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Bridging Gaps in Content and Knowledge for Multimodal Entity
Linking
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ABSTRACT
Multimodal Entity Linking (MEL) aims to address the ambiguity in
multimodal mentions and associate them with Multimodal Knowl-
edge Graphs (MMKGs). Existingworks primarily focus on designing
multimodal interaction and fusion mechanisms to enhance the per-
formance ofMEL. However, thesemethods still overlook two crucial
gaps within the MEL task. One is the content discrepancy between
mentions and entities, manifested as uneven information density.
The other is the knowledge gap, indicating insufficient knowledge
extraction and reasoning during the linking process. To bridge
these gaps, we propose a novel framework FissFuse, as well as a
plug-and-play knowledge-aware re-ranking method KAR. Specifi-
cally, FissFuse collaborates with the Fission and Fusion branches,
establishing dynamic features for each mention-entity pair and
adaptively learning multimodal interactions to alleviate content
discrepancy. Meanwhile, KAR is endowed with carefully crafted in-
struction for intricate knowledge reasoning, serving as re-ranking
agents empowered by Large Language Models (LLMs). Extensive
experiments on two well-constructed MEL datasets demonstrate
outstanding performance of FissFuse compared with various base-
lines. Comprehensive evaluations and ablation experiments validate
the effectiveness and generality of KAR.

CCS CONCEPTS
• Information systems → Multimedia information systems;
Multimedia databases; Information retrieval.

KEYWORDS
Multimodal Entity Linking, Multimodal Knowledge Graph, Multi-
modal Fusion, Content Discrepancy

1 INTRODUCTION
Multimodal Entity Linking (MEL), playing a crucial role in
associating internet content with multimodal knowledge graphs
(MMKGs) [7, 16, 22, 33], has garnered increased attention and facil-
itated numerous knowledge-intensive applications, such as visual
question answering [19, 26] and semantic search [15]. Compared
with traditional text-based EL task [4, 8], MEL could effectively
leverage visual cues to alleviate the issue of mention ambiguity. For
instance, although Figure 1 illustrates that the mention "Hussein"
in the sentence could refer to multiple entities, such as "Hussein of
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简明扼要的阐述您的观点。

单击此处添加文本具体内容，
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Hussein with American president Jimmy 
Carter, Iranian Shah Mohammad Reza 
and Shahbanu Farah, 31 December 1977.

Multimodal Mention

Hussein with American president Jimmy 
Carter, Iranian Shah Mohammad Reza 
and Shahbanu Farah, 31 December 1977.

Multimodal Mention
Hussein of Jordan (Q146906)
Hussein bin Talal (November 1935 – 7
February 1999) was King of Jordan from 11
August 1952 until his death in 1999. As a
member of the Hashemite dynasty, ……

Saddam Hussein (Q328765)
Taha Hussein (November 15, 1889 – October
28, 1973) was one of the most influential
20th-century Egyptian writers and
intellectuals, and a figurehead for the……

Hussein Onn (Q529391)
Tun Hussein bin Dato‘ Onn (Jawi: نبنیسح

12;نوع February 1922 – 29 May 1990) was a
Malaysian lawyer and politician who served
as the third Prime Minister of Malaysia ……

Hussein of Jordan (Q146906)
Hussein bin Talal (November 1935 – 7
February 1999) was King of Jordan from 11
August 1952 until his death in 1999. As a
member of the Hashemite dynasty, ……

Taha Hussein (Q328765)
Taha Hussein (November 15, 1889 – October
28, 1973) was one of the most influential
20th-century Egyptian writers and
intellectuals, and a figurehead for the……

Hussein bin Ali (Q128906)
Hussein bin Ali al-Hashimi (May 1854 – 4
June 1931) was an Arab leader from the Banu
Qatadah branch of the Banu Hashim clan who
was the Sharif and Emir of Mecca from ……

Figure 1: Illustration of MEL task. Left: multimodal mention.
Right: candidate entities.

Jordan" and "Taha Hussein", with the assistance of visual informa-
tion, one can more easily discern that the entity "Hussein of Jordan"
better aligns with "Hussein".

Therefore, for the MEL task, integrating visual/textual features
is an intuitive and effective approach for disambiguation [1, 20].
Towards this goal, a series of research efforts explore how to lever-
age the interaction and fusion of multimodal features [18, 38, 41]
to achieve more precise disambiguation. Despite steady progress
and performance improvements demonstrated in various bench-
marks [34, 35], however, these studies unintentionally overlook
two crucial issues:

• Content Discrepancy. As depicted in Figure 1, the brevity and
contextual conciseness of mentions sharply contrast with the
detailed and exhaustively descriptive nature of entities, for both
textual and visual cues. Moreover, the mention images encom-
pass a broader context by including multiple objects and scenes,
whereas entities require a more centralized focus on a specific
object. In this case, the disparity in content causes severe in-
formation mismatch between the scene-aware mention images
and object-centric entities, which in turn undermines the effec-
tiveness of fusion-based approaches. Consequently, this poses a
significant challenge in dynamically and adaptively adjusting to
the imbalanced multimodal information presented in mentions
and entities.

• Insufficient Knowledge Utilization. Most existing MEL meth-
ods usually employ pre-trained languagemodels, such as BERT [5],
to encode textual contents before measuring mention-entity
alignment. They are confined to encoding lengthy textual con-
tent without sufficient knowledge reasoning, resulting in the
potential loss of crucial information. For example, if one notices
the underlined dates in Figure 1, it is easy to eliminate candi-
date entities "Taha Hussiein" and "Hussein bin Ali". Although
the recent success in Large Language Models (LLMs) [23, 30, 31]
showcasing capabilities in knowledge storage and reasoning,
these capabilities are not fully utilized. Therefore, it is necessary
to design a LLM-oriented knowledge-aware strategy to support
the sufficient knowledge reasoning.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To narrow the gaps and address the challenges, in this paper, we
propose a novel MEL method FissFuse as well as a plug-and-play
knowledge-aware re-ranking strategy KAR. Specifically, FissFuse
begins with extracted unified multimodal representations of men-
tions and entities. Then, in two branches, namely Fission Branch
and Fusion Branch, we dynamically and adaptively enrich the rep-
resentations in different views of interaction. In the Fission branch,
we utilize cross-attention mechanism to flexibly establish dynamic
features for each mention-entity pair, allowing the same mention to
dynamically vary with different entities, and vice versa for entities
in various mention contexts. As for the Fusion branch, we adap-
tively construct fused representations, leveraging semantically rich
modality to compensate for deficient one. The two branches jointly
encourage ample feature intertwining across different scenarios.
Finally, we regard LLMs as re-ranking agents. We devise a univer-
sal re-ranking strategy to optimize initial entities ranking by fully
leveraging the internal entity knowledge and reasoning capability
of LLMs. In summary, our main contributions are threefold:

• We investigate the issue of content discrepancy in the MEL task
and propose the FissFuse framework, which can dynamically
and adaptively fuse features of different modalities, sources, and
granularities for disambiguation.

• To address the issue of knowledge gap, we devise a plug-and-play
re-ranking module KAR. It leverages the reasoning capabilities of
LLMs as a re-ranking agent, enabling seamless integration with
existing LLMs to improve MEL task performance.

• Experimental results show that our approach achieves state-of-
the-art performance on prevalent datasets. Comprehensive abla-
tion studies further validate the effectiveness and generality of
the proposed FissFuse and KAR.

2 RELATEDWORK
Neural Entity Linking. Neural entity linking [27] is aim to dis-
ambiguate mentions and associate them with entities of knowledge
base. The early methods focused on text modality and utilized
pre-trained embedding to capture relevance between mention and
entity with CNN and LSTM [10, 11, 29]. With the popularity of
Transformer [32], many research emerged and these methods could
be divided into two steams based on the scope of contextual infor-
mation: local and global. The former methods disambiguate men-
tion based on its surrounding sentence. They utilized pre-trained
BERT [5] with knowledge attention [24], proposed two-state en-
coders [37], and incorporated generative model BART [13] into
entity linking [3]. The latter consider relationship among mentions
and disambiguate them collectively via converting it into a sequence
decision problem [6] and introducing GCN architecture to collec-
tively identify the mappings [36]. However, these methods cannot
leverage visual information for disambiguation, limiting their per-
formance in multimodal contexts. The pioneering research from
Moon et al. [21] proposed integrating visual features into the entity
linking process to mitigate ambiguity in social media. Subsequently,
research focused on multimodal fusion within the mention and
entity context for different goals via concatenation [1, 42], diverse
attention mechanisms [34, 40, 41]. These methods unintention-
ally ignore the interaction between mentions and entities. Recent

studies [18, 38] explored dynamic feature interaction between mul-
timodal features. MIMIC [18] designed three interaction units to
model the feature interaction between mention-entity and textual-
visual, but its focused is on using entity attributes to complement
short texts and implicit visual cues. This is significantly different
from the content discrepancy we want to explore. DRIN [38] is the
most relevant work to our research. It used graph neural networks
to model the interactions between different mentions and entities.
However, they did not explore how to leverage fine-grained features,
which may lead to suboptimal results. Our work enables adaptive
interaction among various modalities, sources, and granularities of
features, setting it apart from these methods.
Large Language Models. Recently, LLMs [31, 43] have become a
major research focus, demonstrating powerful capabilities in con-
tent comprehension and reasoning. For MEL task, [28] explored
visual instruction fine-tuning and constrained decoding for genera-
tive disambiguation. However, how to seamlessly integrate existing
languagemodels intoMEL tasks and fully leverage their advantages,
while avoiding expensive and cumbersome fine-tuning, remains to
be explored.

3 METHODOLOGY
3.1 Problem Definition
We formulate the MEL task following the previous works [34, 38].
Formally, given a multimodal mention𝑀𝑖 composed of a sentence
𝑚𝑡 and an image𝑚𝑣 , there is a set of candidate entities 𝐶 (𝑀𝑖 ) ={
𝐸 𝑗 = (𝑒𝑡 , 𝑒𝑣)

}𝑁
𝑗=1, where 𝑒𝑡 represents entity description, 𝑒𝑣 de-

notes entity image and 𝑁 is the number of candidate entities. MEL
task aims to retrieve the ground truth entities 𝐸∗

𝑖
based on the

similarity between mention and each candidate entity, i.e,

𝐸∗𝑖 = argmax
𝐸 𝑗 ∈𝐶 (𝑀𝑖 )

sim𝜃 (𝑀𝑖 , 𝐸 𝑗 ), (1)

where sim𝜃 (·, ·) is the similarity function and 𝜃 represents the
learnable parameter of the function.

3.2 Feature Encoding
We start with feature encoding to introduce how we construct
sim𝜃 (·, ·) function. We first extract textual and visual features for
both mentions and entities with pre-trained models. Specifically, we
employ a frozen text encoder Enc𝑇 (·) and a frozen image encoder
Enc𝑉 (·). We add trainable linear layers with layer normalization [2]
to convert the dimension of the features. This process can be illus-
trated as,

F𝑇𝑚, F𝑉𝑚 = Enc𝑇 (𝑚𝑡 ), Enc𝑉 (𝑚𝑣),

F𝑇𝑒 , F
𝑉
𝑒 = Enc𝑇 (𝑒𝑡 ), Enc𝑉 (𝑒𝑣) .

(2)

Here, F𝑇𝑚, F𝑇𝑒 ∈ R𝐿×𝑑 represent sequential text features for the
mention sentence and entity description, respectively, and 𝑇 is text
length. Similarly, F𝑉𝑚, F𝑉𝑒 ∈ R𝑃×𝑑 denote image patch features for
mention and entity respectively, and 𝑃 is the number of image
patches. The features can be regarded as fine-grained local features.
In addition, it is crucial to obtain coarse-grained global features for
a comprehensive understanding of semantics. This can be achieved
using special tokens ([CLS] and [EOS]) of the encoders, or applying
mean pooling over the hidden states. Consequently, we obtain
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Figure 2: Schematic illustration of the proposed FissFuse (Section 3.3) and KAR (Section 3.4).

f𝑇𝑚, f𝑉𝑚, f𝑇𝑒 , f𝑉𝑒 ∈ R𝑑 , providing minimal loss of semantics while
enhancing the overall contextual understanding.

3.3 FissFuse Framework
Previous research mainly focuses on fine-grained multimodal in-
teractions and fusion. However, they may be affected by content
discrepancy between mentions and entities. Additionally, the static
encoding, where the same mention is encoded identically for differ-
ent entities, exacerbates the impact of discrepancy. To address this
issue, the two branches of FissFuse jointly collaborate to facilitate
ample feature intertwining. In the Fission branch, our fundamental
insight is to establish dynamically adaptive mention-entity rep-
resentations, allowing the same mention to vary with different
entities. As for the Fusion branch, we employ flexible modality
complementary to alleviate content discrepancy between mentions
and entities. We combine the two branches with multiple alignment
scores. The overview of FissFuse framework is depicted in Fig. 2.

3.3.1 Fission Branch. In the Fission branch, our objective is to
establish dynamic representations for each mention based on dif-
ferent entities, and vice versa for each entity based on different
mentions.We elaborate on the overall process using textual features,
and a similar procedure is applied to visual features. Specifically,
we first obtain the distinctive representations of sequential features
via a multi-pooling operation, as pooling offers a mapping view
of original features. This process is mathematically formulated as
follows:

f𝑇1𝑚 , f𝑇2𝑚 = max(F𝑇𝑚), avg(F𝑇𝑚),

f𝑇1𝑒 , f𝑇2𝑒 = max(F𝑇𝑒 ), avg(F𝑇𝑒 ),
(3)

where max and avg represent pooling operations along the se-
quence length (or image patch) dimension. Then, we integrate
global features into the distribution features as follows,

h𝑇𝑚 = MLP
(
[f𝑇1𝑚 | |f𝑇2𝑚 | |f𝑇𝑚]

)
,

h𝑇𝑒 = MLP
(
[f𝑇1𝑒 | |f𝑇2𝑒 | |f𝑇𝑒 ]

)
,

(4)

in which MLP denotes multi-layer perceptron, characterized by
two linear layers and ReLU activation function between them, and

[·| |·] represents concatenate operation. Thus, we derive the com-
prehensive contextual representation for the mention sentence and
entity description. We further capture the detailed correlation and
mitigate the textual content gap between mention and entities via
cross-attention mechanism:

h𝑇
′

𝑚→𝑒 = Cross-Attention(h𝑇𝑚, F𝑇𝑒 ),

h𝑇𝑚→𝑒 = LayerNorm(h𝑇
′

𝑚→𝑒 + h𝑇𝑚),
(5)

where h𝑇𝑚→𝑒 represents textual feature of mention relative to the
entity. Importantly, this suggests that the representations of a single
mention vary dynamically across different entities. We also obtain
the entity feature under the mention context as follows:

h𝑇
′

𝑒→𝑚 = Cross-Attention(h𝑇𝑒 , F𝑇𝑚),

h𝑇𝑒→𝑚 = LayerNorm(h𝑇
′

𝑒→𝑚 + h𝑇𝑒 ).
(6)

Similarly, following the process Eq.3 - Eq.6 by replacing textual
features with visual features, we can get visual vector h𝑉𝑚→𝑒 , h𝑉𝑒→𝑚 .
Then, we combine the two modalities features with two MLPs:

h∗𝑚→𝑒 = MLP( [h𝑇𝑚→𝑒 | |h𝑉𝑚→𝑒 ]),

h∗𝑒→𝑚 = MLP( [h𝑇𝑒→𝑚 | |h𝑉𝑒→𝑚]).
(7)

Finally, we calculate the similarity score from different perspectives:

S𝑇
1 = h𝑇𝑚→𝑒 ⊙ h𝑇𝑒→𝑚,

S𝑉
1 = h𝑉𝑚→𝑒 ⊙ h𝑉𝑒→𝑚,

S∗
1 = h∗𝑚→𝑒 ⊙ h∗𝑒→𝑚,

(8)

where ⊙ indicates dot-product operation.

3.3.2 Fusion Branch. In the Fission branch, our objective is to
further alleviate the content gap between mentions and entities by
establishing an adaptive multimodal feature interaction, allowing
semantically rich modality to complement semantically deficient
one. We elaborate on the processing of mention features in detail,
and a similar procedure is applied to entity features. Specifically, we
first adaptively fuse global features with two different MLPs. Then,
we utilize attention mechanism and skip connection to capture both
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Question: In the mention context, which candidate entity could
“{{mention}}” refer to? Pay attention to the literal meaning, don‘t
imagine or embellish. {{select one prompt}} / {{rank topk prompt}}

rank topk format:= {"<ENTITY_ID>": 
["<ENTITY_NAME>", 
PROBABILITY_VALUE], ...,}

rank topk prompt:= Please "sort" the 
following candidate entities according 
the probability from high to low.

select one format:= {"<ENTITY_ID>": 
"<ENTITY_NAME>"}

select one prompt:= Please "select" 
the most likely one from the following 
candidate entities.

Please directly answer the question in JSON format, and do not
explain the reason.

Candidate Entities (<ENTITY_ID>: <ENTITY_NAME>):
ID0: {{ENTITY0_NAME}}
ID1: {{ENTITY1_NAME}}
(more entities)

Mention Context: {{sentence}}

Organize response with <ENTITY_ID> and <ENTITY_NAME> in
JSON format like:
{{select one format}} / {{rank topk format}}

Select One Rank Top-K

Prompt Instruction

Figure 3: Instructions of two re-ranking strategies.

textual-visual and visual-textual semantics, i.e.,

x1𝑚 = MLP1 ( [f𝑇𝑚 | |f𝑉𝑚]),

x𝑇
′

𝑚 = Cross-Attention(x1𝑚, F𝑇𝑚),

x𝑇𝑚 = LayerNorm(x𝑇
′

𝑚 + x1𝑚),

x2𝑚 = MLP2 ( [f𝑇𝑚 | |f𝑉𝑚]),

x𝑉
′

𝑚 = Cross-Attention(x2𝑚, F𝑉𝑚),

x𝑉𝑚 = LayerNorm(x𝑉
′

𝑚 + x2𝑚).

(9)

With the guidance of adaptively fused features, these opera-
tions imply adaptively capturing correlations between different
modalities and supplementing the semantically deficient modality.
Similarly, based on Eq.9 , we can also obtain relevant representa-
tions x𝑇𝑒 and x𝑉𝑒 for entity. Subsequently, we employ MLP fusion on
both mention features and entity features, resulting in x∗𝑚 and x∗𝑒 .
After obtaining these features, we estimate the similarity between
mention and entity as follows:

S𝑇
2 = x𝑇𝑚 ⊙ x𝑇𝑒 ,

S𝑉
2 = x𝑉𝑚 ⊙ x𝑉𝑒 ,

S∗
2 = x∗𝑚 ⊙ x∗𝑒 .

(10)

3.3.3 Similarity and Loss Function. The symmetrical design
of the two branches introduces comparable features as well as
similarity measurements from different perspectives. We opt for
a straightforward approach of averaging scores from these two
branches as the basis for ranking candidate entities:

sim𝜃 (𝑀𝑖 , 𝐸 𝑗 ) = S𝑖 𝑗 =
1
6

∑︁
𝑘∈{1,2}

∑︁
𝑙 ∈{𝑇 ,𝑉 ,∗}

S𝑙
𝑘
(𝑖, 𝑗). (11)

To minimize the model’s error, we introduce cross-entropy loss to
jointly optimize each similarity score, ensuring higher scores for
the correct entities and lower scores for incorrect entities, which is

Table 1: Statistics of WikiMEL and WikiDiverse.

Statistic WikiMEL WikiDiverse

# mention in train 18,092 12,268
# mention in valid 2,585 1,459
# mention in test 5,169 1,459
# mention in total 25,846 15,186
# candidate 100 10
# avg. length 10.13 8.20

defined as follows:

L(S𝑙
𝑘
) = − 1

|𝑀 |

|𝑀 |∑︁
𝑖=1

log(
exp(S𝑙

𝑘
(𝑖, 𝑗∗))∑𝑁

𝑗=1 exp(S𝑙
𝑘
(𝑖, 𝑗))

),

LFinal =
∑︁

𝑘∈{1,2}

∑︁
𝑙 ∈{𝑇 ,𝑉 ,∗}

L(S𝑙
𝑘
),

(12)

where S𝑙
𝑘
(𝑖, 𝑗∗) represents the score of the ground truth entity for

the i-th mention. In this way, we encourage consistent judgments
across different scores to facilitate the collaboration of the two
branches.

3.4 Knowledge-aware Re-ranking
Calculating the similarity between the encoding of mentions and
entities provides reliable results. However, as mentioned before,
this approach is still confined to encoding rather than reasoning,
and thus may not fully leverage entity knowledge. Recent advance-
ments in LLMs have demonstrated their powerful capabilities in
knowledge storage and reasoning. Inspired by this, we propose a
universal and plug-and-play knowledge-aware re-ranking (KAR)
method to further enhance the performance of entity linking. Specif-
ically, given a mention, we first obtain the initial candidate entities
ranking based on the scores S from Eq.11. Then we select top-k en-
tities to construct instructions to ask LLM to re-rank these entities.
As shown in Fig. 3, we tailor two types of instructions: one directly
asking for the sorting of the top-k entities (rank top-k), and the
other requesting the selection of the most suitable entity from the
top-k entities (select one). Finally, we re-rank the top-k candidate
entities based on the sequential order of entity IDs in the LLM’s
response.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We conducted extensive experiments on two well-
constructed publicly datasets,WikiMEL [34] andWikiDiverse [35].
WikiMEL is a human-verified dataset that is collected fromWikipedia
entity pages. WikiDiverse is a manually annotated dataset collected
from Wikinews, featuring a wide array of contextual topics and a
diverse range of entity types. We notice some other datasets, but
they are not available for some reasons. Twitter-MEL [21] used
Twitter API to collect Twitter posts, but we cannot be completely
reproduced due to the expiration of Twitter content. Gan et al.
[9] proposed M3EL dataset containing movie reviews and movie-
related images. To the best of our knowledge, they only released
image features instead of raw images, which brings difficulty for
comparisons with other baselines. Yang et al. [39] constructed a
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Table 2: Performance comparison. ∗ means the p-value of t-test compared with MIMIC is lower than 0.001. The best results are
highlighted in bold and the second best are underlined. † denotes generative model that typically produce one result, only
calculating H@1. FissFuse(B+R) means replacing the backbone with bert-base-uncased and Resnet-101.

Dataset WikiMEL WikiDiverse Avg.

Metric H@1↑ H@2↑ H@3↑ MR↓ MRR↑ H@1↑ H@2↑ H@3↑ MR↓ MRR↑ H@1↑ MRR↑

BERT [5] 39.95 53.68 61.31 6.36 54.07 57.08 74.57 84.32 2.12 72.03 48.52 63.05
BLINK [37] 36.00 49.54 57.52 7.54 50.36 56.30 73.40 82.69 2.19 71.19 46.15 60.78
GENRE [3]† 60.10 - - - - 78.00 - - - - 69.05 -

ViLT [12] 79.40 84.08 85.65 3.41 83.80 40.27 58.17 68.49 2.91 58.38 59.84 71.09
ALBEF [14] 55.12 65.98 76.32 3.42 68.76 59.14 76.40 86.20 2.00 73.70 57.13 71.23
CLIP [25] 81.53 89.97 93.15 1.78 87.89 61.12 79.70 89.16 1.88 75.61 71.33 81.75

DZMNED [20] 39.41 50.97 57.90 7.77 52.13 29.11 47.37 61.16 3.53 49.53 34.26 50.83
JMEL [1] 47.99 63.60 71.68 4.33 62.42 51.55 68.08 78.49 2.47 67.15 49.77 64.79
MEL-HI [42] 30.86 45.26 54.73 6.22 47.18 53.88 70.59 80.00 2.36 69.01 42.37 58.10
GHMFC [34] 56.69 72.99 80.61 2.91 70.45 55.71 72.35 80.94 2.30 70.31 56.20 70.38
DRIN [38] 66.05 79.81 85.39 2.11 80.84 49.43 66.90 77.17 1.83 57.21 57.74 69.02
MIMIC [18] 81.62 90.29 93.58 1.77 88.05 67.90 85.14 92.63 1.62 80.57 74.76 84.31

GPT-3.5† 73.80 - - - - 72.70 - - - - 73.25 -
GEMEL [28]† 75.20 - - - - 80.20 - - - - 77.70 -
GEMEL(16 shots) 82.60 - - - - 86.30 - - - - 84.45 -

FissFuse 84.80∗ 92.37∗ 95.05∗ 1.61∗ 90.26∗ 80.30∗ 91.42∗ 95.34∗ 1.39∗ 88.11∗ 82.55 89.18
FissFuse(B+R) 73.68 85.64 90.48 2.06 82.78 72.37 87.51 92.99 1.57 83.15 73.02 82.96
FissFuse+KAR 87.89 93.42 95.36 1.54 92.02 83.29 92.53 95.89 1.35 89.81 85.59 90.92

new dataset NYTimes-MEL but the dataset is not publicly avail-
able. RichpediaMEL was built from the multimodal knowledge
graph Richpedia [33], but Richpedia was no longer maintained1,
so we were unable to access the original data. We used the data
processed by Xing et al. [38] instead of Luo et al. [18] because they
provided data processing scripts2 and each mention contains more
candidate entities3. The statistics of WikiMEL and WikiDiverse are
summarised in Table 1.

4.1.2 Baselines and Evaluations. We compared our method
with three types of baselines. The text-based EL methods include
BERT [5], BLINK [37] and GENRE [3]. The Vision-Language Pre-
trained methods contain ViLT [12], ALBEF [14] and CLIP [25].
The MEL methods include DZMNED [20], JMEL [1], MEL-HI [42],
GHMFC [34], DRIN [38] and MIMIC [18]. The LLM methods con-
tain GPT-3.5-turbo and GEMEL [28]. Following baselines, we re-
ported hits rate of the top-k (H@K), the mean rank (MR) among N
candidate entities, and the mean reciprocal rank (MRR) among N
candidate entities. The metrics are defined as follows:

H@k =
1
|𝑀 |

|𝑀 |∑︁
𝑖

I(rank𝑁𝑖 ≤ 𝑘),

MR =
1
|𝑀 |

|𝑀 |∑︁
𝑖

rank𝑁𝑖 ,

MRR =
1
|𝑀 |

|𝑀 |∑︁
𝑖

1
rank𝑁𝑖

,

(13)

1http://rich.wangmengsd.com/
2https://github.com/starreeze/drin-dataset
3This lead to some differences in the results compared to those reported by Luo et al.
[18].

where I is the indicator function, |𝑀 | indicates the number of men-
tions, rank𝑁𝑖 denotes the ranking for the ground truth entity of the
i-th sample among N candidate entities. N is set to 100 for WikiMEL
and 10 for WikiDiverse respectively.

4.1.3 Implementations. We initialized the encoder with pre-
trained CLIP-ViT-B/32. The maximal textual input length was set to
64. The dimension 𝑑 of the network was set to 100. We implemented
our method with PyTorch and trained the model with 2 GeForce
RTX 3090 GPUs.We used AdamW [17] as the optimizer with a batch
size of 128 per GPU. The number of epochs was set to 20 and 30,
the learning rate was set to 4× 10−5 and 3× 10−5 for WikiMEL and
WikiDiverse, respectively. We used LLaMA2-7B [31] and select one
strategy for re-ranking, and K=5. We will release the code publicly
after the review.

4.2 Performance Comparison
4.2.1 Main Result. Table 2 shows the numerical results. We re-
produced most of the baselines, running each three times with
different random seeds. The average scores are reported.

Firstly, we can see that in text-based EL methods, BERT and
BLINK achieve promising results because text is fundamental modal-
ity. However, they only utilize the global sentence-level information
in the text, ignoring the fine-grained semantic at the word-level.
GENRE shows better results, even surpassing some MEL methods,
thanks to its adoption of BART as the backbone and training with
large-scale Wikipedia data. However, these methods rely solely on
the text modality, failing to fully leverage rich visual semantics,
which poses challenges in disambiguating in cases where textual
information is limited.
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Table 3: Experimental results of ablation study. The best metrics are highlighted in bold.

Dataset WikiMEL WikiDiverse Avg.

Metric H@1↑ H@2↑ H@3↑ MR↓ MRR↑ H@1↑ H@2↑ H@3↑ MR↓ MRR↑ H@1↑ MRR↑

FissFuse 84.80 92.37 95.05 1.61 90.26 80.07 91.69 95.55 1.39 88.05 82.44 92.03
(a) w/o Fission branch 84.06 92.32 94.84 1.62 89.83 78.63 90.68 95.30 1.40 87.25 81.35 88.54
(b) w/o Fusion branch 83.68 91.78 94.58 1.68 89.49 72.67 88.36 93.49 1.53 83.58 78.18 86.54

(c) w/o S∗
1 ,S

∗
2 84.09 92.28 94.59 1.60 90.11 79.86 91.10 95.21 1.41 87.80 81.98 88.96

(d) w/o S𝑇
1 ,S

𝑉
1 83.83 91.99 95.15 1.63 89.72 75.75 90.27 94.86 1.45 85.60 79.79 87.66

(e) w/o S𝑇
2 ,S

𝑉
2 84.31 92.09 95.02 1.58 90.11 79.59 90.62 95.21 1.40 87.61 81.95 88.86

(f) w/o S𝑇
1 ,S

𝑉
1 ,S

𝑇
2 ,S

𝑉
2 78.97 88.61 92.46 1.82 86.30 75.27 89.11 94.45 1.49 85.08 77.12 85.69

(g) w/o visual modality 78.57 87.64 91.62 1.99 85.67 78.01 90.41 94.73 1.42 86.75 78.29 86.21
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Figure 4: Results of Different strategies of re-ranking.

Secondly, compared to text-based EL methods, VLP methods
can utilize visual information, demonstrating competitive results.
Specifically, benefiting from large-scale image-text pre-training,
CLIP achieves the best performance in VLP methods. As compet-
itive baseline models, we believe that these models can further
improve performance by considering fine-grained semantic inter-
actions, bridging content discrepancy, and fully leveraging multi-
modal information.

Thirdly, looking into MEL approaches, different methods shows
a certain gap. DZMEND adopts attention to fuse features across
different modalities, while JMEL uses simple concatenation and
linear layers to fuse different features. Compared with GHMFC,
DRIN and MIMIC, both methods show limited results. This indi-
cates that shallow feature interaction strategies may not lead to
performance improvements and could even result in degradation. In
addition, although DRIN employs graph neural networks to model
the interactions between mention-entities and different modalities,
its performance is still lower than MIMIC. This may be due to the
lack of alignment between different features, and the model does
not consider fine-grained semantics, only using global features.
Moreover, in terms LLM methods. GEMEL outperforms GPT-3.5
due to its fine-tuning on the MEL task and its ability to utilize visual
information from images. However, this approach relies solely on
the knowledge within the large language model and suffers from
high complexity during inference.

Finally, the experimental results demonstrate that our proposed
FissFuse achieves the second-best performance. Compared with
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Figure 5: Results of re-ranking with different K.

GEMEL, it obtains an absolute improvement of 4.85% in terms
of average H@1 on WikiMEL and WikiDiverse. To eliminate the
influence of the encoder, we replaced the backbone with bert-base-
uncased and Resnet-101 (denoted B+R), and it still exhibits a signif-
icant advantage over GHMFC and DRIN with the same backbone.
We give credit to the integration of both Fission branch and Fusion
branch. Moreover, FissFuse+KAR demonstrates better performance,
suggesting that the knowledge-aware re-ranking strategy can ef-
fectively further improve the MEL performance. We also conduct
significant tests, and the p-values of the MRR metric on the two
datasets compared with MIMIC are 3 × 10−4 and 2 × 10−6, respec-
tively. Furthermore, our method exhibits better consistency on the
two datasets compared to other models. These evidences validate
the effectiveness of our proposed FissFuse and KAR.

4.2.2 Ablation Study. In Table 3, we measure the impact of each
component via ablation analysis. In variants (a) and (b), we remove
the two branches respectively. As shown in the table, removing
any one branch leads to a performance drop, highlighting the the
crucial role of the well-designed mention-entity and textual-visual
interaction patterns. In addition, for variants (c), (d), (e), and (f),
we remove partial matching scores respectively, which leads to
different degrees of decline in results on the two datasets. This
indicates the need to evaluate the matching degree of mentions
and candidate entities from different perspectives and semantics.
We also conduct ablation on the visual modality, and the results
show that introducing visual information helps to eliminate text
ambiguity.
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Figure 7: Results of different scale of data. The dashed lines
represent the performance the full training data.

4.3 Discussion
4.3.1 Re-ranking Strategy. In Fig. 4, We explore two re-ranking
strategies, namely, select one and rank top-k. As seen, both strategies
contribute to improvements, but the select one strategy exhibits a
higher enhancement compared to rank top-k. Notably, even when
k is set to 2 and the prompts, excluding instructions, are the same
for both strategies, select one still performs better. This suggests
that, for LLMs, executing rank top-k is more challenging than select
one. This observation also aligns with human perception of the
two different strategies, as ranking involves multiple rounds of
comparisons, assuming equal importance for each candidate entity,
while selection only requires identifying the most probable answer.

4.3.2 Impact of Top-K and LLM. In Fig. 5 and Fig. 6, we further
examine the impact of Top-K selection during re-ranking and the
influence of the size of LLMs. With an increase in K, we observe
a gradual improvement in performance, indicating that more can-
didate entities contribute to the LLMs making correct selections.
Additionally, as K increases, the degree of performance improve-
ment gradually diminishes. We suspect this might be approaching
the performance boundary of LLM, influenced by the model’s scale.
As seen in Fig. 6, with an increase in model size, the re-ranking
performance further improves, thus confirming that the capability
strengthens as the model size increases.

4.3.3 Scale of Data. Considering that collecting high-quality la-
beled data is expensive and time-consuming, we also investigate the
impact of data scale on performance, and the results are shown in
Fig 7. The dotted line represents the model performance using 100%
of the training data, and the data points represent the performance
of models using different proportions of training data.It can be ob-
served that using only 10% of the training data results in significant
performance degradation for both CLIP and MIMIC, indicating the
necessity of sufficient data. With an increase in training data, all
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Figure 8: Results of re-ranking with different MEL models.
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Figure 9: Error Analysis of Re-ranking. We use LLaMA2-7B
and Select One strategy, K=5. The color shades reflect the
magnitude of values.

models consistently show improvement. FissFuse consistently main-
tains the best performance, demonstrating its adaptability even in
low-resource scenarios.

4.3.4 Generality of Re-ranking Strategy. We take a further
step, investigating the generality of re-ranking across different
MEL methods. As shown in Fig. 8, we select three baselines (i.e.,
GHMFC, CLIP, MIMIC). The results clearly demonstrate significant
improvements for each baseline, with notably larger enhancements
observed for weaker models (GHMFC) compared to the strong
model (MIMIC). Furthermore, it can be seen that despite the per-
formance boost from re-ranking, the relative order among these
methods remains unchanged (MIMIC > CLIP > GHMFC). This in-
dicates that, for the MEL task, re-ranking by LLM is not the sole
determinant, and a robust initial MEL method is equally crucial for
overall performance. Different from GEMEL requiring fine-tuning,
the observation confirms the seamless generality and effectiveness
of KAR with different MEL methods.

4.3.5 Error Analysis of KAR. We conduct error analysis for
KAR on two datasets. Fig 9 shows the matrix of ranking changes for
ground truth entities before and after re-ranking. Specifically, the
element in the first row and first column represents the number of
sampleswhere the ground truth entity is ranked first initially among
all candidate entities and remains ranked first after re-ranking. The
elements on the diagonal represent the samples whose ranking
remains unchanged, the elements above the diagonal represent
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Figure 11: Complexity and performance comparison. Larger
circles indicate more parameters. The y-axis shows the av-
erage H@1 on two datasets, and the x-axis represents the
FLOPs required to infer one sample.

the samples whose ranking is degraded, and the elements below
the diagonal represent the samples whose ranking is improved. It
can be seen that the ranking of most samples remains unchanged.
Besides, the number of samples with improved ranking is much
larger than the number of samples with degraded ranking, which
verifies the effectiveness of KAR. For the samples with degraded
ranking, one possible reason is the inductive bias of large models
when the text information is limited. We believe that adding visual
information may help to correct this bias, which is also a direction
we will explore in the future.

4.3.6 Complexity Analysis. In Fig. 11, we further compare the
efficiency of various MEL methods. We calculate the number of
floating-point operations (FLOPs) required during inference and
the total number of the model’s parameters. We set the number
of candidate entities to 10 and calculate the FLOPs needed when
inference. It can be seen that our FissFuse achieves significantly
better results compared to MIMIC and CLIP, despite having similar
amounts of parameters and FLOPs. GEMEL heavily relies on the

capabilities of LLMs, inevitably leading to high complexity and
computational overhead. This observation demonstrates that our
framework has advantages in both efficiency and performance.

4.3.7 Qualitative Result. Finally, to gain a more intuitive under-
standing of the advantages of our model, we empirically analyze
real cases in Fig. 10. As evident from both cases, the issue of content
discrepancy arises when a mention contains multiple objects in
either sense or text, while the entity is focused on a single object.
Specifically, in the first case, CLIP incorrectly matches the image of
Nobel Memorial Prize in Economic Sciences with the mention image,
despite their apparent similarities. In the second case, both MIMIC
and CLIP tend to overly focus on visual information, mistakenly
associating Crew with Ferguson. However, the mention image con-
veys the theme of spaceflight and astronauts, instead of direct visual
indications. This phenomenon indicates that these models do not
effectively handle the relationship between mention-entity and
textual-visual features. In contrast, our proposed FissFuse considers
the dynamic mention-entity and cross-modal interactions, thereby
alleviating the issue of content discrepancy.

5 CONCLUSION
In this paper, we proposed a novel framework FissFuse as well as a
knowledge-aware re-ranking method KAR to fill the gap in content
and knowledge for multimodal entity linking. Specifically, FissFuse
collaborates two branches to establish dynamic, adaptive feature
interactions, alleviating content discrepancy between mentions and
entities. Additionally, KAR leverages the entity knowledge and rea-
soning capabilities of LLMs for re-ranking. Extensive experiments
on two public datasets have validated the effectiveness of FissFuse
and KAR.
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