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Abstract

Robust object recognition is thought to rely on neural mechanisms that are selective to
complex stimulus features while being invariant to others (e.g., spatial location or orienta-
tion). To better understand biological vision, it is thus crucial to characterize which features
neurons in different visual areas are selective or invariant to. In the past, invariances have
commonly been identified by presenting carefully selected hypothesis-driven stimuli which
rely on the intuition of the researcher. One example is the discovery of phase invariance in
V1 complex cells. However, to identify novel invariances, a data-driven approach is more
desirable. Here, we present a method that, combined with a predictive model of neural
responses, learns a manifold in the stimulus space along which a target neuron’s response
is invariant. Our approach is fully data-driven, allowing the discovery of novel neural in-
variances, and enables scientists to generate and experiment with novel stimuli along the
invariance manifold. We test our method on Gabor-based neuron models as well as on a
neural network fitted on macaque V1 responses and show that 1) it successfully identifies
neural invariances, and 2) disentangles invariant directions in the stimulus space ∗.

Keywords: neural invariances, invariance manifold, MEI, disentanglement, contrastive
learning, visual cortex, CPPN

1. Introduction

Visual sensory areas enable animals to identify objects robustly under different viewing
conditions and contexts. Such ability is thought to require neural mechanisms that are
selective to complex stimulus features but invariant to others (e.g., spatial location or ro-
tation). To better understand biological vision, it is thus crucial to characterize which
features strongly drive neural activity and identify which transformations of such features
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leave neural responses unchanged – i.e. single cell invariances. In the past, identification
of invariances in visual sensory systems have commonly been a hypothesis-driven process
relying on presentation of carefully selected stimuli. One example of this is the discovery
of phase invariance in complex cells of primary visual cortex (Hubel and Wiesel, 1962).
However, such an approach heavily relies on the intuition of the experimenter or serendip-
ity. Since the dimensionality of images is enormous and experimental time is limited, this
approach quickly becomes infeasible when encoding of visual information becomes more
complex in higher areas.

In recent years, artificial neural networks trained on large datasets of neural responses
to natural images have proven to be powerful predictive models of neural responses (Yamins
et al., 2014; Kriegeskorte, 2015; Antoĺık et al., 2016; Yamins and DiCarlo, 2016; Klindt et al.,
2017; Cadena et al., 2019; Kubilius et al., 2019; Sinz et al., 2018; Lurz et al., 2021; Zhuang
et al., 2021). An alternative approach might thus be to systematically explore the invariance
space of visual sensory neurons via optimization using these predictive models. A large body
of research in the field of interpretable machine learning has focused on feature visualization,
a set of techniques to identify which inputs highly activate the network units or layers (Olah
et al., 2017). These techniques have already been successfully used to find single (Walker
et al., 2019; Bashivan et al., 2019; Ponce et al., 2019) or multiple (Cadena et al., 2018;
Ding et al., 2022) maximally exciting stimuli for visual sensory neurons. However, all current
methods predict only a discrete set of stimuli from the invariance manifold. Considering the
high dimensionality of images, understanding how such stimuli are connected in the image
space can be non-trivial, especially when neurons are invariant to multiple transformations,
as it is expected to be more and more the case along the visual hierarchy.

Here, we present a systematic data-driven approach based on implicit image represen-
tations and contrastive learning, that allows the identification and parameterization of the
manifold of highly activating stimuli. We refer to this manifold as MEI invariance man-
ifold (or just invariance manifold for simplicity). We first tested our method on simple
Gabor-based toy models that exhibit multiple invariances and different invariant manifold
topologies. We found that our method correctly identifies and disentangles different in-
variance directions. We then validated our method on selected macaque V1 neurons where
it identifies an almost exact phase invariance. Taken together, our results show that our
approach can capture invariance manifolds in a meaningful way and can be potentially used
to discover novel invariances in visual sensory neurons.

2. Related work

Most Exciting Image (MEI) via pixel optimization Artificial neural networks have
been recently used to synthesize images that maximize the response of a given neuron in the
visual system of mice and monkeys (Walker et al., 2019; Bashivan et al., 2019; Ponce et al.,
2019). Such MEIs were commonly identified via direct optimization of pixel values. This is
a well established technique in the field of interpretable machine learning for inspecting the
units and their function in artificial neural networks (Erhan et al., 2009; Olah et al., 2017).
Importantly, Walker et al. (2019); Bashivan et al. (2019); Ponce et al. (2019) demonstrated
that these MEIs indeed activate biological neurons stronger than control stimuli, such as
Gabors, in most cases. These results thus demonstrate the utility of these models as digital
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twins of the biological brain, allowing neuroscientists to conduct analyses in-silico that are
infeasible to perform on the biological system, but whose predictions can be verified in-vivo.

Diverse feature visualization Previous works have mostly focused on identifying a
single MEI for a single (Walker et al., 2019) or a population of neurons (Bashivan et al., 2019;
Ponce et al., 2019). However, it is not clear whether there exist only a single MEI or rather a
manifold of maximally exciting images. To inspect the presence of such invariances, Cadena
et al. (2018) expanded on the same technique, optimizing for multiple images (diverse
MEIs) while enforcing diversity with an additional objective. Such an approach allows the
identification of multiple distant points in the manifold of maximally exciting images. Given
that the space of images is very high dimensional, the question remains how to connect such
points to construct an invariance manifold. For instance, different phases of an optimal
Gabor stimulus of a complex cell cannot be connected by straight lines in image space. The
mid point between two 180 degree shifted Gabors would be a flat image, which is certainly
not strongly driving a complex cell. Instead, the maximally exciting curve between the two
Gabors forms a circle in high dimensions.

Differentiable Image Parameterization Recent developments in feature visualization
techniques show that smooth, semantically meaningful, transition between images can be
obtained via differentiable parameterization methods (Mordvintsev et al., 2018; Ha, 2016;
Mildenhall et al., 2021). Such methods are, however, yet to be applied to characterize the
invariances of biological neurons.

3. Methods

In contrast to previous approaches to identify MEIs, i.e. directly optimizing pixel values,
we use Compositional Pattern Producing Networks (CPPNs) to optimize a reparameter-
ized version of the image. CPPNs (Stanley, 2007) are artificial neural networks mapping
pixel positions (x, y) to pixel RGB (or grayscale) values. They have recently gained a lot
of attention in the computer vision community as implicit representations of shapes and
radiance fields (Ha, 2016; Mescheder et al., 2019; Mildenhall et al., 2021). A vanilla CPPN
is a differentiable implicit representations of a single image in arbitrary resolution.

3.1. CPPN as an implicit representation of the invariance manifold

Our goal is to use a single CPPN as an implicit representation of not a single image but the
whole manifold of images that equally maximize the activation of a target neuron. For this,
a single CPPN needs to produce a variety of images. This can be achieved by extending the
inputs of the CPPN to include an additional input variable z belonging to a low-dimensional
bounded latent space. This allows the CPPN to output different images while being fed the
same set of pixel positions (Ha, 2016). In the context of learning the invariance manifold,
different values of z should result in different images that maximally excite a target neuron.
If this is achieved, z captures a latent parameterization of the MEI invariance manifold and
a specific value of it represents a single point on the manifold. We implemented the CPPN
as a simple fully-connected neural network of 8 hidden layers each with 15 units. Each
hidden layer was followed by a batch normalization and leaky ReLU nonlinearity. As we
considered only grayscale images, the output layer of the CPPN contains a single unit with a
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Figure 1: Our method uses a CPPN to map a simple low-dimensional latent space onto a
complex high-dimensional manifold in the image space. Images from this manifold
result in diverse but maximally exciting stimuli for a model neuron. Here we show
a schematic of this method applied on a complex cell. Corresponding activations
for a simple cell are also added as reference.

tanh nonlinearity, resulting in a 1D output with values between -1 and 1. To allow control
over the characteristic spatial frequency of the patterns generated via CPPN, instead of
directly using pixel positions as inputs to the CPPN, we used positional encoding of the
pixel positions via random Fourier mapping (Tancik et al., 2020; Mildenhall et al., 2021)1.

As the topology of the MEI invariance manifold might vary from neuron to neuron, we
explored different dimensionalities and boundary conditions for the latent space (“latent
input” in Fig. 1). In particular, we considered 1D and 2D latent spaces, non-periodic
(corresponding to a line or sheet topology) or periodic (corresponding to circle or torus
topology).

3.2. Constrastive objective for image diversification

After the CPPN maps the low-dimensional latent to a manifold in image space, these images
are fed to a predictive model of neural responses (Fig. 1). The parameters of the CPPN
are then optimized to (i) maximally excite a target model neuron and (ii) produce diverse
images. To enforce the latter objective, we train the CPPN with a contrastive objective
function (Chopra et al., 2005) which encourages image diversification. Specifically, for each
point zi ∈ RD, belonging to a grid of values covering the D-dimensional latent space, the
objective function to be maximized is composed of two terms:

L = Lact + Lcontrastive (1)

The first term Lact represents the resulting neural activation from the generated image
I(zi), and encourages the CPPN to generate images that highly activate the neuron:

Lact =
αi

αMEI
,

1. Each position (x, y) gets mapped to a k-dimensional space followed by sin(·) and cos(·) transformations:
[sin(b[x, y]⊤), cos(b[x, y]⊤)] where b ∼ N (0, σI) is randomly sampled from a k-dimensional normal
distribution. Here, we used k = 10 and σ = 1.
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where αi is the model neuron’s response to image I(zi) and αMEI is the neuron’s MEI
activation obtained through standard pixel optimization (see Appendix A for implementa-
tion details of MEI generation via pixel optimization). The normalization by the neuron’s
MEI activation results in a maximal objective value around 1. The second term Lcontrastive

is based on soft nearest neighbor contrastive objective (Salakhutdinov and Hinton, 2007;
Frosst et al., 2019). It uses positive and negative images to encourage a manifold of gener-
ated images to expand and be meaningfully parameterized by the latent coordinates:

Lcontrastive = c · log
1

N+

∑
zj∈Z+

exp(sim(I(zi), I(zj))/τ)

1
N−

∑
zk∈Z−

exp(sim(I(zi), I(zk))/τ)
. (2)

Specifically, for each latent grid point zi a set of “positive” neighboring points Z+ is defined
on the grid. The rest of the grid points that are further from zi are treated as “negative”
points and are denoted as Z−. We use cosine similarity as a similarity measure on the
corresponding generated images. The numerator of the logarithm in Eq. (2) thus enforces
images corresponding to close-by points to look similar, while the denominator forces images
corresponding to distant points to look different. A temperature parameter τ regularizes
this term (Wang and Liu, 2021) to control the diversity of images generated by the CPPN.
We also used a scaling factor c to control the strength of the Lcontrastive contribution to the
full objective in Eq. (1). Finally, we average the single terms given by Eq. (1) across all
grid points resulting in the complete objective function to maximize during training:

L =
1

ND

∑
zi∈Z

(Lact + Lcontrastive) . (3)

Here, ND denotes the total number of grid points, D the number of latent dimensions, and
N the number of grid points per dimension.

3.3. Training the CPPN

At each step, a grid of ND evenly spaced points covering values between 0 and 2π (in each
dimension) is constructed in the latent space. To allow the CPPN to learn meaningful
representations not only at discrete positions, but on the whole latent space, a random
jitter ϵ ∈ [−a

2 ,
a
2 ]

D is added to the entire grid, where a is the spacing between grid points
in each latent dimension. If required, periodicity on the latent space is enforced by ap-
plying sin(·) and cos(·) functions on the grid points before passing them to the CPPN (i.e.
z → [cos (z), sin (z)]). The CPPN generates a grid of images corresponding to the latent grid
points. Subsequently these images are rescaled to have a fixed mean (luminance) and stan-
dard deviation (contrast) and passed to the ANN model predicting neural activation. The
constraint on the luminance and contrast allows for the comparison between the responses
across multiple images and forces highly driving features to appear in the receptive field of
the neuron, while flattening the rest of the image (for training details refer to Appendix A).

3.4. Predicting neural responses of macaque V1

Neuronal data The neuronal data have been described previously in (Cadena et al.,
2022). In brief, responses of neurons in medial primary visual cortex at eccentricities ranging
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from 1.4 to 3.0 degrees of visual angle were recorded from two rhesus macaque monkeys.
Using 32-channel linear silicon probes, a total of 458 neurons were isolated in 15 (monkey
1) and 17 (monkey 2) sessions. Neural activity was recorded in response to natural images
from ImageNet (Deng et al., 2009) while the monkeys were fixating on a central fixation
spot. Each image was shown for 120ms, and spikes were extracted from 40 to 160 ms after
image onset. Per recording session, between 10,000 and 15,000 unique images out of a pool
of 24075 ImageNet images were presented in blocks of 15. All images were displayed in
grayscale, with a resolution of 63 pixels per degree (ppd), covering 6.7 degrees visual angle
on the monitor.

Predictive model The artificial neural network (ANN) model we used for predicting
neural responses from macaque V1 is inspired by previous deep network models (Cadena
et al., 2019; Lurz et al., 2021). It consists of a nonlinear core which captures general im-
age representations, and a readout that maps the core representations onto scalar neuronal
responses via regularized regression. As core, we used a CNN with depth separable convolu-
tions (all layers except the first), with 3 layers and 32 feature channels per layer. After each
convolutional layer, a batch normalization followed by an ELU nonlinearity are applied.
From the last layer, a pyramid readout (Sinz et al., 2018) extracts the features at a learned
spatial location (x, y) as well as at the same location in two progressively downsampled
versions of the last layer’s output. We used average pooling with a kernel size of 3 in each
downsampling step. n = 96 weights per neuron are then learned to linearly combine the
features from the last layers and its two downsampled versions. The resulting outputs are
then passed through an ELU+1 nonlinearity to finally obtain the scalar positive firing rate
for each neuron.

Training the ANN on monkey V1 responses We first cropped the images to the
central 2.65 degrees (from the original 6.7 degrees) and subsequently downsampled the
resolution to 35 pixels per degree, leading to an input size of 93×93 pixels for the ANN
model. Prior to model training, we split all stimuli into 19200 training, 4800 validation,
and 75 test images, and z-scored all images based on the mean and standard deviation
across the training and validation set. We trained our ANN by minimizing the Poisson
loss 1

m

∑m
i=1

(
r̂(i) − r(i) log r̂(i)

)
, where m denotes the number of neurons, r the observed

neuronal firing rate, and r̂ the predicted firing rate. We then optimized the parameters
of the ANN using the Adam (Kingma and Ba, 2014) optimizer with a learning rate of
0.0042. We decreased the learning rate by a factor of 0.3 when the validation loss did not
decrease for three consecutive epochs for a maximum of 3 times before stopping the training
altogether.

4. Results

We tested our method on simple Gabor-based model neurons with known (and exact)
invariances and on neural network models predicting the responses of macaque V1 neurons.
On synthetic data, we tested our approach on model neurons with a variety of invariances.
While the method can be applied to arbitrarily high-dimensional invariance manifolds, here
we considered model neurons with 1D and 2D invariances to easily visualize the results and
facilitate interpretation of the learned invariances. Specifically, we considered a simple cell
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Figure 2: Invariances generated from equally spaced points in a periodic 1D latent space
in the case of a complex cell (A) and of a orientation invariant neuron (B) and
activation values to different images in the corresponding learned manifold

corresponding to a single point (i.e. no invariance), a complex cell (phase invariance) as well
as an orientation-invariant neuron corresponding to a circle, and a phase-and-orientation-
invariant neuron corresponding to a torus2. In the case of phase-and-orientation-invariant
neuron, we additionally considered a partial orientation invariance covering only 90 degrees,
resulting in a cylinder invariance topology (see Appendix B for implementation details).
This variety of topologies allowed us to test how robustly our method parameterizes the
entire invariance manifold, whether the parameterization associates meaningful directions
to the axes of the latent space, and how it behaves when the topology of the latent space
does not match the one of the invariance manifold.

Learning invariance manifolds with 1D latent spaces First, we explored how our
method parameterizes 1D invariances in the case of complex and orientation-invariant model
neurons. Since both phase and orientation represent periodic transformations, the invari-
ance manifold of these cells have the topology of a circle. We therefore first tested a 1D
periodic latent variable z as input to the CPPN. Our method identified the invariance man-
ifold almost perfectly (Fig. 2). Specifically, the latent space input represents a parameter
that corresponds to the angle characterizing the invariance. Next, we considered a non-
periodic 1D latent space – topology of a line. In this case, the temperature parameter of
the contrastive objective seems to affect the extend of the invariance manifold captured by
the CPPN. The reason for this behavior is a mismatch between the true invariance topology
(a circle) and the fitted topology (a line): for a line topology, opposite boundaries in the
latent space correspond to negative samples, and the contrastive objective encourages them
to look dissimilar discouraging the model to complete a full circle (see Appendix C for a
more thorough analysis). Nonetheless, even in this case, the generated invariance manifold
well adheres to a part of the ground truth invariance manifold and achieves a meaningful
parameterization of the invariance (see Fig. S2).

In the scenarios we considered so far the latent space dimensionality matched the dimen-
sionality of the invariance manifold. However, it is possible that the underlying invariance
manifold is higher-dimensional than the CPPN’s latent space. To see how it behaves in such
a scenario, we applied a CPPN with a 1D latent space on a phase-and-orientation-invariant
neuron (2D invariance). While it is not possible to capture the complete invariance mani-

2. To be more precise, the MEI invariance manifold of a phase-and-orientation-invariant neuron has the
topology of torus that touches itself for phases corresponding to even Gabors and rotations of 180 degrees.
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Figure 3: Invariances learned with with 2D latent space for different configurations of latent
space topology and topologies of the ground truth invariance manifold. Mean
and standard deviation of the activations corresponding to the shown images are
reported in Appendix G.

fold in this case, in Appendix D we show that our method still learns a submanifold of the
higher-dimensional invariance manifold.

Our method implicitly assumes the invariance manifold to be continuous and so far
we tested it on smooth ground truth invariances. As a final test, we also assessed how
well it can capture discontinuous manifolds. Our results (Fig. S5) show that our method
can indeed learn to approximate discontinuous invariance manifolds successfully (for details
refer to Appendix E).

Learning invariance manifolds with 2D latent spaces Subsequently, we considered a
2D latent space with non-periodic (sheet topology) and periodic (torus topology) invariances
and trained a CPPN to identify the invariances of all the neuron models mentioned above
(Fig. 3). In the case of a simple cell, the CPPN learned to ignore the invariance latent
variable z and collapsed the predicted invariance manifold onto a single point, matching
the Gabor filter corresponding to the MEI of the cell (Fig. 3 left column). In the case of a
complex cell, the CPPN learned to ignore one latent dimension and associated the invariance
transformation with the other (Fig. 3 second column from left), as it would be expected in
the ideal case. In a similar fashion to the 1D case (Fig. 2), the CPPN with non-periodic
latent learned an incomplete yet meaningful parameterization of the invariance, whereas
the CPPN with periodic latent learned the full invariance.

In the case of the jointly orientation-and-phase-invariant neuron, the CPPN learned both
invariances and disentangled them in the latent space nearly perfectly (Fig. 3 second column
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Figure 4: A: Nonlinearity index of macaque V1 neurons. Black circles highlight the neu-
rons shown in panels B–E. B–E: Phase invariances identified with periodic 1D
latent (B–D) and with 2D non-periodic latent(E) and corresponding activations.
For visualization purposes, MEIs are cropped around the receptive field of the
neurons.

from right). This result is particularly relevant, as it allows both clear identification of the
invariance and control over it via the latent space. Again, the CPPN mapping from non-
periodic latent space parameterized only half of the true periodic invariance transformations.
We then explored the scenario of a phase-and-partially-orientation-invariant model neuron.
The invariance manifold of this neuron model has the topology of a cylinder. In this case,
the CPPN with a non-periodic latent space learned both invariance transformations and
disentangled them along the two latent space dimensions (Fig. 3 right column top row). In
line with the previous results, the partial orientation invariance transformation was learned
fully, whereas the phase transformation was learned up to a 180 degree phase shift (Fig. 3
right column top row). Fitting a periodic latent space on a non-periodic invariance manifold
topology is more complex. Specifically, to deal with non-periodic invariances, the CPPN
mapping from periodic latent can either learn the full invariance transformation twice, or
introduce sudden jumps in the invariance manifold (Fig. 3 right column bottom row). Our
experiments indicate that both scenarios can happen (see Fig. S6) and that the CPPN can
still learn to disentangle the two transformations.

Learning the invariance manifold of macaque V1 complex cells Lastly, we set out
to validate our method on a model for a population of macaque V1 neurons (see section 3.4).
The Gabor-based model neurons above presented (almost) exact invariances, with no fluc-
tuations over activation levels. In a biological neuron, however, a meaningful definition of
the MEI invariance manifold should be more forgiving, allowing for a broader variety of
images to be considered maximally exciting, for the following reasons: First, it is not to be
expected that biological neurons present exact invariances over maximally exciting stimuli.
Second, the data collected and analyzed in neurophysiological experiments are intrinsically
noisy and limited in size. Third, our experiments here are performed on neural network
models fitted to neural responses, which despite achieving high predictive performance, are
not perfect. We used an ensemble model of ANNs (see section 3.4) as a model of of macaque
V1 neurons and applied our method on complex cells that were identified using a nonlin-
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earity index (Antoĺık et al., 2016). See Appendix H for details on selecting complex cells.
Fig. 4 shows that the CPPN found phase invariance in the selected neurons: it generated
a variety of maximally exciting images resembling Gabor filters and parameterized their
phase transformation with one of the latent space dimension (see Appendix I for a more
thorough analysis of the learned phase invariance). This demonstrates the ability of the
method to identify invariances in biological neural representations.

5. Discussion

We presented a data-driven method that combines a CPPN with a contrastive learning
objective to map from a low-dimensional latent space to a manifold in the space of images
that describes the MEI invariances of a given neuron. We tested our approach on synthetic
neural responses, where multiple ground truth exact invariance manifolds were known, as
well as on predictive models of macaque V1 complex cells. We showed that our approach
successfully uncovers MEI invariance manifolds in both scenarios. In contrast to previously
presented approaches, our method allows a smooth parameterization of the invariance man-
ifold and, when multiple invariances are present, it disentangles them along the axes of the
latent space. When the dimensionality of the latent space is higher than the dimensionality
of the invariance, the CPPN learns to ignore unnecessary latent dimensions.

In the future, our approach can be extended to learn implicit representation of MEI
invariances for multiple neurons, for instance by associating to each neuron a learnable
embedding used as a fingerprint. Such multi-neuron implementation, in combination with a
regularization of the space of fingerprints, could, in principle, allow us to classify neurons in
functional clusters, according to their invariances. Similarly, a multi-neuron implementation
could allow us to study interesting tuning directions, i.e. directions in image space to which
certain neurons are selective, whereas others are invariant. We believe that the approach
presented here will prove to be a valuable tool to advance our understanding of visual
sensory coding, especially in the higher visual areas, such as V4, that potentially exhibit
more invariances, both in terms of quantity and complexity.
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Appendix A. Additional training details

A.1. CPPN training details

The CPPN was trained via gradient-based optimization to maximize the objective in Eq. 3.
During training, the contrastive objective requires a set of positive and negative input im-
ages for each latent input. This was achieved with the construction of masks identifying
positive and negative points. Positive neighboring areas are as squares surrounding the point
considered, and extending from it in each direction for 0.1 ∗N number of points (Fig. S1).
The periodicity condition of the latent space is reflected in the masks of points close to the
boundaries. Regularization strengths were rescaled as c = c̄× τ

2 to normalize the maximum
possible contribution coming from a single point in the contrastive term depending on tem-
perature. We observed that strong initial regularization seems to disentangle the invariant
directions and to avoid sudden jumps in image space as a function of the latent space, but
can concurrently deteriorate the MEIs generated. This is due to the fact that the objective
in this case has to balance between maximizing activation and satisfying comparably strong
regularization conditions. For this reason during training we decrease c̄.

E F G H

A B C D

Fig. S1: Masks to determine positive (red) and negative (blue) examples on the grid for
different conditions. Neighbouring size set to sn = 0.1. (A-D): Masks for all
points in 1D grid (rows of each matrix) under periodic conditions of latent (A,C):
non periodic conditions (B,D), and grids with different number of points, np = 20
(A,B)) and np = 100 (C,D). (E-F): Mask for single points in 2D grids close to
latent space boundaries (E,G) and away from them (F,H), under non periodic
latent space (E,F) and non periodic latent space (G,H).

Synthetic 1D case Temperature was set to τ = 1, contrastive regularization strength
coefficient to c̄ = [2, 0.5]. Number of points per dimension of the grid was set to N = 100.
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Number of batches (each corresponding to a grid) per epoch was set to 100 and models
were trained for 10 epochs per each value of c̄. Learning rate was set to 0.01. Before
being presented to the model neurons, all images where rescaled to have a mean of 0 and a
standard deviation of 0.2. Images were generated with a 30× 30 pixel resolution, matching
the resolution of the Gabor based neuron models.

Synthetic 2D case Temperature was set to τ = 1 in the case of non-periodic latent
τ = 0.3 in case of periodic latent (see Appendix C). Constrastive regularization strength
coefficients were set to c̄ = [1, 0.5]. Number of points per grid dimension was set to 20,
resulting in grids of 400 points. Learning rate was set to 0.01, number of batches (each
corresponding to a grid) per epoch was set to 100 and models were trained for 100 or 120
epochs per each value of c̄ respectively in the case of non periodic latent space and periodic
latent space. Nonetheless, CPPNs appeared to converge much faster for each regularization
strength coefficient considered (20 epochs being sufficient). Before being presented to the
model neurons all images where rescaled to have a mean of 0 and a standard deviation of
0.2. Images were generated with a 30× 30 pixel resolution, matching the resolution of the
Gabor based neuron models.

Macaque complex cell Temperature was set to τ = 1, contrastive regularization strength
coefficient to c̄ = [1, 0.5]. Number of points per dimension of the grid was set to N = 20.
Number of batches (each corresponding to a grid) per epoch was set to 50 and models
were trained for 10 and 20 epochs per each value of c̄ in the 1D and 2D case, respectively.
Learning rate was set to 0.05 and 0.01 in 1D case and 2D case, respectively. Before being
presented to the ensemble model all images where rescaled to have a mean 0.2019 (cor-
responding to the mid grayscale value of the images on which the ANNs in the ensemble
model were fitted), to have a standard deviation 0.15, and if necessary pixel values were
clipped to the values corresponding to the extremes of the grayscale on the images on which
the macaque model was fitted [2.1919,−1.7876]. The standard deviation value was selected
to allow clear identification of maximally exciting features while avoiding excessive clipping.

A.2. Pixel-based MEI optimization

In this method, the pixels of an image are defined as learnable parameters and are learned
via gradient-based optimization such that the activation of a target neuron is maximized.
Specifically, we defined an input image of size 93 × 93 for monkey V1 neuron and 30 × 30
for Gabor based neurons and used the Adam optimizer with learning rate of 0.01 to obtain
an MEI after 2000 training steps.

A.3. Software and hardware specifications

All code for model definition, training, evaluation and experiment tracking were imple-
mented in Python 3.9 using PyTorch (Paszke et al., 2019), NumPy (Harris et al., 2020),
Weights & Biases (Biewald, 2020), and Docker (Merkel, 2014) packages. All CPPN models
were trained using the Adam (Kingma and Ba, 2014) optimizer on a Tesla V100-SXM2-
32GB GPU, and took a few minutes to train.
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Appendix B. Gabor-based model neurons

On synthetic data, we tested our approach on a simple cell, a complex cell, an orientation-
invariant neuron and two phase-and-orientation-invariant neurons.

• The simple cell was implemented as a Gabor filter followed by ReLU nonlinearity.

• The complex cell was implemented as an energy model (Adelson and Bergen, 1985).

• The orientation-invariant neuron was implemented as a set of simple cells with differ-
ent orientations, followed by a max-pooling operation.

• The phase-and-orientation-invariant neurons were implemented as sets of complex
cells with different orientations, followed by a max-pooling operation.
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Appendix C. The effect of temperature on invariance manifold learning

  =0.1

  =10 

  =1

Orientation-invariant neuron Complex cell

Fig. S2: Images in invariance manifolds corresponding to equally spaced points in 1D
non periodic latent space for different temperature values (row) and invariances
(columns)

Different choice of temperature can have a important effect on the extent of the invari-
ance manifold that is learned. Fig. S2 shows how in the case of a non-periodic 1D latent
space the extent depends as well on the type of invariance of the model neuron. This is due
to the fact that images belonging to different invariant transformations have different sim-
ilarity values and because the temperature parameter controls how strongly to encourage
and penalize similarity to positive samples and negative samples, respectively.

In the case of 1D non-periodic latent space, the invariance manifold corresponding to
an orientation invariant odd Gabor neuron (Fig. S2 left column) ranges from being almost
complete transformation (for low temperatures) to be slightly more than half (high tem-
perature). The phase invariance of complex cell (Fig. S2 right column), on the contrary, is
learned up to half a transformation (180 degrees) for all the temperature values considered.

Fig. S3: Effect on temperature on learning 2D invariances. Both figures correspond to an
phase-and-orientation-invariant neuron whose invariances are learned with a CPPN
with 2D periodic latent space, but with different temperature, respectively τ = 10
and τ = 0.3 from left to right.

When a neuron presents multiple invariances, temperature has an effect also on which in-
variance transformations are learned. See Fig. S3 as example. For a phase-and-orientation-
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invariant neuron, a CPPN mapping from a 2D periodic latent space is able to capture
orientation invariance only at low temperatures. At high temperature only phase invari-
ance is learned and one of the latent space axes is ignored. This results shows how the
optimization objective can, for specific invariances and temperature values, be maximized
in the scenario in which the CPPN selectively learns only one of the invariances.
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Appendix D. Learning 2D invariances with 1D latent space

In this appendix we assess the outcome of our method when the invariance manifold of the
neuron considered is higher dimensional than the latent space from which the CPPN maps.
For this purpose we considered the scenario in which a CPPN mapping from a 1D periodic
latent space is trained to identify the invariance of a phase-and-rotation-invariant neuron
(2D invariance manifold). We performed the same experiment for high temperature (τ =
10), low temperatures (τ = 0.3) and multiple seeds. With the exception of temperature,
training details match the ones reported for 1D synthetic case. Results are shown in Fig. S4.

A B C

Fig. S4: A CPPN mapping from a 1D periodic latent space is trained to capture the in-
variance manifold of a phase-and-rotation-invariant-neuron. Images corresponding
to equidistant points in latenst space are shown, together with activation. (A-B)
corresponds to different seed, (B-C) to different values of temperature.

As can be seen from the diversity of images smoothly varying and from the activation
being maximized for all images, in all cases considered the CPPN learns a 1D submanifold
of the 2D invariance manifold. Fig. S4 further illustrates however how the nature of the
learned submanifold might depend on multiple factors such as the nature of the invariances
in higher dimensional invariance manifold (e.g. phase vs orientation), the CPPN initializa-
tion (inter-seed variability), and training details (e.g., optimization objective). In the case
considered, the only invariance learned in the case of high temperature is phase (similarly
to what happens in S3). This results shows how the optimization objective can, for specific
parameter configurations, be maximized in the scenario in which the CPPN ignores one of
the invariances.
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Appendix E. Approximating a discontinuous invariance manifold with
continuous parameterization

The method presented implicitly assumes the MEI invariance manifold to learn to be contin-
uous, as many interesting biological neurons’ invariances are smooth. A given neuron could
however present a discontinuous invariance. In this appendix we illustrate how the CPPN
can address this situation learning to approximate a discrete invariance manifold with a
continuous latent space, thanks to the introduction of jumps. Specifically we considered
a polarity invariant neuron obtained max pooling the responses of ON and OFF centered
even simple cells (same parameters, except for phase). Such neuron presents an invariance
manifold that consists in two point in the image space, corresponding to the ON and OFF
centered linear filters of the simple cells from which it is composed. We trained to CPPN
mapping from a 1D periodic latent space to approximate the discontinuous invariance man-
ifold of such polarity invariant neuron. Temperature was set to τ = 0.3. Remaining training
details match the ones reported for the 1D synthetic case in appendix A.

Fig. S5: Learned invariance manifold and corresponding activations in the case of a CPPN
mapping from a 1D periodic latent space and trained to learn the discrete manifold
of a polarity invariant neuron MEIs are reported for 12 equally spaced points and
activation for 1000 equally spaced points in the latent space. Two domains, each of
them corresponding to one of the two MEIs, appear in latent space. The necessity
of connecting such domains via a continuous parameterization corresponds to the
arising of sudden jumps in image space connecting such domains, during which
activation drops. The small fraction of points corresponding to activation sensibly
deviating from MEI activation gives a measure of how localized jumps are in latent
space.

Fig. S5 demonstrates that CPPN can learn to approximate the two-point invariance
manifold mapping large domains of the latent space to the same maximally exciting im-
age and introducing sudden jumps between such domains. This approximate learning of
a discontinuous and discrete manifold with a continuous latent space is possible thanks to
the decreasing strength of the contrastive objective during training. In the first part of the
training, the high regularization strength c of the contrastive objective tends to be predom-
inant and the CPPN learns a smooth manifold of images that are particularly diverse, that
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tend to highly activate the neuron but that are not exactly maximally exciting. When the
regularization strength decreases, however, the activation objective becomes predominant
over the contrastive objective that ensures smoothness and the CPPN learns to introduce
jumps between the domains in which the generated images look the same.
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Appendix F. Periodic 2D latent space on cylinder invariance topology

This appendix displays some of the results obtained when fitting a 2D periodic manifold on
a non-periodic invariance (cylinder topology).

Fig. S6: Two different instantiations (same hyperparameters, different seeds) of the same
CPPN learning a phase-and-partially-orientation-invariant neuron invariance man-
ifold with a 2D periodic latent. Fitting a 2D periodic latent on a non-periodic in-
variance manifold forces either sudden jumps (left figure, jump on the orientation
axis) or to learn the same transformation twice (right figure, rotation of 90 degrees
is learned first clockwise and than anticlockwise)
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Appendix G. Activations corresponding to images in Fig. 3

simple cell complex cell
phase and orientation
invariant neuron

phase and partially
orientation invariant
neuron

2D non periodic
latent

1 ± 8e-8 0.991 ± 0.006 0.991 ± 0.007 0.991 ± 0.006

2D periodic
latent

1 ± 9e-8 0.990 ± 0.007 0.985 ± 0.007 0.985 ± 0.006

Table 1: Mean and standard deviation of the activations corresponding to images generated
from the learned invariance manifold when using a 2D latent space (corresponding
to images shown in Fig. 3).
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Appendix H. Selection of complex cells

We identified complex cells following these steps:

1. We created an ensemble model, averaging the predictions of n = 3 ANNs implemented
and trained as described in 3.4.

2. We trained multiple instances of a linearized version (LN models) of the ANN model
obtained by simply dropping the nonlinearities in the model (except the last one which
ensures positive-values firing rates).

3. We computed a nonlinearity index for each neuron by comparing the correlation of
the ensemble model predictions with trial-averaged neural responses with the highest
correlation achieved by any of the trained LN models: Inl = (cens−max(clin, 0))/cens.

4. Among neurons with high Inl we selected the ones with cens > 0.8 to consider only
nonlinear neurons well modelled by our ensemble.

5. We performed direct pixel optimization to identify one MEI per neuron

6. We selected the neurons whose MEI visually resembled a Gabor filter.
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Appendix I. Analysis of the MEIs generated via CPPN

To better show that our method has captured the previously shown phase invariance in
monkey V1 complex cells, for each image generated via the CPPN (Fig. 4B–D) we learned
a Gabor filter that results in the least mean squared error (Bashiri, 2020), and assessed
the phase of the learned Gabor filters. Fig. S7 shows that the learned Gabor filters are a
close match to the MEIs both qualitatively (i.e. visually) and quantitatively (i.e. resulting
activations). Importantly, as we go along the learned invariance manifold the phase of the
learned Gabor smoothly changes and the manifold covers the complete 2π cycle.

B

C

A

Fig. S7: Analysis of the MEIs generated via CPPN using fitted Gabors. A, B, and C corre-
spond to the neurons shown in Fig. 4B, 4C, and 4D, respectively. For visualization
purposes, MEIs and Gabors are cropped around the receptive field of the neurons.
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