
Under review as a conference paper at ICLR 2024

WHEN DO MLPS EXCEL IN NODE CLASSIFICATION?
AN INFORMATION-THEORETIC PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research has shed light on the competitiveness of MLP-structured methods
in node-level tasks. Nevertheless, there remains a gap in our understanding regard-
ing why MLPs perform well and how their performance varies across different
datasets. This paper addresses this lacuna by emphasizing mutual information’s
pivotal role in MLPs vs. GNNs performance variations. We first introduce a
tractable metric to quantify the mutual information between node features and
graph structure, based on which we observe different characteristics of various
datasets, aligning with empirical results. Subsequently, we present InfoMLP, which
optimizes node embeddings’ mutual information with the graph’s structure, i.e., the
adjacency matrix. Our info-max objective comprises two sub-objectives: the first
focuses on non-parametric reprocessing to identify the optimal graph-augmented
node feature matrix that encapsulates the most graph-related information. The
second sub-objective aims to enhance mutual information between node embed-
dings derived from the original node features and those from the graph-augmented
features. This integration of message-passing during preprocessing maintains the
efficiency of InfoMLP, ensuring it remains as efficient as a standard MLP during
both training and testing. We validate the effectiveness of our approach through
experiments on real-world datasets of varying scales, supplemented by comprehen-
sive ablation studies. Our results affirm our analysis and underscore the success of
our innovative approach.

1 INTRODUCTION

Learning representations and subsequently predicting node labels for nodes in an attributed graph is
a fundamental task in graph machine learning that has attracted significant attention over the past
decade. To learn from both node features and graph structure, Graph Neural Networks (GNNs) (Kipf
& Welling, 2017; Velickovic et al., 2018; Hamilton et al., 2017; Xu et al., 2019; Chen et al., 2020)
adopt an iterative process, aggregating messages from neighboring layers. By stacking multiple
layers, GNNs can effectively learn node representations that capture information from both the node
features and the local/global graph structure.

While Graph Neural Networks (GNNs) demonstrate promising performance, their message-passing
scheme is often criticized for its inefficiency and time-consuming nature during both training and
inference (Rossi et al., 2020; Zhang et al., 2021b; Zeng et al., 2020). Furthermore, its dependence
on graph structure hinders its application in cold-start scenarios (Zheng et al., 2021). In contrast,
Multilayer Perceptrons (MLPs) utilizing only node features as input offer efficiency during both
training and inference. However, their performance on node classification tasks falls short due to the
lack of graph structure information. Several attempts have been made to incorporate graph structure
information into MLP models from different perspectives: 1) Regularization-based methods: These
train an MLP encoder using a combination of supervised cross-entropy loss and a regularization loss
concerning the graph structure (Ando & Zhang, 2006; Yang et al., 2021; Hu et al., 2021; Dong et al.,
2022). The effectiveness of such methods often hinges on how the regularization loss is designed, as
a well-designed regularization loss can more effectively integrate structure information into node
embeddings. 2) Distillation-based methods: These leverage the KL-divergence loss to distill the
predictions of a GNN teacher into an MLP student (Zhang et al., 2021b; Zheng et al., 2021), with
the goal that the MLP can generate predictions similar to its GNN teacher. While these methods are
comparable to a vanilla MLP in testing, they still require message passing during training to learn from

1

Under review as a conference paper at ICLR 2024

Table 1: Categorization of GCN and typical MLP-architected models. X and A denote the node
features and graph adjacency matrix, respectively. We denote a model as O(GCN) if it requires any
form of message passing and as O(MLP) if it does not. The MLPboth symbol indicates that the
model shares the same complexity as an MLP during both training and testing. The MLPtest symbol
represents a model that aligns with an MLP in terms of testing complexity but not during training.

Model Input Algorithmic Complexity CategoryTraining Testing Pre-processing Training Testing
GCN (Kipf & Welling, 2017) (X,A) (X,A) - O(GCN) O(GCN) GNN

MLP X X - O(MLP) O(MLP) MLPboth
Lap-Reg (Ando & Zhang, 2006) (X,A) X - O(GCN) O(MLP) MLPtest

GraphMLP (Hu et al., 2021) (X,A) X - O(GCN) O(MLP) MLPtest
N2N (Dong et al., 2022) (X,A) X - O(GCN) O(MLP) MLPtest

GLNN (Zhang et al., 2021b) (X,A) X - O(GCN) O(MLP) MLPtest
InfoMLP (ours) (X,A) X O(KEd) O(MLP) O(MLP) MLPboth

the graph structure. Table 1 categorizes GNNs and different MLP-architectured methods according
to the input information and time complexity at training/testing phases. Despite the generally good
performance of these MLP models, we observe clear performance discrepancies on different datasets,
and the reasons behind these phenomena aren’t fully understood.

In this work, we first aim to understand the reasons behind the successes of previous MLP-structured
models for learning node representations. To achieve this, we propose a tractable measure to quantify
the overlapping information between node features (the sole input of MLPs) and the graph structure
(which plays a role in GNNs). Our proposed measure reveals a substantial overlap of information
between node features and the graph structure. This observation implies that the node features,
which partially capture the graph structure information, can be effectively learned by MLPs if
appropriately trained. Motivated by this insight, we propose maximizing the mutual information
between node embeddings and the graph structure as an auxiliary loss function for learning an
MLP encoder. To realize this objective, we introduce InfoMLP. InfoMLP decomposes the mutual
information maximization objective into two steps: 1) the generation of a graph-augmented node
feature matrix that encapsulates extensive graph structure information, and 2) the maximization of
mutual information between node representations learned from the original node features and the
generated graph-augmented node features. By defining a non-parametric graph-augmented node-
feature matrix, the first step becomes a dataset-specific preprocessing step. Consequently, InfoMLP
maintains the efficiency of an MLP during both training and testing (as demonstrated in Table 1).
We conduct experiments on graphs of various scales for node classification tasks in transductive,
inductive, and cold-start settings. Our empirical results confirm the effectiveness, efficiency, and
rationality of our proposed design. We summarize our contributions as follows:

1) We introduce a tractable measure to investigate the correlation between raw node features and
the graph structure. Utilizing this measure, we can estimate the extent to which node features
cover graph structure information. Our analysis aligns with prior empirical observations
regarding the performance gaps between MLPs and GNNs.

2) We propose InfoMLP, a novel regularization-based MLP model designed for learning node
representations on graphs. InfoMLP aims to maximize the mutual information between
node embeddings and the graph structure. By decomposing the primary objective into a
preprocessing step and a learning step, InfoMLP achieves the same efficiency as a standard
MLP model during both the training and testing phases.

3) We perform experiments on graphs of varying sizes across three distinct settings. The em-
pirical results confirm the effectiveness and efficiency of InfoMLP. Additionally, extensive
ablation studies support the validity of our analysis and the rationale behind our designs.

2 RELATED WORKS: LEARNING MLPS ON GRAPHS.

Due to their universal approximation ability (Hornik et al., 1989), Multilayer Perceptrons (MLPs)
play a critical role in a variety of machine learning tasks. However, MLPs are designed to handle
independent and identically distributed (i.i.d.) data points and thus struggle with non-i.i.d. data,

2

Under review as a conference paper at ICLR 2024

such as nodes in a graph. Consequently, the performance of MLPs often falls short when compared
with Graph Neural Networks (GNNs). To incorporate the knowledge of graph structure into the
embeddings produced by MLPs, regularization-based methods employ an additional regularization
loss alongside the supervised loss. This approach encourages the node embeddings to conform to the
graph structure. Classic examples are Laplacian Regularization (Ando & Zhang, 2006; Zhou et al.,
2003) and P-Reg (Yang et al., 2021), which promotes Laplacian-smoothed and Propagation-smoothed
predictions of node labels. Although they can capture some aspects of structure information, their
performance improvements are relatively modest, and they still can’t compete with GNNs.

In recent years, advanced MLP models have emerged, achieving comparable performance to GNNs
on certain datasets. For example, GraphMLP (Hu et al., 2021) employs a contrastive loss that
considers connected nodes as positive pairs, while N2N (Dong et al., 2022) maximizes the mutual
information between node embeddings and sampled neighborhood embeddings. GLNN (Zhang et al.,
2021b) utilizes knowledge distillation to encourage MLP students to produce GNN-like predictions.
Although these advanced methods have greatly narrowed the gaps between the performance of MLPs
and GNNs, it is observed that they exhibit varying performance on distinct datasets, and the reasons
behind these phenomena are still under-explored.

It is worth noting this paper focuses on MLPs that take pure raw node attributes as input for obtaining
node representations without the graph structure information (i.e., at the testing phase, the mode
is supposed to take merely X rather than (X,A) as input, see Table 1). Therefore, we would like
to clarify that our research topic differs from the following works: 1) Graph-augmented MLPs
(e.g., SGC (Wu et al., 2019) and SIGN (Rossi et al., 2020)) are significantly different since they
apply message passing to either the MLPs’ input or output, explicitly utilizing the graph structure
information to generate node embeddings. 2) Training-time MLP methods (e.g., PMLP (Yang et al.,
2023) and MLP-init (Han et al., 2023)) do not utilize the graph structure information in training,
but still apply message passing in testing. 3) Another GNN-to-MLP knowledge distillation method
NOSMOG (Tian et al., 2022) takes structural embeddings (from DeepWalk, (Perozzi et al., 2014)) as
additional inputs of the MLP model, therefore still utilizing the graph structure information.

3 METHODOLOGY

Preliminaries. This paper studies a general node representation learning task for node classification
in both transductive and inductive settings. For a graph G comprising N nodes and E edges,
we’re given two associated sources of information: raw node feature matrix X ∈ RN×d and
graph structure matrix A ∈ RN×N , where d denotes the dimension of raw node features. The
difference between the transductive and inductive settings lies in whether the testing nodes and their
associated edges are observable during the training phase. The objective is to learn informative
node representations, denoted by Z ∈ RN×D, where D is the embedding dimension. Graph neural
networks (GNNs) accomplish this by learning an encoder that takes both X and A as inputs, yielding
Zgnn = GNN(X,A). In contrast, MLPs learn an encoder using only the raw features X , resulting
in Zmlp = MLP(X). Regardless of the encoder used, the training process is steered by a task-
specific objective function, such as the cross-entropy loss function computed between the predicted
and ground-truth labels Y . This can be construed as maximizing the mutual information between
predictions and the ground truth labels: max I(Z, Y).

3.1 GAPS BETWEEN MLPS AND GNNS FOR NODE REPRESENTATION LEARNING

Table 2: Performance comparison of GCN and
MLP-architectured models on several datasets.
The results are obtained in the transductive set-
ting (the same as in Table 3).

Dataset Cora Citeseer Pubmed Computer CS

GCN 81.5 70.3 79.0 92.25 94.10

MLP 59.7 57.1 68.4 85.42 95.97
∆GCN −26.7% −18.8% −13.4% −7.40% +1.98%

GraphMLP 79.5 73.1 79.7 88.73 96.62
∆GCN −2.5% +4.0% +0.9% −3.82% +2.68%

N2N 82.8 73.3 80.7 89.07 96.41
∆GCN +1.6% +4.3% +2.2% −3.45% +2.45%

Given the differing input sources, there is a con-
siderable performance disparity between MLPs
and GNNs when applied to the same dataset.
As depicted in Table 2, the vanilla MLP tends
to underperform GCN significantly. This per-
formance gap is typically ascribed to the input
differences: GNNs utilize both node features X
and the graph structure A, while MLPs depend
solely on node features X . Nonetheless, recent
studies have shown that with suitable regulariza-
tion or training strategies, the performance of
MLPs can be boosted to match, or even surpass,

3

Under review as a conference paper at ICLR 2024

（a）

X A

Y

AAX AX

(b) (c) (d)

Figure 1: An illustration of the relationships between the information of node features X , the graph
structure A, embeddings of an MLP encoder Zmlp, and the downstream task Y . (a) Both X and
A contains informative information for the downstream task. (b) the case that X contains all the
information about A. (c) the case that X contains no information about A. (d) maximizing the mutual
information between the embeddings Zmlp and the graph structure A.

GNNs on certain datasets. As seen in Table 2, GraphMLP (Hu et al., 2021) and N2N (Dong et al.,
2022) exhibit comparable, or superior, performance to GCN on four out of five datasets. We hypothe-
size that this is due to the high degree of overlap between the information conveyed by node features
X and the graph structure A, which is very common in real-world graphs such as social networks.
We illustrate this point using the following assumption of the generation process of data:

Assumption 1. (Generation process of graph) For a graph G of node attributes X and adjacency
matrix A, the raw node features X for the nodes is generated first, then the graph structure A is
generated based on the node features and additional confounder factors F . Finally, the node labels
Y are generated from both the raw node features X and the graph structure A. Formally:

p(A,X) = p(X)pF (A|X), p(A,X, Y) = p(X,A)p(Y |A,X) (1)

Since node labels Y can be inferred from X and A, and A itself is generated from X and another
confounder factor, if X already contains enough information about A, then an MLP model can achieve
performance similar to GNN with X as input alone. Specifically, when the label Y is solely generated
using X , (e.g., A is simply noise), an MLP model naturally outperforms GNN.

We can comprehend the intuition behind the overlap through the Venn diagrams depicted in Fig. 1.
Fig. 1(a) illustrates that both X (node features) and A (graph structure) harbor information pertinent to
the downstream tasks Y . There is also an overlapping section between X and A, which may contain
substantial information beneficial for the downstream task Y . Fig. 1(b) presents a scenario where all
information from the graph structure is contained within the node features, i.e., I(X;A) = H(A)
or H(A|X) = 0. In such a scenario, the graph structure A is entirely predictable using X . Thus,
MLPs are expected to have the same generalization capacity as GNNs in this context. On the other
hand, Fig. 1(c) displays a situation where the graph structure is unrelated to the node features, i.e.,
I(X;A) = 0. In this case, regulating Zmlp with the graph structure information does not assist in
improving the node embeddings to recover the graph structure. Consequently, the performance of
MLPs cannot be enhanced in such a scenario.

Under the assumption of graph homophily (McPherson et al., 2001; Ciotti et al., 2016), the graph
structure information is presumed to contain valuable data for predicting node labels (the downstream
task Y). As such, if the mutual information between node representations and the graph structure
I(Zmlp;A) could be maximized, Zmlp is expected to encompass the most pertinent information for
downstream tasks, as illustrated in Fig. 2 (d). Although conventional methods like Lap-Reg (Ando &
Zhang, 2006) and P-Reg (Yang et al., 2021) aim to learn smoothed node representations/predictions,
they fall short in maximizing I(Xmlp;A) due to the absence of negative terms. In contrast, newer
methods such as GraphMLP (Hu et al., 2021) and N2N (Dong et al., 2022) take into account both
actual edges and unconnected node pairs, thereby striving to reconstruct the complete adjacency
matrix. In doing so, the mutual information between embeddings Xmlp and A is implicitly maximized,
which makes these methods more effective.

The analysis above identifies two crucial factors determining the gap between MLPs and GNNs: 1)
The mutual information between the node attributes and the graph structure I(X;A). 2) The
mutual information between the embeddings and the graph structure I(Zmlp;A). The former is
dataset-deterministic and establishes the maximum capacity of Zmlp, while the latter can be improved

4

Under review as a conference paper at ICLR 2024

through the design of the model. In Sec. 3.3, we propose a novel regularization-based MLP model,
which is able to maximize I(Zmlp, A) more straightforwardly.

3.2 QUANTIFYING THE OVERLAPPED INFORMATION BETWEEN FEATURES AND STRUCTURE

Mutual information can be deconstructed into the difference between entropy and conditional entropy:
I(X;A) = H(A)−H(A|X). Instead of focusing on the information inherent to the graph structure,
we can examine the conditional term H(A|X). This term signifies the residual information about
the graph structure given the observation of node features. A small H(A|X) value suggests that the
graph structure A can be effectively predicted from node features X . However, quantifying H(A|X)
presents a challenge due to the high dimensionality of vector X and the large sparse nature of matrix
A. Fortunately, we can estimate H(A|X) by leveraging a computationally feasible upper bound:

Theorem 1. Let Â be a function of X , i.e., Â = f(X) ∈ RN×N , then H(A|X) is upper bounded
by H(A|Â). Formally, H(A|X) ≤ inff H(A|Â).

We can strategically devise a suitable function Â = f(X) to estimate H(A|X) using its upper limit
H(A|Â). In this paper, we define it as the squared distance between the ℓ2 normalized features:
Âij = ℓ22(x̂i, x̂j) = ∥x̂i − x̂j∥22, motivated by the widely adopted graph homophily assumption that
nodes with similar features tend to formulate edges. Subsequently, H(A|X) can be upper-bounded
by H(A|Â):

H(A|X) ≤ H(A|Â) = −
N∑
i=1

N∑
j=1

log p(Aij |Âij). (2)

In Theorem 2, we demonstrate an upper bound of the gap between H(A|X) and H(A|Â) where Â is
estimated using the ℓ2 distance:
Theorem 2. Assume the ℓ2 distance of positive (real-existing) edges follows a Gaussian distribution
ppos ∼ N (µp, σ

2
p), and the ℓ2 distance of negative (non-existing) edges follows another Gaussian

distribution pneg ∼ N (µn, σ
2
n). Let µm = 1

2 (µp+µn), and σ2
m = 1

2 (σ
2
p +σ2

n). With the assumption
that the probability that an edge is positive/negative is the same, the gap between H(A|X) and
H(A|Â) is

H(A|X)−H(A|Â) = I(A;X)−DJS(ppos∥pneg), (3)

where DJS denotes the Jensen-Shannon divergence, and

DJS(ppos∥pneg) =
1

2
(
(µp − µm)2 + (µn − µm)2 + σ2

p + σ2
n

σ2
m

− 2 + log(
σ4
m

σ2
pσ

2
n

)) (4)

Theorem 2 states that the gap between H(A|X) and H(A|Â) is influenced by the difference between
the distributions of positive edges and negative edges. Specifically, when the difference between
these two distributions is larger, the gap becomes smaller, and using H(A|Â) to estimate H(A|X)
becomes more accurate.

Considering that Aij = 0/1 represents the existence of an edge between nodes i and j, and Âij is
a scalar, we can estimate p(Aij |Âij) using kernel density estimation (We defer the detailed steps
in Appendix C). This involves estimating the negative distribution p(Âij |Aij = 0) and the positive
distribution p(Âij |Aij = 1). We apply this method to the five datasets in Table 2, and the results are
presented in Fig. 2. Combining the results in Table 2, we observe three different scenarios:

1) Small entropy: For CS , the positive and negative distributions are easy to distinguish, resulting
in the smallest H(A|Â). Most of the graph structure information is already captured within the node
features, explaining why the vanilla MLP obtains competitive performance on CS .

2) Medium entropy: For Cora, Citeseer, and Pubmed, there is a moderate overlap between
the two distributions, indicating that graph structure can be predicted to some extent using node
features. In this case, although the vanilla MLP’s performance is poor, advanced MLPs with proper
designs (e.g., GraphMLP and N2N in Table 2 can obtain competitive performance close to GNNs.

5

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
squared distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Cora, H(A|A) =0.5445

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
squared distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Citeseer, H(A|A) =0.4119

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
squared distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Pubmed, H(A|A) =0.4187

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
squared distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Computer, H(A|A) =0.6185

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
squared distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

CS, H(A|A) =0.2237

p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 2: Estimated probability density function of p(Â|A) and conditional entropy H(A|Â). Blue
line/curve stands for real edges (Aij = 1) while orange line/curve stands for non-existing ones
(Aij = 0). The divergence between the two distributions intuitively hints at how much structural
information is covered in the node features: the larger the divergence, the more easily real edges and
non-existing edges can be distinguished using Â, then the smaller H(A|Â) and H(A|X).

3) Large entropy: For Computer, the positive and negative distributions are heavily overlapped,
indicating the difficulty of discerning edge presence based on node features alone. Consequently,
MLP methods’ performance on Computer is still inferior to GCN, even with proper regularization.

These observations align with the analysis in Sec. 3.1 that the performance gap between MLPs and
GNNs is constrained by I(X,A) – when node attributes contain little graph structure information,
the performance of the MLP model can hardly be improved to the level of GNNs. Considering
that the node attribute matrix X ∈ RN×d, while the graph adjacency matrix A ∈ RN×N , the gap
between the dimension d and graph size N directly affect how much information X can convey about
A. Specifically, when N overwhelms d, attempting to infer the graph structure from node features
becomes difficult. This is consistent with what Figure 2 shows: Computer and CS datasets have
similar sizes, but CS has node features of nearly 6, 800 dimensions, while Computer’s is slightly
over 700 dimensions. Therefore CS can better capture the graph structure using its node features.

3.3 LEARNING EFFECTIVE MLPS VIA MUTUAL INFORMATION MAXIMIZATION

The above analysis and observation outline that when the graph structure harbors significant infor-
mation for predicting node labels, the ideal node representations Zmlp should encapsulate as much
information about the graph structure as possible. Prior methods (Hu et al., 2021; Dong et al., 2022;
Zhang et al., 2021b) have implicitly approached this target and achieved notable performance. Their
success inspires us to devise a method that can directly address this target in a more explicit fashion.
In this section, we introduce InfoMLP, a regularization-based MLP model explicitly designed for the
task of mutual information maximization.

However, maximizing I(Zmlp;A) presents a challenge due to the following reasons: 1) Zmlp and A
have distinct shapes; 2) A can become a very large matrix when the graph size is large. To overcome
these challenges, we need an implementation- and optimization-friendly approach. To this end,
we leverage a graph-augmented node feature matrix Xaug = g(X,A) ∈ RN×D, which assigns an
auxiliary feature vector xaug,i ∈ RD to each node i. This allows us to maximize I(Zmlp;A) via the
following two steps: 1) Identifying an optimal graph-augmented node feature matrix Xaug = g(X,A)
such that H(A|Xaug) is minimized; 2) Training an MLP encoder Zmlp = MLPθ(X) such that
I(Zmlp;Xaug) is maximized. We now elaborate on how these two steps can be implemented in a
simple and efficient manner.

Minimization of H(A|Xaug). The design of Xaug = g(X,A) can be quite flexible. For instance,
we could choose g(X,A) to be a neural network with an extensive number of learnable parame-
ters. However, optimizing the neural network can be challenging as estimating H(A|Xaug) (as
detailed in Section 3.2) is a non-differentiable process. Therefore, we consider a non-parametric
implementation of g via the generalized graph diffusion (Gasteiger et al., 2019):

Xaug(K) = g(X,A) =

K∑
k=1

γkÃ
kX, (5)

6

Under review as a conference paper at ICLR 2024

where Ã represents the symmetrically normalized graph adjacency matrix, γk is predefined weighting
coefficients. One may assign γk arbitrarily to make Xaug exhibit different properties. We simply set
γk = 1/K with which satisfying performance could be obtained.

By using this formulation, the optimal Xaug can be obtained by selecting the K with the lowest
conditional entropy H(A|Xaug(K)). This design offers the following advantages: 1) The process is
non-parametric, allowing for preprocessing prior to the training of the remaining models. 2) Although
there is a hyperparameter K, it is unrelated to the optimization process. As a result, the optimal
value for K can be determined without training the model, and it can be selected by evaluating the
performance on the validation set.

Maximization of I(Zmlp;Xaug) Although Zmlp and Xaug can be considered as stacks of i.i.d.
vectors, and there exists a correspondence (e.g., zmlp,i and xaug,i correspond to the same node i),
directly computing I(Zmlp;Xaug) is inconvenient due to their different dimensions. Fortunately, we
can still maximize a tractable lower bound I(Zmlp;Zaug) instead:

I(Zmlp;Xaug) ≥ I(Zmlp;Zaug), (6)

where Zaug = MLPθ(Xaug) using the same MLP encoder as Zmlp. Finally, we can maximize
I(Zmlp;Zaug) using well-studied mutual information estimators (Belghazi et al., 2018; van den Oord
et al., 2018). For the complexity consideration, we adopt the following MI maximizer based on
feature decorrelation (Zhang et al., 2021a) (a detailed introduction in Appendix B.3):

LMI = −α

N∑
i=1

∥z̃mlpi − z̃augi ∥22 + β
∑
p ̸=q

C2
pq, (7)

where zi is the i-th row of Z̃, and Z̃ is the standardization of Z along the instance dimension –
Z̃ = Z − µ(Z)/(σ(Z) ·

√
N). C ∈ RD×D is the auto-correlation matrix of Zmlp, and is computed

as C = Z̃⊤Z̃. α and β are two trade-off hyperparameters. Notably, the computation complexity
of Eq. 7 is O(ND2) (whereas the popular InfoNCE MI estimator (van den Oord et al., 2018) is
O(N2D)), which is the same as a linear layer in MLP. This indicates that computing Eq. 7 will not
add extra computational burden.

Model Training. Having discussed the underlying components, we can now provide an overview of
how our model is trained. The training process consists of two steps: Step 1) Selecting the optimal
graph-augmented node feature matrix Xaug to minimize H(A|Xaug). This step does not involve
learning and can be completed by conducting several trials and comparisons, as we have specified
Xaug with Eq. 5. It is important to note that Step 1 is non-learning and can be fully processed ahead
of Step 2. Step 2) Maximizing the mutual information between the two embedding matrices Zmlp

and Zaug encoded using the same MLP encoder MLPθ. Furthermore, the node embeddings Zmlp are
utilized to predict the node labels. The objective function for Step 2 is as follows:

min
θ,ϕ

L =
∑
i∈VL

CE(ŷmlp,i, yi) + LMI , (8)

where CE refers to Cross-Entropy. VL is the labeled node set, yi is the ground-truth label, and
ŷmlp,i = FCϕ(zmlp,i) is the predicted logits for node i. FCϕ is the linear prediction head with
learnable parameters ϕ. We provide a pseudo-code of InfoMLP in the Appendix A.

Model Testing. During the testing phase, InfoMLP operates in the same manner as a vanilla MLP.
Given a testing node of feature x, InfoMLP predicts its label using ŷ = FCϕ(MLPθ(x)).

Complexity. The complexity of InfoMLP can be analyzed for its preprocessing, training, and
testing steps separately. The preprocessing step of InfoMLP involves the computation of the graph-
augmented feature matrix, which is propagated K times. This step has a complexity of O(KEd).
During the training of InfoMLP, the encoding of an MLP, mutual information maximization, and
linear prediction are involved. If we denote the complexity of an MLP model as O(MLP), the overall
complexity of InfoMLP’s training can be expressed as O(MLP) + O(MI) = O(MLP). For the
testing phase, InfoMLP behaves like a vanilla MLP, resulting in a complexity of O(MLP). Hence,
except for the preprocessing step (which is performed once), InfoMLP has the same complexity as
a vanilla MLP in both training and testing.

7

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

We conduct extensive experiments to validate the effectiveness and efficiency of the proposed
InfoMLP model. In Section 4.1, we present the results of node classification on seven medium-sized
graphs. Additionally, in Section E.1, we conduct further experiments to demonstrate the rationale
behind the design choices. To provide a comprehensive analysis, we also include the ablation studies,
the additional experimental results on large-scale graphs, heterophilic graphs, et.c., in Appendix E.
These results further support the efficacy and efficiency of the proposed InfoMLP model.

4.1 NODE CLASSIFICATION ON MEDIUM-SIZED GRAPHS

Experimental settings. We consider three settings for evaluating InfoMLP’s performance on node
classification tasks: 1) the traditional transductive node classification setting, where all nodes and
edges are available in training and testing; 2) the less-studied inductive node classification setting,
where validation/testing nodes are not presented in training, and their connections to existing nodes
will be utilized for making predictions; 3) an under-explored and much more challenged inductive
cold-start setting, which is also inductive, but the connections of validation and testing nodes are not
available during the inference stage.

Datasets. Following previous works (Zhang et al., 2021b; Hu et al., 2021), we consider 7 medium-
sized graph datasets: Cora, Citeseer, Pubmed, Computer, Photo , CS , and Physics . The
splits of these datasets are as follows: For Cora, Citeseer, and Pubmed, we directly use the
public split, where 20 nodes are for training, 1500 nodes are for validation, and 1000 nodes are for
testing. For Computer, Photo , CS , and Physics , no splits are provided, so we randomly split
the nodes into training/validation/testing with 8:1:1 ratio. For all the experimental settings, we report
the mean accuracy with standard deviation over 20 random trials.

Baselines. We compare InfoMLP with both GNNs and other MLP-related models that merely take
node attributes as input. For GNNs, we consider SGC (Wu et al., 2019), GCN (Kipf & Welling,
2017), GAT (Velickovic et al., 2018), APPNP (Klicpera et al., 2019) and JK-Net (Xu et al., 2018).
For previous MLPs, we compare with MLPboth: the vanilla MLP, and MLPtest: GraphMLP (Hu
et al., 2021), GLNN (Zhang et al., 2021b), N2N (Dong et al., 2022), and NOSMOG (Tian et al.,
2022). Note that the vanilla NOSMOG uses structural node embeddings as an additional input of
the MLP and, as a result, is out of the scope of this paper. In our reproduction, we removed this
component for a fair comparison. Furthermore, some knowledge distillation methods (Zhang et al.,
2021b; Tian et al., 2022) directly distill testing nodes, leading to information leakage. We correct this
error in our reproduction (see the discussion in Appendix D.4). The proposed InfoMLP has the same
complexity as the vanilla MLP in both training and testing, so it also belongs to MLPboth.

Results in the Transductive Setting. Table 3 presents the results in the transductive setting. It is
observed that our InfoMLP outperforms previous MLP-based models on all seven datasets. Further-
more, InfoMLP achieves better performance than competitive GNN models on six out of the seven
datasets. These results highlight the effectiveness of utilizing mutual-information maximization as a
regularization technique for improving MLP performance in learning node representations. Notably,
Computer is the only dataset where InfoMLP falls short of beating GNN models. This can be
attributed to the limited information gap between the raw node features and the graph structure, as
illustrated in Fig. 2.

Results in the Inductive and Cold-start Setting. Table 4 presents the results in the inductive
and cold-start settings. Several observations can be made from the results: 1) GNNs demonstrate
advantages over MLPs in the inductive setting, where explicit utilization of the graph structure leads
to improved performance. 2) In the challenging cold-start setting, GNNs experience a significant
performance drop, and MLPs may even outperform them. 3) Our proposed InfoMLP consistently
achieves superior performance in the cold-start setting, outperforming both GNNs and MLPs across
all seven datasets. In the less favorable inductive setting, InfoMLP still achieves competitive or better
performance, except for the Cora dataset, where the graph structure information appears to have
more relevance to the node labels. These results validate the effectiveness of InfoMLP in learning
informative node representations under various scenarios, including challenging cold-start situations.

8

Under review as a conference paper at ICLR 2024

Table 3: Mean and STD of testing accuracy in the transductive setting. Bold Face represents the
best result on this dataset; Bold Red and Bold Blue represents the relative improvement/decline of
InfoMLP compared with the best baseline, respectively.

Dataset Cora Citeseer Pubmed Computer Photo CS Physics

GNNs

SGC 81.0±0.5 71.9±0.5 78.9±0.4 89.92±0.37 94.35±0.19 94.00±0.30 96.19±0.13
GCN 81.9±0.5 71.6±0.4 79.3±0.3 92.25±0.61 95.16±0.92 94.10±0.34 96.64±0.36
GAT 83.0±0.7 72.5±0.7 79.0±0.3 91.72±0.85 95.05±0.98 94.19±0.31 96.71±0.14
JKNET 81.3±0.5 69.7±0.2 78.9±0.6 91.25±0.76 94.82±0.22 93.57±0.49 96.31±0.29
APPNP 82.6±0.2 71.7±0.5 80.3±0.1 91.81±0.78 95.84±0.34 94.41±0.29 96.84±0.26

MLPboth Vanilla MLP 59.7±1.0 57.1±0.5 68.4±0.5 85.42±0.51 92.91±0.48 95.97±0.22 96.90±0.27

MLPtest
GraphMLP 79.5±0.6 73.1±0.4 79.7±0.4 88.73±0.58 95.68±0.28 96.62±0.43 97.04±0.16
N2N 82.8±0.4 73.3±0.5 80.7±0.4 89.07±0.41 95.99±0.47 96.41±0.51 97.29±0.24
GLNN 82.4±0.5 72.8±0.4 80.5±0.6 87.82±0.40 95.19±0.24 96.43±0.33 97.11±0.29
NOSMOG 82.7±0.5 72.6±0.4 81.1±0.4 88.18±0.36 95.77±0.31 96.37±0.19 97.34±0.38

MLPboth
InfoMLP 83.8±0.3 73.7±0.3 83.2±0.9 89.53±0.47 96.34±0.38 96.66±0.23 97.86±0.15
∆BestGNN +0.96% +1.65% +3.61% −2.94% +0.52% +2.17% +1.19%
∆BestMLP +1.20% +0.54% +2.59% +0.52% +1.41% +0.04% +0.53%

Table 4: Mean and STD of testing accuracy in the inductive and cold-start setting. Inductive/cold
start makes no difference for MLP methods. Underline represents the best result in inductive setting,
whereas Bold Face represents the best result in cold-start setting.

Dataset Cora Citeseer Pubmed Computer Photo CS Physics

GNNs

SGC 74.2±3.6 67.4±0.3 71.5±0.3 89.89±0.26 93.25±0.34 93.65±0.26 96.38±0.21
GCN 79.2±0.5 71.1±0.3 77.7±0.3 92.83±0.32 94.41±0.33 93.06±0.39 96.81±0.14

inductive GAT 81.1±0.8 71.4±0.4 77.2±0.9 91.88±0.29 94.30±0.37 93.82±0.23 96.68±0.18
JKNET 81.0±0.6 67.3±1.1 77.9±0.6 90.97±0.88 93.25±0.76 92.41±0.09 96.42±0.08
APPNP 81.1±0.9 70.8±0.4 79.6±0.5 92.85± 0.32 95.48± 0.13 94.46±0.17 97.03±0.13

GNNs

SGC 57.9±0.5 55.0±0.8 68.4±0.9 80.88±0.31 88.89±0.27 92.26±0.35 95.94±0.39
GCN 65.9±0.3 64.2±0.4 74.8±0.5 82.58±0.13 88.36±0.25 93.78±0.43 96.55±0.18

cold-start GAT 67.3±0.8 65.1±0.6 74.8±0.6 82.28±0.31 88.34±0.05 94.43±0.02 96.29±0.07
JKNET 63.4±0.8 58.4±0.9 72.2±0.4 78.85±2.11 84.90±1.87 92.69±0.12 96.11±0.09
APPNP 65.6±0.2 64.5±0.2 75.4±0.1 81.25±0.11 87.32±0.08 93.24±0.14 95.65±0.15

MLPboth Vanilla MLP 59.7±1.0 57.1±0.5 68.4±0.5 85.42±0.51 92.91±0.48 95.97±0.22 96.90±0.27

MLPtest
GraphMLP 62.2±0.5 63.2±0.6 79.4±0.4 87.79±0.18 92.67±0.14 96.17±0.10 96.89±0.07
N2N 63.4±0.4 62.9±0.5 78.2±0.4 87.56±0.13 92.51±0.19 96.28±0.09 96.99±0.18
GLNN 62.8±0.5 63.7±0.5 79.1±0.5 86.94±0.23 91.57±0.18 95.90±0.34 96.19±0.12
NOSMOG 64.2±0.6 65.2±0.3 79.2±0.4 87.22±0.19 92.42±0.23 96.11±0.26 96.74±0.17

MLPboth

InfoMLP 68.9±0.4 70.1±0.7 82.2±0.4 88.37±0.09 92.94±0.13 96.80±0.11 97.22±0.18
∆BestGNN−ind −15.04% −1.82% +4.52% −4.82% −2.66% +2.47% +0.19%
∆BestGNN−cold +2.38% +7.68% +10.34% +7.01% +4.56% +2.51% +0.69%
∆BestMLP +7.32% +7.52% +4.79% +0.66% +0.03% +0.54% +0.23%

5 CONCLUSIONS

This paper has proposed InfoMLP, a novel MLP-structured model for node representation learning
and node classification tasks on graphs. InfoMLP follows a mutual information maximization
principle and is targeted to maximize the information between the embeddings of an MLP encoder
and the graph structure. By employing a graph-augmented node feature matrix that captures as much
of the graph structure information, InfoMLP achieves the same training/testing complexity as the
vanilla MLP. Extensive experiments have verified the effectiveness of the proposed method.

Despite the superior performance and efficiency of InfoMLP, its performance highly depends on the
quality of node features. As analyzed in Sec. 3.1, when the graph structure is much more important
than the features, and the node features cover almost no information of the graph structure, MLPs
performance can hardly be improved through structural regularization. Therefore, a promising
direction is to study how to extract node features of high quality from the raw data.

6 REPRODUCIBILITY STATEMENT

We describe our algorithm in Appendix A. The proofs of our theoretical results are in Appendix B.
The detailed implementations are provided in Appendix D, and the codes are provided in the
supplementary.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rie Kubota Ando and Tong Zhang. Learning on graph with laplacian regularization. In NIPS, pp.
25–32. MIT Press, 2006.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In ICML, pp. 531–540. PMLR,
2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International Conference on Machine Learning, pp. 1725–1735. PMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2021.

Valerio Ciotti, Moreno Bonaventura, Vincenzo Nicosia, Pietro Panzarasa, and Vito Latora. Homophily
and missing links in citation networks. EPJ Data Sci., 5(1):7, 2016.

Wei Dong, Junsheng Wu, Yi Luo, Zongyuan Ge, and Peng Wang. Node representation learning
in graph via node-to-neighbourhood mutual information maximization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16620–16629, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, pp. 13366–13378, 2019.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, pp. 1024–1034, 2017.

Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly simple gnn
training acceleration with mlp initialization. In ICLR, 2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp: Node
classification without message passing in graph. CoRR, abs/2106.04051, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In ICLR, 2019.

Vijay Lingam, Manan Sharma, Chanakya Ekbote, Rahul Ragesh, Arun Iyer, and Sundararajan
Sellamanickam. A piece-wise polynomial filtering approach for graph neural networks. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 412–452.
Springer, 2022.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In SIGIR, pp. 43–52, 2015.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2020.

10

Under review as a conference paper at ICLR 2024

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, pp. 701–710, 2014.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael M. Bronstein, and
Federico Monti. SIGN: scalable inception graph neural networks. arXiv preprint arXiv:
abs/2004.11198, 2020.

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu, and Kuansan
Wang. An overview of microsoft academic service (MAS) and applications. In WWW, pp. 243–246,
2015.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh V Chawla. Nosmog: Learning
noise-robust and structure-aware mlps on graphs. arXiv preprint arXiv:2208.10010, 2022.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang,
Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J.
Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on
graphs. arXiv, 1909.01315, 2019.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In ICML, volume 97 of Proceedings of Machine
Learning Research, pp. 6861–6871, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In ICML, pp.
5453–5462. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. In ICLR, 2023.

Han Yang, Kaili Ma, and James Cheng. Rethinking graph regularization for graph neural networks.
In AAAI, pp. 4573–4581. AAAI Press, 2021.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. In ICLR, 2020.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and S Yu Philip. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021a.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old
mlps new tricks via distillation. In ICLR, 2021b.

Wenqing Zheng, Edward W. Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, and Karthik
Subbian. Cold brew: Distilling graph node representations with incomplete or missing neighbor-
hoods. In ICLR, 2021.

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf.
Learning with local and global consistency. In NIPS, pp. 321–328. MIT Press, 2003.

11

Under review as a conference paper at ICLR 2024

A ALGORITHM OF INFOMLP

We provide the pseudo-code of InfoMLP in Algorithm 1.

Algorithm 1: Algorithm for InfoMLP
Input: A graph G = (X,A) = (V, E) with N nodes and E edges, where X is node feature

matrix, A is the adjacency matrix. Ground-truth labels Y L. An randomly initialized MLP
encoder MLPθ, a randomly initialized linear classifier FCϕ.

Output: Optimal parameters θ and ϕ.

1 Preprocessing
2 for K ∈ [1,Kmax] do

3 Xaug(K) =
K∑

k=1

ÃkX/K

4 Estimate H(A|Xaug(K)) according to Appendix C
5 K∗ = argmaxH(A|Xaug(K))

6 Xaug =
K∗∑
k=1

ÃkX/K∗

7 Training
8 while not converging do
9 Zmlp = MLPθ(X), Zaug = MLPθ(Xaug)

10 Ŷ = FCϕ(Zmlp)

11 L = CE(Ŷ L, Y L) + ·MI(Zmlp, Zaug)
12 Gradient backward to update MLPθ and FCϕ

13 Testing
14 Ŷ = FCϕ[MLPθ(X)]

B PROOFS

B.1 PROOF FOR THEOREM 1

Theorem 1 Let Â be a function of X , i.e., Â = f(X) ∈ RN×N , then H(A|X) is upper bounded by
H(A|Â). Formally:

H(A|X) ≤ inf
f

H(A|Â). (9)

Proof. Note that Â is a function of X , as a result, there is H(Â|X) = 0. Then,

H(A|X) = H(A)− I(A;X)

= H(A)− (I(A;X; Â) + I(A;X|Â))

= H(A)− (I(A; Â)− I(A; Â|X) + I(A;X|Â))

= (H(A)− I(A; Â))− I(A;X|Â)

= H(A|Â)− I(A;X|Â)

≤ H(A|Â)

(10)

The equality can be attained if and only if I(A;X|Â) = 0.

B.2 PROOF FOR THEOREM 2

Theorem 2 Assume the ℓ2 distance of positive (real-existing) edges follows a Gaussian distribution
ppos ∼ N (µp, σ

2
p), and the ℓ2 distance of negative (non-existing) edges follows another Gaussian

12

Under review as a conference paper at ICLR 2024

distribution pneg ∼ N (µn, σ
2
n). Let µm = 1

2 (µp+µn), and σ2
m = 1

2 (σ
2
p +σ2

n). With the assumption
that the probability that an edge is positive/negative is the same, the gap between H(A|X) and
H(A|Â) is

H(A|X)−H(A|Â) = I(A;X)−DJS(ppos∥pneg), (11)

where DJS denotes the Jensen-Shannon divergence, and

DJS(ppos∥pneg) =
1

2
(
(µp − µm)2 + (µn − µm)2 + σ2

p + σ2
n

σ2
m

− 2 + log(
σ4
m

σ2
pσ

2
n

)) (12)

Proof. The gap between H(A|X) and H(A|Â) is computed as follows:

H(A|X)−H(A|Â) = I(A;X|Â)

= I(A;X)− I(A;X; Â)

= const− I(A; Â)

(13)

Since I(A;X) is a constant value not related to the formulation of Â, we only have to focus on
I(A; Â), i.e., the mutual information between A and Â. According to the definition of mutual
information, we have:

I(A; Â) =
∑
Aij

∑
Âij

p(Aij , Âij) log
p(Aij , Âij)

p(Aij)p(Âij)

=
∑
Aij

∑
Âij

p(Âij |Aij)p(Aij) log
p(Âij |Aij)

p(Âij)

(14)

Since Âij is the ℓ2 distance, we have p(Âij |Aij = 1) = ppos ∼ N (µp, σp), and p(Âij |Aij = 0) =
pneg ∼ N (µn, σn). Furthermore, we can assume p(Aij = 0) = p(Aij = 1) = 1/2 , then the above
equation becomes:

I(A; Â) =
1

2

∑
Âij

ppos(Âij) log
ppos(Âij)

1
2 (ppos(Âij) + pneg(Âij))

+
1

2

∑
Âij

pneg(Âij) log
ppos(Âij)

1
2 (pneg(Âij) + pneg(Âij))

= DJS(ppos∥pneg),

(15)

where DJS is the JS-divergence. With the assumption that both ppos and pneg are Gaussian distribu-
tions, we have

I(A; Â) =
1

2

(
(µp − µm)2 + (µn − µm)2

σ2
m

+
σ2
p + σ2

n

σ2
m

− 2 + log

(
σ4
m

σ2
pσ

2
n

))
(16)

Then, the proof is complete.

B.3 EQ. 7 AS MUTUAL INFORMATION MAXIMIZER

We adopt the following objective function (as shown in Eq. 7) to maximize the mutual information
between Zmlp and Zaug – I(Zmlp;Zaug):

LMI = −α

N∑
i=1

∥z̃mlpi − z̃augi ∥22 + β
∑
p ̸=q

C2
pq,

where zi is the i-th row of Z̃, and Z̃ is the standardization of Z along the instance dimension –
Z̃ = Z − µ(Z)/(σ(Z) ·

√
N). C ∈ RD×D is the auto-correlation matrix of Zmlp, and is computed

as C = Z̃⊤Z̃.

13

Under review as a conference paper at ICLR 2024

Eq. 7 has been proved to be able to maximize the mutual information between Zmlp and Zaug in
previous literature (Zhang et al., 2021a), below is a simplified version of the proof.

First, the mutual information between Zmlp and Zaug can be decomposed as follows:

I(Zmlp;Zaug) = H(Zmlp)−H(Zmlp|Zaug), (17)

where H(Zmlp) is the entropy of Zmlp, H(Zmlp|Zaug) is the conditional entropy of Zmlp, given the
observation of Zaug. We then seek to maximize H(Zmlp) and minimize H(Zmlp|Zaug), respectively.

To maximize H(Zmlp), assuming that Zmlp follows a Gaussian distribution, then

maxH(Zmlp) ∼= max log |C|, (18)

where |C| is the determinant of the covariance matrix of Zmlp. Since Zmlp is column-standardized,
C is just the correlation matrix in Eq. 7. The diagonal entries of C are all 1’s. And C ∈ RD×D is

a symmetric matrix. Let λ1, λ2, · · · , λD be the D eigenvalues of C, then
D∑
i=1

λi = trace(C) = D.

There is

log |C| = log

D∏
i=1

λi =

D∑
i=1

log λi ≤ D log

D∑
i=1

λi

D︸ ︷︷ ︸
Jensen Inequality

= 0. (19)

This means that the upper bound of |C| is 1, and the upper bound is achieved if and only if λi = 1
for ∀i, which indicates C is an identity matrix and can be achieved by min

∑
p ̸=q

C2
pq .

To minimize H(Zmlp|Zaug), according to the definition of conditional entropy:

H(Zmlp|Zaug) =−
∑
zmlp

∑
zaug

p(zmlp, zmlp) log p(zmlp|zaug)

=−
∑

(zmlp
i ,zaug

i)

log p(zmlpi |zaugi)
(20)

Similarly, assuming p(Zmlp|Zaug) is a Gaussian distribution, then Eq. 20 becomes the MSE loss
between zmlpi and zaugi , which is the same as the first term in Eq. 7. Therefore the proof is complete.

C COMPUTING THE CONDITIONAL ENTROPY

In this section, we introduce how we estimate the conditional entropy H(A|X) and H(A|Xaug)
presented in Fig. 2 and Fig. 3. Note that we estimate H(A|X) / H(A|Xaug) via a tractable upper
bound H(A|Â), where Â is the reconstructed adjacency matrix using X or Xaug. For simplicity in
the following parts we take the raw node features X as an example.

First, we compute Â via:
Âij = ∥x̂i − x̂j∥22, (21)

where x̂i and x̂j are ℓ2 normalized vectors of xi and xj . The ground-truth of the adjacency
information Aij is already known to us. Therefore, we wish to get conditional distribution p(Aij |Âij),
which could be achieved according to the Bayesian Rules:

p(Aij |Âij) =
p(Âij |Aij)p(Aij)

p(Âij)

=
p(Âij |Aij)p(Aij)

p(Âij |Aij = 0)p(Aij = 0) + p(Âij |Aij = 1)p(Aij = 1)

(22)

Therefore,

p(Aij = 1|Âij) =
p(Âij |Aij = 1)p(Aij = 1)

p(Âij |Aij = 0)p(Aij = 0) + p(Âij |Aij = 1)p(Aij = 1)
(23)

14

Under review as a conference paper at ICLR 2024

and

p(Aij = 0|Âij) =
p(Âij |Aij = 0)p(Aij = 0)

p(Âij |Aij = 0)p(Aij = 0) + p(Âij |Aij = 1)p(Aij = 1)
(24)

Eq. 23 and Eq. 24 are tractable due to the following reasons:

• p(Âij |Aij = 0) and p(Âij |Aij = 1) are tractable via density estimation.
• p(Aij = 0) and p(Aij = 1) can be computed directly by computing the density of graph.

However, the above estimation might be problematic as: 1) the graph can be very large, and it will be
compute p(Aij |Âij) for all (i, j) pairs; 2) The real-world graphs are usually very sparse, indicting
that the prior p(Aij = 0) can be close to 1, and p(Aij = 1) is close to 0. Such an imbalanced
prior distribution might make the estimated conditional entropy unable to reflect the real divergence
between the estimated graph structure and the real graph structure.

To mitigate this issue, we randomly sampled non-existing edges of the same size as the real existing
edges, thus making p(Aij = 0) = p(Aij = 1) = 1/2. Then Eq. 23 and Eq. 24 become the following
formulations:

p(Aij = 1|Âij) =
p(Âij |Aij = 1)

p(Âij |Aij = 0) + p(Âij |Aij = 1)

p(Aij = 0|Âij) =
p(Âij |Aij = 0)

p(Âij |Aij = 0) + p(Âij |Aij = 1)

(25)

If we denote the real-existing edge set by E+, while the sampled non-existing edge set by E−, then
H(A|Â) could be computed by:

H(A|Â) =

∑
(i,j)∈E+

log p(Aij = 1|Âij) +
∑

(i,j)∈E−
log p(Aij = 0|Âij)

|E+|+ |E−|
(26)

Both p(Âij |Aij = 1) and p(Âij |Aij = 0) can be estimated using kernel density estimation by
sckit-learn1.

We present additional empirical results in Appendix E.8

D DETAILS OF EXPERIMENTS

D.1 IMPLEMENTATIONS

We use pytorch to implement the proposed method. The Graph Convolution operation in Eq. 5 is
implemented with DGL (Wang et al., 2019). We use Adam (Kingma & Ba, 2015) optimizer to train
the model, and all the experiemnts are conducted on a NVIDIA RTX 4090 GPU with 24G memory.

D.2 DATASETS

Following previous works (Zhang et al., 2021b; Hu et al., 2021), we consider 7 medium-sized
graph datasets: Cora, Citeseer, Pubmed, Computer (McAuley et al., 2015), Photo , CS ,
and Physics (Sinha et al., 2015), as well as 4 large-scale graphs Flickr, Reddit, Yelp and Ogbn-
Arxiv (Hu et al., 2020). We also include three heterophilic graphs Chameleon, Texas, and Cornel. We
present the statistics of these datasets in Table 5. For both the transductive setting, inductive setting,
and cold-start setting, we report the mean accuracy with standard deviation over 20 random trials.

The splits of these datasets are as follows: For Cora, Citeseer, and Pubmed, we directly use the
public split, where 20 nodes are for training, 1500 nodes are for validation, and 1000 nodes are for

1https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KernelDensity.html

15

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html

Under review as a conference paper at ICLR 2024

testing. For Computer, Photo , CS , and Physics , no splits are provided, so we randomly split
the nodes into training/validation/testing with 8 : 1 : 1 ratio. For Flickr, Reddit and Yelp, we
use the split provided by the paper GraphSAINT (Zeng et al., 2020). The splits of heterophilic graphs
are from Pei et al. (2020).

Table 5: Statistics of benchmark datasets. Yelp has multiple labels.

Dataset #Nodes #Edges #Classes #Features Train/Val/Test

Cora 2,708 10,556 7 1,433 140/1500/1000
Citeseer 3,327 9,228 6 3,703 120/1500/1000
Pubmed 19,717 88,651 3 500 60/1500/1000
CS 18,333 327,576 15 6,805 80%/10%/10%
Physics 34,493 991,848 5 8,451 80%/10%/10%
Computer 13,752 574,418 10 767 80%/10%/10%
Photo 7,650 287,326 8 745 80%/10%/10%
Chameleon 2,277 31,371 5 2,325 60%/20%/20%
Texas 183 279 5 1,703 60%/20%/20%
Cornell 183 277 5 1,703 60%/20%/20%
Flickr 89,250 899,756 7 500 0.50/0.25/0.25
Reddit 232,965 114,615,892 41 602 0.66/0.10/0.24
Arxiv 169,343 2,332,486 40 128 90,941/ 29,799/48,603
Yelp 716,847 6,977,410 100 300 0.75/0.10/0.15

D.3 HYPER-PARAMETERS.

We select the optimal hyperparameter setting for each dataset via a small grid search. The optimal
hyperparameter settings have been presented in the Supplementary, and here we present the range
that we perform grid search:

• Learning rate: 1e-3

• Weight decay: [1e-4, 1e-5, 1e-6]

• Hidden dimension: [256, 512, 1024]

• Num layers of MLP: 2

• dropout: [0.1, 0.2, 0.3]

• α: [5e-4, 1e-3, 2e-3]

• β: [5e-7, 1e-6, 5e-6]

We also tune the hyperparameters of baseline methods for fair comparison. Specifically, Graph Neural
Networks usually perform well with low hidden dimensions, therefore we tune the hidden dimensions
of GNNs within the range [32, 64, 128, 256, 512, 1024]. Besides, since the number of propagation K
plays the same role of the number of GNN layers, we tune the number of layers for GNN baselines
from 1 to 10. We report the best performance in Table 3 and Table 4.

D.4 DISCUSSION OF THE INFORMATION LEAKAGE IN KNOWLEDGE DISTILLATION MLPS

Although knowledge distillation methods have been shown effective for learning student MLPs on
graphs via distilling the predictions from teacher GNNs on a variety of settings (Zhang et al., 2021b;
Tian et al., 2022), they mistakenly use the teacher GNN’s predictions (logits) of validation and testing
nodes to guide the student MLP, enforcing the testing nodes of student MLP model to mimic the
predictions of the teacher GNN model directly. A direct consequence of this practice is that, as long
as the student MLP model has enough parameters, it can always obtain the same predictions as the
teacher GNN. This issue was observed by the official reviewer of GLNN paper2: "the MLP in the
transductive setting is trained to reproduce the logits of the GNN on all nodes of the given graph,
regardless of whether these belong to the training, validation, or test set. If the nodes thus all show

2https://openreview.net/forum?id=4p6_5HBWPCw

16

https://openreview.net/forum?id=4p6_5HBWPCw

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9
Maximum hop K

60
65
70
75
80

Ac
cu

ra
cy Accuracy

H(A|Aaug)

0.1
0.2
0.3
0.4
0.5

Cora

0 1 2 3 4 5 6 7 8 9
Maximum hop K

70
72
74
76
78
80
82
84

Accuracy
H(A|Aaug)

0.1

0.2

0.3

0.4

Co
nd

iti
on

al
 e

nt
ro

py

Pubmed

0 1 2 3 4 5 6 7 8 9
Maximum hop K

85.5
86.0
86.5
87.0
87.5
88.0
88.5
89.0
89.5

Ac
cu

ra
cy Accuracy

H(A|Aaug)

0.1
0.2
0.3
0.4
0.5
0.6

Amazon-Computer

0 1 2 3 4 5 6 7 8 9
Maximum hop K

96.0
96.2
96.4
96.6
96.8
97.0
97.2

Accuracy
H(A|Aaug) 0.1

Co
nd

iti
on

al
 e

nt
ro

py

Coauthor-CS

Figure 3: The change of test accuracy (the blue
curve), and the conditional entropy H(A|Âaug)
(an upper bound of H(A|Xaug), the red curve),
with respect to K. K = 0 corresponds to the
original node features, i.e., Xaug = X .

Table 6: Comparison of training/testing time
and accuracy of InfoMLP with the baseline
models, on Pubmed dataset, under the trans-
ductive setting. InfoMLP has an additional
pre-processing step that takes 0.0025s.

Dataset Training Testing Accuracy

SGC 5.1689s 0.0006s 78.9
GCN 19.8859s 0.0086s 79.3
GAT 53.9234s 0.0117s 79.0

JKNET 38.0755s 0.0060s 78.9
APPNP 20.7649s 0.0047s 80.3

Vanilla MLP 3.0136s 0.0002s 68.4
GraphMLP 88.1919s 0.0002s 79.7

N2N 74.4125s 0.0002s 80.7
GLNN 28.3841s 0.0002s 80.5

InfoMLP 3.5999s 0.0002s 83.2

different features, a sufficiently large and deep MLP should always be able to overfit on the features
of the target nodes and replicate the predictions of the GNN."

Consequently, as acknowledged by the authors of GLNN (Zhang et al., 2021b), the transductive
setting of GLNN can only serve as a sanity check, showing that MLPs have the capacity to reproduce
the predictions of GNNs using knowledge distillation. The subsequent knowledge distillation work,
NOSMOG (Tian et al., 2022) follows the setting of GLNN. Therefore, the information leakage issue
still exists. To fix this issue, in our reproduction of GLNN and NOSMOG, we exclude validation and
testing nodes from the node-set where knowledge distillation is applied.

E ADDITIONAL EMPIRICAL RESULTS

E.1 FURTHER STUDY OF INFOMLP

Impacts of the maximum propagation steps K. In Section 3.3 and Equation 5, we described
the minimization of H(A|Xaug) as a preprocessing step, where the hyperparameter K controls the
maximum propagation step. In order to empirically examine the relationship between InfoMLP’s
performance and the conditional entropy H(A|Xaug) and K, we estimate the value of H(A|Xaug)

(approximated with H(A|Âaug)) with different values of K. We then plot the accuracy and entropy
curves with respect to K in Figure 3. Due to space limitations, we only present the results for the
Cora, Pubmed, Computer, and CS datasets here. The results for the remaining datasets, as well as
the positive/negative distributions of all datasets, can be found in Appendix D. In Figure 3, we observe
a clear negative correlation between the conditional entropy and performance, which confirms the
rationale behind our design choices. We also observe that the correlations are stronger for Cora
and Pubmed compared to Computer and CS , which is consistent with the results in Table 2 and
Figure 2. On Computer, where the correlation between features and structure is minimal, and on
CS , where the correlation is significant, the propagation of features over the graph structure is less
influential in achieving high performance. These observations further support the effectiveness and
rationality of our design choices in InfoMLP.

Comparison of training/testing time. In Table 6, we compare the training and testing times of
InfoMLP with other models on the Pubmed dataset. The training time represents the total time for
training over 500 epochs, while the testing time is for a single evaluation. We observe that the training
time of InfoMLP is only slightly slower than the vanilla MLP, but significantly faster than GNNs
and other MLP models. Despite the slight increase in training time, InfoMLP achieves superior
performance on the node classification task. This highlights the efficiency and effectiveness of our
proposed method. Additional results for large-scale datasets can be found in Appendix E.

17

Under review as a conference paper at ICLR 2024

E.2 COMPARISON WITH ADVANCED BASELINES OF MULTI-HOP INFORMATION

In this section, we compare InfoMLP with another two advanced GNN models that consider higher-
order information: GPR-GNN (Chien et al., 2021) and PPGNN Lingam et al. (2022). The results are
presented in Table 7. Overall, they achieve similar performance to InfoMLP on Cora, but clearly
worse performance on others.

Table 7: Performance comparison of InfoMLP with GPR-GNN and PPGNN on the public split of
citation netwroks. GPR-GNN and PPGNN can achieve close performance on Cora, while clearly
worse performance on Citeseer and Pubmed, than the proposed InfoMLP.

Dataset Cora Citeseer Pubmed

GPR-GNN 83.4 72.0 79.0
PPGNN 83.5 71.5 79.3
InfoMLP 83.8 73.7 83.2

E.3 RESULTS WITH OTHER LABELING RATES

The citation networks Cora, Citeseer, and Pubmed use the public split, where 20 nodes per
class are used as the training nodes. We would like to investigate the performance change of different
methods with different labeling rates. Therefore, we create four training sets of 10/20/40/80 nodes
per class, and then compare the performance of GCN (Kipf & Welling, 2017), GPR-GNN Chien
et al. (2021), PPGNN (Lingam et al., 2022), and our InfoMLP in Table 8. The results show that the
proposed InfoMLP significantly outperforms GNN baselines when the labeling rate is low, e.g., 10 or
20 training nodes per class. The gaps between GNNs (especially GPR-GNN) and InfoMLP narrow
as the labeling rate grows, while the performance of InfoMLP is still very competitive even when the
label rate increases. Since lower label rates are more challenging and more common in real-world
scenarios, The outstanding performance of InfoMLP at low labeling rates further highlights its value.

Table 8: The performance of all methods gets improved as the label rate increases.

Dataset Cora Citeseer Pubmed
Nodes per class 10 20 40 80 10 20 40 80 10 20 40 80

GCN 75.8 81.9 82.8 84.5 66.9 71.6 72.9 74.1 73.2 79.3 80.7 82.4
GPR-GNN 76.9 83.4 84.4 86.2 67.1 72.0 73.8 74.9 74.2 79.0 80.7 83.2
PPGNN 76.6 83.5 84.3 85.4 67.7 71.5 73.1 73.9 74.9 79.3 81.1 83.4
InfoMLP 81.2 83.8 84.6 85.8 70.8 73.7 74.3 75.1 80.4 83.2 84.1 85.4

E.4 APPLICATION TO HETEROPHILIC/FEATURE-CENTRIC GRAPHS

In this section, we study if the proposed InfoMLP can also applied to heterophilic graphs. In Table 9,
we compare the performance of InfoMLP with the two aforementioned GNN methods (which have
been shown to perform well on heterophilic graphs), on three representative heterophilic graphs
– Chameleon, Texas and, Cornell. Note that in Table 9, the graph-augmented node feature
matrix is obtained by Eq. 27.

Xaug(K) = g(X,A) =

K∑
k=1

γkÃ
kX, γk = 1/K. (27)

As shown in Table 9, the proposed InfoMLP is able to obtain comparable performance of two
feature-centric graphs, Texas and Cornell, while failing to obtain satisfying performance on
Chameleon. The following two tricks can be applied for adaptation to the heterophilic/feature-
centric graphs.

On feature-centric graphs where graph structure information might be useless or even harmful, we
may simply set α, β = 0 such that InfoMLP is equivalent to the vanilla MLP, guaranteeing it performs
no worse than MLP.

18

Under review as a conference paper at ICLR 2024

Table 9: InfoMLP with the vanilla design of node-augmented feature matrix does perform well on
heterophily graph Chameleon, but can achieve comparable performance on feature-centric datasets
Texas and Cornell.

Dataset Chameleon Texas Cornell

GPR-GNN 62.59 81.35 78.11
PPGNN 67.74 89.73 82.43
InfoMLP 54.16 80.42 82.72

For handling heterophily, we can flexibly combine InfoMLP with other techniques. For example, we
can adjust the weight coefficients γk in Eq. 5 and Eq. 27, such that it assigns different weights to
different hops of information. For verification, we apply the weights γk for k = 1 to 10 from GPR-
GNN model (Chien et al., 2021) on Chameleon. The learned weights are presented in Table 10.
Consequently, as shown by the results in Table 11, the performance of InfoMLP increases from 54.16
to 61.98 on Chameleon, approaching that of GPR-GNN.

Table 10: Weights of γi, i = 1, · · · , 10 from GPR-GNN, which are applied to the refined graph-

augmented node feature matrix Xaug(K) =
K∑

k=1

γkÃ
kX .

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
-0.8757 2.8925 1.2931 0.4811 -0.1479 -0.4435 -0.5420 -0.5979 -0.5579 -0.5374

Table 11: Performance comparison between GPR-GNN, the vanilla InfoMLP, and revised InfoMLP
with graph-augmented node feature matrix of adjustable weights. The vanilla InfoMLP with fixed
weights does not perform well on GPR-GNN, while the revised one achieves comparable performance
than GPR-GNN.

Dataset Chameleon

GPR-GNN 62.59
InfoMLP (vanilla Eq.4) 54.16
InfoMLP (revised Eq.4) 61.98

Furthermore, we plot the distribution figure of the original node features X , the vanilla graph-
augmented feature (with fixed γk = 1/K), and the revised graph-augmented feature (with γk
in Table 10) in Fig. 4. As observed in Fig. 4, the positive edges and negative edges can hardly be
discriminated by the original node features X . The graph-augmented node feature matrix Xaug(K) of
the vanilla definition can better discriminate positive edges and negative edges, while the conditional
entropy H(A|Â) is still large. The revised definition of Xaug(K) with adjustable weights can better
discriminate positive/negative edges. Therefore, H(A|Â) is the smallest. The results in this figure
align with the numerical results in Table 11, therefore verifying our analysis.

E.5 EXTENDING MLPS TO LARGE-SCALE GRAPHS

In Table 12, we first compare the performance of InfoMLP with GNN and MLP baselines on four
large-size graphs – Flickr, Reddit, Yelp, and Arxiv. It is worth noting that the two knowledge
distillation methods GLNN (Zhang et al., 2021b) and NOSMOG ()nosmog fail to give a competitive
performance after fixing the information leakage issue as claimed on Arxiv. As shown in Table 12,
the vanilla MLP usually performs much poorer than GNNs on large graphs, as they fail to utilize the
rich graph structure information for prediction. It is The advanced MLP methods’ performance can be
improved to be close to GNNs’ on Flickr and Yelp datasets. However, on Reddit and Arxiv,
the performance gap between MLPs and GNNs remains substantial, even when using advanced MLP
models. We speculate that the reasons for this may be as follows.

19

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Original features X, H(A|A) = 0.6860

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Vanilla Xaug(K), K = 10, H(A|A) = 0.3943

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Refined Xaug(K), K = 10, H(A|A) = 0.1480

p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 4: Estimated probability density function of p(Â|A) and conditional entropy H(A|Â) of
Chameleon dataset. Positive edges and negative edges can hardly be discriminated by the original
node features X . The graph-augmented node feature matrix Xaug(K) of the vanilla definition can
better discriminate positive edges and negative edges, while the conditional entropy H(A|Â) is still
large. The revised definition of Xaug(K) can better discriminate positive/negative edges. Therefore,
H(A|Â) is smaller.

Table 12: Performance on large-scale graphs in the transductive setting. We use the micro-F1 score
as the metric.

Dataset Flickr Reddit Yelp Arxiv

SGC 49.8±0.5 90.1±0.2 25.8±0.3 70.59±0.33
GCN 50.2±0.3 93.3±0.1 28.1±0.5 71.23±0.15
Vanilla MLP 46.5±0.5 52.8±0.3 22.3±0.8 56.03±0.21
GraphMLP 47.2±0.4 58.1±1.2 24.5±0.5 56.72±0.26
GLNN 47.6±0.3 65.7±0.9 26.3±0.4 57.19±0.361

NOSMOG 47.8±0.3 68.4±0.8 26.9±0.5 57.83±0.181

InfoMLP 48.5±0.4 71.4±0.3 27.1±0.6 58.64±0.35

1 The results of GLNN and NOSMOG are inconsistent with the reported ones, because
we’ve fixed the information leakage issues. See discussions in Appendix D.4

First, the performance of the vanilla MLP is very close to GNNs on Flickr and Yelp, indicating
that the node features of the two datasets are really powerful for training a classifier. In this
scenario, training a structure-regularized MLP model can help the model leverage additional structural
information, allowing MLP to achieve similar performance to GNNs.

For the Reddit and Arxiv datasets, we observe a significant performance gap between vanilla
MLPs and GNN methods, indicating that their node features alone are not powerful enough, and
the graph structure provides more useful information for classification. In this scenario, we need to
explore how to use advanced MLP methods to exploit this structural information.

Our analysis in Sec. 3.1 has revealed the mutual information between node features X and the graph
structure A: I(X;A) directly constrains the capacity of MLPs. We apply our quantification method
proposed in Sec. 3.2 to the two datasets, and the corresponding distributions are presented in Fig. 5.
From Fig. 5, we can observe that for both Arxiv and Reddit, the distribution of positive edges and
negative edges are heavily overlapped, indicating that it is difficult to discriminate positive edges from
negative edges using the score function defined in Sec. 3.2, i.e., Âij = ℓ22(x̂i, x̂j) = ∥x̂i − x̂j∥22.
Therefore H(A|Â) is large, and I(X;A) is small. Consequently, the performance of MLPs can
hardly be improved to the same level as GNNs, given the limited information overlapping between
node features and the graph structure.

Typically, the node features X is an N × d matrix, whereas the graph structure can be expressed as
a sparse matrix of E entries, where N is the number of nodes, E is the number of edges, d is the
dimension of node feature. Therefore, for graphs where E is very large, the node feature matrix
X cannot express the graph structure A, and I(X;A) is very small. The above intuition indicates
that the density of the graph, rather than the number of nodes, affects the performance gaps between
MLPs and GNNs. To be detailed, the structure of a sparse graph is easier to learn compared with a

20

Under review as a conference paper at ICLR 2024

Table 13: Performance on large-scale graphs in the inductive setting. We use the micro-F1 score as
the metric.

Method Reddit Arxiv

GCN 59.7± 1.2 56.7± 0.5
InfoMLP 66.3± 1.4 58.2± 0.4

Table 14: Forward time of one epoch on large-scale graphs.

Dataset Flickr Reddit

MLP 30ms 34.9ms
SGC 350ms 850ms
GCN 4000ms 22950ms
InfoMLP 103.9ms 310ms

dense graph for the MLPs. To verify this, we conduct ablation experiments on Arxiv dataset. We
subsample the edges of the graph and study the impacts on the conditional entropy H(A|Â).

Instead of the previously defined non-parametric formulation Âij = ℓ22(x̂i, x̂j) = ∥x̂i − x̂j∥22, we
have to use a parameterized entropy estimator for more accurate estimation. We use a two-layer MLP
to learn Âij :

Âij = FC(ReLU(FC(CONCAT(xi,xj)))) (28)

The MLP’s hidden dimension is 32, and the output dimension is 1. The MLP’s parameters are
optimized by a cross-entropy loss function between positive edges and negative edges. We apply
the novel formulation of Âij to compute the distributions of positive edges and negative edges, as
well as the conditional entropy H(A|Â). Results in Fig. 6 demonstrate that as the number of edges
increases (the graph becomes more dense), the positive edges and negative edges become harder to
discriminate, and the conditional entropy becomes larger, indicating a smaller I(X;A).

We further compare the performance of GCN and the proposed InfoMLP on the subsampled Arxiv
dataset in Table 15. The change of the performance gap (relative error) is also plotted in Fig. 7.
As clearly presented, as the number of subsampled edges decreases, the performance of InfoMLP
quickly approaches GCN’s. These above results justify our speculation that the huge gap between the
information volume of node features and the rich graph information brought by a dense graph has
caused the performance gap between GNNs and MLPs.

For most graph data, raw textual features might contain ample information to infer the structure of the
graph. However, conventional techniques like skip-gram, word2vec, or GloVe, as used in Reddit
and Arxiv, lead to a substantial loss of information. In Reddit’s case, the inputs are low-dimensional
features processed through GloVe, with the dataset encompassing over 230k nodes and more than
114m edges. In Arxiv, the input feature of each node (a paper) is a 128-dimensional feature vector
obtained by averaging the embeddings of words (obtained via skip-gram) in its title and abstract. The
low-quality feature extractors create a huge information gap between the node feature matrix and the
graph structure,

To extend MLPs to larger and denser graphs, we have to reduce the information gap between the
node features and the graph structure. One potential solution to shorten the information gap between
node features and graph structure is to employ advanced feature extractors such as Large Language
Models (LLM). With impressive capabilities in understanding, representing, and generating natural
languages, the LLM can derive more expressive, high-quality node features from raw texts, thereby
enabling the model to discover complex structural information from pure node features.

E.6 COMPARISON WITH ZAUG AND ZMLP

Zaug cannot be directly compared to Zmlp because in our model, the cross-entropy loss for down-
stream classification tasks is applied to Zmlp rather than Zaug. To meet the reviewer’s request, we

21

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Arxiv, H(A|A) = 0.6025
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Reddit, H(A|A) = 0.6743
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 5: Estimated probability density function of p(Â|A) of Arxiv and Reddit dataset. Blue
line/curve stands for real edges (Aij = 1) while orange line/curve stands for non-existing ones
(Aij = 0).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
score

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
de

ns
tiy

E = 10000, H(A|A) = 0.1612
p(Aij|Aij = 1)
p(Aij|Aij = 0)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
score

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
de

ns
tiy

E = 50000, H(A|A) = 0.3341
p(Aij|Aij = 1)
p(Aij|Aij = 0)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
score

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
de

ns
tiy

E = 200000, H(A|A) = 0.3592
p(Aij|Aij = 1)
p(Aij|Aij = 0)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
score

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
de

ns
tiy

E = 800000, H(A|A) = 0.3938
p(Aij|Aij = 1)
p(Aij|Aij = 0)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
score

0.0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ilit

y
de

ns
tiy

E = 1200000, H(A|A) = 0.4013
p(Aij|Aij = 1)
p(Aij|Aij = 0)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
score

0.0

0.1

0.2

0.3

0.4

0.5
pr

ob
ab

ilit
y

de
ns

tiy

Full edges, H(A|A) = 0.4673
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 6: Distributions of positive edges and negative edges, and conditional entropy of Arxiv with
different numbers of subsampled edges. E is the number of subsampled edges.

independently trained a classification model based on Zaug. In the table below, we provide the
performance obtained with Zaug in the transductive setting and compare it to Zmlp.

Table 16: Performance comparison between Zaug and Zmlp.

Embedding Cora Citeseer Pubmed

Zaug 81.9± 0.5 72.5± 0.5 80.2± 0.4
Zmlp 83.8± 0.3 73.7± 0.3 83.2± 0.9

As we can see, Zaug generally performs worse on these datasets compared to Zmlp. We suspect
that this is because the regularization loss employed by InfoMLP not only helps Zmlp learn graph
structural information but also includes a decorrelation loss, which encourages different dimensions
of the embedding to be relatively independent. This, in turn, helps Zmlp to obtain an embedding
space that is more distinguishable and beneficial for classification.

Furthermore, since Zaug itself utilizes graph structural information as an input to the encoder, it is
natural that it can achieve good performance when node features alone do not contain sufficient graph
structural information. For example, on the Arxiv dataset, Zaug effortlessly achieved a classification
accuracy of 70.82± 0.16.

22

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
Number of edges 1e6

0

5

10

15

Re
la

tiv
e

er
ro

r (
%

)

Figure 7: The performance gaps between
GCN and the proposed InfoMLP with
subsampled edges on Arxiv dataset.

Table 15: Test accuracy on subsampled Arxiv.

Edges 10k 50k 200k 800k 1.2m Full

GCN 55.87 56.69 58.94 65.03 67.52 71.23
InfoMLP 56.01 56.43 56.99 57.43 57.99 58.64
Error(%) 0.25% 0.45% 3.3% 11.7% 14.1% 17.7%

E.7 PERFORMANCE USING OTHER MI ESTIMATORS

In addition to the loss used in this paper, we supplement new experiments with the InfoNCE MI
estimator (van den Oord et al., 2018) and the Mutual Information Neural Estimator (MINE) (Belghazi
et al., 2018). They have both been proven to have lower bounds on MI, making it suitable as the
learning objective (the MI can maximized by maximizing the estimator). In the following table, we
present the mean accuracy of InfoMLP with these estimators:

Table 17: Performance comparison by trying other MI estimators.

MI Estimator Cora Citeseer Pubmed

MINE (Belghazi et al., 2018) 82.7± 0.9 71.9± 0.8 80.8± 0.9
InfoNCE (van den Oord et al., 2018) 84.0± 0.4 73.4± 0.4 82.9± 0.3

The InfoNCE MI estimator provides competitive performance as the feature-decorrelation-based loss
used in our paper (even better on some datasets), while MINE in general, yields inferior performance.
This is because MINE has a very large variance in MI estimation, which results in less accurate
estimates. Although InfoNCE provides strong results, its computational complexity is O(N2d),
which makes it time and memory-consuming to calculate the InfoNCE loss on medium-sized graphs.
Considering these, we use the estimator, which is efficient and produces competitive results in our
paper.

E.8 ADDITIONAL RESULTS ABOUT H(A|X) AND H(A|XAUG)

In Sec. 3.1, we only present the figures demonstrating the overlapping information between A and X
for five datasets due to the space limit. Here we provide the complete figures of all seven datasets in
Fig. 8.

We further plot the distributions for positive/negative edges of Cora, Citeseer, Pubmed,
Computer, Photo , and CS using the augmented node features Xaug to compute Â. From
the figures, we can obverse that increasing the maximum propagation step K to get Xaug helps
discriminate the positive edges and negative edges using the augmented node features of Cora,
Citeseer, Pubmed, and CS. However, for Computer and Photo (shown in Fig. 12 and Fig. 13),
we can observe that the two distributions become even closer and thus harder to discriminate. In this
case, the graph augmented node feature matrix contains less information about the graph structure, so
structural regularization does not take effect.

23

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4
pr

ob
ab

ilit
y

de
ns

tiy
Cora

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Citeseer

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Pubmed

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Amazon-Computer

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Amazon-Photo

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Coauthor-CS

p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

Coauthor-Physics

p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 8: Estimated probability density function of p(Â|A). Blue line/curve stands for real edges
(Aij = 1) while orange line/curve stands for non-existing ones (Aij = 0).

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 9: Cora: Overlapping between A and Xaug according to the original adjacency matrix A and
the estimated one Â., with respect to the maximum propagation step K.

24

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4
pr

ob
ab

ilit
y

de
ns

tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4
pr

ob
ab

ilit
y

de
ns

tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 10: Citeseer: Overlapping between A and Xaug according to the original adjacency matrix A

and the estimated one Â., with respect to the maximum propagation step K.

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 11: Pubmed: Overlapping between A and Xaug according to the original adjacency matrix A

and the estimated one Â., with respect to the maximum propagation step K.

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 12: Amazon-Computer: Overlapping between A and Xaug according to the original adjacency
matrix A and the estimated one Â., with respect to the maximum propagation step K.

25

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 13: Amazon-Photo: Overlapping between A and Xaug according to the original adjacency
matrix A and the estimated one Â., with respect to the maximum propagation step K.

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 0
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 1
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 2
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 3
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 4
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 5
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 6
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 7
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 8
p(Aij|Aij = 1)
p(Aij|Aij = 0)

0.0 0.5 1.0 1.5 2.0
2 distance

0

1

2

3

4

pr
ob

ab
ilit

y
de

ns
tiy

K = 9
p(Aij|Aij = 1)
p(Aij|Aij = 0)

Figure 14: CS: Overlapping between A and Xaug according to the original adjacency matrix A and
the estimated one Â., with respect to the maximum propagation step K.

26

	Introduction
	Related Works: Learning MLPs on Graphs.
	Methodology
	Gaps between MLPs and GNNs for Node Representation Learning
	Quantifying the Overlapped Information between Features and Structure
	Learning effective MLPs via Mutual Information Maximization

	Experiments
	Node classification on medium-sized graphs

	Conclusions
	Reproducibility Statement
	Algorithm of InfoMLP
	Proofs
	Proof for Theorem 1
	Proof for Theorem 2
	Eq. 7 as Mutual Information maximizer

	Computing the conditional entropy
	Details of experiments
	Implementations
	Datasets
	Hyper-parameters.
	Discussion of the information leakage in knowledge distillation MLPs

	Additional Empirical Results
	Further study of InfoMLP
	Comparison with advanced baselines of multi-hop information
	Results with other labeling rates
	Application to heterophilic/feature-centric graphs
	Extending MLPs to large-scale graphs
	Comparison with Zaug and Zmlp
	Performance using other MI estimators
	Additional results about H(A|X) and H(A|Xaug)

