robust and diverse tool usage, we adopt a hybrid data strategy: Dyain = @ * Dgyidea +
(1 — @) - Dexploration, Where aw = 0.7 balances structured learning with exploration. The exploration
trajectories cultivate three key behaviors: (i) Knowledge Synthesis: 78% begin with private medical
retriever for rare entities; (ii) Tool switching: 42% demonstrate adaptive switching between general
and medical tools; (iii) Error recovery: 34% include explicit correction using alternative tools.

4 LARGE-SCALE AGENT TRAINING

4.1 STAGE 1: SUPERVISED FINE-TUNING

We initialize the agent through SFT on 2,100+ synthetic medical trajectories generated by our KISA
framework. The training incorporates robustness augmentations including tool failure simulation
(5% corruption rate), intermediate thought supervision, and multi-task sampling across medical do-
mains. This stage establishes fundamental tool usage patterns and medical reasoning capabilities.
Detailed training configurations are provided in Appendix [D.I]

4.2 STAGE 2: REINFORCEMENT LEARNING

Following SFT warm-start, we refine the agent using Grouped Regularized Policy Optimization
(GRPO) with composite rewards balancing task accuracy, expert alignment, and efficiency: r =
QT task + BTexpert — VTefficiency» Where oo = 1.0, 8 = 0.2, v = 0.1. The GRPO objective employs group-
level baseline normalization for stable gradient estimation. We deliberately omit KL regularization
following recent findings (He et al.l |2025)) and implement curriculum learning for progressive task
complexity. Full RL implementation details are in Appendix[D.2]

5 ABLATION STUDY

We systematically remove components from MedResearcher-R1 to isolate their contributions (Ta-
ble3]in Appendix [E). Three findings emerge:

(1) Rare entities are crucial. Removing rare-entity supervision causes the largest drop (27.5—20.1
on MedBrowseComp), confirming that complex medical scenarios drive learning. The effect prop-
agates to general tasks (GAIA: 53.4—27.8), suggesting transferable reasoning patterns.

(2) Two-stage training is necessary. SFT alone achieves 25.5/50 but lacks refinement; RL alone
catastrophically fails (12.0/50). This validates knowledge-anchored learning—SFT provides essen-
tial grounding for subsequent RL.

(3) Components synergize. Medical tools contribute moderately (23.1 without vs. 27.5 with), while
MTG prevents overfitting across all benchmarks (p < 0.05). The complementary effects validate
our dual enhancement approach: internal knowledge from rare entities plus external precision from
specialized tools.

6 EXPERIMENTS

We evaluate MedResearcher-R1 across both a specialized medical benchmark and two general-
purpose agent benchmarks. This dual evaluation framework is designed to rigorously assess its
primary capability in complex medical research while simultaneously measuring its generalization
ability in open-domain tasks.

6.1 BENCHMARKS

We use the following benchmarks for our evaluation:

(i) MedBrowseComp (Chen et al.,|2025b)): Our primary evaluation benchmark, designed to assess
the capabilities of LLM-based agents in answering complex medical questions. MedBrowseComp
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presents multi-hop reasoning challenges, requiring the agent to navigate and synthesize information
across a variety of medical sources. The benchmark is composed of 50 questions drawn from a wide
range of medical topics, with each question requiring intricate exploration of medical databases,
literature, and clinical knowledge. The focus on rare medical entities and complex relationships be-
tween medical concepts makes this benchmark particularly demanding, providing a robust test of an
agent’s ability to handle nuanced medical reasoning and retrieve authoritative medical information.

(ii) GAIA (Shinn et al} 2023): A general-purpose benchmark evaluating assistant capabilities in
tasks requiring multi-modal tool use, web search, and multi-step reasoning. We use a subset of 103
cases from the text-only validation set to test the agent’s ability to understand complex scenarios,
generate responses, and reason while interacting with tools.

(iii) XBench-DeepSearch (Chen et al., 2025a): A multi-domain evaluation suite focusing on deep
information retrieval and complex search tasks. It tests the agent’s ability to search, synthesize,
and perform advanced information synthesis across various domains, including fact-checking and
comparative analysis.

6.2 BASELINES

To provide a comprehensive comparison, we evaluate MedResearcher-R1 against several state-of-
the-art models. Our model, MedResearcher-R1-32B, is built upon the Qwen-2.5-32B model, mak-
ing it the most direct baseline for assessing the impact of our methods.

* Medical Domain Baselines: We compare against leading proprietary deep research sys-
tems known for their strong reasoning capabilities. These include Google’s Gemini-2.5-Pro-
deepsearch and OpenAI’s 03-deepresearch, which represent the state-of-the-art in closed-source
deep research agents.

* General Domain Baselines: For open-domain tasks, we compare against a range of top-
performing models. This includes powerful proprietary models like GPT-40 and 04-mini, as
well as leading open-source deep research agents like WebSailor (Li et al., 2025), which is the
current state-of-the-art open-source agent for general deep research tasks.

6.3 MAIN RESULTS

State-of-the-Art Performance in Medical Research. As shown in Table 1] MedResearcher-R1
establishes a new state-of-the-art on the challenging MedBrowseComp benchmark. With a score
of 27.5/50, it significantly outperforms strong proprietary systems like o3-deepresearch (25.5) and
Gemini-2.5-Pro-deepsearch (24.5). This result validates the effectiveness of our specialized data
synthesis and domain-specific tools in equipping the agent with superior medical reasoning capabil-
1ties.

Strong Generalization to Open-Domain Tasks. Notably, our specialization in the medical domain
does not come at the cost of general capabilities. Table [2] shows that MedResearcher-R1 achieves
highly competitive performance on general agent benchmarks. On both GAIA (53.4) and XBench-
DeepSearch (54.0), our 32B model performs on par with the state-of-the-art open-source agent,
WebSailor-32B (53.2 and 53.3, respectively). This demonstrates that the complex reasoning pat-
terns and robust tool-use strategies learned from the medical domain transfer effectively to general
problem-solving scenarios.

Table 1: Performance Comparison on MedBrowseComp Benchmarks (number correct out of 50)

Model o3 search  gemini2.5pro deepsearch 03 deepresearch claude-cua MedResearcher-R1
MedBrowseComp 19.0 24.5 25.5 18.0 27.5

6.4 QUALITATIVE ANALYSIS

To understand the underlying factors driving performance improvements, we conducted an in-depth
analysis of the training data patterns and their impact on agent behavior. Our investigation reveals
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Figure 4: Case study demonstrating the search-verify-synthesize paradigm: The agent performs
multiple verification rounds across information sources, ensuring information consistency before
synthesis. Baseline agents (shown in gray) terminate prematurely after initial search, while our
approach (blue) continues until achieving high confidence through cross-validation.

that training data following the paradigm of iterative search-verification-synthesis yields the most
significant improvements in deep research capabilities.

Figure [] illustrates a representative example where our agent demonstrates superior research depth
through systematic evidence gathering. The agent executes a 4-step strategy: (1) initial broad search
to identify relevant sources, (2) verification of information consistency across multiple authoritative
medical databases, (3) targeted follow-up queries to resolve ambiguities, and (4) comprehensive
synthesis of validated findings. This methodical approach—characterized by multiple verification
cycles ensuring answer uniqueness before final synthesis—contrasts sharply with baseline agents
that exhibit premature convergence or suboptimal tool utilization patterns.

Analysis of successful trajectories reveals that the critical differentiator lies in the
search—verify” —synthesize pattern, where n represents multiple verification iterations.
Training instances exhibiting this pattern show 34.2% higher success rates in complex multi-hop
reasoning tasks compared to single-verification approaches. The iterative verification ensures
answer uniqueness and factual grounding, particularly crucial for domains requiring high accuracy,
such as medical diagnosis.

Table 2: Performance Comparison on Xbench-DeepSearch and GAIA Benchmarks

Model Paradigm Xbench-DeepSearch GAIA
Qwen-2.5-32B Direct 8.7 13.6
Qwen-2.5-72B Direct 12.7 14.6
GPT-40 Direct 18.0 17.5
GPT-4.1 Direct 17.0 22.3
QwQ-32B Direct 10.7 22.3
04-mini Direct 22.3 333
DeepSeek-R1 Direct 32.7 16.5
Qwen-2.5-32B Search-ol 3.7 28.2
WebDancer-32B ReAct 38.7 40.7
QwQ-32B Search-ol 25.0 39.8
WebSailor-7B ReAct 34.3 37.9
WebSailor-32B ReAct 53.3 53.2
WebSailor-72B ReAct 55.0 554
MedResearcher-R1-32B(Ours) ReAct 54.0 53.4
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These findings demonstrate that tool-augmented agent training effectiveness is fundamentally linked
to the structural patterns in training data, with iterative verification serving as the key mechanism
for developing robust deep research capabilities that generalize across diverse tool-reasoning envi-
ronments.

7 RELATED WORK

7.1 LLM-BASED AGENTS FOR DEEP RESEARCH

The field of autonomous deep research is rapidly advancing, primarily through two paradigms. One
line of work focuses on multi-agent planning architectures, where complex tasks are decomposed
and assigned to specialized agents for retrieval, reasoning, and synthesis (L1 et al.l 2023} Xu &
Peng, [2025). Another prominent approach uses reinforcement learning (RL) to train a single agent
to interact with complex web environments, optimizing its reasoning and tool-use strategies through
reward signals (Yao et al., 2023b; |L1 et al., [2025)). These systems, exemplified by state-of-the-art
models like WebSailor and Search-R1, have demonstrated superhuman performance on general web
research tasks.

However, their effectiveness drastically diminishes in specialized, high-stakes domains like
medicine. These general-purpose agents are not equipped with the domain-specific knowledge, spe-
cialized retrieval tools, or the nuanced reasoning capabilities required for clinical evidence synthesis.
Their training on broad web corpora leaves them unable to navigate the landscape of authoritative
medical databases or understand the complex relationships between rare medical entities, a gap our
work aims to fill.

7.2 Al AGENTS IN THE MEDICAL DOMAIN

Within the medical field, Al has progressed from targeted diagnostic models to more integrated
agent-based systems. Early efforts centered on Retrieval-Augmented Generation (RAG) to ground
clinical decisions in medical literature (Zhao et al., 2025 [Toma et al. 2023). More recently,
multi-agent systems have been developed for specific clinical workflows, such as sequential di-
agnosis (Nori et al.| 2025) and dynamic knowledge management (Yao et al., 2024).

Despite these advances, a fundamental limitation persists: current medical agents excel at structured
tasks involving common medical scenarios but falter in exploratory medical research. Their reason-
ing capabilities remain shallow, with performance degrading significantly on tasks requiring more
than a few inference steps (Schmidgall et al.| |2025). This is largely because they are not trained on
data that reflects the complexity of real-world medical investigation, which often involves connect-
ing rare diseases, novel treatments, and disparate clinical findings. Our work directly addresses this
critical gap by introducing a methodology to train agents on genuinely complex, multi-hop medical
research trajectories, enabling the deep, exploratory reasoning that existing systems lack.

8 CONCLUSION

In this work, we address the challenge of complex, evidence-based medical research by introduc-
ing a new agent development framework centered on the KISA data generation approach. KISA
systematically produces challenging, multi-hop medical question—answer pairs with correspond-
ing reasoning trajectories, grounded in rare entity mining and knowledge graph-based reasoning
chains. This ensures that agents are exposed to the intricate, compositional problems characteristic
of real-world medical research. Built on this rich dataset and equipped with a comprehensive train-
ing pipeline—including supervised fine-tuning, trajectory masking, and reinforcement learning with
specialized medical tools—our agent, MedResearcher-R1 achieves state-of-the-art pass@ 1 accuracy
on MedBrowseComp (27.5/50) and demonstrates robust performance on general agent benchmarks.
These findings show that MedResearcher-R1 is capable of solving complex medical questions that
demand systematic exploration and nuanced evidence synthesis, highlighting its effectiveness as a
next-generation deep research agent in the medical domain.
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Appendix

A THE USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policy, we disclose the usage of Large Language Models (LLMs) in
the process of writing this paper. Specifically, we employed LL.Ms to assist with the refinement and
polishing of the manuscript’s language. The LLM was used to enhance clarity, improve grammar,
and ensure the consistency of the text, which contributed to the overall quality of the writing. The
LLM was not used to generate novel ideas, research findings, or substantial portions of the content.
Its primary role was as a tool to aid the revision process, focusing on language-related tasks.

We have fully disclosed this usage, and the final manuscript reflects the work of the authors. The
LLM’s contribution is limited to textual improvements and does not extend to the intellectual content
of the paper.

For transparency, we confirm that the research itself, including the methodology, results, and con-
clusions, was independently developed by the authors without any contributions from LLMs beyond
their role in writing assistance.

B DETAILED PERFORMANCE COMPARISONS

MedBrowseComp GAIA XBench-DeepSearch
27.5 53.4 53.0 54.0 53.3
25.5 25.0 -
R\ -
N v
19.0
@ 39.8
14.0 & 233 05
'S - A 28.2 A e
3.7
o
. - - D
s s & & b & = & g o 5 s
& o5 L o # & & ® > 2 &
& o $ o < 'S of »5 8 & ®
o7 & 2 > bl >
K. o & & o K% & o
& § £ < o v s ¥ ¢
~ N & e ~ e

Figure 5: Overall performance of MedResearcher-R1 across three benchmarks. On Med-
BrowseComp, our MedResearcher-R1-32B achieves state-of-the-art performance with 27.5/50 cor-
rect answers, surpassing o3-deepresearch (25.5/50), Gemini-2.5-Pro-deepresearch (25.0/50), and
significantly outperforming search-only approaches (03-search: 19.0/50, Gemini-2.5-Pro-search:
14.0/50). On general deep research tasks, we achieve competitive results on GAIA (53.4 vs.
WebSailor-32B’s 53.2) and xBench (54.0 vs. WebSailor-32B’s 53.3).

C TECHNICAL DETAILS

C.1 PRIVATEMEDICALRETRIEVER

This module aggregates evidence directly from authoritative clinical resources, including FDA
databases, clinical trial registries, and PubMed publications. Each candidate document d is scored
for a query ¢ by a weighted linear combination of semantic relevance and clinical authority:

Score(d, q) = ARel(d, q) + (1 — X) Auth(d),

where Rel(d, ¢) represents the semantic similarity to the query (computed via embedding cosine
similarity), and Auth(d) reflects the clinical authority (combining impact factor and guideline sta-
tus). The hyperparameter A (0 < A < 1) balances the importance between relevance and authority;
in all experiments, we set A\ = 0.4 to favor reliable and clinically significant evidence.
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C.2 CLINICALREASONINGENGINE

Designed for evidence-based differential diagnosis, this tool applies Bayesian inference to evalu-
ate multiple hypotheses systematically. Given observed symptoms s, candidate diagnoses D;, and
patient context c, the posterior for each diagnosis is computed as:

[1i-y P(si | Dj, ) - P(Dj | c)
> ker [i=1 P(si | Di,c) - P(Dy | €)
where conditional probabilities are derived from clinical literature and iteratively updated based on
newly retrieved evidence.

P(Dj |s,c) =

C.3 DyNAMIC TOOL SELECTION STRATEGY

Our agent dynamically switches between general and medical-specific tools to ensure complete
evidence chains. The tool selection is governed by a learned policy that evaluates query complexity:

T .
7 f medi
P(t | S, q) _ {U(W$¢(St7Q)) 1 te T edical
J(Wg ¢(5t7 Q)) ift € Eeneral
where ¢(s¢, q) extracts features that include the rarity of the entity, the required reasoning hops, and
the presence of medical terminology, w,, and w, are learned weight vectors, and o (-) is the sigmoid

function. The policy learns to prioritize medical tools when encountering rare diseases or complex
chemical compounds while leveraging general tools for contextual information.

D TRAINING IMPLEMENTATION DETAILS

D.1 SUPERVISED FINE-TUNING CONFIGURATION

Dataset. We train on D = {(z(¥,y")}¥ | where N = 2,137 trajectories, with z(*) denoting
input context and y(*) the expert action sequence. The objective maximizes:
Ny

Lsrr(0) = —— Z > logpsly DNz@,59) (1

zlkl

Robustness Augmentations.

* Tool failure simulation: 5% random corruption of tool outputs to encourage error recovery
* Intermediate thought supervision: Explicit reasoning traces before each tool invocation

* Multi-task sampling: Balanced batching across diagnosis (30%), treatment (25%), guide-
lines (25%), rare diseases (20%)

Optimization.

¢ Optimizer: AdamW with 8; = 0.9, 85 = 0.98

* Learning rate: A = 0.01 with cosine annealing to i, = 3 x 1077
 Batch size: 128 (16 per GPU x 8 H800 GPUs)

* Training epochs: 3

 Gradient clipping: 1.0

e Warmup steps: 100

D.2 REINFORCEMENT LEARNING CONFIGURATION

Reward Components. The composite reward function r = arek + B7expert — Y Tefficiency COMPIises:

* rusk: Binary task completion (1.0 for correct, 0.0 for incorrect)
* Texpert: GPT-4 preference score € [0, 1] evaluating medical accuracy and completeness
* Tefficiency: Penalty for redundant tool usage, computed as:
Tefficiency = 0-1 X Tredundant + 0-2 X Mpostanswer + 018 X Nirrelevant (2
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GRPO Configuration. The GRPO objective:

['GRPO = E(w7y)~D [log 71'9(y|CC) ! (T(xv y) - ’Fg(iv))] (3)
where 7g(,) is the group-level baseline (batch average).

* Group size: 4 responses per query

¢ Sampling temperature: 0.7

* PPO clip range: 0.2

* Value loss coefficient: 0.5

* Entropy coefficient: 0.01

* Training iterations: 500

* KL regularization: Disabled (following He et al.| (2025)))

Curriculum Learning. Task complexity increases based on moving average pass rate:

* Level 1 (pass rate > 80%): Single-hop queries
* Level 2 (pass rate > 60%): 2-3 hop queries
* Level 3 (pass rate > 40%): 4+ hop queries with rare entities

E ABLATION STUDY DETAILS

Table 3: Ablation study for MedResearcher-R1. We remove key components while keeping all other
settings fixed. Statistical significance: * p<0.05 vs. the Full model. MedBrowseComp is reported
as # correct out of 50.

Model Configuration MedBrowseComp GAIA XBench Avg. Tool Calls
(correct / 50) (%) (%)
MedResearcher-R1 (Full) 27.5 53.4 54.0 4.2
Component Ablations
w/o Medical Tools 23.1 48.3 40.0 3.3
w/o RL Training (SFT only) 25.5 50.2 51.0 3.7
w/o MTG 24.2* 44.3* 47.8* 35
w/o Rare Entities 20.1* 27.8* 38.2* 32
Data Ablations
Common Entities Only 23.0% 43.0* 46.0* 4.5
No Tool Diversity 21.0* 38.0* 49.0 32
Training Ablations
SFT Only 25.5* 49.0 48.0* 34
RL Only (no SFT) 12.0* 34.0* 34.0* 32

Tasks and metrics.

* MedBrowseComp is reported as correct/50.
* GAIA and XBench-DeepSearch follow official (%) scoring.
* Avg. Tool Calls is the average number of tool invocations per example.

Evaluation protocol. All ablations share the same backbone, prompts, decoding parameters, tool
budgets, and evaluation splits as the Full model; only the targeted component is removed/altered.
Each number is the mean of three seeds.

Significance. We compute paired bootstrap (over instances) against the Full model with 10,000
replicates; we mark * for p<0.05.
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