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Abstract

Knowledge distillation facilitates the training of a com-
pact student network by using a deep teacher one. While
this has achieved great success in many tasks, it remains
completely unstudied for image-based 6D object pose esti-
mation. In this work, we introduce the first knowledge dis-
tillation method driven by the 6D pose estimation task. To
this end, we observe that most modern 6D pose estimation
frameworks output local predictions, such as sparse 2D key-
points or dense representations, and that the compact stu-
dent network typically struggles to predict such local quan-
tities precisely. Therefore, instead of imposing prediction-
to-prediction supervision from the teacher to the student,
we propose to distill the teacher’s distribution of local pre-
dictions into the student network, facilitating its training.
Our experiments on several benchmarks show that our dis-
tillation method yields state-of-the-art results with different
compact student models and for both keypoint-based and
dense prediction-based architectures.

1. Introduction

Estimating the 3D position and 3D orientation, a.k.a. 6D
pose, of an object relative to the camera from a single 2D
image has a longstanding history in computer vision, with
many real-world applications, such as robotics, autonomous
navigation, and virtual and augmented reality. Modern
methods that tackle this task [7,20,21,25,28,33,40,45,47]
all rely on deep neural networks. The vast majority of
them draw their inspiration from the traditional approach,
which consists of establishing correspondences between the
object’s 3D model and the input image and compute the
6D pose from these correspondences using a Perspective-
n-Point (PnP) algorithm [2, 23, 27, 42] or a learnable PnP
network. Their main differences then lie in the way they
extract correspondences. While some methods predict the
2D image locations of sparse 3D object keypoints, such as
the 8 3D bounding box corners [19–21] or points on the ob-
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Figure 1. Student vs teacher keypoint predictions. The large
backbone of the teacher allows it to produce accurate keypoints,
indicated by tight clusters. By contrast, because of its more com-
pact backbone, the student struggles to predict accurate keypoints
when trained with keypoint-to-keypoint supervision. We therefore
propose to align the student’s and teacher’s keypoint distributions.

ject surface [33], others produce dense representations, such
as 3D locations [7,45] or binary codes [40], from which the
pose can be obtained.

In any event, these methods rely on large models, which,
while achieving impressive accuracy, are impractical de-
ployment on embedded platforms and edge devices. As, to
the best of our knowledge, no compact and efficient 6D pose
estimation models have yet been proposed, a simple way to
reduce the size of these networks consists of replacing their
large backbones with much smaller ones. Unfortunately,
this typically comes with a significant accuracy drop. In
this paper, we address this by introducing a knowledge dis-
tillation strategy for 6D pose estimation networks.

Knowledge distillation aims to transfer information from
a deep teacher network to a compact student one. The re-
search on this topic has tackled diverse tasks, such as image
classification [17, 37, 48], object detection [10, 11, 49] and
semantic segmentation [14, 30]. While some techniques,
such as feature distillation [15, 37, 48, 49], can in principle
generalize to other tasks, no prior work has studied knowl-
edge distillation in the context of 6D pose estimation.
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In this paper, we introduce a knowledge distillation
method for 6D pose estimation motivated by the follow-
ing observations. In essence, whether outputting sparse 2D
locations or dense representations, the methods discussed
above all produce multiple local predictions. We then argue
that the main difference between the local predictions made
by a deep teacher network and a compact student one con-
sists in the accuracy of these individual predictions. Fig-
ure 1 showcases this for sparse keypoint predictions, ev-
idencing that predicting accurate keypoint locations with
keypoint-to-keypoint supervision is much harder for the stu-
dent than for the teacher. We therefore argue that knowledge
distillation for 6D pose estimation should be performed
not by matching the individual local predictions of the stu-
dent and teacher but instead by encouraging the student and
teacher distributions of local predictions to become similar.
This leaves more flexibility to the student and thus facili-
tates its training.

To achieve this, we follow an Optimal Transport (OT)
formalism [44], which lets us measure the distance between
the two sets of local predictions. We express this as a loss
function that can be minimized using a weight-based variant
of Sinkhorn’s algorithm [6], which further allows us to ex-
ploit predicted object segmentation scores in the distillation
process. Our strategy is invariant to the order and the num-
ber of local predictions, making it applicable to unbalanced
teacher and student predictions that are not in one-to-one
correspondence.

We validate the effectiveness of our approach by
conducting extensive experiments on the popular
LINEMOD [16], Occluded-LINEMOD [3] and YCB-
V [47] datasets with the SOTA keypoint-based approach
WDRNet+. Our prediction distribution alignment strategy
consistently outperforms both a prediction-to-prediction
distillation baseline and the state-of-the-art feature distil-
lation method [49] using diverse lightweight backbones
and architecture variations. Interestingly, our approach is
orthogonal to feature distillation, and we show that com-
bining it with the state-of-the-art approach of [49] further
boosts the performance of student network. To show the
generality of our approach beyond keypoint prediction, we
then apply it to the SOTA dense prediction-based method,
ZebraPose [40], to align the distributions of dense binary
code probabilities. Our experiments evidence that this
outperforms training a compact ZebraPose in a standard
prediction-to-prediction knowledge distillation fashion.

Our main contributions can be summarized as follows.
(i) We investigate for the first time knowledge distillation
in the context of 6D pose estimation. (ii) We introduce
an approach that aligns the teacher and student distribu-
tions of local predictions together with their predicted ob-
ject segmentation scores. (iii) Our method generalizes to
both sparse keypoints and dense predictions 6D pose esti-

mation frameworks. (iv) Our approach can be used in con-
junction with feature distillation to further boost the stu-
dent’s performance. Our code is available at https://
github.com/GUOShuxuan/kd-6d-pose-adlp.

2. Related Work
6D pose estimation. With the great development and suc-
cess of deep learning in computer vision [12, 13, 26, 29, 31,
36], many works have explored its use for 6D pose estima-
tion. The first attempts [24,25,47] aimed to directly regress
the 6D pose from the input RGB image. However, the rep-
resentation gap between the 2D image and 3D rotation and
translation made this task difficult, resulting in limited suc-
cess. Therefore, most methods currently predict quantities
that are closer to the input image space. In particular, sev-
eral techniques jointly segment the object and predict ei-
ther the 2D image locations of the corners of the 3D object
bounding box [19–21] or the 2D displacements from the
cells’ center of points on the object’s surface [33]; Ober-
weger et al. [32] predict 2D keypoints heatmaps to handle
occlusion. Instead of exploiting such sparse 2D keypoints,
other methods [7, 28, 45] output dense correspondences be-
tween the input image and the object 3D model, typically by
predicting a 3D coordinate at every input location contain-
ing an object of interest. Recently, the state-of-the-art Ze-
braPose [40] proposed to replace the prediction of 3D coor-
dinates with that of binary codes encoding such coordinates,
yet still producing dense predictions. In any event, the orig-
inal backbones used by all the above-mentioned methods
tend to be cumbersome, making them impractical for de-
ployment in resource-constrained environments. However,
replacing these backbones with more compact ones yields
a significant performance drop. Here, we address this by
introducing a knowledge distillation method for 6D pose
estimation applicable to any method outputting local pre-
dictions, whether sparse or dense.
Knowledge distillation has been proven effective to trans-
fer information from a deep teacher to a shallow student
in several tasks. This trend was initiated in the context of
image classification, where Hinton et al. [17] guide the stu-
dent’s output using the teacher’s class probability distribu-
tions, and Romero et al. [37], Zagoruyko et al. [48] and
Tian et al. [43] encourage the student’s intermediate feature
representations to mimic the teacher’s ones. Recently, many
works have investigated knowledge distillation for other vi-
sual recognition tasks, evidencing the benefits of extract-
ing task-driven knowledge. For example, in object detec-
tion, Zhang et al. [49] adapt the feature distillation strat-
egy of [37] to object detectors; Wang et al. [46] restrict
the teacher-student feature imitation to regions around the
positive anchors; Guo et al. [10] decouple the intermedi-
ate features and the classification predictions of the positive
and negative regions; Guo et al. [11] distill detection-related
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Figure 2. Overview of our method (better viewed in color). The teacher and student follow the same general architecture, predicting either
sparse 2D keypoints or dense local predictions. Given an RGB input image, they output both a segmentation score map by classifying the
individual cells in the feature map, and 2D keypoints voted by each cell as in [21], or one prediction per cell, e.g., probabilities of 16D
binary codes for ZebraPose [40]. The local predictions, either sparse or dense, then form correspondences, which are passed to a PnP
solver [2, 27] or a PnP network [19, 45] to obtain the final 3D translation and 3D rotation. Instead of performing naive prediction-to-
prediction distillation, we propose a strategy based on optimal transport that lets us jointly distill the teacher’s local prediction distribution
with the segmentation score map into the student.

knowledge from a classification teacher to a detection stu-
dent. In semantic segmentation, Liu et al. [30] construct
pairwise and holistic segmentation-structured knowledge
to transfer. All of these works evidence that task-driven
knowledge distillation boosts the performance of compact
student models. Here, we do so for the first time for 6D ob-
ject pose estimation. Note that the concurrent HRPose [9]
tackles the scenario where the student and teacher have the
same feature dimensions and was evaluated on LINEMOD
only. Our work is applicable to more diverse student-
teacher pairs on more challenging benchmarks.

Optimal transport (OT) has received a growing attention
both from a theoretical perspective [6, 38, 44] and for spe-
cific tasks, including shape matching [41], generative mod-
eling [1], domain adaptation [5], and model fusion [39]. In
particular, OT has the advantage of providing a theoretically
sound way of comparing multivariate probability distribu-
tions without approximating them with parametric models.
Furthermore, it can capture more useful information about
the nature of the problem by considering the geometric or
the distributional properties of the underlying space. Our
work constitutes the first attempt at using OT to align the
student and teacher local prediction distributions for knowl-
edge distillation in 6D pose estimation.

3. Methodology

Let us now introduce our method to knowledge distilla-
tion for 6D pose estimation. As discussed above, we focus
on approaches that produce local predictions, such as sparse
2D keypoints [19–21, 33] or dense quantities [7, 28, 40, 45].

In essence, the key to the success of such methods is the
prediction of accurate local quantities. However, as shown
in Figure 1 for the keypoint case, the predictions of a shal-
low student network tend to be less precise than those of
a deep teacher, i.e., less concentrated around the true key-
point locations in the figure, and thus yield less accurate 6D
poses. Below, we first present a naive strategy to distill the
teacher’s local predictions into the student ones, and then
introduce our approach.

3.1. Naive Prediction-to-prediction Distillation

The most straightforward way of performing knowl-
edge distillation is to encourage the student’s predictions
to match those of the teacher. In our context, one could
therefore think of minimizing the distance between the lo-
cal predictions of the teacher and those of the student. To
formalize this, let us assume that the teacher and the student
both output N local predictions, i.e., that N cells in the final
feature maps participate in the prediction for the object of
interest. Then, a naive distillation loss can be expressed as

Lnaive−kd(P
s, P t) =

N∑
i=1

∥P s
i − P t

i ∥p , (1)

where, P s
i , resp. P t

i , represent the student’s, resp. teacher’s,
local predictions, and p ∈ {1, 2}.

One drawback of this strategy comes from the fact that
the teacher and student network may disagree on the num-
ber of local predictions they make. For example, as il-
lustrated in Figure 2 for the keypoint case, the number of
cells predicted to belong to the object by the student and
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the teacher may differ. This can be circumvented by only
summing over the Ñ ≤ N cells that are used by both the
teacher and the student. However, the distillation may then
be suboptimal, as some student’s predictions could poten-
tially be unsupervised by the teacher. Furthermore, and
as argued above, a compact student tends to struggle when
trained with prediction-to-prediction supervision, and such
a naive KD formulation still follows this approach. There-
fore, and as will be shown in our experiments, this naive
strategy often does not outperform the direct student train-
ing, in particular in the sparse 2D keypoints scenario. Be-
low, we therefore introduce a better-suited approach.

3.2. Aligning the Distributions of Local Predictions

In this section, we first discuss our general formula-
tion, and then specialize it to sparse keypoint prediction and
dense binary code prediction. As discussed above and illus-
trated in Figure 2, the number of student local predictions
Ns may differ from that of teacher local predictions N t,
preventing a direct match between the individual teacher
and student predictions. To address this, and account for
the observation that prediction-to-prediction supervision is
ill-suited to train the student, we propose to align the dis-
tributions of the teacher and student local predictions. We
achieve this using optimal transport, which lets us handle
the case where Ns ̸= N t. Formally, to allow the number of
student and teacher predictions to differ, we leverage Kan-
torovich’s relaxation [22] of the transportation problem.

Specifically, assuming that all the local predictions have
the same probability mass, i.e., 1

Nt for the teacher predic-
tions and 1

Ns for the student ones, we derive a distillation
loss based on Kantorovich’s optimal transport problem as

L̄kd(P
s, P t;π) = min

π

Ns∑
i=1

Nt∑
j=1

πij∥P s
i − P t

j ∥p

s.t. ∀i,
Nt∑
j=1

πij =
1

Ns
, ∀j,

Ns∑
i=1

πij =
1

N t
.

(2)

In our experiments, we found p = 2 to be more effective
than p = 1 and thus use the ℓ2 norm below.

The above formulation treats all local predictions
equally. However, different predictions coming from dif-
ferent cells in the feature maps might not have the same
degree of confidence. In particular, this can be reflected by
how confident the network is that a particular cell contains
the object of interest, or, in other words, by a segmentation
score predicted by the network. Let αs

i denote such a score
for cell i in the student network, and αt

j a similar score for
cell j in the teacher network. We then re-write our distilla-

tion loss as

L̃kd(P
s, P t;αs, αt;π) = min

π

Ns∑
i=1

Nt∑
j=1

πij∥P s
i − P t

j ∥2

s.t. ∀i,
Nt∑
j=1

πij = αs
i , ∀j,

Ns∑
i=1

πij = αt
j . (3)

In essence, because this loss involves both the local predic-
tions and the cell-wise segmentation scores, it distills jointly
the correspondence-related quantities and the segmentation
results from the teacher to the student.

To solve this optimal transport problem, we rely on
Sinkhorn’s algorithm [6], which introduces a soft versions
of the constraints via Kullback-Leibler divergence regular-
izers. This then yields the final distillation loss

Lkd(P
s, P t;αs,αt;π) = min

π

Ns∑
i=1

Nt∑
j=1

πij∥P s
i − P t

j ∥2

+ ε2KL(π, αs ⊗ αt) + ρ2KL(π1, αs)

+ ρ2KL
(
π⊤1, αt

)
, (4)

where αs and αt concatenate the segmentation scores for
the student and the teacher, respectively. This formulation
was shown to be amenable to fast parallel optimization on
GPU platforms, and thus well-suited for deep learning [6,8].

3.2.1 Keypoint Distribution Alignment

Let us now explain how we specialize the formulation in
Eq. 4 to the case of a network predicting sparse keypoints.
In particular, we consider the case of predicting the 2D lo-
cations of the 8 object bounding box corners [19–21, 33].
In this case, we consider separate costs for the 8 individual
keypoints, to prevent a 2D location corresponding to one
particular corner to be assigned to a different corner.

Let Cs
k and Ct

k denote the predictions made by the stu-
dent and the teacher, respectively, for the kth 2D keypoint
location. Then, we express our keypoint distribution distil-
lation loss as

Lkp
kd({C

s
k},{Ct

k};αs, αt; {πk})

=

8∑
k=1

Lkd(C
s
k, C

t
k;α

s, αt;πk).
(5)

In our experiments, we normalize the predicted 2D key-
points by the image size to the [0, 1]2 space, and set ε to
0.001 and ρ to 0.5 to handle outliers.

3.2.2 Dense Binary Code Distribution Alignment

To illustrate the case of dense local predictions, we rely
on the ZebraPose [40] formalism, which predicts a 16-
dimensional binary code probability vector at each cell of

18636



the final feature map. To further encode a notion of lo-
cation in this dense representation, we concatenate the x-
and y-coordinate in the feature map to the predicted vectors.
Handling such dense representations, however, comes at a
higher computational cost and memory footprint than with
the previous sparse keypoints. To tackle this, we therefore
average pool them over a small square regions.

Formally, let Bs and Bt represent the average-pooled
local augmented binary code probabilities predicted by the
student and teacher, respectively. Then, we write our dense
prediction distribution distillation loss as

Lbc
kd(B

s, Bt;αs, αt;π) = Lkd(B
s, Bt;αs, αt;π). (6)

where αs and αt also represent the average-pooled segmen-
tation scores for the student and teacher, respectively. In our
experiments, we use a pooling size of 8 × 8. Furthermore,
we set ε to 0.0001 and ρ to 0.1 to handle the outliers over
the dense predictions of the binary code probabilities.

3.3. Network Architectures

Our approach can be applied to any network that out-
put local predictions. In our experiments, we use WDR-
Net [21] for the sparse keypoint case and ZebraPose [40]
for the dense prediction one. WDRNet employs a feature
pyramid to predict the 2D keypoint locations at multiple
stages of its decoder network. These multi-stage predic-
tions are then fused by an ensemble-aware sampling strat-
egy, ultimately still resulting in 8 clusters of 2D locations,
i.e., one cluster per 3D bounding box corner. To make the
WDRNet baseline consistent with the state-of-the-art meth-
ods [7,28,40,45], we incorporate a detection pre-processing
step that provides an image patch as input to WDRNet. We
refer to this as WDRNet+. We will nonetheless show in
our experiments that the success of our distillation strategy
does not depend on the use of this detector. ZebraPose con-
stitutes the state-of-the-art 6D pose estimation method. It
predicts a binary code at each location in the feature map,
and uses these codes to build dense 2D-3D correspondences
for estimating 6D pose.

In our experiments, the teacher and student networks fol-
low the same general architecture, only differing in their
backbones. Note that different backbones may also yield
different number of stages in the WDRNet+ feature pyra-
mid, but our distribution matching approach to knowledge
distillation is robust to such differences. To train our WDR-
Net+ and ZebraPose networks, we rely on the standard
losses proposed in [21, 40]. When performing distillation
to a student network, we complement these loss terms with
our distillation loss of either Eq. 5, for the keypoint case,
or Eq. 6 for the dense binary code one. To implement the
losses, we rely on the GeomLoss library [8].

4. Experiments

In this section, we first discuss our experimental set-
tings, and then demonstrate the effectiveness and gener-
alization ability of our approach on three widely-adopted
datasets, LINEMOD [16], Occluded-LINEMOD [3] and
YCB-V [47]. Finally, we analyze different aspects of our
method and evaluate it on variations of our architecture.

4.1. Experimental Settings

Datasets. We conduct experiments on the standard
LINEMOD [16], Occluded-LINEMOD [3] and YCB-
V [47] 6D pose estimation benchmarks. The LINEMOD
dataset contains around 16000 RGB images depicting 13
objects, with a single object per image. Following [4],
we split the data into a training set containing around 200
images per object and a test set containing around 1000
images per object. The Occluded-LINEMOD dataset was
introduced as a more challenging version of LINEMOD,
where multiple objects heavily occlude each other in each
RGB image. It contains 1214 testing images. For train-
ing, following standard practice, we use the real images
from LINEMOD together with the synthetic ones provided
with the dataset and generated using physically-based ren-
dering [18]. YCB-V [47] is a large dataset containing 21
strongly occluded objects observed in 92 video sequences,
with a total of 133,827 frames.

Networks. For WDRNet+, we use DarkNet53 [35] as back-
bone for the teacher model, as in the original WDRNet [21].
For the compact students, we experiment with different
lightweight backbones, including DarkNet-tiny [34] and a
further reduced model, DarkNet-tiny-H, containing half of
the channels of DarkNet-tiny in each layer. For ZebraPose,
we use the pre-trained models of [40] with a ResNet34 [13]
backbone as teacher networks and use DarkNet-tiny as
backbone for the student networks.

Baselines. We compare our method to the direct train-
ing of the student without any distillation (Student), the
naive knowledge distillation strategy introduced in Sec-
tion 3.1 (Naive-KD), and the state-of-the-art feature distil-
lation method (FKD) [49], which, although only demon-
strated for object detection, is applicable to 6D pose estima-
tion. For these baselines, we report the results obtained with
the best hyper-parameter values. Specifically, for FKD, the
best distillation loss weight on all three datasets was 0.01;
for Naive-KD, the best weight was 0.1, and the best norm
was p = 1 for DarkNet-tiny and p = 2 for DarkNet-tiny-H,
respectively. For our method, the distillation loss was set to
5 for LINEMOD and to 0.1 for both Occluded-LINEMOD
and YCB-V. With ZebraPose, we conduct experiments on
Occluded-LINEMOD only because of its much larger com-
putational cost, taking many more iterations to converge
than WDRNet+ (380K VS 200K). We use a distillation
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Table 1. Results of DarkNet-tiny and DarkNet-tiny-H backbone on LINEMOD dataset with WDRNet+. We report the ADD-0.1d for
the baseline model, Naive-KD, FKD [49] and our KD method for each class. Our method not only outperforms Naive-KD and FKD, but
can also be combined with FKD to obtain a further performance boost, yielding state-of-the-art results.

Class Teacher DarkNet-tiny DarkNet-tiny-H

Student Naive-KD FKD Ours Ours+ Student Naive-KD FKD Ours Ours+

Ape 82.6 73.4 74.1 74.8 74.7 76.2 65.4 64.1 68.4 69.4 69.9
Bvise 95.5 95.2 95.4 94.2 95.5 96.7 92.0 91.4 92.8 93.8 93.7
Cam 93.8 91.2 89.7 91.3 91.3 92.0 78.4 79.1 83.8 84.5 84.5
Can 95.7 92.4 92.7 94.4 92.2 94.0 82.2 81.0 83.3 83.9 83.9
Cat 92.0 87.2 85.0 87.5 88.4 88.6 81.5 78.7 80.7 81.8 81.6

Driller 94.8 92.2 93.1 94.8 93.3 94.8 85.5 87.4 90.5 90.0 90.3
Duck 76.0 70.9 74.4 73.6 73.5 74.7 64.3 63.6 66.8 66.5 68.9

Eggbox∗ 99.1 99.3 98.7 98.9 99.1 99.3 95.8 95.0 96.3 96.4 96.4
Glue∗ 96.4 97.2 97.1 96.2 97.7 97.7 90.7 91.2 91.0 91.9 93.2
Holep 86.2 78.0 82.1 79.5 82.4 82.2 73.2 72.3 77.5 74.1 76.3

Iron 93.6 92.1 92.1 91.4 93.5 93.2 86.3 86.3 87.6 88.7 90.5
Lamp 97.7 96.6 95.3 96.9 97.0 96.8 93.6 94.2 93.4 94.8 94.6
Phone 91.2 87.5 88.4 89.4 88.2 89.6 76.0 75.8 80.6 78.2 79.2

AVG. 91.9 88.7 89.1 89.4 89.9 90.4 81.9 81.6 84.1 84.2 84.8
(↑ 0.4) (↑ 0.7) (↑ 1.2) (↑ 1.7) (↓ 0.3) (↑ 2.2) (↑ 2.3) (↑ 2.9)

† Ours+: Ours+FKD distills both the predictions and the intermediate feature maps.

weight of 1.0 for Naive-KD and of 100.0 for our method.
We provide the results of the hyper-parameter search in the
supplementary material.
Evaluation metric. We report our results using the stan-
dard ADD-0.1d metric. It encodes the percentage of images
for which the average 3D point-to-point distance between
the object model in the ground-truth pose and in the pre-
dicted one is less than 10% of the object diameter. For sym-
metric objects, the point-to-point distances are computed
between the nearest points. Note that, on LINEMOD, we
report the results obtained using the ground-truth 2D bound-
ing boxes to remove the effects of the pretrained detectors.
On Occluded-LINEMOD and YCB-V, we report the results
obtained with the same detector as in [7,40,45] to evidence
the effectiveness of our knowledge distillation method.

4.2. Experiments with WDRNet+

Let us first consider the case of 2D keypoints with WDR-
Net+. In this scenario, we compare our keypoint distribu-
tion alignment method with the Naive-KD and the state-of-
the-art feature distillation FKD with multiple student archi-
tectures on all three datasets.
Results on LINEMOD. We report the results of our method
and the baselines for all classes of the LINEMOD dataset
in Table 1 for DarkNet-tiny and DarkNet-tiny-H. While
Naive-KD slightly improves direct student training with the
DarkNet-tiny backbone, it degrades the performance with
DarkNet-tiny-H. This matches our analysis in Section 3; the
fact that the student’s and teacher’s active cells differ make
keypoint-to-keypoint distillation ill-suited.

Both FKD and our approach boost the student’s results,

Table 2. Results on OCC-LINEMOD with WDRNet+. We re-
port the ADD-0.1d for each class. Our method performs on par
with FKD [49], combining it with FKD yields a further perfor-
mance boost.

Class Teacher Student FKD Ours Ours+

Ape 33.4 25.5 26.7 25.7 26.9
Can 70.9 46.6 53.9 53.5 54.7
Cat 45.1 31.4 31.1 32.2 32.9

Driller 70.9 51.2 52.1 52.9 52.9
Duck 27.0 22.5 25.3 25.7 27.0

Eggbox∗ 53.7 43.4 49.0 48.2 50.0
Glue∗ 70.7 54.5 55.6 55.8 56.9
Holep 59.7 49.3 52.2 52.1 54.5

AVG. 53.9 40.5 43.2 43.2 44.5
(↑ 2.7) (↑ 2.7) (↑ 4.0)

with a slight advantage for our approach. In particular
the accuracy improvement is larger, i.e., 2.3 points, for the
smaller DarkNet-tiny-H backbone, for which the gap be-
tween the student and the teacher performance is also big-
ger. Note that the improvement of our approach over the
student is consistent across the 13 objects. Interestingly, the
types of distillation performed by FKD and by our approach
are orthogonal; FKD distills the intermediate features while
we distill the predictions. As such, the two methods can be
used together. As can be seen from the table, this further
boosts the results, reaching a margin over the student of 1.7
points and 2.9 points with DarkNet-tiny and DarkNet-tiny-
H, respectively, and thus constituting the state of the art on
the LINEMOD dataset for such compact architectures.
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Table 3. Average results on YCB-V with WDRNet+. Our
method outperforms FKD [49] and further boosts the performance
combining with it.

Teacher Student FKD Ours Ours+

46.9 16.1 17.4 18.7 19.2
(↑ 1.3) (↑ 2.6) (↑ 3.1)

Table 4. Results on OCC-LINEMOD with ZebraPose [40] We
report the ADD-0.1d for each class. Our method outperforms
Naive-KD and FKD with ZebraPose, showing the generality of
our approach to the dense prediction based method.

Class Teacher Student Naive-KD FKD Ours

Ape 57.9 47.2 51.1 51.3 52.0
Can 95.0 93.2 93.5 94.5 94.2
Cat 60.6 53.1 53.9 54.2 55.2

Driller 94.8 90.3 90.0 89.9 90.4
Duck 64.5 57.2 60.7 60.6 61.0

Eggbox∗ 70.9 69.6 70.0 70.2 70.7
Glue∗ 88.7 84.1 83.7 83.8 84.3
Holep 83.0 75.8 78.3 78.2 78.8

AVG. 76.9 71.4 72.6 72.8 73.3
(↑ 1.2) (↑ 1.4) (↑ 1.9)

Results on Occluded-LINEMOD. Let us now evaluate
our method on the more challenging Occluded-LINEMOD.
Here, we use only FKD [49] as baseline and drop Naive-KD
due to its inferior performance shown before. The results
are provided in Table 2. Our keypoint-based knowledge dis-
tillation method yields results on par with the feature-based
FKD on average. Note, however that FKD requires design-
ing additional adaptive layers to match the misaligned fea-
ture maps, while our method does not incur additional pa-
rameters. More importantly, jointly using our method with
FKD achieves the best results with 4.0 points improvements
over the baseline student model. For some classes, such as
can, eggbox and holepuncher, the boost surpasses 5 points.
Results on YCB-V. The results on the large YCB-V
datasets are provided in Table 3. Our method outperforms
the baseline and FKD by 2.6 and 1.3 on average. Moreover,
the performance is boosted to 19.2 with Ours+FKD. These
results further evidence the effectiveness of our method.

4.3. Experiments with ZebraPose

In Table 4, we show the effectiveness of our method
when applied to the SOTA dense prediction network Zebra-
Pose [40]. We compare our knowledge distillation strategy
with the Naive-KD and FKD. In this dense prediction case,
Naive-KD and FKD improve the baselines. Nevertheless, as
evidenced by the results, our approaches outperforms both
Naive-KD and FKD by 0.7 and 0.5 on average, respectively.
This shows the generality of our KD method based on the
alignment of local prediction distributions.

Table 5. Ablation study on LINEMOD: With vs without seg-
mentation scores.

Model #Param(M) ADD-0.1d

WDRNet+(tiny) 8.5 88.7
Ours-NoScores 8.5 89.1

Ours 8.5 89.9

WDRNet+(tiny-H) 2.3 81.9
Ours-NoScores 2.3 83.1

Ours 2.3 84.2

4.4. Additional Analysis

Let us now further analyze the behavior of our knowl-
edge distillation. The experiments in this section were per-
formed using WDRNet+ on the LINEMOD dataset.
With vs without segmentation scores. We compare the
results of our approach without and with the use of the seg-
mentation scores in the optimal transport formulation, i.e.,
Eq. 2 vs Eq. 3. The comparison in Table 5 shows the ben-
efits of jointly distilling the local predictions and the seg-
mentation scores.
Without detection pre-processing. Note that we incorpo-
rated the pre-processing detection step in WDRNet only be-
cause it has been shown to boost the pose estimation results.
However, the success of our knowledge distillation strategy
does not depend on it. To demonstrate this, in the left por-
tion of Table 6, we report the results of our approach applied
to the original WDRNet with a DarkNet-tiny backbone. As
a matter of fact, the gap between direct student training and
our approach is even larger (1.2 vs 2.1), showing the bene-
fits of our approach on weaker networks.
With a simple PnP network. In the right portion of Ta-
ble 6, we compare the results of our approach with those of
the baselines on an architecture obtained by incorporating a
simple PnP network at the end of WDRNet, following the
strategy of [19]. With such an architecture, the 2D keypoint
locations only represent an intermediate output of the net-
work, with the PnP module directly predicting the final 3D
translation and 3D rotation from them. As can be seen from
these results, our distillation strategy still effectively boosts
the performance of the student with this modified architec-
ture, further showing the generality of our approach, which
can distill keypoint-based knowledge both for PnP solvers
and PnP networks.
Qualitative analysis. We further provide visual compar-
isons of the predicted 2D keypoints distributions obtained
with the baseline student model and with our distilled model
on several examples from Occluded-LINEMOD. As shown
in Figure 3, the predicted 2D keypoints clusters from our
distilled models are closer to the ground-truth object corners
than those of the baseline model. Furthermore, our distilled
model mimics the teacher’s keypoints distributions.
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Student OursTeacher

Figure 3. Qualitative Analysis (better viewed in color). Comparison of the 2D keypoints predicted with our distilled model (3rd column
with orange dots) and the baseline student model (2nd column with blue dots). With our distillation method, the model predicts tighter
keypoint clusters, closer to the ground-truth corners (pink crosses) than the baseline model. Furthermore, our distilled model is able to
mimic the teacher’s keypoint distributions (1st column with orange dots). The light-green boxes highlight some keypoint clusters, which
are also zoomed in on the side of the image.

Table 6. Evaluation under different network settings on
LINEMOD. We report the ADD-0.1d with the original WDRNet
framework [21] and with an additional simple PnP network [19].
Our method improves the performance of the student network in
both settings.

Class WDRNet WDRNet + PnPNet

Teacher Student Ours Teacher Student Ours

Ape 70.3 41.2 43.0 50.6 29.4 35.1
Bvis 94.2 81.5 86.1 91.7 72.9 80.8
Cam 89.0 67.6 69.8 90.5 56.1 73.3
Can 90.6 72.1 73.8 88.3 57.5 75.9
Cat 87.1 54.3 61.5 62.5 61.8 48.5

Driller 93.6 78.3 79.3 87.1 68.6 71.9
Duck 64.5 35.9 39.6 38.1 32.0 39.6

Eggbox∗ 95.4 79.3 83.8 99.3 91.8 96.6
Glue∗ 93.4 83.4 82.7 92.8 87.3 92.2
Holep 77.1 44.2 46.9 70.9 46.4 49.9

Iron 90.9 75.8 75.1 93.3 76.1 80.3
Lamp 96.3 84.8 86.8 95.8 68.7 87.2
Phone 85.3 69.6 67.3 92.3 57.0 76.6

AVG. 86.7 66.8 68.9 81.0 62.0 69.8
(↑ 2.1) (↑ 7.8)

Limitations. Because of the OT algorithm, training with
our method comes with an overhead. Note, however, that
we have observed this to have a negligible impact on the ac-
tual training clock time. Furthermore, inference comes with
no additional cost, and our distilled student model yields
better performance. We have also observed that differ-

ent classes benefit differently from distillation. This raises
the possibility of designing class-wise distillation strategy,
which we believe could be an interesting direction to ex-
plore in the future.

5. Conclusion
We have introduced the first approach to knowledge dis-

tillation for 6D pose estimation. Our method is driven by
matching the distributions of local predictions from a deep
teacher network to a compact student one. We have formu-
lated this as an optimal transport problem that lets us jointly
distill the local predictions and the classification scores that
segment the object in the image. Our approach is general
and can be applied to any 6D pose estimation framework
that outputs multiple local predictions. We have illustrated
this with the sparse keypoint case and the dense binary code
one. Our experiments have demonstrated the effectiveness
of our method and its benefits over a naive prediction-to-
prediction distillation strategy. Furthermore, our formalism
is complementary to feature distillation strategies and can
further boost its performance. In essence, our work con-
firms the importance of developing task-driven knowledge
distillation methods, and we hope that it will motivate oth-
ers to pursue research in this direction, may it be for 6D
pose estimation or for other tasks.
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Wasserstein Generative Adversarial Networks. In Interna-
tional Conference on Machine Learning, 2017. 3
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Shun-ichi Amari, Alain Trouve, and Gabriel Peyré. Interpo-
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