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ABSTRACT

Optimization under heavy-tailed noise has become popular recently, since it bet-
ter fits many modern machine learning tasks, as captured by empirical observa-
tions. Concretely, instead of a finite second moment on gradient noise, a bounded
p-th moment where p € (1, 2] has been recognized to be more realistic (say be-
ing upper bounded by af for some oy > 0). A simple yet effective operation,
gradient clipping, is known to handle this new challenge successfully. Specif-
ically, Clipped Stochastic Gradient Descent (Clipped SGD) guarantees a high-
probability rate O (o ln(l/é)T%_l) (resp. O(o? lnz(l/é)T%_Q)) for nonsmooth
convex (resp. strongly convex) problems, where 6 € (0, 1] is the failure proba-
bility and 7' € N is the time horizon. In this work, we provide a refined anal-

ysis for Clipped SGD and offer two faster rates, O(a[d;f Int=w (1/5)T%_1)

1

and O(oid g ln27%(1 / 6)T%72), than the aforementioned best results, where
deg > 1 is a quantity we call the generalized effective dimension. Our analysis
improves upon the existing approach in two respects: better utilization of Freed-
man’s inequality and finer bounds for clipping error under heavy-tailed noise. In
addition, we extend the refined analysis to convergence in expectation and obtain
new rates that break the known lower bounds. Lastly, to complement the study,
we establish new lower bounds for both high-probability and in-expectation con-
vergence. Notably, the in-expectation lower bounds match our new upper bounds,
indicating the optimality of our refined analysis for convergence in expectation.

1 INTRODUCTION

In first-order methods for stochastic optimization, one can only query an unbiased though noisy
gradient and then implement a gradient descent step, which is known as Stochastic Gradient De-
scent (SGD) (Robbins & Monrol |1951). Under the widely assumed finite variance condition, i.e.,
the gradient nois has a finite second moment, the in-expectation convergence of SGD has been
substantially studied (Bottou et al.l 2018} [Lan, [2020).

However, many recent empirical observations suggest that the finite variance assumption might be
too strong and could be violated in different tasks (Simsekli et al.l [2019j Zhang et al., [2020; Zhou
et al.l 2020; |Garg et al. 2021} |Gurbuzbalaban et al., [2021; [Hodgkinson & Mahoney, |2021}; Battash
et al., 2024). Instead, a bounded p-th moment condition where p € (1, 2] (say with an upper bound
Uf for some oy > 0) better fits modern machine learning, which is named heavy-tailed noise. Fac-
ing this new challenge, SGD has been proved to exhibit undesirable behaviors (Zhang et al.| 2020;
Sadiev et al.,|2023). Therefore, an algorithmic change is necessary. A simple yet effective operation,
gradient clipping, is known to handle this harder situation successfully with both favorable practi-
cal performance and provable theoretical guarantees (see, e.g., [Pascanu et al.| (2013); Zhang et al.
(2020)). The clipping mechanism replaces the stochastic gradient g; in every iterate of SGD with

*This is a self-contained conference version of the full paper available at https://arxiv.org/abs/
2512.23178, Compared to the full version, we omit the formal statements of lower bounds and their proofs.
"This refers to the difference between the stochastic estimate and the true gradient.
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its truncated counterpart clip,, (g;), resulting a method known as Clipped SGD, where 7; is called
the clipping threshold and clip, (g) £ min {1, 7/|g|l} g is the clipping function.

Specifically, for nonsmooth convex (resp. strongly convex) optimization, Clipped SGD achieves a
1 2

high-probability rate O (o ln(l/é)TF_l(reSp. O(0? In*(1/6)T» ~?)) (Liu & Zhou, 2023), where

d € (0,1] is the failure probability and T € N is the time horizon. These two results seem to be

optimal as they match the existing in-expectation lower bounds (Nemirovski & Yudin, |1983}; |Vural

et al.,[2022; |Zhang et al., 2020), if viewing the poly(In(1/0)) term as a constant. However, a recent
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advance (Das et al., 2024) established a better rate O(o(d 4" v/In(In(T")/0)/T') for general convex
problems when p = 2, where 1 < dog < d is known as the effective dimension (also named intrinsic
dimension (Tropp, |2015)) and d is the true dimension. This reveals that the in-expectation lower
bound does not necessarily apply to the term containing poly(In(1/4)). More importantly, such a
result hints that a general improvement may exist for all p € (1, 2].

This work confirms that a general improvement does exist by providing a refined analysis for Clipped
_ L
SGD. Concretely, we offer two faster rates, O(od q" In'~¥ (1/6)T %71) for general convex prob-

lems with a known 7" and O(o?d, ¢ In>~% (1/ 5)T%_2) for strongly convex problems with an un-
known 7', improved upon the aforementioned best results, where 1 < dog < O(d) is a quantity that
we call the generalized effective dimensiorﬂ Moreover, we devise an algorithmic variant of Clipped
SGD named Stabilized Clipped SGD that achieves the same rateﬂ for convex objectives listed above
in an anytime fashion, i.e., no extra poly(In7") factor even without 7.

‘We highlight that our analysis improves upon the existing approach in two respects: 1. We observe a
better way to apply Freedman’s inequality when analyzing Clipped SGD, which leads to a provably
tighter concentration. Remarkably, our approach is fairly simple in contrast to the previous complex
iterative refinement strategy (Das et al., 2024])). 2. We establish finer bounds for clipping error under
heavy-tailed noise, which is another essential ingredient in the analysis for Clipped SGD when the
noise has a heavy tail. We believe both of these new insights could be of independent interest and
potentially useful for future research.

Furthermore, equipped with the new finer bounds for clipping error, we extend the analysis to in-
_2-p
expectation convergence and obtain two new rates, O(o(d g ** T Ffl) for general convex objectives

_2=p
and O(ofd g " T b 72) for strongly convex problems. Notably, once p < 2, these two rates are both

faster by a poly(1/des) factor than the known optimal lower bounds Q(U[T%_l) and Q(J[QT%_Z)
in the corresponding setting (Nemirovski & Yudin, |1983} |Vural et al., 2022} [Zhang et al.| [2020).

Lastly, to complement the study, we establish new lower bounds for both high-probability and in-
expectation convergence. Notably, the in-expectation lower bounds match our new upper bounds,
indicating the optimality of our refined analysis for convergence in expectation.

1.1 RELATED WORK

We review the literature that studies nonsmooth (strongly) convex optimization under heavy-tailed
noise. For other different settings, e.g., smooth (strongly) convex or smooth/nonsmooth nonconvex
problems under heavy-tailed noise, the interested reader could refer to, for example, Nazin et al.
(2019); |Davis & Drusvyatskiy| (2020); |Gorbunov et al.| (2020); Mai & Johansson| (2021)); |Cutkosky
& Mehta) (2021)); [Wang et al.| (2021); (Tsai et al.| (2022); Holland| (2022)); Jakovetic et al.| (2023));
Sadiev et al.[(2023); [Liu et al.|(2023)); Nguyen et al.| (2023)); Puchkin et al.| (2024); |Gorbunov et al.
(2024b); |Liu et al.| (2024); [Armacki et al.|(2025)); Huibler et al.| (2025)); [Liu & Zhoul(2025));|Sun et al.
(2025), for recent progress.

High-probability rates. If p = 2, |Gorbunov et al| (2024a) proves the first O(o+/In(7'/6)/T)
(resp. O(c2In(T/5)/T)) high-probability rate for nonsmooth convex (resp. strongly convex) prob-

>When stating rates in this section, we only keep the dominant term when 7" — oo and § — 0 for simplicity.

3We use the same notation to denote the effective dimension and the generalized version proposed by us,
since our new quantity can recover the previous one when p = 2. See discussion after (1)) for details.

*To clarify, “the same rate” refers to the same lower-order term. The full bound is slightly different.
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lems under standard assumptions. If additionally assuming a bounded domain, an improved rate
O(o(+/In(1/6)/T) for convex objectives is obtained by [Parletta et al.| (2024). Still for convex

problems, [Das et al.| (2024)) recently gives the first refined bound (’)(alde}é In(In(7")/6)/T) but
additionally requiring T > Q(In(In d)), where dog (resp. d) is the effective (resp. true) dimension,
satisfying 1 < dog < d. For general p € (1, 2],/ Zhang & Cutkosky|(2022) studies the harder online
convex optimization, whose result implies a rate O(opoly (In(7/ 6))T%71) for heavy-tailed con-
vex optimization. Later on, Liu & Zhou| (2023) establishes two bounds, O (o In(1/ 5)T%_1) and
O(o? n*(1/ 5)T%_2), for convex and strongly convex problems, respectively. These two rates are

the best-known results for general p € (1, 2] and have been recognized as optimal since they match
the in-expectation lower bounds (see below), if viewing the poly(In(1/d)) term as a constant.

In-expectation rates. Note that the in-expectation rates for p = 2 are not worth much attention as
they are standard results (Bottou et al.| 2018} [Lan, 2020). As for general p € (1, 2], many existing

works prove the rates O(U[T%d) and (9(0[2T372) (Zhang et al., 2020; [Vural et al., 2022; Liu &
Zhoul, 2023} [2024; |Parletta et al.| 2025} |[Fatkhullin et al., 2025; |Liul [2025).

Lower bounds. The high-probability lower bounds are not fully explored in the literature. To the
best of our knowledge, there are only few results for the general convex case and no lower bounds
for the strongly convex case. Therefore, the following discussion is only for convex problems. For

p = 2, |Carmon & Hinder (2024) shows a lower bound Q(c/In(1/6)/T). However, it is only
proved for d = 1 (or at most d = 4). As such, it cannot reveal useful information for the case that d
should also be viewed as a parameter (if more accurately, d.g). In other words, it does not contradict
our new refined upper bound. For general p € (1, 2], Raginsky & Rakhlin| (2009) is the only work
that we are aware of. However, as far as we can check, only the time horizon 7' is in the right order

of Q(T% ~1). For other parameters, they are either hidden or not tight.

Next, we summarize the in-expectation lower bounds. For convex problems, it is known that any
first-order method cannot do better than Q(J[T% B 1) (Nemirovski & Yudin,|1983;|Vural et al.,[2022).
If strong convexity additionally holds, Zhang et al.[(2020)) establishes the lower bound Q(O'[QT% 72).

2 PRELIMINARY

Notation. N is the set of natural numbers (excluding 0). We denote by [T] = {1,--- ,T},VT € N.
(-, -) represents the standard Euclidean inner product. ||x|| is the Euclidean norm of the vector x and
| X]| is the operator norm of the matrix X. Tr(X) is the trace of a square matrix X. S?~! stands for
the unit sphere in R%. Given a convex function h : RY — R, Vh(x) denotes an arbitrary element in
Oh(x) where Oh(x) is the subgradient set of & at x. sgn(x) is the sign function with sgn(0) = 0.

We study the composite optimization problem in the form of
inggF(x) 2 f(x) +r(x),
x€E

where X C R is a nonempty closed convex set. Our analysis relies on the following assumptions.
Assumption 1. There exists x, € X such that F, = F(x,) = infxex F/(x).

Assumption 2. Both f : R? — Rand r : R — R are convex. In addition, r is pi-strongly convex
on X for some p > 0, i.e, v(x) > r(y) + (Vr(y),x —y) + 5 ||x — y||2 ,Vx,y € X,

Assumption 3. f is G-Lipschitzon X i.e., |[Vf(x)|]| < G,Vx € X.

The above assumptions are standard in the literature (Bottou et al.,|2018}; Nesterov et al., [2018}; [Lan
2020). Next, we consider a fine-grained heavy-tailed noise assumption, the key to obtaining refined
convergence for Clipped SGD.

Assumption 4. There exists a function g : X x Z — R? and a probability distribution D on Z such
that Eeop [8(x, §)] = Vf(x),Vx € X. In addition, for some p € (1,2], we have

Ee-p [[(e,8(x.€) = VI(x)P] <of, Ecwp[lg(x.&) - ViX)I'] <of, VxeX,ees

where o and oy are two constants satisfying 0 < o5 < o( < \/7d/205.
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Remark 1. In the remaining paper, if the context is clear, we drop the subscript { ~ I in E¢p to
ease the notation. Moreover, d(x, £) £ g(x, ) —V f(x) denotes the error in estimating the gradient.

Remark 2. It is noteworthy that Assumption [ actually implicitly exists in prior works for heavy-
tailed stochastic optimization, since Cauchy-Schwarz inequality gives us

E[|(e.d(x.0)] <E [le]” [d(x.)|"] = E [d(x.)["] .¥Vx € X,e € 8.

In other words, once the condition E [||d(x, £)||"] < of,Vx € X is assumed like in prior works,
there must exist a real number 0 < o, < oy such that E [|(e,d(x,))|[’] < of,vx € X,e € S471.

Remark 3. The reason we can assume o < +/md/20, is that E [||d(x, &) [|"] < (md/2)% o holds
provided E [|(e, d(x,£))|"] < oF, Ve € S¢1, due to Lemma 4.1 in Cherapanamjeri et al.| (2022).

Now we define the following quantity named generalized effective dimension (where we use the
convention 0 = 0/0),

dog 2 a?/of e {0} U[1,7d/2] = O(d), (1
in which deg = 0 if and only if oy = 05 = 0, i.e., the noiseless case. As discussed later, this
definition recovers the effective dimension used in|Das et al.|(2024) when p = 2.

To better understand Assumption we first take p = 2. Note that a finite second moment of d(x, £)
implies the covariance matrix X(x) £ E [d(x,£)d " (x,€)] € R?*? is well defined. As such, we
can interpret oy and o4 as 07 = sup,cx Tr(X(x)) and 02 = supycx [|[X(x)]. In particular, if
¥(x) =< X, Vx € X holds for some positive semidefinite > as assumed in|Das et al.|(2024), then one

can directly take 02 = Tr(X) and o2 = ||3||, which also recovers the effective dimension defined
as Tr(®)/||z|| in|Das et al.| (2024).

For general p € (1, 2], as discussed in Remark one can view Assumptionas a finer version of the
classical heavy-tailed noise condition, the latter omits the existence of 0. Therefore, Assumption E]
describes the behavior of noise more precisely. Such refinement was only introduced to the classical
mean estimation problem (Cherapanamjeri et al.,|2022) as far as we know, and hence is new to the
optimization literature. In Appendix[A] we provide more discussions on how large deg can be across
different settings.

3  CLIPPED STOCHASTIC GRADIENT DESCENT

Algorithm 1 Clipped Stochastic Gradient Descent (Clipped SGD)

Input: initial point x; € X, stepsize n; > 0, clipping threshold 7 > 0
fort =1to 7T do
g¢ = clip,, (g:) where g; = g(x¢,&;) and §; ~ D is sampled independently from the history

_ 2
X¢41 = argmin, cx7(x) + (g7, %) + %
end for

We present the main method studied in this work, Clipped Stochastic Gradient Descent (Clipped
SGD), in Algorithm[I] Strictly speaking, the algorithm should be called Proximal Clipped SGD
as it contains a proximal update step. However, we drop the word “Proximal” for simplicity. We
remark that Clipped SGD with a proximal step has not been fully studied yet and is different from the
Prox-Clipped-SGD-Shift method introduced in |Gorbunov et al.[(2024b)), the only work considering
composite optimization under heavy-tailed noise that we are aware of.

In comparison to the classical Proximal SGD, Algorithm [I|only contains an extra clipping operation
on the stochastic gradient. As pointed out in prior works (e.g., Sadiev et al.| (2023)), the additional
clipping step is the key to proving the high-probability convergence.

4 REFINED HIGH-PROBABILITY RATES

In this section, we will establish refined high-probability convergence results for Clipped SGD. To
simplify the notation in the upcoming theorems, we denote by D 2 ||x, — x| the distance between
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the optimal solution and the initial point. Moreover, given § € (0, 1], we introduce the quantity

1
p—1 2 N
7. 2 | min 050[3 3y Is , (2)
Ing "oy "lp <2

which is an important value used in the clipping threshold. Recall that deg = 0 /02 , then 7, can
be equivalently written into

3
T, = a[/goi/p where ¢, £ max{ deg In g,deff]l [p < 2]} ) 3)

4.1 GENERAL CONVEX CASE

We start from the general convex case (i.e., 4 = 0 in Assumptlon xCT"jr‘1 =7 Zt 1 X¢41 in the
following denotes the average iterate after 7" steps. To clarify, 7' is assumed to be known in advance
in this subsection. Though Clipped SGD can provably handle an unknown time horizon 7, it is well-
known to incur extra poly(InT) factors (Liu & Zhoul 2023). To deal with this issue, we propose
a variant of Clipped SGD named Stabilized Clipped SGD in Appendix |[C} which incorporates the
stabilization trick introduced by [Fang et al.| (2022). As an example, Theorem [T1]in Appendix [E]
shows that Stabilized Clipped SGD converges at an almost identical rate to Theorem [T below, but in
an anytime fashion without incurring any poly(In T') factor.

Theorem 1. Under Assumptions|[I} 2| (with i1 = 0), land{] for any T € N and § € (0, 1], setting
Nt = Nuy Tt = max{ZG,T*T g ,Vt € [T] where 1, is a properly picked stepsize (explicated

in Theorem[10), then Clipped SGD (Algorithm [I) guarantees that with probability at least 1 — 6,
F(x7F,) — Fx converges at the rate of

2.1 9_2 1oq_1 L.
o (¢+h1)GD%_w§GP%+(QD4_@; 0l " +o0fo, Py 3D
T VT T % ’

where p < @, is a constant (explicated in Theorem and equals p, when T = Q ( . cp*)

To better understand Theorem [T} we first consider a special case of p = 2 (i.e., the classical finite

. .. . . Vde In(3)GD G v osoIn(2)D
variance condition) and obtain a rate being at most O ( d““% n(3)G +( tout ;TU[ n(3)

In comparison, the previous best high-probability bound in the finite variance setting proved by Das
Vdeii+ ) In(I5E o14++/0s(a+G) In(I2T)
et al.[(2024) is O (CT + (vd “+”52F1 (% )GD + (Gtot ’(\/[;G)l or; ))D>,but under an extra

requirement 7' > Q(In(In d)), where C is a term in the order of O(T~2) but will blow up to +00
when the variance approaches 0. As one can see, even in this special case, our result immediately
improves upon Das et al.|(2024) from the following three folds: 1. Our theory works for any time
horizon T' € N. 2. Our bound is strictly better than theirs by shaving off many redundant terms.
Especially, the dependence on ¢ is only In(1/4) in contrast to their In((In7") /4). 3. Our rate will not
blow up when oy — 0 (equivalently, os — 0) and instead recover the standard O(GD/ VT ) result
for deterministic nonsmooth convex optimization (Nesterov et al., 2018)).

GDlné
VT

dominant term is O(o(D ln(l/é)Tffl) as T becomes larger. In comparison using deg = 02 /02,

Next, the prior best result for p € (1,2] is O ( + oDln “> (Liu & Zhou, 2023)), whose
T P

the lower-order term in Theorem |l| can be written as (’)(c‘nD(d2 d + d 2” In'~¥ (1/6))T771).
Therefore, Theorem [I]improves upon [Liu & Zhou| (2023) for large 7" by a factor of

=% —g5 g 1-1 1
d? P +d P In" v 1 1
p2 O | = — tl=0|—-5 St | “
1 E 1
0 deffp IHS defpf In» 3

Remark 4. Especially, when deg = Q2(d), p could be in the order of ©(poly(1/d,1/1n(1/4))). We
provide an example in Appendix |A{showing that degs = §2(d) is attainable.
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For general T' € N, note that O(GD In(1/6)/T + last two terms) in Theorem|[I]are always smaller
than the rate of |[Liu & Zhou| (2023) due to o5 < oy and O(J[%Gk%) < O(o( + G) by Young’s
inequality. Therefore, we only need to pay attention to the redundant term O(oGD/T). Observe
that a critical time could be T, = O(¢?) = O(deg In*(1/6) + d251 [p < 2] Once T > T, we
can ignore O(pGD/T) as it is at most O(G'D/+/T) now. It is currently unknown whether the term
O(pGD/T) is inevitable or can be removed to obtain a better bound than |Liu & Zhou| (2023)) for

any T € N. We remark that similar additional terms also appear in the refined rate for p = 2 by Das
et al.| (2024) as discussed before.

4.2 STRONGLY CONVEX CASE

We now move to the strongly convex case (i.e., ¢ > 0 in Assumption . iﬁﬁil =

i (t4) (t45) x4
i, (t+4)(t+5)
general convex case, we do not need to know 7" in advance to remove the extra poly(IlnT") factor.

Theorem 2. Under Assumptions E](with w>0), and forany T € Nand ¢ € (0,1], setting
N = %7 T = max {2G, T*t%} ,Vt € [T), then Clipped SGD (Algorithm guarantees that with

in the following denotes the weighted average iterate after 7" steps. Unlike the

probability at least 1 — 6, both F (X3, ,) — F, and p||xp41 — x,||? converge at the rate of

4_9 y_4 2 9_2
uD? N (9% +1n* 2)G? N (o + ot In2)G* P + G2 N of o "4odo 7 2~ %

@
T3 uT? uT uT? % ’

where ¢ < @, is the same constant as in Theoremand equals p, when T = () (f—;w*).

Remark 5. The problem studied in prior works (e.g., [Liu & Zhou|(2023)); |Gorbunov et al.|(2024a))
considers strongly convex and Lipschitz f with » = 0, which seems different from our assumption
of strongly convex r. However, a simple reduction can convert their instance to fit our setting.
Moreover, the first term O(uD?/T3) in Theorem can also be omitted in that case (as we will do
so in the following discussion). We refer the interested reader to Appendix [B]for the reduction and
why the term O(puD?/T?) can be ignored.

. G%In* 1 t+olG*P)In® § .
To save space, we only compare with the rate O ( uf% 5oy (o7 +0o] 2_2) n 5> (Liu & Zhou,
puT »

2023) for general p € (1,2]. For the special case p = 2, the rate of [Liu & Zhou| (2023)) is almost
identical to the bound of |(Gorbunov et al.| (2024a); moreover, as far as we know, no improved result
like|Das et al.|(2024) has been obtained to give a better bound for the term containing poly(In(1/9)).
Similar to the discussion after Theorem |1} one can find that for large 7', the improvement over |Liu
& Zhou|(2023) is at least by a factor of

1 1 1 1
p2@® 2—p + T > @(poly (d,11>)
df W} dpint ) ot In 5

For general T € N, every term in Theorem [2]is still better except for O(¢*G?/(uT?)). However,
this extra term has no effect once T' > T, = O(¢2) = O(deg In*(1/5) + d2¢1 [p < 2]), the same
critical time for Theorem [I] (a similar discussion to Footnote [5]also applies here), since it is at most
O(G?/(uT)) now, being dominated by other terms. Same as before, it is unclear whether this
redundant term O(p?G?/(uT?)) can be shaved off to conclude a faster rate for any 7' € N or not.
We leave it as future work and look forward to it being addressed.

5 PROOF SKETCH AND NEW INSIGHTS

In this section, we sketch the proof of Theorem [I]as an example and introduce our new insights in
the analysis. To start with, given T € N and suppose 1, = 7,7 = 7,Vt € [T] for simplicity, we

3 Actually, any T} that makes O(¢GD/T) in Theorem smaller than the sum of the terms left is enough.
Hence, it is possible to find a smaller critical time. We keep this one here due to its clear expression.



Published as a conference paper at ICLR 2026

have the following inequality for Clipped SGD (see Lemma [ in Appendix [F), which holds almost
surely without any restriction on 7,

2
F(x77,) - F. < ' + 2177, where I7™ is a residual term in the order of

t 2 7 T 2
I3 = O | n | max <Z<d‘;,ys>> +led?||2+<ZHd?H> T, ®
s=1 t=1 t=1
~—_————
I II 111

in which d} £ g¢ — E;_; [gf] and AP £ E;_; [g$] — V f(x) respectively denote the unbiased and
biased part in the clipping error, where E; [-] £ E[- | 73] for F; £ o(£y,- -+ , &) being the natural
filtration, and y; is some predictable vector (i.e., y; € F;_1) satisfying ||y:|| < 1 almost surely.

The term nG*T in I$V* is standard. Hence, the left task is to bound terms I, IT and III in high
probability. In particular, for I and III, we will move beyond the existing approach via a refined
analysis. To formalize the difference, we borrow the following bounds for clipping error commonly
used in the literature (see, e.g.,|Sadiev et al.|(2023); Liu & Zhou|(2023); Nguyen et al. (2023))):

N o7 if7>2G . by 722G b 1p
lall < O), Ee [Ial?] ST 00, laf]] S 0@t ©

Term I. Note that X; = (d¥,y;) is a martingale difference sequence (MDS), then Freed-
man’s inequality (Lemma in Appendix B) implies with probability at least 1 — §, VI <
O(maxyery | X¢| In(1/6) + \/Z;‘FZI E;—1 [X?]In(1/6)) (this inequality is for illustration, not en-
tirely rigorous in math). To the best of our knowledge, prior works studying Clipped SGD under
heavy-tailed noise always bound similar terms in the following manner

lly:ll<1 ® lly:ll <1 @
XS I 20r) and B [XP] S B [Ila)°] £ 0@brt ).

However, a critical observation is that the above-described widely adopted way is very likely to be
loose, as the conditional variance can be better controlled by

lly:ll<1
B [X2) =y Eoor [d)d) ]y < [[Ees [d@) 7]

Note that ||E;—; [d}(d}) "] || is at most E;_; [Hd,‘fﬂﬂ but could be much smaller. Inspired by this,

we develop a new bound for ||Et_1 [df(dt‘l)T] H in Lemma Consequently, this better utilization
of Freedman’s inequality concludes a tighter high-probability bound for term I.

Actually, this simple but effective idea has been implicitly used in [Das et al.| (2024) when p = 2.
However, their proof finally falls complex due to an argument they call the iterative refinement
strategy, which not only imposes extra undesired factors like In((In7")/J) in their final bound but
also leads to an additional requirement 7' > (In(In d)) in their theory. Our analysis indicates that
such a complication is unnecessary, instead, one can keep it simple.

Term II. For this term, we follow the same way employed in many previous works (e.g.,|Cutkosky
& Mehtal (2021); Zhang & Cutkosky| (2022)), i.e., let X; 2 [|d¥||* — E,_, [||d?\ﬂ and decompose

@
23:1 [ap)”® < O(Zthl X; + of 727PT) then use Freedman’s inequality to bound Zf:l X;.
Remark 6. Although the above analysis follows the literature, we still obtain a refined inequality for
E:iy [Hd;‘”z} in Lemmaﬂ in the sense of dropping the condition 7 > 2G required in (H)

Term III. Estimating the clipping error Hd?H is another key ingredient when analyzing Clipped
SGD. As far as we know, all existing works apply the inequality ||d],§’ || < O(JFTlf”) in l@ How-
ever, we show that this important inequality still has room for improvement. In other words, it is in
fact not tight, as revealed by our finer bounds in Lemma|[I] Thus, our result is more refined.
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From the above discussion, in addition to better utilization of Freedman’s inequality, the improve-
ment heavily relies on finer bounds for clipping error under heavy-tailed noise, which we give in the
following Lemmal[T]

Lemma 1. Under Assumptions[3|and[| and assuming T, = T > 0, there are:

if T>2G

Il < O(r), [[Bes [di@)T]]| " < O(o2r* P + 0GP 7P),
if T>2G

B [Ja77] < 0or>), ] Otourt e 1ot ),

Remark 7. We highlight that Theorem[9]in Appendix [D]provides a further generalization of clipping
error bounds under heavy-tailed noise not limited to clipped gradient methods (even without the
requirement in the form of 7 > 2@), which could be potentially useful for future research.

Except for the standard bound ||d}|| < O(7), the other three inequalities in Lemma |1| are either

new or improve over the existing results. 1. The bound on HEt_l [d;‘(d;‘)—'—] || is new in the heavy-

tailed setting. Importantly, observe that O(c872~F + o7 G?77F) < O(o727F) due to 05 < oy

and 7 > 2@, which thereby leads to a tighter high-probability bound for term I in combination with

our better application of Freedman’s inuality (see the paragraph before starting with Term L.). 2.
)

For term E;_4 {Hd;‘ ||2} , in contrast to 'E , Lemma |l|removes the condition 7 > 2G. Moreover, the

hidden constant in our lemma is actually slightly better. 3. As mentioned above (see the paragraph
before starting with Term III.), the bound of Hd?” is another key to obtaining a refined result.

Precisely, we note that the new bound O(osoP ™' 717% 4 o} GT™*) improves upon O(of7!7?) in
@ because of o, < oy and 7 > 2@G. Therefore, Lemmaﬂ] guarantees a better control for term III.

Combining all the new insights mentioned, we can finally prove Theorem[l| As one can imagine,
the analysis sketched above is essentially more refined than previous works, since we apply tighter
bounds for the two central parts in analyzing Clipped SGD, i.e., concentration inequalities and esti-
mation of clipping error. To confirm this claim, we discuss how to recover the existing rate through
our finer analysis, the details of which are deferred to Appendix [E]

Lastly, we mention that Theorem [2] for strongly convex problems is also inspired by the above two
new insights. The full proofs of both Theorems[T]and [2]can be found in Appendix [E]

6 EXTENSION TO FASTER IN-EXPECTATION CONVERGENCE

In this section, we show that Lemma [I| presented before can also lead to faster in-expectation con-
vergence for Clipped SGD, further highlighting the value of refined clipping error bounds. Proofs
of both theorems given below can be found in Appendix [E]

2z
This time, we consider a new quantity 7, = od /(o "1 [p < 2]) for the clipping threshold. Recall
that deg = 07 /02 , then 7, can be equivalently written into

7 =01/3" where &, 2degl[p<2. (7

Remark 8. When p = 2, ¢, = 0 = 7, = 400, i.e., no clipping operation is required. This matches
the well-known fact that SGD provably converges in expectation under the finite variance condition.

6.1 GENERAL CONVEX CASE

Theorem 3. Under Assumptions|[I} [2|(with i = 0), Bland [} for any T € N, setting ny = 1., 7¢ =
max {2G , ?*T% } ,Vt € [T where 1, is a properly picked stepsize (explicated in Theorem , then
Clipped SGD (Algorithm guarantees that E [F (x$75) — F*] converges at the rate of

2

2.9 9 2
¢GD N (JI%GP% +G)D  of 10[2 "D

o + T ;
T VT T %

where ¢ < @, is a constant (explicated in Theorem|12) and equals p, when T = ) (%’ﬁ*)

[
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Theorem [3| gives a better lower-order term O(od’; * DT ') (recall deg = 0?/0?) than the
existing lower bound Q (o DT %_1) (Nemirovski & Yudin, 1983} |Vural et al.|[2022) by a factor of

2-p
©(1/d.g ), a strict improvement being polynomial in 1/deg, if p € (1,2). For the case of an
unknown T, the interested reader could refer to Theorem [I3]in Appendix [E]

6.2 STRONGLY CONVEX CASE

Theorem 4. Under Assumptions (with . > 0), Bl and [d for any T € N, setting n; =

%,’Tt = max{?G,ﬁt%} ,Vt € [T, then Clipped SGD (AlgorithmE guarantees that both

E [F(x5%,) — F.] and pE {HXT+1 - X*HQ] converge at the rate of
" 4_9 y4_4
uD?  $*G? . ofG*P+G* 0P o 7

o
s pI? wT " ur> v )’

where ¢ < @, is the same constant as in Theoremand equals @, whenT' = () (S—;ﬁ*)

_2
Theorem IZI provides a faster rate O(O‘%diﬁ PT5~2) than the known lower bound Q(c2T% ~2)
2-p

(Zhang et al., [2020) by a factor of ©(1/ dCﬁT ), this is again a strict improvement once p < 2,
and could be in the order of poly(1/d) if deg = Q(d).

7 LOWER BOUNDS

To complement the study, we provide new high-probability and in-expectation lower bounds for
both 4 = 0 and px > 0. We employ information-theoretic methods to establish these new lower
bounds, following the existing literature (Raginsky & Rakhlin, 2009} |Agarwal et al.l [2012; |Duchi
et al., 2013 Vural et al.| [2022; |(Carmon & Hinder, 2024 Ma et al.,[2024)). For their formal statements
and corresponding proofs, the interested reader could refer to Appendix G in the full version of this
work available athttps://arxiv.org/abs/2512.23178.

Remark 9. One may wonder why our upper bounds can beat the existing lower bounds, and also
where the difference between our new lower bounds and the prior ones lies. The key is our fine-
grained Assumption 4] Roughly speaking, the existing lower bounds are proved for the following
oracle class (we slightly abuse the notation by still using g to denote the stochastic gradient oracle),

P . md d . Elg(x,0)x fl=Vf(x)€df(x) d }
&f, = {g PREXF = RY g0 ) -vieo P o f<ots VX ERY F €7

where p € (1,2] and oy > 0 are two parameters and f is the function class that we are interested in
(e.g., the family of G-Lipschitz convex functions). In contrast, the oracle class we study is parame-

terized by one more parameter o5 € |:O'[ //7d/2, a[} as follows,

Elg(x,f)Ix,f]=V f(x)€0f(x)
LI {g ‘R x §f — R? : E[l{eg(a./) = V)P x.f]<ob VYees!™! yx e RY, f € f} .
" E[|lg(x.f) =V ()P [x.f] <o?
Note that thereis 85, C &% , implying the lower bound proved for & could be loose for &} .
Therefore, our upper bounds can surpass the existing lower bounds, and our new lower bounds are
established for the fine-grained oracle class &?

0s5,0(1"
7.1 HIGH-PROBABILITY LOWER BOUNDS

Theorem 5 (Informal). Under Assumptions[I} 2| (with . = 0), Bland [ assuming d > deg > 1 and
2 _ 2

1 2-2 11
. i P s 1 » 1YD .
0 € (0, Tlo) any algorithm converges at least at the rate of 2 (07 o, t’l = 5) with
T P

probability at least 6 when T is large enough.


https://arxiv.org/abs/2512.23178
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Theorem 6 (Informal). Under Assumptions (with i > 0), Bland {| assuming d > deg > 1
4 4

1_5

. ’ TP o212 h L .
and § € (0, %), any algorithm converges at least at the rate of Q | 22—t jggf = > | with
7

probability at least 6 when T is large enough.
Compared to our upper bounds in high probability, i.e., Theorems[I] (1 = 0) and [J] (1 > 0), there

are still differences between the terms that contain the poly(In(1/6)) factor. Closing this important
gap is an interesting task, which we leave for future work.

7.2 IN-EXPECTATION LOWER BOUNDS

Theorem 7 (Informal). Under Assumptions (with pu = 0), Bland |} assuming d > deg > 1,
2 2

2_7 o2
P P
any algorithm converges at least at the rate of () Uﬁf# in expectation when T' is large
T P
enough.
Theorem 8 (Informal). Under Assumptions[I] 2|(with > 0), Bland[} assuming d > deg > 1, any
4 4

4_o9 44

P P
algorithm converges at least at the rate of 2 % in expectation when T is large enough.
puT= »

For in-expectation convergence, the above lower bounds match our new upper bounds, i.e., Theo-
rems 3| (1 = 0) and 4] (1 > 0), indicating the optimality of our refined analysis for convergence in
expectation.

8 CONCLUSION AND FUTURE WORK

In this work, we provide a refined analysis of Clipped SGD and obtain faster high-probability rates
than the previously best-known bounds. The improvement is achieved by better utilization of Freed-
man’s inequality and finer bounds for clipping error under heavy-tailed noise. Moreover, we ex-
tend the analysis to in-expectation convergence and show new rates that break the existing lower
bounds. To complement the study, we establish new lower bounds for both high-probability and
in-expectation convergence. Notably, the in-expectation upper and lower bounds match each other,
indicating the optimality of our refined analysis for convergence in expectation.

There are still some directions worth exploring in the future, which we list below:

The extra term. Each of our refined rates has a higher-order term related to deg (e.g., O(pGD/T)
in Theorem |1 and O(p?G?/(uT?)) in Theorem [2). Although it is negligible when T is large,
proving/disproving it can be removed for any 7' € N could be an interesting task.

Gaps in high-probability bounds. As discussed in Section [/| there are still gaps between high-
probability upper and lower bounds for both convex and strongly convex cases. Closing them is an
important direction for the future.

Other optimization problems. We remark that our two new insights are not limited to nonsmooth
convex problems. Instead, they are general concepts/results. Therefore, we believe that it is possi-
ble to apply them to other optimization problems under heavy-tailed noise (e.g., smooth (strongly)
convex/nonconvex problems) and obtain improved upper bounds faster than existing ones.

REPRODUCIBILITY STATEMENT

We include the full proofs of all theorems in the appendix.
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A LOWER BOUNDS ON d.g

This section provides lower bounds on dg for the additive noise model, i.e., g(x,£) = Vf(x) + &.

Given i € [d], & denotes the i-th coordinate of &, and o; = (E [|¢;|"])* is the p-th moment of

&;. Additionally, ¢ : [d] — [d] is the permutation that makes o; in a nonincreasing order, i.e.,
Op 204, 22 Ovgs 2 Ouq-

A.1 INDEPENDENT COORDINATES
In this subsection, we assume that all of ¢; are mutually independent.

* For any j € [d], we can lower bound

I€NP = (Z&?) > (Zsi) > 5 el
i=1 i=1 i=1
where the last step is by the concavity of x%, which implies of = E[€°] >
j%~1S27_| 0P . Therefore, we can find
J
oF z%]cﬁ*;az. )

* Forany e € S1, we write ¢ = .7, \je; where Y% A2 = 1 and e; denotes the
all-zero vector except for the ¢-th coordinate, which is one. Therefore, we have

d P (@) d
Z N&i| | < 2°7F Z E [|Ai&il"]
i=1

i=1

E[l(e )] =E

d d 1-5
2-p p oY oy =
=2 Z [P of < 2 Zai ,
i=1 i=1

where (a) holds by |a + b|” < |a|® + p|a|’ " sgn(a)b + 2277 [b|" (see Proposition 18 of
Vural et al.| (2022)) and the mutual independence of &;, and (b) is due to

P
d d 2 /d
i< (3] (o)
=1 =1 =1

Hence, we know

1—£

1—k
2 d 25 2
— E 2-p
= g; .
i=1

d 5\ 72
ot = sup E[[(e, )] <22 (Zai“) . ©)

ecSd—1

As such, we can lower bound
2

1-2 j p P
o B0 MaXjea ] * (Zizl 9
—- 2 T, -
ag 2p P
s i_9 d 3—p

2% <Zi—1 0

Though (I0) does not directly give a lower bound for des expressed in terms of d, it has already
provided some useful information. For example, when o; are all in the same order, (I0) implies that

dot = O (d2‘%).

eff = (10)

A.2 1.I.D. COORDINATES
In this subsection, we further assume that all &; are i.i.d. and then lower bound d.g by d. Since

all coordinates are identically distributed now, we write o; = o, Vi € [d] for some o > 0 in the
following.
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A.2.1 A GENERAL Q(d> %) BOUND
We invoke (I0) and plug in 0; = o to obtain

2
(0 max jo? d> %
dcff Z ]E[d] J _

(11

4 2d771 9 2372'

When p = 2, the above bound recovers the fact that dog = d for & with i.i.d. coordinates.

A.2.2 A SPECIAL Q(d) BOUND

Now we consider a special kind of noise. Suppose p € (1,2) and all &; have the characteristic
function

E [exp (it&;)] = exp (—7“ [t (1 —iftan ( ) ) sgn(t ))) ,Vt e R,
where a = p+ e fore € (0,2—yp], 8 € [-1,1], and v > 0. Such a distribution is known as

a-stable distribution satisfying that E [¢;] = 0, 0 < oo, and Z?:l & equals to d= &, in distribution
(Zolotarevl, [1986; [Samorodnitsky & Taqqu, (1994} Nolan, [2020). This suggests that we can lower
bound oy in another way,

: [iz L& ] e |[ete oy
E [lig]”] Ziz > 7=
w2 () o 32
(12)
where the inequality is due to [Burkholder| (1973)). Therefore, in this special case, we have
2 o0 dvie 2/182 - 1)d" v
dot = 75 = —— T, — (13)
05 2% “dr p3342%
In particular, for any 0 < ¢ < min {ﬁ, 2 — p} (assume d > 2 here, since the case d = 1 is
trivial),
2 1 e 1 —1)d
‘< 5 4785 < oF > dgr 3 P o), (14)
p(p+e) = plnd p3342% v

B REDUCTION FOR STRONGLY CONVEX PROBLEMS

We provide the reduction mentioned in Remark [5] Recall that existing works assume f being p-
strongly convex and G-Lipschitz with a minimizer x, on X. Now we consider the following problem
instance to fit our problem structure

F(x) = f(x) = 5 Il =y [P+ 5 I =y = ),

27(x) 2r(x)
where y can be any known point in X. For example, one can set y = x; to be the initial point. Next,
we show that F’ fulfills all assumptions in Section 2}
e F on X has the same optimal solution x, as f and hence satisfies Assumption

* Note that f is convex (since f is y-strongly convex) and  is p-strongly convex, which fits
Assumption 2]

* Moreover, because f is p-strongly convex and G-Lipschitz with a minimizer x, € X, a
well-know fact is that X has to be bounded, since for any x € X,

B =l < F60) = F0) — (V)% — 3. < £00) — f(x.)
< (VI(x),x = x.) < [VF&)] Ix - x.]| < Gllx — .

2G

<

IN

=[x — x| (15)
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Then we can calculate Vf(x) = Vf(

IVFE+ pllx =%l + e lly = %]l
under the parameter 5G.

»

) — pu(x —y),Vx € X and find |Vf(x)| <

|/\@

5G, Vx € X, meaning that Assumption|3|holds

* In addition, suppose we have a first-order oracle g(x, §) for V f satisfying Assumption
Then g(x,¢) £ g(x,€&) — u(x — y) is a first-order oracle for f satisfying Assumption
with same parameters p, o, and oy.

Therefore, any instance in existing works can be transferred to fit our problem structure. More-

over, for such an instance, we have D = |x; —x,| < %, implying that the first term

O (“D ) in Theorem E is at most O (G—i} which can be further bounded by the third term

T3

oP+oP In 3)G? P +@
O (RS S0 (15
Remark 10. The above reduction does not hold in the reverse direction. This is because, as one can
see, the domain X in prior works has to be bounded (due to (I5)), which is however not necessary
under our problem structure. For example, X in our problem can take R?, which cannot be true for
previous works in contrast. In other words, the problem studied in our paper is strictly more general.

) in Theoremlcan be omitted if compared with prior works.

C STABILIZED CLIPPED STOCHASTIC GRADIENT DESCENT

Algorithm 2 Stabilized Clipped Stochastic Gradient Descent (Stabilized Clipped SGD)
Input: initial point x; € X, stepsize n; > 0, clipping threshold 7z > 0
fort =1to T do
g¢ = clip,, (g:) where g; = g(x¢,&;) and §; ~ D is sampled independently from the history
2 _ X—X 2
X1 = argming cx7(x) + (g, x) + ng;‘:“ + (ne/ness 271]3“ 1l
end for

In this section, we propose Stabilized Clipped Stochastic Gradient Descent (Stabilized Clipped
SGD) in Algorithm [2} an algorithmic variant of Clipped SGD to deal with the undesired poly(In T')
factor appearing in the anytime convergence rate of Clipped SGD for general convex functions.

(Me/ne41— 1)Hx x1?

Compared to Clipped SGD, the only difference is an extra term injected into
the update rule, which is borrowed from the dual stabilization technlque introduced by [Fang et al.

(2022). The stabilization trick was originally induced to make Online Mirror Descent (Nemirovski
& Yudin, |1983; |Warmuth et al., {1997} |Beck & Teboulle, 2003) achieve an anytime optimal O(ﬁ )
regret on unbounded domains without knowing 7'. For how it works and the intuition behind this
mechanism, we kindly refer the reader to |[Fang et al. (2022) for details. Inspired by its anytime
optimality, we incorporate it with Clipped SGD here and will show that this stabilized modification
also works well under heavy-tailed noise. Precisely, assuming all problem-dependent parameters
are known but not 7", we prove in Theorem [I1]that Stabilized Clipped SGD converges at an anytime
rate almost identical (though slightly different) to the bound for Clipped SGD given in Theorem I]
that requires a known 7" in contrast.

Lastly, we remark that when the stepsize 7, is constant, Stabilized Clipped SGD and Clipped SGD
degenerate to the same algorithm. Therefore, Theorems [I] and [3] can directly apply to Stabilized
Clipped SGD as well. For the same reason and also to save space, we will only analyze Stabilized
Clipped SGD when studying general convex functions.

D FINER BOUNDS FOR CLIPPING ERROR UNDER HEAVY-TAILED NOISE

In this section, we study the clipping error under heavy-tailed noise, whose finer bounds are critical
in the analysis. Moreover, instead of limiting to clipped gradient methods, we will study a more
general setting as in the following Theorem [9] which may benefit broader research. In Appendix [F}
we apply this general result to prove clipping error bounds specialized for clipped gradient methods
in Lemma[2] which is the full statement of Lemmal[]
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Theorem 9. Given a o-algebra F and two random vectors g,f € R?, suppose they satisfy
E[g | F] = £ and, for some p € (1,2] and two constants os,0y > 0,

Ellg—f|"|F] <of, E[(e.g—f)|"|F] <ob, Vees’ (16)

Moreover, we assume there exists another random vector g € RY that is independent from g con-
ditioning on F and satisfies that g | F equals g | F in distribution. For any 0 < 7 € F,

let g¢ 2 clip.(g) = min{l,H;f”}g, d* 2 g¢ “E[g¢|F], d* 2 E[g°| F] - f, and
x(a) 2 1[(1—a)r > |[f||],Ya € (0,1), then there are:

1. ||dv|| < 27

2. E [||d“||2 | ]-"] < 4oV,

3 ||Blar @)’ 1 F]| < aotrer 4 ape®

4. ||E [av @) 7| x(@) < 4B P 4 dadra g7 7.

50 (b < v2 (af—l 1P ) oort =P 2 (o] + ]P) €] 7P

6. [[d°] x(@) < ouof ™ P + @l Pop ] 7

Before proving Theorem [9] we discuss one point here. As one can see, we require the existence
of a random vector g € R? satisfying a certain condition. This technical assumption is mild as
it can hold automatically in many cases. For example, if F is the trivial sigma algebra, then we
can set g as an independent copy of g. For clipped gradient methods under Assumption 4] suppose

F = Fi_1, 8 = g(x¢,&) and £ = Vf(xy), then we can set g = g(xy,&+1), where we recall
Fi—1=0(&, - ,&—1) and & to €41 are sampled from D independently.

Proof. Inspired by Das et al.|(2024), we denote by 2 £ min {1, @} € [0, 1]. Under this notation,

we have
g° = clip,(g) = hg. (17)
We first give two useful properties of h.

* For any ¢ > 0, we have

Il llell® Il
1-h< 1 > 7 < >
= Il llgll = 7] < = -1 lllgll = 7] < =,
which implies
q
— h < inf —=— HgH (18)
q>0 T4
¢ We can also observe
gl — 7 Il —
1—h= gl Llgl = 7] = =—1[lgl = 7]
lg — £l + IIf[| — 7
< 1[lgll =],
-
which implies
g —fll + IIfll — 7 || H
(1 - h)x(a) < T gl 2 7 2
llg — £l IIfH IIg s
< >T>
< =1l —o| St x(e), A9)
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[Ed]

—

where the last step is by noticing that the event {H gll>7> } implies the event

{T > %7 lg —f]| > aT}, thereby leading to, for any g > 1,

—f f —f f
=1y [y o L] L= o 0
T l-«a T l-«a
g — £ [£]]
SWH TZma”g*f”ZaT
lg — £
< patpa X

For g, we use g° to denote the clipped version of g under the same clipping threshold 7, i.e.,
g¢ £ clip, (g) = min {1, H%H} g. By our assumption on g, the following results hold

Elg®| Fl=E[g°| F]=E[g°| F,g], (20)
Ellg—fI" | F]=E[lg—f£|" | F] <a}. 1)

We first prove inequalities for d".

* Inequality [1} Note that ||g°|| < 7, implying ||d"|| = ||g° — E [g° | F]|| < 27.
* Inequality 2] We observe that
uy2 _ c c 2 (214 c ~c 2
B[l | F] =E[lg ~Elg° | FII* | F] P E[IE[gc - &° | F.g]l | 7|

(a)
<E[lgc—gl? | F| < r)* E g - &I | ] (22)

(b) ()
< (27)**E[|lg — gl" | F] < 40},

where (a) is by the convexity of ||-||* and the tower property, (b) holds because clip.. is a
nonexpansive mapping, and (c) follows by when p > 1

_ _ _ B 19,21
lg—gll" <2* " (lg—fI"+lg—£|") = E[lg—gl" | F] < 2P}

The third and fourth inequalities are more technical. Let e € S?~! be a unit vector, we know
e'E [d" (") | F]e=El[(e,a") | F] =E[l(e.g°~E[g° | FII* | F|]. 23
We will bound this term in two approaches.

On the one hand, we have

E||(e.g° - Efg" | F)) | 7|
—E [|(e,g° - )" | | ~E[l(e,f ~E[g" | F))* | F|
le.g” = O | F] D E[|(e.hg ~ 0| 7]

~E [|h(e;g—£) = (1 =) (e, O | F| <E [nl(e.s ) + (1= h) e, | F

<E [hlfe.g = )+ (1 — ) 17| |, 24)

where the last step is by |(e, f)| < |le| ||f|| = ||f|| and 1 — A > 0. By Cauchy-Schwarz inequality
again,

_ _ N _
e, g = D) <llg— 17" < (gl + IF1D*7" "< llgll®*™® +1I£1*?

_ B _ . h<i<p _ _

= hle,g =) P <hPH|hg|* T+ R|EPTP < Ihgl* TP 4 IE) T

(1) 2— 2— _ 2—
= NlgI™ P+ IEITP < 2P E)177,
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which implies
E[nlfe,g— ) | F| < (~7" + €17 ) E [lfe.g — D) | 7] Dorr o 5)
Combine , and (25)) to obtain for any unit vector e € S~ 1,
CTE[d" (@) | Fle <olr 7 4 o |67 + [EPE[L— A | F

= ||E @ @) 1 F] || < ot ok I8P 4 NP E DL - | F (26)

On the other hand, we can follow a similar way of proving (22)) to show
c c 2 — c 5C
E|lle,g"~Elg® | F)F | F| = 2r)*E[|(e,g" — &) | 7]

<4r*7PE [[(e,g" — £)|" | F]. (27)
Similar to (24), there is
E[|(e,g° = )" | F] <E[n|(e,g — £)|" + (1 —n) |f]|" | F]
h<1
< Ele,g— )" + (1—h)|f]]" | F]
{1
< R+ |fIPE[L-h|F]. (28)
Combine , and 1| to obtain for any unit vector e € S§d-1,
e'E [du @ | f] e < 40P 4 472 P ||fPE[L — h | F)
= H]E @ @) | 7| H < 4P P 4 4r 2 P E[L— h | F. (29)

Recall by our definition x(0) = 1 [ > ||f||], we then denote by x(0) = 1 — x(0) = 1 [1 < ||f||].
Therefore,

[ far @7 17] |10 2 (obr2r + o2 16177 + 112 B~ 1] 71) x00)

p<2
< (20277 EPE[L — b | F]) X(0),
and
|2 [a= @) 1 7] | 2@ D (ore2r + ar v e L - 8| F) 000)
p<2
< (4022 4 EPEDL — b | F]) X(0),
which together imply
HE [a @) | 7| H < doP72P L 4 |E|PE[L — b | F). (30)
Now we are ready to prove inequalities [3]and 4]

* Inequality 3] We use (30) to know
| @ @) | F]| <4082 ® + 4P EDL - b | F] < 402727 + 4.

* Inequality ] By (T9), we have

e
(1 mx(e) < B2 )
e
SE[-h|Flx@ LT E[1 - h)x(a) | F]<E %x(a) | F

arx(a) < O’F

aP—lrp — qp—17p°

21
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Now we use (30) to know
[B [ @71 7]|| x(@) < 40272 Px(@) + 4 IEIPE [ - | Fx(a)
<40P7*7P + 4’0t |£))%7—F
Finally, we prove the last two inequalities related to d. Still let e represent a unit vector in R, then
by the definition of d®,
(e.0") @ (e.E[hg | |~ ) =E[(h - 1) (e,8) | 7]
=E[(h—-1){e,g—1) | F] = (e,)) E[l —h | F]
(d)
SE[1—-h)[(e,;g =D [ Fl1+[EIE[L—h|F]

(%) E {(1

— h)eT |}"D17%05+ I E1—h | F]
= o) < (B[ -m [ F]) T oot B n 7. (1)
where (d) isby h < 1 and — (e, f) < |le|| ||f|| = ||f||, and (e) is by Holder’s inequality and (T6).

. Inequahtyl Noticing that 7 > land 1 —h <1, we then have

p p—1 _ p p
@ lel” 27 (ls— 11"+ ")
T

TP

(1—h)FT1<1—h

9

which implies

E[(0- 1t | F] <E[l-h|F] @ 27" (o7 +IE1°)

par
Combine (3T) and the above inequality to have

p—1 (b o\ T p—1 (P p
Hde < (2 (U[ + [I£]| )) oo + ||£]] 2 (U[ + [I£]] )

TP Tp
p<2 _ _
< V2 (af' L e 1) o5 7P+ 2 (of + |IF||7) [|£]| TP

* Inequality [6] Recall that x () € {0,1} € F, which implies
1

e x(e) 2 (B[ = mx@)™ 17]) 7 oy +IFIE[0 — h)x(a) | 7]

1
==l

-

(B [((1 = x(@)? | 7))~ o + 1 B0~ W) | F
P -5 e
(B 7)) "oz B

0w 71 + ol 7Pa? ]| 7)) (@)

AR A

m 'A@ ‘A@ IA

E FULL THEOREMS FOR UPPER BOUNDS AND PROOFS

In this section, we provide the full description of each theorem given in the main paper with the
proof. Besides, we also present new anytime convergence of Stabilized Clipped SGD. All interme-
diate results used in the analysis are deferred to be proved in Appendix [F

22
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Before starting, we recall that D = ||x, — x;|| denotes the distance between the optimal solution
and the initial point.

For high-probability convergence, as proposed in (2)), one repeatedly used quantity in the clipping

threshold is )
p—1 2 P
. 050 (o
T, = | min , , 32
* ( {m; o?"n[p<21}> o

where § € (0, 1] is the failure probability, p € (1,2] and 0 < 0, < oy are introduced in Assumption
[ Another useful value mentioned before in (3)) is

3
Ox max{\/deglné,deg]l p < 2]}, (33)
where deg = 0 /02 is called generalized effective dimension defined in (1)) satisfying
deg € {0}y U[1,7d/2], (34

in which deg = 0 if and only if oy = 05 = 0, i.e., the noiseless case. Lastly, it is noteworthy that the
following equation always holds

Pu = (35)

A

For in-expectation convergence, we will consider a larger quantity in the clipping threshold as men-
tioned in Section

2
)
Fom (36)
of 1p<2
We also recall
v = degl [p < 2. (37)
Note that there is
o
Be =2t (38)
Tx

E.1 GENERAL CONVEX CASE

We provide different convergence rates for general convex objectives. Recall that X775, stands for
the average iterate after 7 steps, i.e.,

T

SCVX 1

X%Jrl = T th+1. (39)
t=1

Moreover, note that Clipped SGD and Stabilized Clipped SGD are the same when the stepsize is
constant, as mentioned in Appendix [C} Hence, everything in this subsection is proved based on the
analysis for Stabilized Clipped SGD.

E.1.1 HIGH-PROBABILITY CONVERGENCE

Known 7. We begin with the situation where the time horizon T" is known in advance. Theorem [I0]
below shows the refined high-probability rate for Clipped SGD.

Theorem 10 (Full statement of Theorem[I)). Under Assumptions|[I] 2)(with p = 0), [5|andH} for any
T € Nand§ € (0,1), setting ny = 1,74 = max{&,T*T%} ,Vt € [T] where o = 1/2,

D/G D/G D

37 ’ 2 _ _2 1 7.1 ’
p+Ing A/ (UF/Gp‘f'l)T <05‘° 10[2 P +05”a[1 Pl g) T

23
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and ¢ < @, is a constant defined in (@) and equals o, when T’ = €} ( . go*), then Clipped SGD
(Algorithm guarantees that with probability at least 1 — 6, F(X37Y,) — Fy converges at the rate
0

3
a)D

o=

b ] %71 2= p 3 17% 1—
(p+In2)GD (U{"Gl_waG)D os oy "+odop Tln
+

o 1
T VT T %

Remark 11. There are two points we want to emphasize:

First, the choice @ = 1/2 is not essential and can be changed to any « € (0, 1), only resulting
in a different hidden constant in the O notation. In the proof, we try to keep « until the very last
step. Moreover, we would like to mention that a small o may lead to better practical performance as
suggested in Remark 2 of |Parletta et al.| (2025).

Second, these rates are presented while assuming the knowledge of all problem-dependent parame-
ters, as ubiquitously done in the optimization literature. However, not all problem-dependent param-
eters are necessary if one only wants to ensure the convergence. For example, in the above Theorem

10} taking 7; = min {%ﬁ’ %} , T¢ = Mmax {2G, TT%} ,Vt € [T] where A, 7 > 0 (like Theorem 3

m|Liu & Zhou|(2023)) is sufficient to prove that Clipped SGD converges. Therefore, when proving
these theorems, we also try to keep a general version of the stepsize scheduling and the clipping
threshold until the very last step.

Proof. First, a constant stepsize fulfills the requirement of Lemma 4] In addition, our choices of 7;
and 7 also satisfy Conditions || I and |2 I (with « = 1/2) in Lemmal 6} Therefore, given 7' € N and
§ € (0,1], Lemmas[4]and 6] together yield with probability at least 1 — 4,

| — x| D?
+ F X S + 2Acvx
20741 Z 1) 741 T
D2 2 ASvx
= F(RYY) - Fo < —— + =, (41)
(6550) — B < b

where A7Y* is a constant in the order of

T p—1 p
93 0507 4/ ol G,/
o m?’iﬁm In? *+§ ofmr P+ (E: : [p—l L oiplTZt> +§:G2 . (42)
t

t—1 Tt

Our left task is to bound AGY*. Whenn, = 0,7, = 7,Vt € [T] where > 0 and 7 > % (as
required by Condition[2]in Lemmal6), we can simplify (42)) into

cvx 2,23 p_2—p 02‘7[2p ’ 2 0[2sz 2 2
AT*=0(n|7“In g—‘y—U[T T+ T T +a2p7272pT + G“T . 43)

. 1 . .
One more step, under changing 7 to max {&, TT'> } (the second 7 is only required to be nonneg-
ative) and using p < 2, we can further write {#3)) into

1 — )28 520 2—206p G212 3 p2—p
ACTvx:O<n<ﬁ S ) ‘5+<(”‘G _p+G2>T
€

[0,1/2] a?2r—272(1-8)p (1—a)? 1—a)?
3 _ 0202p 2 2
+77 <T2 1n25+0fT2 p-f—ﬁ T» , (44)
where the first term appears due to for any 8 € [0,1/2],
2 2 2p ~o
o*G* JIPG2 o (1-— a)2BpU[PG2 28p 729
e (&fﬂ” (7T%)20_B)p a2r—272(1=F)p

24
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Now, we plug 7 = 7, (see ) into to have, under 7; = max { 7.1 v } Vit € [T,

G2 p? G21n? 3 G2-»
A = ) G2
T <77<a2p2+(1a)2+((1a2 p T
4_9 44 2 9_2 2 3
+n (UQ’ 20? P tof 0[2 P In%"% 5) TF) , (45)
where the first term is obtained by noticing

2 — 1-8 2
(1—a)?PoPG? przﬁ _ G2 ' (1704)6'30[( P (a;)ﬂp 8
(1-B)p o T

2
a?p—27;

(1 _ a)QBpU[QPGQ—2Bp 728 < G2 2

= mn
B€[0,1/2] a2p727.3(1—,3)¥‘ = q2p—-2’

in which

Bp p
2 _q)Pr a B —\p o <
© Beﬁg/ﬂ(l «) <p* (G> T min {90*, \/(1 a)Pp, (G) T} < . (46)

Note that we have p = ¢, when T > (1(;;;";0,, =Q ( . go*)

By , and o = 1/2, we can find

2 2 1 1p23) G2
F( cvx) F <O<D 77(<P +n 6)

X3 T + T —|—77(0'FG2*P _|_G2)

4_9 44 2 9.2 3
+n (ag’ o " 4+odo ¥ In2=% 6) T§_1> .
Plug in n = n, (see ) to conclude that /(X% ) — F converges at the rate of

P 1 2-2 11— 41
erwan (o a)p (e )
_|_

O +
T VT =%

O
Recover the existing rate in [Liu & Zhou| (2023). Remarkably, our above analysis is essentially

tighter than [Liu & Zhou (2023)). To see this claim, we bound AS* in the following way (take the
same o = 1/2 as in[Liu & Zhou|(2023) for a fair comparison):

2 _2p—2 P 2
Agﬁ’x@(’)(n <721n2§+0f7'2_pT—|—U;7; 5 T2—|— G T2 + G’T >>
’7'

A2 i 93 o2F
A <O = = T+—T2+1 <0 + ‘T2
n n 5

25

o20P? or®
< <T In* 7—1—0[ T2 4 = p‘ T2+T2;2T2+GZT>>
R )
—|— of 27T —l— — 51+ G
where (a) is by 7 > & = 2G and (b) holds due to 0 < 0. Under the choice of
7 = min {# % used in Theorem 3 of [Liu & Zhoul(2023)), we have
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2
where the second step is due to QTL,,FT < Z‘T:TQ + 1 (by AM-GM inequality) and 1 < In® 2. Lastly,
we replace 7 with max {2G 7T 0 } given in Theorem 3 of |Liu & Zhoul (2023) to obtain

cvX )‘2 2 3 0.[2!3

Combine with to finally have

FR$3) —F. <0

which is the same rate as given in [Liu & Zhou (2023)) (see their equation (7)), implying that our
analysis is indeed more refined than |Liu & Zhou|(2023).

Unknown 7'. We move to the case of unknown 7. Theorem [I1]in the following gives the anytime
high-probability rate for Stabilized Clipped SGD.

Theorem 11. Under Assumptions [Z](with uw=20), and forany T € Nand § € (0,1], setting

N = min{’y*7 %, Au } STy = max{&,nt%} ,Vt € [T)| where o« = 1/2,
Tyt P
D/G D/G D
= =, x = T, )\* = 1) 47
E ¢*¢*+ln% 7 Vol /Gr+1 \/ 5 _2p—2 (47)

23 of | ofo "
ln 5+Tf+ 7_2p

*

and 1, = 1+ In p,, then Stabilized Clipped SGD (Algorithm guarantees that with probability at
least 1 — 6, F'(X$7,) — Fi converges at the rate of

P 2—2 1,1 1—1
(eoto+m2yGp (oG E+G)D (05" op " todog Pty ?) D
+ + :

(@)
T VT T =%

Proof. By the same argument for in the proof of Theorem[I0] we have with probability at least
1-46,

D2 2 ACvX
F(x§7,) — F, < I 48
(XT+1) *x S Y T (43)
where ATY* is a constant in the order of
2
T T p—1 T T
3 _ 050 ol G
O Inaxnﬂf 1n27+20f7]t7}2 Py Z : [pff/erZ L _;/27 +ZG277,5
telr) = t=1 t i t=1
%# Hﬂ
I 11 1T v \
(49)
When 7; = min {*y, %, )‘1} ,T¢ = max {&, Tt%} ,Vt € [T] for nonnegative 7, n, A and T,
Tt P

we can bound the above five terms as follows.

e Term I. We have

3 ’I’]t(;2 1\2 3
21,2 2 <« 22
teqr) Lt n 512?%?((1_0()2*”15 (T“> ™3

"}/G2 1 23 ’YG21D2% 2 3 1
< A o 1—2 2 .
<o (o oo (G oot (B)). o
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* Term IL. For any ¢ € [T, we have

p<2

! N (1—a)?>» T (1—a)2 Pt (Tt%)p—l’

which implies

T P2—p Ao?
dootmri P <0 ((7’0‘ VT + J‘1T3> : (51)

1—a)2» Th—
t=1
 Term II1. For any ¢ € [T, we have

Vi v21 M@Eth) /A

T (et (rem e
which implies
T p—1 p—1
Z 27 71\/7% <0 <\&%—01I T21p> . (52)
t=1 Tt P2
* Term IV. For any § € [0, 1], we have
T T 1-8 B s
S ACI 5 ACZ o (VoL (2) wen). o
t=1 ap=irf = t=1 Oép_l(Tt%)ptg s AN 7 ’
where
1+InT B=0
T) 2 4
e Term V. We have
T TG
Y@<y =0 (nGQ\/T) . (55)

We plug (50), (1)), (52), (53) and (53) back into @9) to know

2p 2 B2 T G212§ P y2—p
A?X§O<’Y<O—[ G(’?/'Y) ’ll) (6’ )+ s F) +77( U[G p+G2>\/T

a2p—272p (1-a)? (1—a«)?~

23 ol 020202 1
R L s i el AL RSN (UR TR

Combine the above result with 7, = min {’y, %, A } and to obtain
Tt P

2 o G? B2 (8, G?In® 2 2 PGP
DT“F’Y( . CEZP/:Y%T;{; (6.7) + (1_a)28> %‘FU(W-FGQ)
+

F(x73) — Fe <O
(X751) T T

of o202P 2
B 2 (i () + 5 + )
g VB €10,1]. (56)
p

+

27



Published as a conference paper at ICLR 2026

Finally, we conclude after plugging in 7 = 7,, v = 7., = 1%, A = A, (see and @7)), o = 1/2,
and the following fact:

inf 7. (n) 28,1 L LIC (o) 28,1

ﬂE[O,l] ,Y* @*w* 66[071]
D/G B, 2 2
< M * ., T) where =
— Sp*w* (90 7/)*) 1/} (B ) 6* max {hl (¢*¢*) 72}
& D/G
2 DIG 2 (14 2max (In (pu) .21
@*w*
D/G D/G
:O( / .(1+1n2<p*+1n21/;*)>:(’)< / 1/J*>7
TN Px
where the last step is by In ¢, < 24/1)y, 1 + In? px < 1/13 (since ¥, = 1 4+ Iny, and p, > 1), and
P > 1. O

We first compare Theorem[TT] with our Theorem[I0] As one can see, the only difference is the term
o versus the term (.1, the former of which satisfies ¢ < ¢,. This change should be expected
as the precise value of ¢ depends on T (see (46)). Moreover, recall that ¢ = ¢, once 1" exceeds

Q (%J<p*>. Hence, roughly speaking, the only loss in Theorem |11|is an extra multiplicative term

14, which never grows with 7" and is in the order of

1+ In g, @1—1—111 (maX{\/deﬂ‘lni,deﬂ‘]l [p < 2]}) )

This positive result, i.e., no extra poly(InT') term, is due to the stabilization technique, as discussed
in Appendix

Without considering the extra stabilized step, following a similar analysis given in Appendlxllater

one can show that for any general stepsize 7; and any clipping threshold 7, > ——, Clipped SGD
guarantees with probability at least 1 — § (assuming that 7); is nonincreasing for s1mp11c1ty)
D2 + Acvx
F(RYX) - F, < | ——Z |, 57
(x751) — Fe < < 7T ) (57

where ASY* is in the order of

T aap_lnt L oG, * oz
2— 5
o (mppittt S+ 3 oatitat o+ (2 S AU LS ) o
t=1

t=1 t t=1

As a sanity check, when n, = 0,7, = 7,Vt € [T], AC"X /m coincides with AQY™ given in . IfT
is unknown, even ignoring all other terms and only focusing on thl G?7n? in || the final rate of
Clipped SGD by will contain a term Y7 G212 /(nrT), which is however well-known to give
an extra poly(In T") factor for a time-varying stepsize 7;.

Now let us compare Theorem E] to Theorem 1 in [Liu & Zhou| (2023). The latter gives the current
best anytime rate for Clipped SGD as follows (actually, this can be obtained by (57) and (58) above):

GD O’[D
FERY)—F,<O((lnz+m?T +—=).
iz £ ((ngrwr) (7 5% )

Similar to our comparison when 7" is known in Section[d} one can see that our Theorem [T 1]is better
(at least in the case of large 7).

E.1.2 IN-EXPECTATION CONVERGENCE

Known 7. Now we consider the in-expectation convergence. Theorem [12] gives the first rate

1_1
O(odZs * DT ~1) faster than the existing lower bound Q(O‘[DT% ~1) (Nemirovski & Yudin, 1983}
Vural et al., [2022).
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Theorem 12 (Full statement of Theorem [3). Under Assumptions[I}[2|(with j» = 0), [5|and[] for any
T €N, setting 9y = 1y, 70 = max{%,iT%} ,\Vt € [T] where o = 1/2,

D/G D/G D

o 3 o ) %_1 2_% 1 )
\ (o7 /GP+1)T o8 o T

and ¢ < @, is a constant defined in and equals o, when T = ) ( S—S@*) then Clipped SGD
[

(59)

7, = min

(Algorithm guarantees that E [F (x$5) — F*] converges at the rate of

£ 1—-2 2_ —2
o SEGD+<U[2G 2+G)D+0.5u 10.[2 "D
T VT %

Proof. By Lemmas|[5|and[6} we can follow a similar argument until (#4) in the proof of Theorem[I0|
to have

D2 9 Bevx
E[F(R§5,) - F] < s i
[ ( T+1) } P T
where, under n, =7, 7y = maX{%,TT%} ,Vt € [T] forn, T > 0,
cvx . (1 — a)QﬁpUIQPGQ—Qﬁp 25 UFGQ_" )
Br™ <0 <77 (5&51}/2] a2p—2-2(1-B)p ™+ m +G°)T

2p—2
+ p_2—p + M T%
n|o7 o2 .

Now, we plug 7 = 7, (see ) into the above inequality to have under the choice of 7, =
max{&,iT%} Yt e [T],
cVX G2¢2 UFGQ_p 2 -2 4-3 2
o <00 (95, (57 )t 1)

where the first term is obtained by noticing

_ 1- 2
(1—a)*PoPG2 2% oy G2 <(1 — )P o <0[>ﬂp Tﬁ)

q2p—272(1=P)p T 2p—2

Tx
2
® G (1 sesiop (T
=~ ((1 a)’Po, (G) T

(1 _ a)26p0[2PG2725p 28 GQSZQ

ﬁef&l/z] an—Q;E(l—ﬂ)P - o2r-2’
in which
FL inf (1-a)®pl? (ﬁ)ﬁp 7% = min {@7 \/(1 oy (2) T} <G (60)
Bel0,1/2] G G

Note that we have ¢ = @, when T' > % =0 (%]QZ*)

(1—-a)ro

By above results and o = 1/2, we find
D2 ~2G2 4_ _ 4
E[F(x71) - Fi] <O (T + % +n (o G*P + G?) +no? 20? ”Tﬁl) .
n

Plug in 1) = 7, (see (59)) to conclude that E [F(x5%,) — F,] converges at the rate of
£ i_er 2_7 9_2
$GD (O’IZG1 2+G)D ol 10.[2 )
+ +

@) 1
T VT T =%
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Unknown T'. Next, we consider the in-expectation convergence for Stabilized Clipped SGD. This
1

anytime rate is also faster than the lower bound O(aDT% ~1).

Theorem 13. Under Assumptions [I} 2] (with = 0), Bl and B for any T € N, setting n; =

min {’y*, %, N)‘t*é} , T = max{lGa’T*tF } ,Vt € [T where a = 1/2,
Tx

B D/G _ __ Dp/G B D
"E5 {bi ’ N Vo of/Gr+1] A= p 2p—2 61)
P IR s

and 7,[1* = 1+1n @y, then Stabilized Clipped SGD (AlgonthmEl) guarantees that & [ (x35) — F*]
converges at the rate of

o~ Foi-2 2.9 9-2
¢*¢*GD+ (J[2G 2+G)D+0.5p o, D)

O
T VT =%

Proof. By Lemmas|[5|and[6} we can follow a similar argument until (56) in the proof of Theorem|[TT]
to have when 7, = min {7, %, Al} T = max{ﬁ,ﬂfp } ,Vt € [T,
Tt P

D? +70?”G2(7]/’7)ﬁ¢2(ﬁaT) %2 +77( d G)z 7+ G2>

= (1—«
F CcVX F <O 2l a2p—272p
(X751) — Fi < T + JT
o2 2;: 2
DT2T +A (TF T+ 7‘2F 1 )
¥ : VB e,
T 7?

1+InT =0
where ¢(3,T) = {1 1 én g € (0,1] is defined in .
ﬁ b

Finally, we conclude after plugging in 7 = 7, v = 7., = n,, A = A, (see and (61)), o = 1/2,
and the following fact:

e (%) e n 220 e () vre

Be01] T\ Vs B, BE0,1]
D/G * B 2
<= (6.0.) " v2(8.1) where .= - XA
< (zD*/?ZCi €2 (1 + 2max {ln (g}f*zz*) ,2})2
:O(i)/wG (1—!—111 gp*—Hn w*>) _O<D@/G b >,

where the last step is by In J* <2 1/)*, 1+ ln < ¢2 (since ¢* =1+ 1Ingp, and @, > 1), and
Gp > 1. m

Compared to Theorem |1 . we only incur an extra multiplicative term ¢* =1+heg, =1+
In (deg1 [p < 2]) in the higher-order O(T~!) part.

E.2 STRONGLY CONVEX CASE

We turn our attention to strongly convex objectives. In this setting, we recall that X%«til denotes the

following weighted average iterate after T steps:

)—cstr Zt 1(t+4)( +5)Xt+1
T ST i) ©
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E.2.1 HIGH-PROBABILITY CONVERGENCE

Still, we first consider the high-probability convergence rate. Theorem [T4] gives the anytime high-
probability rate of Clipped SGD improving upon Liu & Zhou| (2023).

Theorem 14 (Full statement of Theorem[2). Under Assumptionsm Rl(with > 0), 3|and[| for any
T € Nand 6 € (0,1], setting g, = %, 1Ga,7'*tp } ,Vt € [T] where a = 1/2, then
Clipped SGD (Algorithm guarantees that with probability at least 1 — 9, both F(X%fil) F, and

%711 — x,||* converge at the rate of

T+ — Imax

a_
uD? n (<p2+ln2%)G2 N (O'[ +oPIn2 )G2 P G? 05" 20? P+ofo

@) -
T3 uT? uT uT> %

where © < @, is a constant defined in @) and equals ¢, when'T' = () ( 5 gp*>

Proof. First, the choice of n; = Mt,Vt € [T satisfies iy < Vt € [T] for n = 6, fulfilling the

requirement of Lemmam In addition, our choices of 7; and 7; also meet Conditions |I| and|2| (with
o = 1/2) in Lemmal9] Therefore, given 7' € N and § € (0, 1], Lemmas|[7)and 0] together yield that
with probability at least 1 — 4,

T X, — X i s
741 || . 741 n Zptm (F(x¢41) — F,) < 4D* 4+ 2A3%
t=1

o Triaflxe - x| n i Do (F(xi41) = FL) L AD? 245"

< . (63)
2%, Doy Zthl Liny Sy Do
where I'; = Hi:z ii’; 27; is introduced in (95)) and A" is a constant in the order of
T
23 _ _ PG n? 3
° (m%ftm S S oftutnt* 3 (et T 2
t=1 t=1 t
T
Og 0' FtT]t O'[2pG2Ft7]t 1 2 2
+ + -+ > GT : (64)
Z ( 7202 022 | ; ¢t
We use 1, = %,Vt € [T] to compute
t
1+ pns—1 s s+b5 tt+4D{E+5)
= = . = vte [T +1]. 65
Lo H1+;u75/2 1_[25—1 543 30 ’ 7 +1] (©5)
So for any ¢ € [T,
t+4)(t+5 6 6(t+4)(t+5 36t
D = (FDUED) 60 g g - UL DUEED) 36 (66)
o % Suct %
implying
(t+4)(t+5) T(T*+ 15T + 74
zrtm S rders) I ) )

P Y] 15p

Lastly, let us bound (63). For the L.H.S. of (63)), we have
I'ryr @)en (T +1)(T+5)(T 4 6) < i w(T+1)(T+5)(T +6)  3pu

T AT(T? + 157 + 74)  — 7Ten AT(T? + 15T +74) 16
23 T (T2 + +74) € (T2 + +74)

In addition, we observe that

>y DettiXet @@ Doy (4 ) +5)%041 @ _—
Yo Do St +5)

= X141
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The above two results and the convexity of F' together lead us to

3 || %, — 2
i lﬁxT“H + F(X) — F, < LHS. of [&3). (68)

For the R.H.S. of (63), we plug (67) back into (63)) to have

MDQ +uAstr
R.H.S. of@<0<T3T . (69)
One more step, we use (66) to upper bound (64) and obtain
pPASET < 1 - O | max 72t In? *-l-ZO' pt—i—z oPTE P+ or Gt ln§
T =u te[T] (7 ar—17p 5
I 11 11
T 020[2;0*2152 2pG2t2 .
+ —— + +G*T* | . (70)
; thp 2 a2r— 2T2p
v
When 7, = max{%ﬁt%} ,Vt € [T, we control the above four terms as follows.
e Term I. We have
53 ,3  G?In?? 3 2
2tn® S =TI S < —— 2T+ 2% (S ) T 71
{Iel%TtndTT n6*( )2 +77 % | 5 » (71
e Term II. We have
2— .
Za 0y P27 gpr2oere < oG T2 4 oP T (72)
= ar (1—a) ! ’
e Term III. We have
T <2 2—p
O'Ethipt pi UETIQfPTQ < 705(; T2 +0p7'2 pTH'*,
t=1 (1—a)*
and for any 5 € [0,1/2]
T T P2 — a\PrsPG2-8
L. L L] (e Lo
aP—1r P o i 1\ (1=B)p aP—17(1-B)p
S ()" (o)
«
Thus, for any 8 € [0,1/2],
T P2
p_2—p U[G t 3
Z ity Tt —— In =
t_1< aP~lr; o
b2—p — a)\Br P 2—Bp
0sG 2 p_2—ppl+2 (1-a)olG 1+8 3
SO(((l_a)2pT +oPr? TP 4 T (B T hl(S . (73)

e Term IV. We have
2 2p— 2t2 p>1 0_2 2p—

T
O’ g g 2
Y e < Q;QT”R
T
t=1 T
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and for any 8 € [0,1/2],

T
U[2p G2t2

S A ey e
2. 2p = 2 2(1—
o2 272P = 20— (L) Bp (Tt%) (1-p)p

-«

2 _
<0 ((1 e Bp)T””) |

a2p—272(1=B)p
Hence, for any 8 € [0,1/2],
T 2p—2 2
( 22p 2t [pG2t2>
p _9._2p
Zt - a2p 2Tt

2 2p—2 2 —
<0 (U 0 ey | (12 0)Po "GP0 ﬂp)T””)- (74)

T2p—2 a2p—27_2(1—6)p

Next, for any fixed 8 € [0,1/2],
R.H.S. of (7TT) + R.H.S. of [74)

21,2 3 2 2p ~2(1— 2 2p—2
(Ci & )? o7 = 0;);3 ﬁsazr(lGﬁip BP)T”w +7%1n? (i) T Teol ity
-« Q“r 4T -

@_(1—a)®efG*FPIn2 14 3 2
8 ~1_2-p 142
=2 (1 —a)ar—1r1=Fp T + 20507 n <5)T ’

®(1—a)efG*FPIn 2 14 2
B p_2—p 1+
> =11 T +obr ln<5>T
G2 plné

where (a) is by AM-GM 1nequality and (b) isdue to @ < 1, oy > o5 and p > 1. Therefore, after

plugging (71), (72), (73), and back into (70), we have for any 3 € [0,1/2],
1 (1—a)PabGl=-Fr P o@Pm?e (of +obIn2)G2r
str = . [ B ) [ s 2 2
wAT SM © ((( ap—tr(1=Bp )+ (1-a)? T (1—a)2» e T
3 202p 2 5
+ <T2 1112 g =+ O'FTQ_p + ﬁ T1+§ .

Combine the above bound on p A5 and (69) to have for any 3 € [0,1/2],

_ 2
G? 1n2% ((17(1)‘”’0?(?1 Br TB)

uD?  =ap I P e
R.H.S. of <0
o @ — Tg + MT2
(o’ +0p In )02 P 2 23 B (7202;: 2
+WJFG +T21n 3+UFT2 Pt == (75)

wT MT27%
We put (68) and (75) together, then use o = 1/2 and 7 = 7, (see (32)), and follow the same
argument of (#6) to finally obtain

3/1’ ||X* — XT+1H str
+F(x7h) - Fu

16
4 4 2 2
23 p P, 3 - P2 4=y 2=31,.2-2 3
<0 uD2+(¢2+ln 3)G2+(0[+051n3)G2 p+G2+05'° o, "—|—0502[ PIn"Tr 5
T3 wT? uT uT> %
O
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E.2.2 IN-EXPECTATION CONVERGENCE

Next, we consider the in-expectation convergence. Note that Theorem T3]is also the first result that
breaks the existing lower bound Q(a[QT%_2) (Zhang et al., 2020).

Theorem 15 (Full statement of Theorem %[) Under Assumptions [I} 2] (with . > 0), Bl and §] for
1

any T € N, setting n, = %,Tt = max —,it%} ,Vt € [T] where a = 1/2, then Clipped
SGD (Algorithm guarantees that both B [F (x5, ) — F.| and yE {HXT_H - x*||2} converge at

the rate of

4_9 y4_4
2 202 P 2—p 2 P P
0 ,uD3 Jr<,0G2+U[G +d L0 0[2 ’
T wl ul w5

where ¢ < @, is a constant defined in and equals p, whenT' = () (f—;@*)

Proof. By Lemmas|8|and [0} we can follow a similar argument until (70) in the proof of Theorem[T4]
to have

3ME[HX*—-XT+HF}
16

(76)

tr /J'D2 + ,U,Bbtr
+E[Pi) - 1] <0 (P )

where

T . 2 2p 2t [2pG2t2 oo
str
B <7 Zam t+z zp st e | T
When 7 = max {%,Tt%} ,Vt € [T], we know

T
@ ofG?*r 2
p_2—p [ 2 _p 2-ppl42
Eﬁ oyt 't < a a)Z—pT +o TP T,

and for any 5 € [0,1/2],

T 2p—2 2 2p—2 2 —
> (Uzglp LR Jerte ) %zb o <020[p . (1— a)?roP G20 BP)THQB) .

P2 a2 292 a2p—272(1-B)p

Therefore, we can bound

— o)BP P 1—Bp 2 p2—p
ﬂB%tr<i.o<<(1 o) PoiG Tﬂ> T+(("‘G +G2>

apflT(lfﬁ)P 1— )
0_20_2]3 2 142
oA Sy | T ) VB e [0,1/2]. (77)

We put (76) and (77) together, then use @ = 1/2 and 7 = 7, (see (36)), and follow the same
argument of (60) to finally obtain

3uE [, — x|

FE[F(x,) - F]

16
2 =22 p¥2—p 2 p2 4-3
<0 uD 0 G oGP+ G n of o
- T T pT T v
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F THEORETICAL ANALYSIS

This section provides the missing analysis for every lemma used in the proof in Section [E] As
discussed in Section [5] our refined analysis has two core parts: better application of Freedman’s
inequality and finer bounds for clipping error.

Before starting, we summarize the frequently used notation in the proof:

* x, € X, the optimal solution in the domain of the problem X.

* D = ||x, — x|, distance between the optimal solution and the initial point.

o Fy =0(&,- -+, &), the natural filtration induced by i.i.d. samples &; to & from D.
o g1 = g(x¢, &), the stochastic gradient accessed at the ¢-th iteration for point x;.

* 7y, the clipping threshold used at the ¢-th iteration.

» gf = clip,, (g:) = min {1, H;—j“} g:, the clipped stochastic gradient.

o df = gf —V f(x:), difference between the clipped stochastic gradient and the true gradient.
o d}' =gf — E[gf | Ft_1], the unbiased part in d.
o d?’ =E|[gf | F;_1] — Vf(x¢), the biased part in dS.

F.1 GENERAL LEMMAS

We give two general lemmas in this subsection.

First, we apply Theorem [J] to obtain the following error bounds specialized for clipped gradient
methods. As mentioned, the technical condition required in Theorem [9] automatically holds for
clipped gradient methods.

Lemma 2 (Full statement of Lemma [I). Under Assumption H| and assuming 0 < 7, €
Fi1, then for d} = gi — Elgf | Fi1], df = Elgf | Fima] — Vf(xi). and xi(o) =
1[(1-a) > ||Vf(x)|],Va € (0,1), there are:

1 ||ldg]| < 27

2. E [||dg||2 | ]-"t_l] < doPrPP,

5. [y @)™ 1 F [ < a0k 4V el

b B[ @) | Fa] | o) < 4022 + 40t bod |V £xo)| 7

5[l dbl < V2 (o VIO ) ourd P 2 (oF + IV £ IP) 195 ()l 7P
6. HdEH xt(a) < asaf_thl_p + al_pa{’ V£ (xe)|| 7, F.

Proof. We invoke Theorem [0 with F = Fy_1, g = g, £ = Vf(x¢), 8 = g(x¢,&41), T = 71
d" = dy, d® = dP, and x(a) = x¢(a) to conclude. O

Compared to Lemma [T} the clipping threshold 7 could be time-varying and random. Inequalities
[ and [6] provide a further (though minor) generalization by a new parameter o, which might be
useful in practice as mentioned in Remark Especially, setting o« = 1/2 will recover Lemrna
Moreover, as discussed in Section [5] Inequalities [2] [4] and [6] are all finer than existing bounds for
clipping error under heavy-tailed noise.

We then discuss Inequalities [3]and [5|not provided in Lemmal[l] As far as we know, both of them are
new in the literature. As one can see, we do not require ||V f(x;)|| (which turns out to be G under
Assumption [3) to set up 7; now, which we believe could be useful for future work.

Next, we give two one-step descent inequalities for our algorithms. The analysis is standard in the
literature, which we reproduce here for completeness.
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Lemma 3. Under Assumptions2land[3} for any y € X andt € N:

* Clipped SGD (Algorithm[l) guarantees

2 2
<My =xell” (A pne) ly = xenll” |

ds,y — ds||?+4n,G2.
o o (di,y — x¢)+me |di || " +4n,

F(x¢41)—F(y)

* Stabilized Clipped SGD (Algorithm[2) guarantees, if n, is nonincreasing,

2 2 2
<Hy—xt|| (4 ) ly — xea | n ( Lo 1) |y — x|
- 2m 2011 N1 Mt 2

+{dfy = %) + e |51 + 4, G2

F(x¢41) — F(y)

Proof. By the convexity of f,
F&ir1) = f(xt) < (VF(Xeq1), X1 — Xe) -
=(Vf(xt11) = Vf(xe), %41 — X¢) +(Vf(Xt), X401 — X¢)

Recall that d§ = gf — V f(x;), we hence have for any y € X,

(Vf(xe), Xep1 — Xe) = (df, Xe — Xep1) + (8¢, X1 —y) +(df,y — %) + (VF(xe), ¥y — x¢)

<(df,xe — X¢11) + (8, X1 —y) H(df,y —xi) + f(y) — f(xe),
where the inequality is, again, due to the convexity of f. Combine the above two results to obtain
(1) = f(y) S (VF(xe1) = V(%) Xep1 — X)) + (df, X — Xp41)
I 11
+ (87, Xe41 — y) H(di,y — %) - (78)
N——
111

Next, we bound these three terms separately.

* Term I. By Cauchy-Schwarz inequality, G-Lipschitz property of f, and AM-GM inequal-
ity, there is

(Vfxer1) = VIxe), X1 — %) < [V F(xe1) = VI %41 — x|

2
<2G ||lxp41 — x¢|| < 4mG? + Ieegs = el (79)
4y
* Term II. By Cauchy-Schwarz inequality and AM-GM inequality, we know
2
Xi41 — X
(5300~ 1) < 6 e — ol < e g P+ X=X g

dny

» Term III. For Clipped SGD, by the optimality condition of the update rule, there exists
Vr(xit1) € Or(xgy1) such that
Xt+1 — Xt

y Xt4+1 — Y> S 07
Ui

<V7“(Xt+1) +g; +
which implies

<g§7Xt+1 - }’>
1
S; (Xt = Xp41,Xe41 —Y) +(Vr(Xe41),y — Xi41)
t
2 2 2
_ [y = xel|” = lly = %es1]|” = [[xe41 — x|
2m
2 2 2
< ly —xell” = [ly = xeq1 |7 — Ixeq1 — x|
B 2m

+(Vr(xe41),y — X¢41)

+7(y) = (1) = 5 Iy = xena
(81)

36



Published as a conference paper at ICLR 2026

where the last step is due to the p-strong convexity of 7 (Assumption [2). For Stabilized
Clipped SGD, a similar argument yields that when 7; > 141,

2 2 9 )
<gC X4l 7y> <||yixt|| o Hyfxt—',-lH . th-‘rl 7Xt|| " < 1 B 1> M
; o 2m 2141 21, Ml e 5

+7(y) = i) = 5y = xen | (82)

We plug (79), (80), and 1) (resp. (82)) back into (78] and rearrange terms to obtain the desired
result for Clipped SGD (resp. Stabilized Clipped SGD). O

F.2 LEMMAS FOR GENERAL CONVEX FUNCTIONS
In this section, we focus on the general convex case, i.e., 4 = 0 in Assumption @ As mentioned

before in Appendix [C] it is enough to only analyze the Stabilized Clipped SGD method since it is
the same as the original Clipped SGD when the stepsize is constant.

F.2.1 Two CORE INEQUALITIES

Before moving to the formal proof, we first introduce two quantities that will be used in the analysis:

Ry 2 max P2 =5l vy e dNé< ey, >,VteT. 83
TR v Tl and N ftR\F e e

Note that R; € F;_1 and N; € F; by their definitions. Importantly, [V, is a real-valued MDS due to

E[N, | Fros] = <m[ | Ful,

Xy — Xt

R/

Now we are ready to dive into the analysis. We first introduce the following Lemma [4] which
characterizes the progress made by Stabilized Clipped SGD after T iterations.

> =0,Vt € [T]. (84)

Lemma 4. Under Assumptions[I| 2| (with (1 = 0) and[3] if n, is nonincreasing, then for any T € N,
Stabilized Clipped SGD (Algorithm|2) guarantees

. = 7 )? D?
+ F X Icvx7
20741 Z t+1) 77T+1

where
2 T T 2 T
s (o) 2ttt (3 fumat]) +46° 3
t=1 t=1 t=1

Proof. We invoke Lemma 3] for Stabilized Clipped SGD with » = 0 and y = x,, then replace the

subscript ¢ with s, and use ||x, — x1|| = D to have
s = %sl|* (e = %o ( 1 1 > D? 2 2

F(xg41)—F, < — + — =) (S, x, — x) 41, ||| P +4n, G2,

( s+1) * 2775 2775+1 N1 ns 2 < S> n H sH n
sum up which over s from 1 to ¢ < T to obtain
e = xe]® | § t

* A+l c 2
2L Y F(xe) - B < +§ - +§ 51| +4G§ ..
277t+1 s=1 ( +1) 27]t+1 s=1 ! | | s= !

(85)
We recall the decomposition d$ = d¥ + d to have

t

$Xe — X t x — Xg t b X, —x, & t <IN g t s b X~ Xs .
S ) = 3 @hx ) (dhx ) ZRN+Zﬁ<dS, m>

s=1 s=1
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‘We can bound <

ZNS .

s=1

t t
Lemma[T3]
E RNy < E R,Ng 2R; max
s=1 s=1 Seft]

In addition, Cauchy-Schwarz inequality gives us
t

t t
* — Xg ”X* _XSH @ b
NG L >g el || 2 X Visd®]|.

As such, we know

¢
Z (dS, x4 — x5) < 2R; max + R; Z H,/nsde
s=1

ZN
B2 S 2 2
< Tt + 82(162% <Z Ns> +2 (Z ||¢n§d'§”> ; (86)
s=1 s=1
where the second inequality is by R; X < %’f + 2X? (due to AM-GM inequality) for X =

5:1 5| and 37,
Plug (86) back into @ to get

HX*"XHJH
—+ F X 1
20441 Z .

b
,'7837

2maxgely]

2 t 2 t t
Ns> +2<ZH\/@EH> + > s [ +4G D s
s=1 s=1 s=1
2 t t 2 t
NJ +2§ijﬁW+4<§ijnm0 +4G2 Y s,
s=1 s=1 s=1

R2 D?
< + + 8 max
4 2041 Selt]

R D2
<— 4 + 8 max

w w
”M"’ I\Mto
- —

— 4 2m Selt]
A& evx
(87)
where the last step is by
t t ) t t )
cl|2 u u| 2
Zns |dsl|” = Zns ||ds + d?” < 22715 g ||” + 22775 HdSH
s=1 s=1 s=1 s=1
t t 2
2
<2 a2 (S vt
s=1 s=1
Now we let a; & D% vy ¢ (74 1], b, 2 Y F(xopn) — Fo V€ [T]and ¢y £ 22 4
Ivx vt € [T+ 1] Where 5™ = 0. Note that b, is nonnegative, c; is nondecreasing as 7 is
nonincreasing, and
_ 2 2 2
I Y L L
2m 2m T om
Moreover, is saying that
MmaxXse(t] As
a1 + by < ————— + 41,V € [T7].
Thus, we can invoke Lemma[I4]to obtain
ary1 +br < 2erqq,
which means
HX*_XT+1||2 —|—2T:F(X ) F < 2 +2]CVX
— t+1) — 'y < .
20741 =1 * Nr+1 g
O
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Equipped with Lemma [d] we prove the following in-expectation convergence result for Stabilized
Clipped SGD.

Lemma 5. Under the same setting in Lemma | Stabilized Clipped SGD (Algorithm[2) guarantees

E ||x, — x| D2

ZE Xt+1 F ] < JCVX,

20741 77T+1

where

T 2 T
Jorx & 3427%1@ [||du|| } +4E (Z Hma?”) +4G?> .
t=1 t=1

t=1

Proof. We invoke Lemma ] and take expectations to obtain

E [lx. = x741?] p?

ZE Xt+1 F] <

+ 2B [177],

20741 741

CVX

where, by the definition of I.

2 T T 2 T

E [IV%] = 8E max (Z N, ) +2) R [||dy||2} +4E (Z Hmd}gH) +4G*D .
t=1 t=1 t=1

Recall that N;, V¢ € [T] is a MDS (see (84)). Therefore, by Lemmal[12] there is

2 T & T
E | max (ZN) <4Y E[N?] < 4Y nE [||d§H2}.
t=1 t=1

Finally, we have

T T 2 T
E[15] <34 niE [||a}|?] +4E (ZHmd?H) +AGE Y = I
t=1 t=1

t=1

F.2.2 BOUNDING RESIDUAL TERMS

With Lemmas [4] and [5] our next goal is naturally to bound the residual terms /% and J§"*. Note

that the G* ZtT:l 1, part is standard in nonsmooth optimization. Hence, all important things are to
control the other terms left.

We now provide the bound in the following Lemma [6] a tighter estimation for the residual term
compared to prior works (e.g., Liu & Zhou| (2023)), which is achieved due to our finer bounds for
clipping error under heavy-tailed noise.

Lemma 6. Under Assumptions[3| B|and the following two conditions:
1. 1y and Ty are deterministic for all t € [T).
2. 7 > 1< holds for some constant o € (0,1) and all t € [T).
We have:

1. for any § € (0,1], with probability at least 1 — 6, I < A where ISV is defined in
Lemmad|and A$™ is a constant in the order of

2
T p T p—1 p T
o 0s0; +/ or G,/
o maxnﬂt In? —|— E [77; E 2 Ipq oy [p71 Zt +§ G2,
te[T] Tt P} i aP— 7y =1
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2. Jp™ < B§™ where J§ is defined in Lemma | and B is a constant in the order of

2
T p T p—1 p T
oMt o501 /e | 0 Gy 2
O\ =t |ty )t
t=1 Tt t=1 Tt t t=1

Proof. We observe that for any ¢ € [T, 7 > G > W holds almost surely due to Condition

2|and Assumption [3] implying that x;(a ) in Lemmal equals 1 for all ¢ € [T]. Then Lemma 2]and
Assumptlonl 3| together yield the following inequalities holding for any ¢ € [T:

Inequality [T]
lvmedll| < " 2¢/mem < 2?61% VTt (88)
Inequality@ 4O.P
E[lVadi? | Fa] < LT, (89)
Tt
Inequality [] 40—5‘:' 40P G2
[ [ma @1 7| ST S S 90)
Ty (0% Tt
lnequality@(-)-o-p_1 m O'pG m
I e oD
Ty « Ty

We first bound 5" in high probability.

* Recall that N; = <\/1ﬁd}f, ’1;*;/’7%> ,Vt € [T] is a real-valued MDS (see ), whose

absolute value can be bounded by Cauchy—Schwarz inequality

||md“H < Qmax /et

[Ni| < [lv/medif

Moreover, its conditional variance can be controlled by

:
B[N i) = (G2 B[ @) | ]

@ 40Pn, 4af G,

u u T @
HE {ntdt (df) |ft—1} H < Ttp_2 + ap—thF‘ :

Therefore, Freedman’s inequality (Lemma gives that with probability at least 1 —24/3,

t

>N,

s=1

4 057)5 aszns 3
<= max\/ﬁnln7+ 82( ozp—lrf lng,VtG[T],

which implies

25 arnt O'FGQ??t 3
?elaizi (ZN) < 6?61%%7} In? JrIGZ( ap_thp lng. 92)

* Note that H Vnedy H ,Vt € [T is a sequence of random variables satisfying

(1) @40
Iy < 2mx im and E [y | Fo] < S0
Tt

Then by Lemma we have with probability at least 1 — 6/3,

Z ||d“H <Emax Tln§+8za[nt %< gmax Tln2§+8i0[nt
tlm Hmt 5 2.7 = 3t€[]77tt 5 5
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* Lastly, there is

T T
©1) osof ! ]t ot G/
Z — b Z s [ [
t=1 vl = t=1 ap=irf o9

Combine (92), and to have with probability at least 1 — &,

2

2 T T
197 = 8 max (ZN ) +23 el dP)? +4 (Z ||\/7ﬁd§’]|> +4G? Zm < AS™,
t=1 t=1

T]
te[T) =1

where

28 28 23 of U i PGQnt 3
cvx A e [ 9 e
ATT = (9 + 3 > m[a)intrt In? 5 +16 g 5 + 128 E p,thp In 5

t=1

Z 0f77t [G277t ln§
apfthp 1)

T p—1 p
osor e | oGy 2
+<Z T i @G

=1 Tt

=0 (m?x 0T

Note that by AM-GM inequality

2
(i 050! Vi afGﬁ)
-

23
max 1,77 In? = +

te[T] § — 7} 1 ap—17F
&l 050{3_1\/@ o Gf
>2 ?elf%\/ﬁn Z P + apfthp ng
t=1
@ & Ugap af G, 30 & oy, oGPy 3
>2 . ! Ins > 2 L L

where (a) is by 7 > % in Condition 2|and (b) is due to oy

the order of A can be simplified into

Y

os,p > 1and « € (0,1). Hence,

T T p—1 p 2 7
o 0507 4/ o7 G/
1) {n?}§7]t7_t In 7_’_2 : [nt (2: [pi1 Ui Lo 77t> +ZG27]t
7 t=1

p—1,P
t=1 t t=1 t a T

Now let us bound J$™*. It can be done directly via @I) and (IZI]) Hence, we omit the detail and
claim J™ < B&™, where BT'™ is a constant in the order of

2
T p T p—1 p T
oMt 050y e | 0 G\ 2
ot (Lo TEE) e
t=1

Ty

F.3 LEMMAS FOR STRONGLY CONVEX FUNCTIONS

In this section, we move to the strongly convex case, i.e., ;1 > 0 in Assumption 2] The algorithm
that we study is Clipped SGD.
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F.3.1 Two CORE INEQUALITIES
We begin by introducing some notations that will be used later:
rtgw Vte T +1], (95)
which satisfies the equation
Ly(L 4 pp) = Teqn (1 + pnes/2),Vt € [T7. (96)
Equipped with I';, we redefine

Rtémaxx/ (14 pms/2) ||xx — x|,V € [T7], 97)

s€(t]

<\/ 1+/mt/2m £ +Mt/2 > et o9

By their definitions, R; € F;_1 and N; € F;. Moreover, IV, is still a MDS due to

E[N, | Fia] = <\/ 1+27tm/2ma [} | Fial, L w%?)("* — Xt)> =0,V € [T].

99)
Again, we first show the progress made by Clipped SGD after T steps in the following Lemma 7}

Lemma 7. Under Assumpnonsl I( wzth w>0) and I ifn, <1 for some constant n > 0, then for
any T € N, Clipped SGD (Algorithm[I)) guarantees

(1>

Ny

Tri1 % — x4
2

+ Z Tone (F(xe11) — Fy) < (14+n/2)D? + 215,
t=1

where

2 T
2n+1
£ dma <ZN> +2 3 Ty * + = metllde +4GzZFmt

t=1

Proof. We invoke Lemma 3] for Clipped SGD with ;> 0 and y = x,, then replace the subscript ¢
with s, and multiply both sides by I';7, to have

Lsns (F(xs41) — FX)
<Fs HX* — XSH2 _ FS(l + /“75) [|xs — Xs+1H2
- 2 2

2
@FS [l — %s| _ D1 (14 pnsi1/2) [|xe — Xs+1||
2 2

sum up which over s form 1 to ¢ < T to obtain

+ (Lsnsd, x4 — Xs) + ang ”dZ”2 + 4Fs775G2

+ (Csmsds, Xo — X5) + ans HdCH + 4F57]2G2

r 1 2 —
Lt /Dl = xinl S, (pixp) - P
s=1

T x - %) g 2 v c - o2 ;
g*f — Zngns I, — x| +;<ansds,x*—xs>+Zang IdS)? + 4G S Torp?

s=1 s=1

t t
- 7 erm [+ — Xs” + Z Donsdg, xo — x5) + erﬂg ”dS”2 +4G? ernf,
s=1 s=1
(100)

where the last step holds by I'; = 1 and ||x, — x1|| = D
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We recall the decomposition d¢ = d? + dP to have

t

¢ t
Z (Tsnsd, x, — x5) = Z (Csmsdy, x4 — Xs) + Z <I‘Snsd2, Xy — Xs)
s=1

s=1 s=1
t

In addition, we use Cauchy-Schwarz inequality and AM-GM inequality to bound

t t t b2 2
D (Taned?, x, = x4) <> T || d] [, — x4l <D Lath ﬂds ” + st H)Z* = %l :
s=1 s=1

As such, we obtain

; c R? 5 ’ i anstEW ulsms ||x —xs||2
Z<ansds’x*_xs> < Tt+4g1€aﬁ ;Ns +Z u + = 4* .

s=1 s=1
(101)

Plug (T0T) back into (T00) to get

Cipr(1+ pmegr/2)
2

Xy — X
|| * t+1|| +ZFS775 F(XS+1) _ F*)

s=1

R | (1+pm/2)

b o ) c
e S L e R o

s=1 s=1 s=1
2 2
_Bt | (+n/2)D
— 4 2

2 t t t
u 2n+1 2
+4g1€3€]; <§ jN) +2) Ty’ ||dsH2+T§ Tans ||d2||” +4G* > "Ten?, (102)

s=1 s=1 s=1

é[ftr
where the last step is by 71 < 1/ and

t t t t
ST as)? = S T |l + a2 F < 23 T llad? +2 ) Ten? ||ab)?
s=1

s=1 s=1 s=1

t 2 t
2> T [+ 25" o ]
s=1 s=1

ns<n/p,¥s€[T]
<

Now we let a; & Lelltmme/2xe—xl® vy ¢ (04 1), b, 2 Y4 T (F(xe11) — Fy) Yt € [T

and ¢, £ % + I3Vt € [T+ 1], where I§" = 0. Note that b; is nonnegative, ¢; is

nondecreasing, and

Dy (1 + 1 /2) [[xe — x| o (L+n/2)D?
2 - 2

Moreover, (102) is saying that

< (1+n/2)D? = 2¢;.

a; =

maxse[t] Qg

a1 + by < + ¢y, VE € [T] .
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Thus, we can invoke Lemma [I4]to obtain
ar+1 +br < 2erya,

which means

Loy (14 pnry1/2) |
2

2 T
Xy — X str
| el > T (F(xe11) — Fy) < (1+1/2)D? + 215
t=1

Finally, we conclude from pnr41 > 0. O]

Equipped with Lemma[7] we prove the following in-expectation convergence result for Clipped SGD
under strong convexity.

Lemma 8. Under the same setting in Lemmal[/] Clipped SGD (Algorithm[l) guarantees

TriE [[x, - x4 ]
2

T
+ ZrtmE [F(xt41) — Fu] < (1+1n/2)D? +2J5",

where

T
2 1
i 2183 TuE [[a?] + 77; ZrtmE [P’ +4G2Zrmt
t=1 = t=1

Proof. Similar to the proof of Lemma 5] we take expectations on both sides of Lemma [7] and then
invoke Lemma(T2] The calculations are omitted here to save space.

F.3.2 BOUNDING RESIDUAL TERMS

Like previously, we need to upper bound I5* and J5'*, which is done in the following lemma.

Lemma 9. Under Assumptions 3| f|and the following two conditions:
1. n: and Ty are deterministic for all t € [T).
2.1 > & holds for some constant « € (0,1) and all t € [T).
We have:

1. for any 6 € (0,1], with probability at least 1 — 6, I$** < ASY" where I3 is defined in
Lemma[7]and AS s a constant in the order of

T T
o Fmt UﬁTt??tQ afGQme 3
o (ot 5+ 3, Bl 32 (T 4 T Y

t=1 t

T 2 2p—2 T
lopelop Tyny (TI G2 Time \ 2n+1 9 9
o3 (B s O LS ).

t=1

2. J5§ < BSY™ where J5 is defined in Lemmalcmd B5™ is a constant in the order of

T p 2 T 2p 2 T
o Ftnt O, O'[ Ftnt o0 G Ftnt 277 + 1 2 2
o (3t oy (e EET ) 2L 5 gorg).

2p—2
=1 Tt t=1 Tt @ Tt t=1

Proof. We observe that for any ¢ € [T, 7 > % > W holds almost surely due to Condition
and Assumption 3] implying that y;(c) in Lemma[2]equals 1 for all ¢ € [T']. Then Lemmal[2]and

44



Published as a conference paper at ICLR 2026

Assumption 3| together yield the following inequalities holding for any ¢ € [T7]:

Vi) " o < 2 /T (103)
E [Tor? a2 | Fios g W, (104)
t
HE [Ftnt ar @y’ | ‘Ft—l} ‘ Inequglity@ 4(:-};;1}277152 4a££211;;77§ (105)
t t
o [l "< Uﬁa?_:m N ASINTTY (106)

-1 —1.p
T aP~ir)

* Similar to (92), we can prove now with probability at least 1 — 26/3,

25 53 agftnt UFGQme 3
?elaizi (ZN) <—{2%Ftnfﬂ In 6+162( + - >1n6.

Tt
(107)
* Similar to , we can prove now with probability at least 1 — §/3,
14 53 P
Zrtm |du|| < *m[cnif‘mtq In2 2 _|_8Z it t77t (108)
t=1 t
* Lastly, there is
T T . )
2 050] r o G/T
Zl“thd‘H @Z( 50 pi\l/TntJr [ \/Tm>
a"—lrp
t=1 t=1 Ty /
T 2p—2 2
20-20- P Ftnt 2U[pG2Ft’I7t
= ; ( TEP_Q T 2,2 | (109)

We combine (107), (I08) and (I09) to have with probability at least 1 — 4,

2 T
I = 4max (ZN) +22Ft77t2 A2 + 277': 1 thnt ||db|| +4G22Ft77t < ASt

telT] t=1 t=1 t=1
where
27 28 93 oPTyn? o Fm o G?I'yn? 3
A A= I In?Z +16 [t64 5t L L) In =
(9+3>{2% T S Z - + Z P T )
T
20’ 0'[ Ft’f]t 20'[ G FtT]t 277+1 2
ey (2 LT 2 et
T T
o th Usrtnt UFGQFHH 3
=0 | maxT’ 7+ ! + + In —
(m[;ﬁ tnt'rt In? Z ;< Ttp_g ap_thp n(s
T
o2 0[ Ftnt a[ PG2 Ftnt 2n+1 9 9
t=1

Now let us bound J5*. It can be done directly via 4) and (106). Hence, we omit the detail and
claim J5 < B5'*, where B5" is a constant in the order of

P 2 T 2 _2p—2 2p 2 T
o 'y oo " Ty o "G*Temy \ 2n+1 e
@ (Z ot < e S Gt .

=1 Tt t—1 t—1
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F.4 EXISTING TECHNICAL RESULTS

This section contains some technical results existing (or implicitly used) in prior works.

First, Lemma[_llj] is the famous Freedman’s inequality, a useful tool to bound a real-valued MDS.

Lemma 10 (Freedman’s inequality (Freedman| 1975)). Suppose X; € R,Vt € [T] is a real-
valued MDS adapted to the filtration F;,¥t € {0} U [T satisfying for any t € [T), X; < b and
E [X? | Fi—1] < o} almost surely, where b > 0 and o} are both constant, then for any § € (0,1],
there is

T
1
2Za§1ng,Vte [T]| >1-06.

s=1

t
2 1
Pr ZXS < —blnf—k
s=1

Next, Lemma|[TT]is another concentration inequality. This is not a new result, and similar ideas were
used before in, e.g., Cutkosky & Mehtal (2021);|Zhang & Cutkosky|(2022); |Liu & Zhou| (2023)). We
provide a proof here to make the work self-contained.

Lemma 11. Suppose X; € R,Vt € [T] is a sequence of random variables adapted to the filtration
Fi, ¥t € {0} U [T satisfying for any t € [T], | X;| < band E [X? | Fy—1| < o} almost surely,
where b > 0 and o? are both constant, then for any § € (0, 1], there is

T w1 T
2 2
Pr t§:1Xt§—6 1“54'2;:1‘7'5 >1-46.

Proof. Note that we can bound

T T T T
ZXQ ZX2 (X7 | Fea] + Z (X7 | Fia SZ Zaf
t=1 t=1 t=1 t=1

2y,

Observe that Y3, Vt € [T is a real-valued MDS adapted to the filtration 7, V¢t € {0} U[T] satisfying
YV, < X7 <V and E[Y7?|Foi| <E[X] | Foi] <0207
Then Lemma|[10]yields that, for any 6 € (0, 1], we have with probability at least 1 — §,

which implies

t=1

where the last step is by 1/2 Zt  b?o?In g % Ini + Zthl o? due to AM-GM inequality.

Hence, it follows that
Pr ZX2 L +220t1>1—

O

The following Lemma [12]is the famous Doob’s L? maximum inequality. For its proof, see, e.g.,
Theorem 4.4.4 in Durrett| (2019)).

Lemma 12 (Doob’s L? maximum inequality). Suppose X; € R,Vt € [T] is a real-valued MDS,
then there is
2 T
E X <4) E[X7].
max (Z ) <43 E[x]
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In addition, we need the following algebraic fact in our analysis.

Lemma 13 (Lemma C.2 in[Ivgi et al.| (2023)). Let a1,--- ,ar and by, - , by be two sequences in
R such that a, is nonnegative and nondecreasing, then there is

t S
> asbs > by|, vt e [T].
s=1 s=1

< 2a; max
Selt]

Lastly, we introduce another algebraic inequality, the idea behind which can also be found in pre-
vious works like [Ivgi et al.| (2023); |[Liu & Zhou| (2023). For completeness, we produce a proof
here.

Lemma 14. Let a1, -+ ,ar41, b1, -+ ,br and c1,--- ,cry1 be three sequences in R such that by
is nonnegative and c; is nondecreasing, if a1 < 2c1 and

maXge [t] Qg

Ar41 + bt S + ct+1,Vt € [T] s

then there is
ars1+br < 2cryg.

Proof. We first use induction to show
ar < 2¢,Vt € [T]. (110)

For the base case t = 1, we know a; < 2¢; by the assumption. Suppose (IT0) holds for all time not
greater than ¢ for some ¢ € [T' — 1]. Then for time ¢ + 1, we know

by >0 maXsejy] Gs

[0 max 2c
a1 < apyr + by < < el

+cer1 < 9

where the last inequality holds because ¢; is nondecreasing. Therefore, (TI0) is true by induction.
Hence, we know

+ci41 < 26441,

max,e[r] Gs % maxser) 2¢s
ary1 +br £ ————— +cpp1 < —5 Tt < 2¢rq41,
where the last step is also because c; is nondecreasing. O

G FUuLL THEOREMS FOR LOWER BOUNDS AND PROOFS

Please refer to Appendix G in the full version of this work.

H NUMERICAL SIMULATIONS

In this section, we provide some numerical simulations to support our theory. We limit our attention
to the additive noise model, i.e., g(x,£) = V f(x) + £, where all coordinates ¢; are assumed to be
1

i.i.d. Moreover, we denote by o £ (E [|£1]"])*.

Objective. We pick X = R?, f(x) = [|x — y||, for some y € R%, and r(x) = 0. Therefore, we
know F' = f, argmin, cpa F'(x) = y and F,, = 0. Moreover, we have ;1 = 0 and G = V.

Noise. We choose &; ~ €Z ii.d. for all i € [d], where € and Z are independent and satisfy
that Pr(e =2] = % and Prle = —1] = 2, and Z follows the Pareto distribution with the scale
parameter "T_l and the shape parameter & = p 4+ 0.001, i.e., Pr[Z > 2] = (O‘a—_zl)a 1[z> QT_l] +
1 [z < 1], Note that we have E [eZ] = 0, E [|¢|] = 2']3—” and E [ZP] = -© ((’T_l)p, implying

p
that E[;] = 0and o = (E [|6,["])* = (22)" (3%5)" =

Algorithms. We consider [Liu & Zhou| (2023)) as the baseline, since it is closest to our setting, and
choose the stepsize 7, and the clipping threshold 7; as follows:
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* Adopted from Theorem 4 in [Liu & Zhou (2023): n; = MLUP and . =
max {2\/&, cr[tl/p}, where 7 = ||x; — y/|| and x is the initial point.

— n _ 1
* Adopted from our Theorem N = ST, and 7, = max {2\/E, d‘i/'fp t1/ P},

where 1 = ||x; — y|| and x; is the initial point.
Remark 12. For both 7, we only keep the dominant term in the order of O(1/t'/?) for simplicity.
We pick n = ||x1 — y|| to match the optimal choice in theory. Moreover, 7; is set in an anytime

2 1 1
fashion, i.e., depending on ¢ instead of T'. oy = Vdo and o5 = 2% ~1d¥ ~2 ¢ are set based on their
22
d

T 2 established in .

bounds given in (8) and (9)), respectively. deg is set as its lower bound =
2i/d 1<d/2
=2i/d i>dJ2’
and let T' = 10000. For two kinds of (7, 7;), we run 10 trials for each and plot the mean (£ standard
error) of the trajectory F'(x¢V) — F\ = F(X{YY), as used in the convergence theory, where we recall
x5 =1 Zizl Xs4+1. Wetestp € {1.2,1.4,1.6, 1.8} and report the results in Figure

Parameter values. In experiments, we fix d = 50, sety; = { initialize x; = 0,

Comparison when p=1.2 Comparison when p=1.4

Liu & Zhou (2023) Liu & Zhou (2023)
‘This work k 50 This work

value Fli+1)
value Fli+1)

unction

o 2000 4000 6000 8000 10000 1 2000 4000 6000 8000 10000
Iteration t Iteration t

Comparison when p=1.6 Comparison when p=1.8

Liu & Zhou (2023) 50 Liu & Zhou (2023)
“This work “This work

lue F(xi+1)
lue F(x+1)

4
unction value F(X

0 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Iteration t Rteration t

Figure 1: Comparison between [Liu & Zhou| (2023) and this work when p = 1.2 (top left), p = 1.4
(top right), p = 1.6 (bottom left), p = 1.8 (bottom right).

Observation and Conclusion. In all cases, the (7, 7;) pair chosen based on our work is faster,
matching the new theoretical finding when o, # 0. As p approaches 2, the difference becomes
minor, which should be expected, since the improvement predicted by our theory is in the order of

2-p
©(1/d g ) (see discussion under Theorem ) , which will vanish if p is close to 2.
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