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ABSTRACT

Optimization under heavy-tailed noise has become popular recently, since it bet-
ter fits many modern machine learning tasks, as captured by empirical observa-
tions. Concretely, instead of a finite second moment on gradient noise, a bounded
p-th moment where p ∈ (1, 2] has been recognized to be more realistic (say be-
ing upper bounded by σp

l for some σl ≥ 0). A simple yet effective operation,
gradient clipping, is known to handle this new challenge successfully. Specif-
ically, Clipped Stochastic Gradient Descent (Clipped SGD) guarantees a high-
probability rate O(σl ln(1/δ)T

1
p−1) (resp. O(σ2

l ln
2(1/δ)T

2
p−2)) for nonsmooth

convex (resp. strongly convex) problems, where δ ∈ (0, 1] is the failure proba-
bility and T ∈ N is the time horizon. In this work, we provide a refined anal-

ysis for Clipped SGD and offer two faster rates, O(σld
− 1

2p

eff ln1−
1
p (1/δ)T

1
p−1)

and O(σ2
l d

− 1
p

eff ln2−
2
p (1/δ)T

2
p−2), than the aforementioned best results, where

deff ≥ 1 is a quantity we call the generalized effective dimension. Our analysis
improves upon the existing approach in two respects: better utilization of Freed-
man’s inequality and finer bounds for clipping error under heavy-tailed noise. In
addition, we extend the refined analysis to convergence in expectation and obtain
new rates that break the known lower bounds. Lastly, to complement the study,
we establish new lower bounds for both high-probability and in-expectation con-
vergence. Notably, the in-expectation lower bounds match our new upper bounds,
indicating the optimality of our refined analysis for convergence in expectation.

1 INTRODUCTION

In first-order methods for stochastic optimization, one can only query an unbiased though noisy
gradient and then implement a gradient descent step, which is known as Stochastic Gradient De-
scent (SGD) (Robbins & Monro, 1951). Under the widely assumed finite variance condition, i.e.,
the gradient noise1 has a finite second moment, the in-expectation convergence of SGD has been
substantially studied (Bottou et al., 2018; Lan, 2020).

However, many recent empirical observations suggest that the finite variance assumption might be
too strong and could be violated in different tasks (Simsekli et al., 2019; Zhang et al., 2020; Zhou
et al., 2020; Garg et al., 2021; Gurbuzbalaban et al., 2021; Hodgkinson & Mahoney, 2021; Battash
et al., 2024). Instead, a bounded p-th moment condition where p ∈ (1, 2] (say with an upper bound
σp
l for some σl ≥ 0) better fits modern machine learning, which is named heavy-tailed noise. Fac-

ing this new challenge, SGD has been proved to exhibit undesirable behaviors (Zhang et al., 2020;
Sadiev et al., 2023). Therefore, an algorithmic change is necessary. A simple yet effective operation,
gradient clipping, is known to handle this harder situation successfully with both favorable practi-
cal performance and provable theoretical guarantees (see, e.g., Pascanu et al. (2013); Zhang et al.
(2020)). The clipping mechanism replaces the stochastic gradient gt in every iterate of SGD with

∗This is a self-contained conference version of the full paper available at https://arxiv.org/abs/
2512.23178. Compared to the full version, we omit the formal statements of lower bounds and their proofs.

1This refers to the difference between the stochastic estimate and the true gradient.
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its truncated counterpart clipτt(gt), resulting a method known as Clipped SGD, where τt is called
the clipping threshold and clipτ (g) ≜ min {1, τ/∥g∥}g is the clipping function.

Specifically, for nonsmooth convex (resp. strongly convex) optimization, Clipped SGD achieves a
high-probability rate O(σl ln(1/δ)T

1
p−1)2 (resp. O(σ2

l ln
2(1/δ)T

2
p−2)) (Liu & Zhou, 2023), where

δ ∈ (0, 1] is the failure probability and T ∈ N is the time horizon. These two results seem to be
optimal as they match the existing in-expectation lower bounds (Nemirovski & Yudin, 1983; Vural
et al., 2022; Zhang et al., 2020), if viewing the poly(ln(1/δ)) term as a constant. However, a recent

advance (Das et al., 2024) established a better rate O(σld
− 1

4

eff

√
ln(ln(T )/δ)/T ) for general convex

problems when p = 2, where 1 ≤ deff ≤ d is known as the effective dimension (also named intrinsic
dimension (Tropp, 2015)) and d is the true dimension. This reveals that the in-expectation lower
bound does not necessarily apply to the term containing poly(ln(1/δ)). More importantly, such a
result hints that a general improvement may exist for all p ∈ (1, 2].

This work confirms that a general improvement does exist by providing a refined analysis for Clipped

SGD. Concretely, we offer two faster rates, O(σld
− 1

2p

eff ln1−
1
p (1/δ)T

1
p−1) for general convex prob-

lems with a known T and O(σ2
l d

− 1
p

eff ln2−
2
p (1/δ)T

2
p−2) for strongly convex problems with an un-

known T , improved upon the aforementioned best results, where 1 ≤ deff ≤ O(d) is a quantity that
we call the generalized effective dimension3. Moreover, we devise an algorithmic variant of Clipped
SGD named Stabilized Clipped SGD that achieves the same rate4 for convex objectives listed above
in an anytime fashion, i.e., no extra poly(lnT ) factor even without T .

We highlight that our analysis improves upon the existing approach in two respects: 1. We observe a
better way to apply Freedman’s inequality when analyzing Clipped SGD, which leads to a provably
tighter concentration. Remarkably, our approach is fairly simple in contrast to the previous complex
iterative refinement strategy (Das et al., 2024). 2. We establish finer bounds for clipping error under
heavy-tailed noise, which is another essential ingredient in the analysis for Clipped SGD when the
noise has a heavy tail. We believe both of these new insights could be of independent interest and
potentially useful for future research.

Furthermore, equipped with the new finer bounds for clipping error, we extend the analysis to in-

expectation convergence and obtain two new rates, O(σld
− 2−p

2p

eff T
1
p−1) for general convex objectives

and O(σ2
l d

− 2−p
p

eff T
2
p−2) for strongly convex problems. Notably, once p < 2, these two rates are both

faster by a poly(1/deff) factor than the known optimal lower bounds Ω(σlT
1
p−1) and Ω(σ2

l T
2
p−2)

in the corresponding setting (Nemirovski & Yudin, 1983; Vural et al., 2022; Zhang et al., 2020).

Lastly, to complement the study, we establish new lower bounds for both high-probability and in-
expectation convergence. Notably, the in-expectation lower bounds match our new upper bounds,
indicating the optimality of our refined analysis for convergence in expectation.

1.1 RELATED WORK

We review the literature that studies nonsmooth (strongly) convex optimization under heavy-tailed
noise. For other different settings, e.g., smooth (strongly) convex or smooth/nonsmooth nonconvex
problems under heavy-tailed noise, the interested reader could refer to, for example, Nazin et al.
(2019); Davis & Drusvyatskiy (2020); Gorbunov et al. (2020); Mai & Johansson (2021); Cutkosky
& Mehta (2021); Wang et al. (2021); Tsai et al. (2022); Holland (2022); Jakovetić et al. (2023);
Sadiev et al. (2023); Liu et al. (2023); Nguyen et al. (2023); Puchkin et al. (2024); Gorbunov et al.
(2024b); Liu et al. (2024); Armacki et al. (2025); Hübler et al. (2025); Liu & Zhou (2025); Sun et al.
(2025), for recent progress.

High-probability rates. If p = 2, Gorbunov et al. (2024a) proves the first O(σl
√

ln(T/δ)/T )
(resp. O(σ2

l ln(T/δ)/T )) high-probability rate for nonsmooth convex (resp. strongly convex) prob-

2When stating rates in this section, we only keep the dominant term when T → ∞ and δ → 0 for simplicity.
3We use the same notation to denote the effective dimension and the generalized version proposed by us,

since our new quantity can recover the previous one when p = 2. See discussion after (1) for details.
4To clarify, “the same rate” refers to the same lower-order term. The full bound is slightly different.
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lems under standard assumptions. If additionally assuming a bounded domain, an improved rate
O(σl

√
ln(1/δ)/T ) for convex objectives is obtained by Parletta et al. (2024). Still for convex

problems, Das et al. (2024) recently gives the first refined bound O(σld
− 1

4

eff

√
ln(ln(T )/δ)/T ) but

additionally requiring T ≥ Ω(ln(ln d)), where deff (resp. d) is the effective (resp. true) dimension,
satisfying 1 ≤ deff ≤ d. For general p ∈ (1, 2], Zhang & Cutkosky (2022) studies the harder online
convex optimization, whose result implies a rate O(σlpoly(ln(T/δ))T

1
p−1) for heavy-tailed con-

vex optimization. Later on, Liu & Zhou (2023) establishes two bounds, O(σl ln(1/δ)T
1
p−1) and

O(σ2
l ln

2(1/δ)T
2
p−2), for convex and strongly convex problems, respectively. These two rates are

the best-known results for general p ∈ (1, 2] and have been recognized as optimal since they match
the in-expectation lower bounds (see below), if viewing the poly(ln(1/δ)) term as a constant.

In-expectation rates. Note that the in-expectation rates for p = 2 are not worth much attention as
they are standard results (Bottou et al., 2018; Lan, 2020). As for general p ∈ (1, 2], many existing
works prove the rates O(σlT

1
p−1) and O(σ2

l T
2
p−2) (Zhang et al., 2020; Vural et al., 2022; Liu &

Zhou, 2023; 2024; Parletta et al., 2025; Fatkhullin et al., 2025; Liu, 2025).

Lower bounds. The high-probability lower bounds are not fully explored in the literature. To the
best of our knowledge, there are only few results for the general convex case and no lower bounds
for the strongly convex case. Therefore, the following discussion is only for convex problems. For
p = 2, Carmon & Hinder (2024) shows a lower bound Ω(σl

√
ln(1/δ)/T ). However, it is only

proved for d = 1 (or at most d = 4). As such, it cannot reveal useful information for the case that d
should also be viewed as a parameter (if more accurately, deff ). In other words, it does not contradict
our new refined upper bound. For general p ∈ (1, 2], Raginsky & Rakhlin (2009) is the only work
that we are aware of. However, as far as we can check, only the time horizon T is in the right order
of Ω(T

1
p−1). For other parameters, they are either hidden or not tight.

Next, we summarize the in-expectation lower bounds. For convex problems, it is known that any
first-order method cannot do better than Ω(σlT

1
p−1) (Nemirovski & Yudin, 1983; Vural et al., 2022).

If strong convexity additionally holds, Zhang et al. (2020) establishes the lower bound Ω(σ2
l T

2
p−2).

2 PRELIMINARY

Notation. N is the set of natural numbers (excluding 0). We denote by [T ] ≜ {1, · · · , T} , ∀T ∈ N.
⟨·, ·⟩ represents the standard Euclidean inner product. ∥x∥ is the Euclidean norm of the vector x and
∥X∥ is the operator norm of the matrix X. Tr(X) is the trace of a square matrix X. Sd−1 stands for
the unit sphere in Rd. Given a convex function h : Rd → R, ∇h(x) denotes an arbitrary element in
∂h(x) where ∂h(x) is the subgradient set of h at x. sgn(x) is the sign function with sgn(0) = 0.

We study the composite optimization problem in the form of

inf
x∈X

F (x) ≜ f(x) + r(x),

where X ⊆ Rd is a nonempty closed convex set. Our analysis relies on the following assumptions.

Assumption 1. There exists x⋆ ∈ X such that F⋆ ≜ F (x⋆) = infx∈X F (x).
Assumption 2. Both f : Rd → R and r : Rd → R are convex. In addition, r is µ-strongly convex
on X for some µ ≥ 0, i.e., r(x) ≥ r(y) + ⟨∇r(y),x− y⟩+ µ

2 ∥x− y∥2 , ∀x,y ∈ X.
Assumption 3. f is G-Lipschitz on X, i.e., ∥∇f(x)∥ ≤ G,∀x ∈ X.

The above assumptions are standard in the literature (Bottou et al., 2018; Nesterov et al., 2018; Lan,
2020). Next, we consider a fine-grained heavy-tailed noise assumption, the key to obtaining refined
convergence for Clipped SGD.
Assumption 4. There exists a function g : X×Ξ → Rd and a probability distribution D on Ξ such
that Eξ∼D [g(x, ξ)] = ∇f(x),∀x ∈ X. In addition, for some p ∈ (1, 2], we have

Eξ∼D
[
|⟨e,g(x, ξ)−∇f(x)⟩|p

]
≤ σp

s , Eξ∼D
[
∥g(x, ξ)−∇f(x)∥p

]
≤ σp

l , ∀x ∈ X, e ∈ Sd−1,

where σs and σl are two constants satisfying 0 ≤ σs ≤ σl ≤
√
πd/2σs.
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Remark 1. In the remaining paper, if the context is clear, we drop the subscript ξ ∼ D in Eξ∼D to
ease the notation. Moreover, d(x, ξ) ≜ g(x, ξ)−∇f(x) denotes the error in estimating the gradient.
Remark 2. It is noteworthy that Assumption 4 actually implicitly exists in prior works for heavy-
tailed stochastic optimization, since Cauchy-Schwarz inequality gives us

E
[
|⟨e,d(x, ξ)⟩|p

]
≤ E

[
∥e∥p ∥d(x, ξ)∥p

]
= E

[
∥d(x, ξ)∥p

]
, ∀x ∈ X, e ∈ Sd−1.

In other words, once the condition E
[
∥d(x, ξ)∥p

]
≤ σp

l , ∀x ∈ X is assumed like in prior works,
there must exist a real number 0 ≤ σs ≤ σl such that E

[
|⟨e,d(x, ξ)⟩|p

]
≤ σp

s , ∀x ∈ X, e ∈ Sd−1.

Remark 3. The reason we can assume σl ≤
√
πd/2σs is that E

[
∥d(x, ξ)∥p

]
≤ (πd/2)

p
2 σp

s holds
provided E

[
|⟨e,d(x, ξ)⟩|p

]
≤ σp

s , ∀e ∈ Sd−1, due to Lemma 4.1 in Cherapanamjeri et al. (2022).

Now we define the following quantity named generalized effective dimension (where we use the
convention 0 = 0/0),

deff ≜ σ2
l /σ

2
s ∈ {0} ∪ [1, πd/2] = O(d), (1)

in which deff = 0 if and only if σl = σs = 0, i.e., the noiseless case. As discussed later, this
definition recovers the effective dimension used in Das et al. (2024) when p = 2.

To better understand Assumption 4, we first take p = 2. Note that a finite second moment of d(x, ξ)
implies the covariance matrix Σ(x) ≜ E

[
d(x, ξ)d⊤(x, ξ)

]
∈ Rd×d is well defined. As such, we

can interpret σl and σs as σ2
l = supx∈X Tr(Σ(x)) and σ2

s = supx∈X ∥Σ(x)∥. In particular, if
Σ(x) ⪯ Σ,∀x ∈ X holds for some positive semidefinite Σ as assumed in Das et al. (2024), then one
can directly take σ2

l = Tr(Σ) and σ2
s = ∥Σ∥, which also recovers the effective dimension defined

as Tr(Σ)/∥Σ∥ in Das et al. (2024).

For general p ∈ (1, 2], as discussed in Remark 2, one can view Assumption 4 as a finer version of the
classical heavy-tailed noise condition, the latter omits the existence of σs. Therefore, Assumption 4
describes the behavior of noise more precisely. Such refinement was only introduced to the classical
mean estimation problem (Cherapanamjeri et al., 2022) as far as we know, and hence is new to the
optimization literature. In Appendix A, we provide more discussions on how large deff can be across
different settings.

3 CLIPPED STOCHASTIC GRADIENT DESCENT

Algorithm 1 Clipped Stochastic Gradient Descent (Clipped SGD)
Input: initial point x1 ∈ X, stepsize ηt > 0, clipping threshold τt > 0
for t = 1 to T do
gc
t = clipτt(gt) where gt = g(xt, ξt) and ξt ∼ D is sampled independently from the history

xt+1 = argminx∈Xr(x) + ⟨gc
t ,x⟩+

∥x−xt∥2

2ηt
end for

We present the main method studied in this work, Clipped Stochastic Gradient Descent (Clipped
SGD), in Algorithm 1. Strictly speaking, the algorithm should be called Proximal Clipped SGD
as it contains a proximal update step. However, we drop the word “Proximal” for simplicity. We
remark that Clipped SGD with a proximal step has not been fully studied yet and is different from the
Prox-Clipped-SGD-Shift method introduced in Gorbunov et al. (2024b), the only work considering
composite optimization under heavy-tailed noise that we are aware of.

In comparison to the classical Proximal SGD, Algorithm 1 only contains an extra clipping operation
on the stochastic gradient. As pointed out in prior works (e.g., Sadiev et al. (2023)), the additional
clipping step is the key to proving the high-probability convergence.

4 REFINED HIGH-PROBABILITY RATES

In this section, we will establish refined high-probability convergence results for Clipped SGD. To
simplify the notation in the upcoming theorems, we denote byD ≜ ∥x⋆ − x1∥ the distance between
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the optimal solution and the initial point. Moreover, given δ ∈ (0, 1], we introduce the quantity

τ⋆ ≜

(
min

{
σsσ

p−1
l

ln 3
δ

,
σ2
s

σ2−p
l 1 [p < 2]

}) 1
p

, (2)

which is an important value used in the clipping threshold. Recall that deff = σ2
l /σ

2
s , then τ⋆ can

be equivalently written into

τ⋆ = σl/φ
1/p
⋆ where φ⋆ ≜ max

{√
deff ln

3

δ
, deff1 [p < 2]

}
. (3)

4.1 GENERAL CONVEX CASE

We start from the general convex case (i.e., µ = 0 in Assumption 2). x̄cvx
T+1 ≜ 1

T

∑T
t=1 xt+1 in the

following denotes the average iterate after T steps. To clarify, T is assumed to be known in advance
in this subsection. Though Clipped SGD can provably handle an unknown time horizon T , it is well-
known to incur extra poly(lnT ) factors (Liu & Zhou, 2023). To deal with this issue, we propose
a variant of Clipped SGD named Stabilized Clipped SGD in Appendix C, which incorporates the
stabilization trick introduced by Fang et al. (2022). As an example, Theorem 11 in Appendix E
shows that Stabilized Clipped SGD converges at an almost identical rate to Theorem 1 below, but in
an anytime fashion without incurring any poly(lnT ) factor.
Theorem 1. Under Assumptions 1, 2 (with µ = 0), 3 and 4, for any T ∈ N and δ ∈ (0, 1], setting

ηt = η⋆, τt = max
{
2G, τ⋆T

1
p

}
, ∀t ∈ [T ] where η⋆ is a properly picked stepsize (explicated

in Theorem 10), then Clipped SGD (Algorithm 1) guarantees that with probability at least 1 − δ,
F (x̄cvx

T+1)− F⋆ converges at the rate of

O

 (φ+ ln 3
δ )GD

T
+

(σ
p
2

l G
1− p

2 +G)D√
T

+
(σ

2
p−1
s σ

2− 2
p

l + σ
1
p
s σ

1− 1
p

l ln1−
1
p 3
δ )D

T 1− 1
p

 ,

where φ ≤ φ⋆ is a constant (explicated in Theorem 10) and equals φ⋆ when T = Ω
(
Gp

σp
l

φ⋆

)
.

To better understand Theorem 1, we first consider a special case of p = 2 (i.e., the classical finite

variance condition) and obtain a rate being at most O
(

(
√
deff+1) ln( 1

δ )GD

T +
(G+σl+

√
σsσl ln(

1
δ ))D√

T

)
.

In comparison, the previous best high-probability bound in the finite variance setting proved by Das

et al. (2024) is O
(
CT +

(
√
deff+

G
σs

) ln( lnT
δ )GD

T +
(G+σl+

√
σs(σl+G) ln( lnT

δ ))D√
T

)
, but under an extra

requirement T ≥ Ω(ln(ln d)), where CT is a term in the order of O(T− 3
2 ) but will blow up to +∞

when the variance approaches 0. As one can see, even in this special case, our result immediately
improves upon Das et al. (2024) from the following three folds: 1. Our theory works for any time
horizon T ∈ N. 2. Our bound is strictly better than theirs by shaving off many redundant terms.
Especially, the dependence on δ is only ln(1/δ) in contrast to their ln((lnT )/δ). 3. Our rate will not
blow up when σl → 0 (equivalently, σs → 0) and instead recover the standard O(GD/

√
T ) result

for deterministic nonsmooth convex optimization (Nesterov et al., 2018).

Next, the prior best result for p ∈ (1, 2] is O
(
GD ln 1

δ√
T

+
σlD ln 1

δ

T
1− 1

p

)
(Liu & Zhou, 2023), whose

dominant term is O(σlD ln(1/δ)T
1
p−1) as T becomes larger. In comparison, using deff = σ2

l /σ
2
s ,

the lower-order term in Theorem 1 can be written as O(σlD(d
1
2−

1
p

eff + d
− 1

2p

eff ln1−
1
p (1/δ))T

1
p−1).

Therefore, Theorem 1 improves upon Liu & Zhou (2023) for large T by a factor of

ρ ≜ Θ

d 1
2−

1
p

eff + d
− 1

2p

eff ln1−
1
p 1
δ

ln 1
δ

 = Θ

 1

d
2−p
2p

eff ln 1
δ

+
1

d
1
2p

eff ln
1
p 1
δ

 . (4)

Remark 4. Especially, when deff = Ω(d), ρ could be in the order of Θ(poly(1/d, 1/ ln(1/δ))). We
provide an example in Appendix A showing that deff = Ω(d) is attainable.
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For general T ∈ N, note that O(GD ln(1/δ)/T + last two terms) in Theorem 1 are always smaller

than the rate of Liu & Zhou (2023) due to σs ≤ σl and O(σ
p
2

l G
1− p

2 ) ≤ O(σl + G) by Young’s
inequality. Therefore, we only need to pay attention to the redundant term O(φGD/T ). Observe
that a critical time could be T⋆ = Θ(φ2

⋆) = Θ(deff ln2(1/δ) + d2eff1 [p < 2])5. Once T ≥ T⋆, we
can ignore O(φGD/T ) as it is at most O(GD/

√
T ) now. It is currently unknown whether the term

O(φGD/T ) is inevitable or can be removed to obtain a better bound than Liu & Zhou (2023) for
any T ∈ N. We remark that similar additional terms also appear in the refined rate for p = 2 by Das
et al. (2024) as discussed before.

4.2 STRONGLY CONVEX CASE

We now move to the strongly convex case (i.e., µ > 0 in Assumption 2). x̄str
T+1 ≜∑T

t=1(t+4)(t+5)xt+1∑T
t=1(t+4)(t+5)

in the following denotes the weighted average iterate after T steps. Unlike the
general convex case, we do not need to know T in advance to remove the extra poly(lnT ) factor.
Theorem 2. Under Assumptions 1, 2 (with µ > 0), 3 and 4, for any T ∈ N and δ ∈ (0, 1], setting

ηt =
6
µt , τt = max

{
2G, τ⋆t

1
p

}
, ∀t ∈ [T ], then Clipped SGD (Algorithm 1) guarantees that with

probability at least 1− δ, both F (x̄str
T+1)− F⋆ and µ ∥xT+1 − x⋆∥2 converge at the rate of

O

µD2

T 3
+

(φ2 + ln2 3
δ )G

2

µT 2
+

(σp
l + σp

s ln
3
δ )G

2−p +G2

µT
+
σ

4
p−2
s σ

4− 4
p

l + σ
2
p
s σ

2− 2
p

l ln2−
2
p 3
δ

µT 2− 2
p

 ,

where φ ≤ φ⋆ is the same constant as in Theorem 1 and equals φ⋆ when T = Ω
(
Gp

σp
l

φ⋆

)
.

Remark 5. The problem studied in prior works (e.g., Liu & Zhou (2023); Gorbunov et al. (2024a))
considers strongly convex and Lipschitz f with r = 0, which seems different from our assumption
of strongly convex r. However, a simple reduction can convert their instance to fit our setting.
Moreover, the first term O(µD2/T 3) in Theorem 2 can also be omitted in that case (as we will do
so in the following discussion). We refer the interested reader to Appendix B for the reduction and
why the term O(µD2/T 3) can be ignored.

To save space, we only compare with the rate O
(
G2 ln2 1

δ

µT +
(σ2

l +σ
p
l G

2−p) ln2 1
δ

µT
2− 2

p

)
(Liu & Zhou,

2023) for general p ∈ (1, 2]. For the special case p = 2, the rate of Liu & Zhou (2023) is almost
identical to the bound of Gorbunov et al. (2024a); moreover, as far as we know, no improved result
like Das et al. (2024) has been obtained to give a better bound for the term containing poly(ln(1/δ)).
Similar to the discussion after Theorem 1, one can find that for large T , the improvement over Liu
& Zhou (2023) is at least by a factor of

ρ2
(4)
= Θ

 1

d
2−p
p

eff ln 1
δ

+
1

d
1
p

eff ln
2
p 1
δ

 = Θ

(
poly

(
1

deff
,

1

ln 1
δ

))
.

For general T ∈ N, every term in Theorem 2 is still better except for O(φ2G2/(µT 2)). However,
this extra term has no effect once T ≥ T⋆ = Θ(φ2

⋆) = Θ(deff ln2(1/δ) + d2eff1 [p < 2]), the same
critical time for Theorem 1 (a similar discussion to Footnote 5 also applies here), since it is at most
O(G2/(µT )) now, being dominated by other terms. Same as before, it is unclear whether this
redundant term O(φ2G2/(µT 2)) can be shaved off to conclude a faster rate for any T ∈ N or not.
We leave it as future work and look forward to it being addressed.

5 PROOF SKETCH AND NEW INSIGHTS

In this section, we sketch the proof of Theorem 1 as an example and introduce our new insights in
the analysis. To start with, given T ∈ N and suppose ηt = η, τt = τ,∀t ∈ [T ] for simplicity, we

5Actually, any T⋆ that makes O(φGD/T ) in Theorem 1 smaller than the sum of the terms left is enough.
Hence, it is possible to find a smaller critical time. We keep this one here due to its clear expression.
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have the following inequality for Clipped SGD (see Lemma 4 in Appendix F), which holds almost
surely without any restriction on τ ,

F (x̄cvx
T+1)− F⋆ ≤

D2

η
+ 2IcvxT , where IcvxT is a residual term in the order of

IcvxT = O

η
max
t∈[T ]

(
t∑

s=1

⟨du
s ,ys⟩

)2

︸ ︷︷ ︸
I

+

T∑
t=1

∥du
t ∥

2

︸ ︷︷ ︸
II

+

(
T∑
t=1

∥∥db
t

∥∥)2

︸ ︷︷ ︸
III

+G2T


 , (5)

in which du
t ≜ gc

t − Et−1 [g
c
t ] and db

t ≜ Et−1 [g
c
t ]−∇f(xt) respectively denote the unbiased and

biased part in the clipping error, where Et [·] ≜ E [· | Ft] for Ft ≜ σ(ξ1, · · · , ξt) being the natural
filtration, and yt is some predictable vector (i.e., yt ∈ Ft−1) satisfying ∥yt∥ ≤ 1 almost surely.

The term ηG2T in IcvxT is standard. Hence, the left task is to bound terms I, II and III in high
probability. In particular, for I and III, we will move beyond the existing approach via a refined
analysis. To formalize the difference, we borrow the following bounds for clipping error commonly
used in the literature (see, e.g., Sadiev et al. (2023); Liu & Zhou (2023); Nguyen et al. (2023)):

∥du
t ∥ ≤ O(τ), Et−1

[
∥du

t ∥
2
] if τ≥2G

≤ O(σp
l τ

2−p),
∥∥db

t

∥∥ if τ≥2G

≤ O(σp
l τ

1−p). (6)

Term I. Note that Xt ≜ ⟨du
t ,yt⟩ is a martingale difference sequence (MDS), then Freed-

man’s inequality (Lemma 10 in Appendix F) implies with probability at least 1 − δ,
√
I ≤

O(maxt∈[T ] |Xt| ln(1/δ) +
√∑T

t=1 Et−1 [X2
t ] ln(1/δ)) (this inequality is for illustration, not en-

tirely rigorous in math). To the best of our knowledge, prior works studying Clipped SGD under
heavy-tailed noise always bound similar terms in the following manner

|Xt|
∥yt∥≤1

≤ ∥du
t ∥

(6)
≤ O(τ) and Et−1

[
X2
t

] ∥yt∥≤1

≤ Et−1

[
∥du

t ∥
2
] (6)
≤ O(σp

l τ
2−p).

However, a critical observation is that the above-described widely adopted way is very likely to be
loose, as the conditional variance can be better controlled by

Et−1

[
X2
t

]
= y⊤

t Et−1

[
du
t (d

u
t )

⊤]yt ∥yt∥≤1

≤
∥∥Et−1

[
du
t (d

u
t )

⊤]∥∥ .
Note that

∥∥Et−1

[
du
t (d

u
t )

⊤]∥∥ is at most Et−1

[
∥du

t ∥
2
]

but could be much smaller. Inspired by this,

we develop a new bound for
∥∥Et−1

[
du
t (d

u
t )

⊤]∥∥ in Lemma 1. Consequently, this better utilization
of Freedman’s inequality concludes a tighter high-probability bound for term I.

Actually, this simple but effective idea has been implicitly used in Das et al. (2024) when p = 2.
However, their proof finally falls complex due to an argument they call the iterative refinement
strategy, which not only imposes extra undesired factors like ln((lnT )/δ) in their final bound but
also leads to an additional requirement T ≥ Ω(ln(ln d)) in their theory. Our analysis indicates that
such a complication is unnecessary, instead, one can keep it simple.

Term II. For this term, we follow the same way employed in many previous works (e.g., Cutkosky
& Mehta (2021); Zhang & Cutkosky (2022)), i.e., let Xt ≜ ∥du

t ∥
2 −Et−1

[
∥du

t ∥
2
]

and decompose∑T
t=1 ∥du

t ∥
2

(6)
≤ O(

∑T
t=1Xt + σp

l τ
2−pT ) then use Freedman’s inequality to bound

∑T
t=1Xt.

Remark 6. Although the above analysis follows the literature, we still obtain a refined inequality for
Et−1

[
∥du

t ∥
2
]

in Lemma 1, in the sense of dropping the condition τ ≥ 2G required in (6).

Term III. Estimating the clipping error
∥∥db

t

∥∥ is another key ingredient when analyzing Clipped
SGD. As far as we know, all existing works apply the inequality

∥∥db
t

∥∥ ≤ O(σp
l τ

1−p) in (6). How-
ever, we show that this important inequality still has room for improvement. In other words, it is in
fact not tight, as revealed by our finer bounds in Lemma 1. Thus, our result is more refined.
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From the above discussion, in addition to better utilization of Freedman’s inequality, the improve-
ment heavily relies on finer bounds for clipping error under heavy-tailed noise, which we give in the
following Lemma 1.
Lemma 1. Under Assumptions 3 and 4, and assuming τt = τ > 0, there are:

∥du
t ∥ ≤ O(τ),

∥∥Et−1

[
du
t (d

u
t )

⊤]∥∥ if τ≥2G

≤ O(σp
sτ

2−p + σp
l G

2τ−p),

Et−1

[
∥du

t ∥
2
]
≤ O(σp

l τ
2−p),

∥∥db
t

∥∥ if τ≥2G

≤ O(σsσ
p−1
l τ1−p + σp

l Gτ
−p).

Remark 7. We highlight that Theorem 9 in Appendix D provides a further generalization of clipping
error bounds under heavy-tailed noise not limited to clipped gradient methods (even without the
requirement in the form of τ ≥ 2G), which could be potentially useful for future research.

Except for the standard bound ∥du
t ∥ ≤ O(τ), the other three inequalities in Lemma 1 are either

new or improve over the existing results. 1. The bound on
∥∥Et−1

[
du
t (d

u
t )

⊤]∥∥ is new in the heavy-
tailed setting. Importantly, observe that O(σp

sτ
2−p + σp

l G
2τ−p) ≤ O(σp

l τ
2−p) due to σs ≤ σl

and τ ≥ 2G, which thereby leads to a tighter high-probability bound for term I in combination with
our better application of Freedman’s inequality (see the paragraph before starting with Term I.). 2.
For term Et−1

[
∥du

t ∥
2
]
, in contrast to (6), Lemma 1 removes the condition τ ≥ 2G. Moreover, the

hidden constant in our lemma is actually slightly better. 3. As mentioned above (see the paragraph
before starting with Term III.), the bound of

∥∥db
t

∥∥ is another key to obtaining a refined result.
Precisely, we note that the new bound O(σsσ

p−1
l τ1−p + σp

l Gτ
−p) improves upon O(σp

l τ
1−p) in

(6) because of σs ≤ σl and τ ≥ 2G. Therefore, Lemma 1 guarantees a better control for term III.

Combining all the new insights mentioned, we can finally prove Theorem 1. As one can imagine,
the analysis sketched above is essentially more refined than previous works, since we apply tighter
bounds for the two central parts in analyzing Clipped SGD, i.e., concentration inequalities and esti-
mation of clipping error. To confirm this claim, we discuss how to recover the existing rate through
our finer analysis, the details of which are deferred to Appendix E.

Lastly, we mention that Theorem 2 for strongly convex problems is also inspired by the above two
new insights. The full proofs of both Theorems 1 and 2 can be found in Appendix E.

6 EXTENSION TO FASTER IN-EXPECTATION CONVERGENCE

In this section, we show that Lemma 1 presented before can also lead to faster in-expectation con-
vergence for Clipped SGD, further highlighting the value of refined clipping error bounds. Proofs
of both theorems given below can be found in Appendix E.

This time, we consider a new quantity τ̃⋆ ≜ σ
2
p
s /(σ

2
p−1

l 1 [p < 2]) for the clipping threshold. Recall
that deff = σ2

l /σ
2
s , then τ̃⋆ can be equivalently written into

τ̃⋆ = σl/φ̃
1/p
⋆ where φ̃⋆ ≜ deff1 [p < 2] . (7)

Remark 8. When p = 2, φ̃⋆ = 0 ⇒ τ̃⋆ = +∞, i.e., no clipping operation is required. This matches
the well-known fact that SGD provably converges in expectation under the finite variance condition.

6.1 GENERAL CONVEX CASE

Theorem 3. Under Assumptions 1, 2 (with µ = 0), 3 and 4, for any T ∈ N, setting ηt = η⋆, τt =

max
{
2G, τ̃⋆T

1
p

}
, ∀t ∈ [T ] where η⋆ is a properly picked stepsize (explicated in Theorem 12), then

Clipped SGD (Algorithm 1) guarantees that E
[
F (x̄cvx

T+1)− F⋆
]

converges at the rate of

O

 φ̃GD
T

+
(σ

p
2

l G
1− p

2 +G)D√
T

+
σ

2
p−1
s σ

2− 2
p

l D

T 1− 1
p

 ,

where φ̃ ≤ φ̃⋆ is a constant (explicated in Theorem 12) and equals φ̃⋆ when T = Ω
(
Gp

σp
l

φ̃⋆

)
.
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Theorem 3 gives a better lower-order term O(σld
1
2−

1
p

eff DT
1
p−1) (recall deff = σ2

l /σ
2
s ) than the

existing lower bound Ω(σlDT
1
p−1) (Nemirovski & Yudin, 1983; Vural et al., 2022) by a factor of

Θ(1/d
2−p
2p

eff ), a strict improvement being polynomial in 1/deff , if p ∈ (1, 2). For the case of an
unknown T , the interested reader could refer to Theorem 13 in Appendix E.

6.2 STRONGLY CONVEX CASE

Theorem 4. Under Assumptions 1, 2 (with µ > 0), 3 and 4, for any T ∈ N, setting ηt =
6
µt , τt = max

{
2G, τ̃⋆t

1
p

}
, ∀t ∈ [T ], then Clipped SGD (Algorithm 1) guarantees that both

E
[
F (x̄str

T+1)− F⋆
]

and µE
[
∥xT+1 − x⋆∥2

]
converge at the rate of

O

µD2

T 3
+
φ̃2G2

µT 2
+
σp
l G

2−p +G2

µT
+
σ

4
p−2
s σ

4− 4
p

l

µT 2− 2
p

 ,

where φ̃ ≤ φ̃⋆ is the same constant as in Theorem 3 and equals φ̃⋆ when T = Ω
(
Gp

σp
l

φ̃⋆

)
.

Theorem 4 provides a faster rate O(σ2
l d

1− 2
p

eff T
2
p−2) than the known lower bound Ω(σ2

l T
2
p−2)

(Zhang et al., 2020) by a factor of Θ(1/d
2−p
p

eff ), this is again a strict improvement once p < 2,
and could be in the order of poly(1/d) if deff = Ω(d).

7 LOWER BOUNDS

To complement the study, we provide new high-probability and in-expectation lower bounds for
both µ = 0 and µ > 0. We employ information-theoretic methods to establish these new lower
bounds, following the existing literature (Raginsky & Rakhlin, 2009; Agarwal et al., 2012; Duchi
et al., 2013; Vural et al., 2022; Carmon & Hinder, 2024; Ma et al., 2024). For their formal statements
and corresponding proofs, the interested reader could refer to Appendix G in the full version of this
work available at https://arxiv.org/abs/2512.23178.
Remark 9. One may wonder why our upper bounds can beat the existing lower bounds, and also
where the difference between our new lower bounds and the prior ones lies. The key is our fine-
grained Assumption 4. Roughly speaking, the existing lower bounds are proved for the following
oracle class (we slightly abuse the notation by still using g to denote the stochastic gradient oracle),

Gp
σl

=
{
g : Rd × f → Rd : E[g(x,f)|x,f ]=∇f(x)∈∂f(x)

E[∥g(x,f)−∇f(x)∥p|x,f]≤σp
l
, ∀x ∈ Rd, f ∈ f

}
,

where p ∈ (1, 2] and σl ≥ 0 are two parameters and f is the function class that we are interested in
(e.g., the family of G-Lipschitz convex functions). In contrast, the oracle class we study is parame-
terized by one more parameter σs ∈

[
σl/
√
πd/2, σl

]
as follows,

Gp
σs,σl

≜

{
g : Rd × f → Rd :

E[g(x,f)|x,f ]=∇f(x)∈∂f(x)
E[|⟨e,g(x,f)−∇f(x)⟩|p|x,f]≤σp

s ,∀e∈Sd−1

E[∥g(x,f)−∇f(x)∥p|x,f]≤σp
l

, ∀x ∈ Rd, f ∈ f

}
.

Note that there is Gp
σs,σl

⊆ Gp
σl

, implying the lower bound proved for Gp
σl

could be loose for Gp
σs,σl

.
Therefore, our upper bounds can surpass the existing lower bounds, and our new lower bounds are
established for the fine-grained oracle class Gp

σs,σl
.

7.1 HIGH-PROBABILITY LOWER BOUNDS

Theorem 5 (Informal). Under Assumptions 1, 2 (with µ = 0), 3 and 4, assuming d ≥ deff ≥ 1 and

δ ∈
(
0, 1

10

)
, any algorithm converges at least at the rate of Ω

(
(σ

2
p

−1

s σ
2− 2

p
l +σs ln

1− 1
p 1

δ )D

T
1− 1

p

)
with

probability at least δ when T is large enough.
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Theorem 6 (Informal). Under Assumptions 1, 2 (with µ > 0), 3 and 4, assuming d ≥ deff ≥ 1

and δ ∈
(
0, 1

10

)
, any algorithm converges at least at the rate of Ω

(
σ

4
p

−2

s σ
4− 4

p
l +σ2

s ln
2− 2

p 1
δ

µT
2− 2

p

)
with

probability at least δ when T is large enough.

Compared to our upper bounds in high probability, i.e., Theorems 1 (µ = 0) and 2 (µ > 0), there
are still differences between the terms that contain the poly(ln(1/δ)) factor. Closing this important
gap is an interesting task, which we leave for future work.

7.2 IN-EXPECTATION LOWER BOUNDS

Theorem 7 (Informal). Under Assumptions 1, 2 (with µ = 0), 3 and 4, assuming d ≥ deff ≥ 1,

any algorithm converges at least at the rate of Ω

(
σ

2
p

−1

s σ
2− 2

p
l D

T
1− 1

p

)
in expectation when T is large

enough.
Theorem 8 (Informal). Under Assumptions 1, 2 (with µ > 0), 3 and 4, assuming d ≥ deff ≥ 1, any

algorithm converges at least at the rate of Ω

(
σ

4
p

−2

s σ
4− 4

p
l

µT
2− 2

p

)
in expectation when T is large enough.

For in-expectation convergence, the above lower bounds match our new upper bounds, i.e., Theo-
rems 3 (µ = 0) and 4 (µ > 0), indicating the optimality of our refined analysis for convergence in
expectation.

8 CONCLUSION AND FUTURE WORK

In this work, we provide a refined analysis of Clipped SGD and obtain faster high-probability rates
than the previously best-known bounds. The improvement is achieved by better utilization of Freed-
man’s inequality and finer bounds for clipping error under heavy-tailed noise. Moreover, we ex-
tend the analysis to in-expectation convergence and show new rates that break the existing lower
bounds. To complement the study, we establish new lower bounds for both high-probability and
in-expectation convergence. Notably, the in-expectation upper and lower bounds match each other,
indicating the optimality of our refined analysis for convergence in expectation.

There are still some directions worth exploring in the future, which we list below:

The extra term. Each of our refined rates has a higher-order term related to deff (e.g., O(φGD/T )
in Theorem 1 and O(φ2G2/(µT 2)) in Theorem 2). Although it is negligible when T is large,
proving/disproving it can be removed for any T ∈ N could be an interesting task.

Gaps in high-probability bounds. As discussed in Section 7, there are still gaps between high-
probability upper and lower bounds for both convex and strongly convex cases. Closing them is an
important direction for the future.

Other optimization problems. We remark that our two new insights are not limited to nonsmooth
convex problems. Instead, they are general concepts/results. Therefore, we believe that it is possi-
ble to apply them to other optimization problems under heavy-tailed noise (e.g., smooth (strongly)
convex/nonconvex problems) and obtain improved upper bounds faster than existing ones.

REPRODUCIBILITY STATEMENT

We include the full proofs of all theorems in the appendix.
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A LOWER BOUNDS ON deff

This section provides lower bounds on deff for the additive noise model, i.e., g(x, ξ) = ∇f(x) + ξ.

Given i ∈ [d], ξi denotes the i-th coordinate of ξ, and σi ≜
(
E
[
|ξi|p

]) 1
p is the p-th moment of

ξi. Additionally, ι : [d] → [d] is the permutation that makes σi in a nonincreasing order, i.e.,
σι1 ≥ σι2 ≥ · · · ≥ σιd−1

≥ σιd .

A.1 INDEPENDENT COORDINATES

In this subsection, we assume that all of ξi are mutually independent.

• For any j ∈ [d], we can lower bound

∥ξ∥p =

(
d∑
i=1

ξ2i

) p
2

≥

(
j∑
i=1

ξ2ιi

) p
2

≥ j
p
2−1

j∑
i=1

|ξιi |
p
,

where the last step is by the concavity of x
p
2 , which implies σp

l = E
[
∥ξ∥p

]
≥

j
p
2−1

∑j
i=1 σ

p
ιi . Therefore, we can find

σp
l ≥ max

j∈[d]
j

p
2−1

j∑
i=1

σp
ιi . (8)

• For any e ∈ Sd−1, we write e =
∑d
i=1 λiei where

∑d
i=1 λ

2
i = 1 and ei denotes the

all-zero vector except for the i-th coordinate, which is one. Therefore, we have

E
[
|⟨e, ξ⟩|p

]
= E

∣∣∣∣∣
d∑
i=1

λiξi

∣∣∣∣∣
p
 (a)

≤ 22−p
d∑
i=1

E
[
|λiξi|p

]

= 22−p
d∑
i=1

|λi|p σp
i

(b)

≤ 22−p

(
d∑
i=1

σ
2p

2−p

i

)1− p
2

,

where (a) holds by |a+ b|p ≤ |a|p + p |a|p−1
sgn(a)b + 22−p |b|p (see Proposition 18 of

Vural et al. (2022)) and the mutual independence of ξi, and (b) is due to

d∑
i=1

|λi|p σp
i ≤

(
d∑
i=1

λ2i

) p
2
(

d∑
i=1

σ
2p

2−p

i

)1− p
2

=

(
d∑
i=1

σ
2p

2−p

i

)1− p
2

.

Hence, we know

σp
s = sup

e∈Sd−1

E
[
|⟨e, ξ⟩|p

]
≤ 22−p

(
d∑
i=1

σ
2p

2−p

i

)1− p
2

. (9)

As such, we can lower bound

deff =
σ2
l

σ2
s

(8),(9)
≥

maxj∈[d] j
1− 2

p

(∑j
i=1 σ

p
ιi

) 2
p

2
4
p−2

(∑d
i=1 σ

2p
2−p

i

) 2
p−1

. (10)

Though (10) does not directly give a lower bound for deff expressed in terms of d, it has already
provided some useful information. For example, when σi are all in the same order, (10) implies that
deff = Ω

(
d2−

2
p

)
.

A.2 I.I.D. COORDINATES

In this subsection, we further assume that all ξi are i.i.d. and then lower bound deff by d. Since
all coordinates are identically distributed now, we write σi = σ, ∀i ∈ [d] for some σ ≥ 0 in the
following.
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A.2.1 A GENERAL Ω(d2−
2
p ) BOUND

We invoke (10) and plug in σi = σ to obtain

deff
(10)
≥

maxj∈[d] jσ
2

2
4
p−2d

2
p−1σ2

=
d2−

2
p

2
4
p−2

. (11)

When p = 2, the above bound recovers the fact that deff = d for ξ with i.i.d. coordinates.

A.2.2 A SPECIAL Ω(d) BOUND

Now we consider a special kind of noise. Suppose p ∈ (1, 2) and all ξi have the characteristic
function

E [exp (itξi)] = exp
(
−γα |t|α

(
1− iβ tan

(πα
2

)
sgn(t)

))
, ∀t ∈ R,

where α = p + ϵ for ϵ ∈ (0, 2− p], β ∈ [−1, 1], and γ ≥ 0. Such a distribution is known as
α-stable distribution satisfying that E [ξi] = 0, σ < ∞, and

∑d
i=1 ξi equals to d

1
α ξ1 in distribution

(Zolotarev, 1986; Samorodnitsky & Taqqu, 1994; Nolan, 2020). This suggests that we can lower
bound σp

l in another way,

σp
l = E

[
∥ξ∥p

]
= E

( d∑
i=1

ξ2i

) p
2

 ≥
E
[∣∣∣∑d

i=1 ξi

∣∣∣p]
18ppp

(
p

p−1

) p
2

=

E
[∣∣∣d 1

α ξ1

∣∣∣p]
18ppp

(
p

p−1

) p
2

=
d

p
p+ϵσp

18ppp
(

p
p−1

) p
2

,

(12)
where the inequality is due to Burkholder (1973). Therefore, in this special case, we have

deff =
σ2
l

σ2
s

(9),(12)
≥

d
2

p+ϵσ2
/
182 p3

p−1

2
4
p−2d

2
p−1σ2

=
(p− 1)d1−

2ϵ
p(p+ϵ)

p3342
4
p

. (13)

In particular, for any 0 < ϵ ≤ min
{

p
2 ln d−1 , 2− p

}
(assume d ≥ 2 here, since the case d = 1 is

trivial),
2ϵ

p(p+ ϵ)
≤ 1

p ln d
⇒ d

2ϵ
p(p+ϵ) ≤ e

1
p ⇒ deff

(13)
≥ (p− 1)d

p3342
4
p e

1
p

= Ω(d). (14)

B REDUCTION FOR STRONGLY CONVEX PROBLEMS

We provide the reduction mentioned in Remark 5. Recall that existing works assume f being µ-
strongly convex andG-Lipschitz with a minimizer x⋆ on X. Now we consider the following problem
instance to fit our problem structure

F (x) = f(x)− µ

2
∥x− y∥2︸ ︷︷ ︸

≜f̄(x)

+
µ

2
∥x− y∥2︸ ︷︷ ︸
≜r(x)

= f(x),

where y can be any known point in X. For example, one can set y = x1 to be the initial point. Next,
we show that F fulfills all assumptions in Section 2.

• F on X has the same optimal solution x⋆ as f and hence satisfies Assumption 1.
• Note that f̄ is convex (since f is µ-strongly convex) and r is µ-strongly convex, which fits

Assumption 2.
• Moreover, because f is µ-strongly convex and G-Lipschitz with a minimizer x⋆ ∈ X, a

well-know fact is that X has to be bounded, since for any x ∈ X,
µ

2
∥x− x⋆∥2 ≤ f(x)− f(x⋆)− ⟨∇f(x⋆),x− x⋆⟩ ≤ f(x)− f(x⋆)

≤ ⟨∇f(x),x− x⋆⟩ ≤ ∥∇f(x)∥ ∥x− x⋆∥ ≤ G ∥x− x⋆∥

⇒ ∥x− x⋆∥ ≤ 2G

µ
. (15)
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Then we can calculate ∇f̄(x) = ∇f(x) − µ(x − y),∀x ∈ X and find
∥∥∇f̄(x)∥∥ ≤

∥∇f(x)∥+ µ ∥x− x⋆∥+ µ ∥y − x⋆∥
(15)
≤ 5G,∀x ∈ X, meaning that Assumption 3 holds

under the parameter 5G.
• In addition, suppose we have a first-order oracle g(x, ξ) for ∇f satisfying Assumption 4.

Then ḡ(x, ξ) ≜ g(x, ξ) − µ(x − y) is a first-order oracle for f̄ satisfying Assumption 4
with same parameters p, σs and σl.

Therefore, any instance in existing works can be transferred to fit our problem structure. More-

over, for such an instance, we have D = ∥x1 − x⋆∥
(15)
≤ 2G

µ , implying that the first term

O
(
µD2

T 3

)
in Theorem 2 is at most O

(
G2

µT 3

)
, which can be further bounded by the third term

O
(

(σp
l +σ

p
s ln 3

δ )G
2−p+G2

µT

)
. So O

(
µD2

T 3

)
in Theorem 2 can be omitted if compared with prior works.

Remark 10. The above reduction does not hold in the reverse direction. This is because, as one can
see, the domain X in prior works has to be bounded (due to (15)), which is however not necessary
under our problem structure. For example, X in our problem can take Rd, which cannot be true for
previous works in contrast. In other words, the problem studied in our paper is strictly more general.

C STABILIZED CLIPPED STOCHASTIC GRADIENT DESCENT

Algorithm 2 Stabilized Clipped Stochastic Gradient Descent (Stabilized Clipped SGD)
Input: initial point x1 ∈ X, stepsize ηt > 0, clipping threshold τt > 0
for t = 1 to T do
gc
t = clipτt(gt) where gt = g(xt, ξt) and ξt ∼ D is sampled independently from the history

xt+1 = argminx∈Xr(x) + ⟨gc
t ,x⟩+

∥x−xt∥2

2ηt
+ (ηt/ηt+1−1)∥x−x1∥2

2ηt
end for

In this section, we propose Stabilized Clipped Stochastic Gradient Descent (Stabilized Clipped
SGD) in Algorithm 2, an algorithmic variant of Clipped SGD to deal with the undesired poly(lnT )
factor appearing in the anytime convergence rate of Clipped SGD for general convex functions.

Compared to Clipped SGD, the only difference is an extra (ηt/ηt+1−1)∥x−x1∥2

2ηt
term injected into

the update rule, which is borrowed from the dual stabilization technique introduced by Fang et al.
(2022). The stabilization trick was originally induced to make Online Mirror Descent (Nemirovski
& Yudin, 1983; Warmuth et al., 1997; Beck & Teboulle, 2003) achieve an anytime optimal O(

√
T )

regret on unbounded domains without knowing T . For how it works and the intuition behind this
mechanism, we kindly refer the reader to Fang et al. (2022) for details. Inspired by its anytime
optimality, we incorporate it with Clipped SGD here and will show that this stabilized modification
also works well under heavy-tailed noise. Precisely, assuming all problem-dependent parameters
are known but not T , we prove in Theorem 11 that Stabilized Clipped SGD converges at an anytime
rate almost identical (though slightly different) to the bound for Clipped SGD given in Theorem 1
that requires a known T in contrast.

Lastly, we remark that when the stepsize ηt is constant, Stabilized Clipped SGD and Clipped SGD
degenerate to the same algorithm. Therefore, Theorems 1 and 3 can directly apply to Stabilized
Clipped SGD as well. For the same reason and also to save space, we will only analyze Stabilized
Clipped SGD when studying general convex functions.

D FINER BOUNDS FOR CLIPPING ERROR UNDER HEAVY-TAILED NOISE

In this section, we study the clipping error under heavy-tailed noise, whose finer bounds are critical
in the analysis. Moreover, instead of limiting to clipped gradient methods, we will study a more
general setting as in the following Theorem 9, which may benefit broader research. In Appendix F,
we apply this general result to prove clipping error bounds specialized for clipped gradient methods
in Lemma 2, which is the full statement of Lemma 1.
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Theorem 9. Given a σ-algebra F and two random vectors g, f ∈ Rd, suppose they satisfy
E [g | F ] = f and, for some p ∈ (1, 2] and two constants σs, σl ≥ 0,

E
[
∥g − f∥p | F

]
≤ σp

l , E
[
|⟨e,g − f⟩|p | F

]
≤ σp

s , ∀e ∈ Sd−1. (16)

Moreover, we assume there exists another random vector ḡ ∈ Rd that is independent from g con-
ditioning on F and satisfies that ḡ | F equals g | F in distribution. For any 0 < τ ∈ F ,

let gc ≜ clipτ (g) = min
{
1, τ

∥g∥

}
g, du ≜ gc − E [gc | F ], db ≜ E [gc | F ] − f , and

χ(α) ≜ 1 [(1− α)τ ≥ ∥f∥] , ∀α ∈ (0, 1), then there are:

1. ∥du∥ ≤ 2τ .

2. E
[
∥du∥2 | F

]
≤ 4σp

l τ
2−p.

3.
∥∥∥E [du (du)

⊤ | F
]∥∥∥ ≤ 4σp

sτ
2−p + 4 ∥f∥2.

4.
∥∥∥E [du (du)

⊤ | F
]∥∥∥χ(α) ≤ 4σp

sτ
2−p + 4α1−pσp

l ∥f∥
2
τ−p.

5.
∥∥db

∥∥ ≤
√
2
(
σp−1
l + ∥f∥p−1

)
σsτ

1−p + 2
(
σp
l + ∥f∥p

)
∥f∥ τ−p.

6.
∥∥db

∥∥χ(α) ≤ σsσ
p−1
l τ1−p + α1−pσp

l ∥f∥ τ−p.

Before proving Theorem 9, we discuss one point here. As one can see, we require the existence
of a random vector ḡ ∈ Rd satisfying a certain condition. This technical assumption is mild as
it can hold automatically in many cases. For example, if F is the trivial sigma algebra, then we
can set ḡ as an independent copy of g. For clipped gradient methods under Assumption 4, suppose
F = Ft−1, g = g(xt, ξt) and f = ∇f(xt), then we can set ḡ = g(xt, ξt+1), where we recall
Ft−1 = σ(ξ1, · · · , ξt−1) and ξ1 to ξt+1 are sampled from D independently.

Proof. Inspired by Das et al. (2024), we denote by h ≜ min
{
1, τ

∥g∥

}
∈ [0, 1]. Under this notation,

we have
gc = clipτ (g) = hg. (17)

We first give two useful properties of h.

• For any q ≥ 0, we have

1− h ≤ ∥g∥q

∥g∥q
1 [∥g∥ ≥ τ ] ≤ ∥g∥q

τ q
1 [∥g∥ ≥ τ ] ≤ ∥g∥q

τ q
,

which implies

1− h ≤ inf
q≥0

∥g∥q

τ q
. (18)

• We can also observe

1− h =
∥g∥ − τ

∥g∥
1 [∥g∥ ≥ τ ] ≤ ∥g∥ − τ

τ
1 [∥g∥ ≥ τ ]

≤ ∥g − f∥+ ∥f∥ − τ

τ
1 [∥g∥ ≥ τ ] ,

which implies

(1− h)χ(α) ≤ ∥g − f∥+ ∥f∥ − τ

τ
1

[
∥g∥ ≥ τ ≥ ∥f∥

1− α

]
≤ ∥g − f∥

τ
1

[
∥g∥ ≥ τ ≥ ∥f∥

1− α

]
≤ inf
q≥1

∥g − f∥q

αq−1τ q
χ(α), (19)
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where the last step is by noticing that the event
{
∥g∥ ≥ τ ≥ ∥f∥

1−α

}
implies the event{

τ ≥ ∥f∥
1−α , ∥g − f∥ ≥ ατ

}
, thereby leading to, for any q ≥ 1,

∥g − f∥
τ

1

[
∥g∥ ≥ τ ≥ ∥f∥

1− α

]
≤ ∥g − f∥

τ
1

[
τ ≥ ∥f∥

1− α
, ∥g − f∥ ≥ ατ

]
≤ ∥g − f∥q

αq−1τ q
1

[
τ ≥ ∥f∥

1− α
, ∥g − f∥ ≥ ατ

]
≤ ∥g − f∥q

αq−1τ q
χ(α).

For ḡ, we use ḡc to denote the clipped version of ḡ under the same clipping threshold τ , i.e.,
ḡc ≜ clipτ (ḡ) = min

{
1, τ

∥ḡ∥

}
ḡ. By our assumption on ḡ, the following results hold

E [gc | F ] = E [ḡc | F ] = E [ḡc | F ,g] , (20)

E
[
∥g − f∥p | F

]
= E

[
∥ḡ − f∥p | F

]
≤ σp

l . (21)

We first prove inequalities for du.

• Inequality 1. Note that ∥gc∥ ≤ τ , implying ∥du∥ = ∥gc − E [gc | F ]∥ ≤ 2τ .

• Inequality 2. We observe that

E
[
∥du∥2 | F

]
= E

[
∥gc − E [gc | F ]∥2 | F

]
(20)
= E

[
∥E [gc − ḡc | F ,g]∥2 | F

]
(a)

≤ E
[
∥gc − ḡc∥2 | F

]
≤ (2τ)2−pE

[
∥gc − ḡc∥p | F

]
(22)

(b)

≤ (2τ)2−pE
[
∥g − ḡ∥p | F

] (c)

≤ 4σp
l τ

2−p,

where (a) is by the convexity of ∥·∥2 and the tower property, (b) holds because clipτ is a
nonexpansive mapping, and (c) follows by when p > 1

∥g − ḡ∥p ≤ 2p−1
(
∥g − f∥p + ∥ḡ − f∥p

)
⇒ E

[
∥g − ḡ∥p | F

] (16),(21)
≤ 2pσp

l .

The third and fourth inequalities are more technical. Let e ∈ Sd−1 be a unit vector, we know

e⊤E
[
du (du)

⊤ | F
]
e = E

[
|⟨e,du⟩|2 | F

]
= E

[
|⟨e,gc − E [gc | F ]⟩|2 | F

]
. (23)

We will bound this term in two approaches.

On the one hand, we have

E
[
|⟨e,gc − E [gc | F ]⟩|2 | F

]
=E

[
|⟨e,gc − f⟩|2 | F

]
− E

[
|⟨e, f − E [gc | F ]⟩|2 | F

]
≤E

[
|⟨e,gc − f⟩|2 | F

]
(17)
= E

[
|⟨e, hg − f⟩|2 | F

]
=E

[
|h ⟨e,g − f⟩ − (1− h) ⟨e, f⟩|2 | F

]
≤ E

[
h |⟨e,g − f⟩|2 + (1− h) |⟨e, f⟩|2 | F

]
≤E

[
h |⟨e,g − f⟩|2 + (1− h) ∥f∥2 | F

]
, (24)

where the last step is by |⟨e, f⟩| ≤ ∥e∥ ∥f∥ = ∥f∥ and 1 − h ≥ 0. By Cauchy-Schwarz inequality
again,

|⟨e,g − f⟩|2−p ≤ ∥g − f∥2−p ≤ (∥g∥+ ∥f∥)2−p
p>1

≤ ∥g∥2−p
+ ∥f∥2−p

⇒ h |⟨e,g − f⟩|2−p ≤ hp−1 ∥hg∥2−p
+ h ∥f∥2−p

h≤1<p

≤ ∥hg∥2−p
+ ∥f∥2−p

(17)
= ∥gc∥2−p

+ ∥f∥2−p ≤ τ2−p + ∥f∥2−p
,
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which implies

E
[
h |⟨e,g − f⟩|2 | F

]
≤
(
τ2−p + ∥f∥2−p

)
E
[
|⟨e,g − f⟩|p | F

] (16)
≤ σp

sτ
2−p +σp

s ∥f∥
2−p

. (25)

Combine (23), (24) and (25) to obtain for any unit vector e ∈ Sd−1,

e⊤E
[
du (du)

⊤ | F
]
e ≤ σp

sτ
2−p + σp

s ∥f∥
2−p

+ ∥f∥2 E [1− h | F ]

⇒
∥∥∥E [du (du)

⊤ | F
]∥∥∥ ≤ σp

sτ
2−p + σp

s ∥f∥
2−p

+ ∥f∥2 E [1− h | F ] . (26)

On the other hand, we can follow a similar way of proving (22) to show

E
[
|⟨e,gc − E [gc | F ]⟩|2 | F

]
= (2τ)2−pE

[
|⟨e,gc − ḡc⟩|p | F

]
≤ 4τ2−pE

[
|⟨e,gc − f⟩|p | F

]
. (27)

Similar to (24), there is

E
[
|⟨e,gc − f⟩|p | F

]
≤ E

[
h |⟨e,g − f⟩|p + (1− h) ∥f∥p | F

]
h≤1

≤ E
[
|⟨e,g − f⟩|p + (1− h) ∥f∥p | F

]
(16)
≤ σp

s + ∥f∥p E [1− h | F ] . (28)

Combine (23), (27) and (28) to obtain for any unit vector e ∈ Sd−1,

e⊤E
[
du (du)

⊤ | F
]
e ≤ 4σp

sτ
2−p + 4τ2−p ∥f∥p E [1− h | F ]

⇒
∥∥∥E [du (du)

⊤ | F
]∥∥∥ ≤ 4σp

sτ
2−p + 4τ2−p ∥f∥p E [1− h | F ] . (29)

Recall by our definition χ(0) = 1 [τ ≥ ∥f∥], we then denote by χ̄(0) ≜ 1 − χ(0) = 1 [τ < ∥f∥].
Therefore,∥∥∥E [du (du)

⊤ | F
]∥∥∥χ(0) (26)

≤
(
σp
sτ

2−p + σp
s ∥f∥

2−p
+ ∥f∥2 E [1− h | F ]

)
χ(0)

p≤2

≤
(
2σp

sτ
2−p + ∥f∥2 E [1− h | F ]

)
χ(0),

and ∥∥∥E [du (du)
⊤ | F

]∥∥∥ χ̄(0) (29)
≤
(
4σp

sτ
2−p + 4τ2−p ∥f∥p E [1− h | F ]

)
χ̄(0)

p≤2

≤
(
4σp

sτ
2−p + 4 ∥f∥2 E [1− h | F ]

)
χ̄(0),

which together imply∥∥∥E [du (du)
⊤ | F

]∥∥∥ ≤ 4σp
sτ

2−p + 4 ∥f∥2 E [1− h | F ] . (30)

Now we are ready to prove inequalities 3 and 4.

• Inequality 3. We use (30) to know∥∥∥E [du (du)
⊤ | F

]∥∥∥ ≤ 4σp
sτ

2−p + 4 ∥f∥2 E [1− h | F ] ≤ 4σp
sτ

2−p + 4 ∥f∥2 .

• Inequality 4. By (19), we have

(1− h)χ(α) ≤ ∥g − f∥p

αp−1τp
χ(α)

⇒ E [1− h | F ]χ(α)
χ(α)∈F

= E [(1− h)χ(α) | F ] ≤ E
[
∥g − f∥p

αp−1τp
χ(α) | F

]
(16)
≤

σp
l χ(α)

αp−1τp
≤

σp
l

αp−1τp
.
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Now we use (30) to know∥∥∥E [du (du)
⊤ | F

]∥∥∥χ(α) ≤ 4σp
sτ

2−pχ(α) + 4 ∥f∥2 E [1− h | F ]χ(α)

≤ 4σp
sτ

2−p + 4α1−pσp
l ∥f∥

2
τ−p.

Finally, we prove the last two inequalities related to db. Still let e represent a unit vector in Rd, then
by the definition of db,〈

e,db
〉 (17)
= ⟨e,E [hg | F ]− f⟩ = E [(h− 1) ⟨e,g⟩ | F ]

= E [(h− 1) ⟨e,g − f⟩ | F ]− ⟨e, f⟩E [1− h | F ]

(d)

≤ E [(1− h) |⟨e,g − f⟩| | F ] + ∥f∥E [1− h | F ]

(e)

≤
(
E
[
(1− h)

p
p−1 | F

])1− 1
p

σs + ∥f∥E [1− h | F ]

⇒
∥∥db

∥∥ ≤
(
E
[
(1− h)

p
p−1 | F

])1− 1
p

σs + ∥f∥E [1− h | F ] , (31)

where (d) is by h ≤ 1 and −⟨e, f⟩ ≤ ∥e∥ ∥f∥ = ∥f∥, and (e) is by Hölder’s inequality and (16).

• Inequality 5. Noticing that p
p−1 ≥ 1 and 1− h ≤ 1, we then have

(1− h)
p

p−1 ≤ 1− h
(18)
≤ ∥g∥p

τp
≤

2p−1
(
∥g − f∥p + ∥f∥p

)
τp

,

which implies

E
[
(1− h)

p
p−1 | F

]
≤ E [1− h | F ]

(16)
≤

2p−1
(
σp
l + ∥f∥p

)
τp

.

Combine (31) and the above inequality to have

∥∥db
∥∥ ≤

(
2p−1

(
σp
l + ∥f∥p

)
τp

)1− 1
p

σs + ∥f∥
2p−1

(
σp
l + ∥f∥p

)
τp

p≤2

≤
√
2
(
σp−1
l + ∥f∥p−1

)
σsτ

1−p + 2
(
σp
l + ∥f∥p

)
∥f∥ τ−p.

• Inequality 6. Recall that χ(α) ∈ {0, 1} ∈ F , which implies∥∥db
∥∥χ(α) (31)

≤
(
E
[
((1− h)χ(α))

p
p−1 | F

])1− 1
p

σs + ∥f∥E [(1− h)χ(α) | F ]

1
p−1≥1

≤
(
E
[
((1− h)χ(α))

p | F
])1− 1

p σs + ∥f∥E [(1− h)χ(α) | F ]

(19)
≤
(
E
[
∥g − f∥p

τp
χ(α) | F

])1− 1
p

σs + ∥f∥E
[
∥g − f∥p

αp−1τp
χ(α) | F

]
(16)
≤
(
σsσ

p−1
l τ1−p + α1−pσp

l ∥f∥ τ
−p
)
χ(α)

≤ σsσ
p−1
l τ1−p + α1−pσp

l ∥f∥ τ
−p.

E FULL THEOREMS FOR UPPER BOUNDS AND PROOFS

In this section, we provide the full description of each theorem given in the main paper with the
proof. Besides, we also present new anytime convergence of Stabilized Clipped SGD. All interme-
diate results used in the analysis are deferred to be proved in Appendix F.
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Before starting, we recall that D = ∥x⋆ − x1∥ denotes the distance between the optimal solution
and the initial point.

For high-probability convergence, as proposed in (2), one repeatedly used quantity in the clipping
threshold is

τ⋆ =

(
min

{
σsσ

p−1
l

ln 3
δ

,
σ2
s

σ2−p
l 1 [p < 2]

}) 1
p

, (32)

where δ ∈ (0, 1] is the failure probability, p ∈ (1, 2] and 0 ≤ σs ≤ σl are introduced in Assumption
4. Another useful value mentioned before in (3) is

φ⋆ = max

{√
deff ln

3

δ
, deff1 [p < 2]

}
, (33)

where deff = σ2
l /σ

2
s is called generalized effective dimension defined in (1) satisfying

deff ∈ {0} ∪ [1, πd/2] , (34)

in which deff = 0 if and only if σl = σs = 0, i.e., the noiseless case. Lastly, it is noteworthy that the
following equation always holds

φ⋆ =
σp
l

τp⋆
. (35)

For in-expectation convergence, we will consider a larger quantity in the clipping threshold as men-
tioned in Section 6:

τ̃⋆ =
σ

2
p
s

σ
2
p−1

l 1 [p < 2]
. (36)

We also recall
φ̃⋆ = deff1 [p < 2] . (37)

Note that there is

φ̃⋆ =
σp
l

τ̃p⋆
. (38)

E.1 GENERAL CONVEX CASE

We provide different convergence rates for general convex objectives. Recall that x̄cvx
T+1 stands for

the average iterate after T steps, i.e.,

x̄cvx
T+1 =

1

T

T∑
t=1

xt+1. (39)

Moreover, note that Clipped SGD and Stabilized Clipped SGD are the same when the stepsize is
constant, as mentioned in Appendix C. Hence, everything in this subsection is proved based on the
analysis for Stabilized Clipped SGD.

E.1.1 HIGH-PROBABILITY CONVERGENCE

Known T . We begin with the situation where the time horizon T is known in advance. Theorem 10
below shows the refined high-probability rate for Clipped SGD.

Theorem 10 (Full statement of Theorem 1). Under Assumptions 1, 2 (with µ = 0), 3 and 4, for any
T ∈ N and δ ∈ (0, 1], setting ηt = η⋆, τt = max

{
G

1−α , τ⋆T
1
p

}
, ∀t ∈ [T ] where α = 1/2,

η⋆ = min


D/G

φ+ ln 3
δ

,
D/G√(

σp
l /G

p + 1
)
T
,

D(
σ

2
p−1
s σ

2− 2
p

l + σ
1
p
s σ

1− 1
p

l ln1−
1
p 3
δ

)
T

1
p

 , (40)
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and φ ≤ φ⋆ is a constant defined in (46) and equals φ⋆ when T = Ω
(
Gp

σp
l

φ⋆

)
, then Clipped SGD

(Algorithm 1) guarantees that with probability at least 1 − δ, F (x̄cvx
T+1) − F⋆ converges at the rate

of

O


(
φ+ ln 3

δ

)
GD

T
+

(
σ

p
2

l G
1− p

2 +G
)
D

√
T

+

(
σ

2
p−1
s σ

2− 2
p

l + σ
1
p
s σ

1− 1
p

l ln1−
1
p 3
δ

)
D

T 1− 1
p

 .

Remark 11. There are two points we want to emphasize:

First, the choice α = 1/2 is not essential and can be changed to any α ∈ (0, 1), only resulting
in a different hidden constant in the O notation. In the proof, we try to keep α until the very last
step. Moreover, we would like to mention that a small α may lead to better practical performance as
suggested in Remark 2 of Parletta et al. (2025).

Second, these rates are presented while assuming the knowledge of all problem-dependent parame-
ters, as ubiquitously done in the optimization literature. However, not all problem-dependent param-
eters are necessary if one only wants to ensure the convergence. For example, in the above Theorem
10, taking ηt = min

{
λ

G
√
T
, λτt

}
, τt = max

{
2G, τT

1
p

}
, ∀t ∈ [T ] where λ, τ > 0 (like Theorem 3

in Liu & Zhou (2023)) is sufficient to prove that Clipped SGD converges. Therefore, when proving
these theorems, we also try to keep a general version of the stepsize scheduling and the clipping
threshold until the very last step.

Proof. First, a constant stepsize fulfills the requirement of Lemma 4. In addition, our choices of ηt
and τt also satisfy Conditions 1 and 2 (with α = 1/2) in Lemma 6. Therefore, given T ∈ N and
δ ∈ (0, 1], Lemmas 4 and 6 together yield with probability at least 1− δ,

∥x⋆ − xT+1∥2

2ηT+1
+

T∑
t=1

F (xt+1)− F⋆ ≤
D2

ηT+1
+ 2Acvx

T

⇒ F (x̄cvx
T+1)− F⋆ ≤

D2

ηT+1T
+

2Acvx
T

T
, (41)

where Acvx
T is a constant in the order of

O

max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+

T∑
t=1

σp
l ηtτ

2−p
t +

(
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt

)2

+

T∑
t=1

G2ηt

 . (42)

Our left task is to bound Acvx
T . When ηt = η, τt = τ, ∀t ∈ [T ] where η > 0 and τ ≥ G

1−α (as
required by Condition 2 in Lemma 6), we can simplify (42) into

Acvx
T = O

(
η

(
τ2 ln2

3

δ
+ σp

l τ
2−pT +

σ2
sσ

2p−2
l

τ2p−2
T 2 +

σ2p
l G2

α2p−2τ2p
T 2 +G2T

))
. (43)

One more step, under changing τ to max
{

G
1−α , τT

1
p

}
(the second τ is only required to be nonneg-

ative) and using p ≤ 2, we can further write (43) into

Acvx
T =O

(
η

(
inf

β∈[0,1/2]

(1− α)2βpσ2p
l G2−2βp

α2p−2τ2(1−β)p
T 2β +

G2 ln2 3
δ

(1− α)2
+

(
σp
l G

2−p

(1− α)2−p
+G2

)
T

)

+η

(
τ2 ln2

3

δ
+ σp

l τ
2−p +

σ2
sσ

2p−2
l

τ2p−2

)
T

2
p

)
, (44)

where the first term appears due to for any β ∈ [0, 1/2],

σ2p
l G2

α2p−2τ2p
T 2 ≤

σ2p
l G2

α2p−2
(

G
1−α

)2βp (
τT

1
p

)2(1−β)pT 2 =
(1− α)2βpσ2p

l G2−2βp

α2p−2τ2(1−β)p
T 2β .

24



Published as a conference paper at ICLR 2026

Now, we plug τ = τ⋆ (see (32)) into (44) to have, under τt = max
{

G
1−α , τ⋆T

1
p

}
, ∀t ∈ [T ],

Acvx
T =O

(
η

(
G2φ2

α2p−2
+
G2 ln2 3

δ

(1− α)2
+

(
σp
l G

2−p

(1− α)2−p
+G2

)
T

)

+η

(
σ

4
p−2
s σ

4− 4
p

l + σ
2
p
s σ

2− 2
p

l ln2−
2
p
3

δ

)
T

2
p

)
, (45)

where the first term is obtained by noticing

(1− α)2βpσ2p
l G2−2βp

α2p−2τ
2(1−β)p
⋆

T 2β =
G2

α2p−2
·

(
(1− α)βp

σ
(1−β)p
l

τ
(1−β)p
⋆

(σl
G

)βp
T β

)2

(35)
=

G2

α2p−2
·
(
(1− α)βpφ1−β

⋆

(σl
G

)βp
T β
)2

⇒ inf
β∈[0,1/2]

(1− α)2βpσ2p
l G2−2βp

α2p−2τ
2(1−β)p
⋆

T 2β ≤ G2φ2

α2p−2
,

in which

φ ≜ inf
β∈[0,1/2]

(1− α)βpφ1−β
⋆

(σl
G

)βp
T β = min

{
φ⋆,

√
(1− α)pφ⋆

(σl
G

)p
T

}
≤ φ⋆. (46)

Note that we have φ = φ⋆ when T ≥ Gpφ⋆

(1−α)pσp
l

= Ω
(
Gp

σp
l

φ⋆

)
.

By (41), (45) and α = 1/2, we can find

F (x̄cvx
T+1)− F⋆ ≤O

(
D2

ηT
+
η
(
φ2 + ln2 3

δ

)
G2

T
+ η

(
σp
l G

2−p +G2
)

+η

(
σ

4
p−2
s σ

4− 4
p

l + σ
2
p
s σ

2− 2
p

l ln2−
2
p
3

δ

)
T

2
p−1

)
.

Plug in η = η⋆ (see (40)) to conclude that F (x̄cvx
T+1)− F⋆ converges at the rate of

O


(
φ+ ln 3

δ

)
GD

T
+

(
σ

p
2

l G
1− p

2 +G
)
D

√
T

+

(
σ

2
p−1
s σ

2− 2
p

l + σ
1
p
s σ

1− 1
p

l ln1−
1
p 3
δ

)
D

T 1− 1
p

 .

Recover the existing rate in Liu & Zhou (2023). Remarkably, our above analysis is essentially
tighter than Liu & Zhou (2023). To see this claim, we bound Acvx

T in the following way (take the
same α = 1/2 as in Liu & Zhou (2023) for a fair comparison):

Acvx
T

(43)
= O

(
η

(
τ2 ln2

3

δ
+ σp

l τ
2−pT +

σ2
sσ

2p−2
l

τ2p−2
T 2 +

σ2p
l G2

τ2p
T 2 +G2T

))
(a)

≤ O

(
η

(
τ2 ln2

3

δ
+ σp

l τ
2−pT +

σ2
sσ

2p−2
l

τ2p−2
T 2 +

σ2p
l

τ2p−2
T 2 +G2T

))
(b)
= O

(
η

(
τ2 ln2

3

δ
+ σp

l τ
2−pT +

σ2p
l

τ2p−2
T 2 +G2T

))
,

where (a) is by τ ≥ G
1−α = 2G and (b) holds due to σs ≤ σl. Under the choice of

η = min
{

λ
G
√
T
, λτ

}
used in Theorem 3 of Liu & Zhou (2023), we have

Acvx
T ≤ O

(
λ2

η

(
ln2

3

δ
+
σp
l

τp
T +

σ2p
l

τ2p
T 2 + 1

))
≤ O

(
λ2

η

(
ln2

3

δ
+
σ2p
l

τ2p
T 2

))
,
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where the second step is due to 2σp
l

τp T ≤ σ2p
l

τ2p T
2 + 1 (by AM-GM inequality) and 1 ≤ ln2 3

δ . Lastly,

we replace τ with max
{
2G, τT

1
p

}
given in Theorem 3 of Liu & Zhou (2023) to obtain

Acvx
T = O

(
λ2

η

(
ln2

3

δ
+
σ2p
l

τ2p

))
.

Combine with (41) to finally have

F (x̄cvx
T+1)− F⋆ ≤ O

D2 + λ2
(
ln2 3

δ +
σ2p
l

τ2p

)
ηT

 ,

which is the same rate as given in Liu & Zhou (2023) (see their equation (7)), implying that our
analysis is indeed more refined than Liu & Zhou (2023).

Unknown T . We move to the case of unknown T . Theorem 11 in the following gives the anytime
high-probability rate for Stabilized Clipped SGD.

Theorem 11. Under Assumptions 1, 2 (with µ = 0), 3 and 4, for any T ∈ N and δ ∈ (0, 1], setting

ηt = min

{
γ⋆,

η⋆√
t
, λ⋆

τ⋆t
1
p

}
, τt = max

{
G

1−α , τ⋆t
1
p

}
, ∀t ∈ [T ] where α = 1/2,

γ⋆ =
D/G

φ⋆ψ⋆ + ln 3
δ

, η⋆ =
D/G√
σp
l /G

p+1
, λ⋆ =

D√
ln2 3

δ +
σp
l

τp
⋆
+

σ2
sσ

2p−2
l

τ2p
⋆

, (47)

and ψ⋆ ≜ 1+ lnφ⋆, then Stabilized Clipped SGD (Algorithm 2) guarantees that with probability at
least 1− δ, F (x̄cvx

T+1)− F⋆ converges at the rate of

O


(
φ⋆ψ⋆ + ln 3

δ

)
GD

T
+

(
σ

p
2

l G
1− p

2 +G
)
D

√
T

+

(
σ

2
p−1
s σ

2− 2
p

l + σ
1
p
s σ

1− 1
p

l ln1−
1
p 3
δ

)
D

T 1− 1
p

 .

Proof. By the same argument for (41) in the proof of Theorem 10, we have with probability at least
1− δ,

F (x̄cvx
T+1)− F⋆ ≤

D2

ηT+1T
+

2Acvx
T

T
, (48)

where Acvx
T is a constant in the order of

O

max
t∈[T ]

ηtτ
2
t ln

2 3

δ︸ ︷︷ ︸
I

+

T∑
t=1

σp
l ηtτ

2−p
t︸ ︷︷ ︸

II

+


T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t︸ ︷︷ ︸

III

+

T∑
t=1

σp
l G

√
ηt

αp−1τpt︸ ︷︷ ︸
IV


2

+

T∑
t=1

G2ηt︸ ︷︷ ︸
V

 .

(49)

When ηt = min

{
γ, η√

t
, λ

τt
1
p

}
, τt = max

{
G

1−α , τ t
1
p

}
, ∀t ∈ [T ] for nonnegative γ, η, λ and τ ,

we can bound the above five terms as follows.

• Term I. We have

max
t∈[T ]

ηtτ
2
t ln

2 3

δ
≤ max
t∈[T ]

(
ηtG

2

(1− α)2
+ ηt

(
τt

1
p

)2)
ln2

3

δ

≤max
t∈[T ]

(
γG2

(1− α)2
+ λτt

1
p

)
ln2

3

δ
= O

(
γG2 ln2 3

δ

(1− α)2
+ λτ ln2

(
3

δ

)
T

1
p

)
. (50)
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• Term II. For any t ∈ [T ], we have

ηtτ
2−p
t

p≤2

≤ ηt

(
G2−p

(1− α)2−p
+
(
τt

1
p

)2−p
)

≤ ηG2−p

(1− α)2−p
√
t
+

λ(
τt

1
p

)p−1 ,

which implies

T∑
t=1

σp
l ηtτ

2−p
t ≤ O

(
ησp

l G
2−p

(1− α)2−p

√
T +

λσp
l

τp−1
T

1
p

)
. (51)

• Term III. For any t ∈ [T ], we have

√
ηt

τp−1
t

p≥1

≤

√
λ/(τt

1
p )

(τt
1
p )p−1

=

√
λ

(τt
1
p )p−

1
2

,

which implies
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

≤ O

(√
λσsσ

p−1
l

τp−
1
2

T
1
2p

)
. (52)

• Term IV. For any β ∈ [0, 1], we have

T∑
t=1

σp
l G

√
ηt

αp−1τpt
≤

T∑
t=1

σp
l Gγ

1−β
2 η

β
2

αp−1(τt
1
p )pt

β
4

= O

(√
γσp

l G

αp−1τp

(
η

γ

) β
2

ψ(β, T )

)
, (53)

where

ψ(β, T ) ≜

{
1 + lnT β = 0

1 + 4
β β ∈ (0, 1]

. (54)

• Term V. We have
T∑
t=1

G2ηt ≤
T∑
t=1

ηG2

√
t

= O
(
ηG2

√
T
)
. (55)

We plug (50), (51), (52), (53) and (55) back into (49) to know

Acvx
T ≤O

(
γ

(
σ2p
l G2(η/γ)βψ2(β, T )

α2p−2τ2p
+
G2 ln2 3

δ

(1− α)2

)
+ η

(
σp
l G

2−p

(1− α)2−p
+G2

)√
T

+λ

(
τ ln2

3

δ
+

σp
l

τp−1
+
σ2
sσ

2p−2
l

τ2p−1

)
T

1
p

)
, ∀β ∈ [0, 1] .

Combine the above result with ηt = min

{
γ, η√

t
, λ

τt
1
p

}
and (48) to obtain

F (x̄cvx
T+1)− F⋆ ≤O

 D2

γ + γ
(
σ2p
l G2(η/γ)βψ2(β,T )

α2p−2τ2p +
G2 ln2 3

δ

(1−α)2

)
T

+

D2

η + η
(
σp
l G

2−p

(1−α)2−p +G2
)

√
T

+

D2τ
λ + λ

(
τ ln2

(
3
δ

)
+

σp
l

τp−1 +
σ2
sσ

2p−2
l

τ2p−1

)
T 1− 1

p

 , ∀β ∈ [0, 1] . (56)
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Finally, we conclude after plugging in τ = τ⋆, γ = γ⋆, η = η⋆, λ = λ⋆ (see (32) and (47)), α = 1/2,
and the following fact:

inf
β∈[0,1]

γ⋆

(
η⋆
γ⋆

)β
ψ2(β, T )

(47),β≤1

≤ D/G

φ⋆ψ⋆
inf

β∈[0,1]
(φ⋆ψ⋆)

β
ψ2(β, T )

≤ D/G

φ⋆ψ⋆
(φ⋆ψ⋆)

β⋆ ψ2(β⋆, T ) where β⋆ =
2

max {ln (φ⋆ψ⋆) , 2}
(54)
≤ D/G

φ⋆ψ⋆
· e2 · (1 + 2max {ln (φ⋆ψ⋆) , 2})2

= O
(
D/G

φ⋆ψ⋆
·
(
1 + ln2 φ⋆ + ln2 ψ⋆

))
= O

(
D/G

φ⋆
· ψ⋆

)
,

where the last step is by lnψ⋆ ≤ 2
√
ψ⋆, 1 + ln2 φ⋆ ≤ ψ2

⋆ (since ψ⋆ = 1 + lnφ⋆ and φ⋆ ≥ 1), and
ψ⋆ ≥ 1.

We first compare Theorem 11 with our Theorem 10. As one can see, the only difference is the term
φ versus the term φ⋆ψ⋆, the former of which satisfies φ ≤ φ⋆. This change should be expected
as the precise value of φ depends on T (see (46)). Moreover, recall that φ = φ⋆ once T exceeds
Ω
(
Gp

σp
l

φ⋆

)
. Hence, roughly speaking, the only loss in Theorem 11 is an extra multiplicative term

ψ⋆, which never grows with T and is in the order of

1 + lnφ⋆
(33)
= 1 + ln

(
max

{√
deff ln

3

δ
, deff1 [p < 2]

})
.

This positive result, i.e., no extra poly(lnT ) term, is due to the stabilization technique, as discussed
in Appendix C.

Without considering the extra stabilized step, following a similar analysis given in Appendix F later,
one can show that for any general stepsize ηt and any clipping threshold τt ≥ G

1−α , Clipped SGD
guarantees with probability at least 1− δ (assuming that ηt is nonincreasing for simplicity),

F (x̄cvx
T+1)− F⋆ ≤

(
D2 + Ãcvx

T

ηTT

)
, (57)

where Ãcvx
T is in the order of

O

max
t∈[T ]

η2t τ
2
t ln

2 3

δ
+

T∑
t=1

σp
l η

2
t τ

2−p
t +

(
T∑
t=1

σsσ
p−1
l ηt

τp−1
t

+

T∑
t=1

σp
l Gηt

αp−1τpt

)2

+

T∑
t=1

G2η2t

 . (58)

As a sanity check, when ηt = η, τt = τ,∀t ∈ [T ], Ãcvx
T /η coincides with Acvx

T given in (43). If T
is unknown, even ignoring all other terms and only focusing on

∑T
t=1G

2η2t in (58), the final rate of
Clipped SGD by (57) will contain a term

∑T
t=1G

2η2t /(ηTT ), which is however well-known to give
an extra poly(lnT ) factor for a time-varying stepsize ηt.

Now let us compare Theorem 11 to Theorem 1 in Liu & Zhou (2023). The latter gives the current
best anytime rate for Clipped SGD as follows (actually, this can be obtained by (57) and (58) above):

F (x̄cvx
T+1)− F⋆ ≤ O

((
ln

1

δ
+ ln2 T

)(
GD√
T

+
σlD

T 1− 1
p

))
.

Similar to our comparison when T is known in Section 4, one can see that our Theorem 11 is better
(at least in the case of large T ).

E.1.2 IN-EXPECTATION CONVERGENCE

Known T . Now we consider the in-expectation convergence. Theorem 12 gives the first rate

O(σld
1
2−

1
p

eff DT
1
p−1) faster than the existing lower bound Ω(σlDT

1
p−1) (Nemirovski & Yudin, 1983;

Vural et al., 2022).
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Theorem 12 (Full statement of Theorem 3). Under Assumptions 1, 2 (with µ = 0), 3 and 4, for any
T ∈ N, setting ηt = η⋆, τt = max

{
G

1−α , τ̃⋆T
1
p

}
, ∀t ∈ [T ] where α = 1/2,

η⋆ = min

D/Gφ̃ ,
D/G√(

σp
l /G

p + 1
)
T
,

D

σ
2
p−1
s σ

2− 2
p

l T
1
p

 , (59)

and φ̃ ≤ φ̃⋆ is a constant defined in (60) and equals φ̃⋆ when T = Ω
(
Gp

σp
l

φ̃⋆

)
, then Clipped SGD

(Algorithm 1) guarantees that E
[
F (x̄cvx

T+1)− F⋆
]

converges at the rate of

O

 φ̃GD
T

+

(
σ

p
2

l G
1− p

2 +G
)
D

√
T

+
σ

2
p−1
s σ

2− 2
p

l D

T 1− 1
p

 .

Proof. By Lemmas 5 and 6, we can follow a similar argument until (44) in the proof of Theorem 10
to have

E
[
F (x̄cvx

T+1)− F⋆
]
≤ D2

ηT+1T
+

2Bcvx
T

T
,

where, under ηt = η, τt = max
{

G
1−α , τT

1
p

}
, ∀t ∈ [T ] for η, τ > 0,

Bcvx
T ≤O

(
η

(
inf

β∈[0,1/2]

(1− α)2βpσ2p
l G2−2βp

α2p−2τ2(1−β)p
T 2β +

(
σp
l G

2−p

(1− α)2−p
+G2

)
T

)

+η

(
σp
l τ

2−p +
σ2
sσ

2p−2
l

τ2p−2

)
T

2
p

)
.

Now, we plug τ = τ̃⋆ (see (36)) into the above inequality to have under the choice of τt =

max
{

G
1−α , τ̃⋆T

1
p

}
, ∀t ∈ [T ],

Bcvx
T ≤ O

(
η

(
G2φ̃2

α2p−2
+

(
σp
l G

2−p

(1− α)2−p
+G2

)
T + σ

4
p−2
s σ

4− 4
p

l T
2
p

))
,

where the first term is obtained by noticing

(1− α)2βpσ2p
l G2−2βp

α2p−2τ̃
2(1−β)p
⋆

T 2β =
G2

α2p−2
·

(
(1− α)βp

σ
(1−β)p
l

τ̃
(1−β)p
⋆

(σl
G

)βp
T β

)2

(38)
=

G2

α2p−2
·
(
(1− α)βpφ̃1−β

⋆

(σl
G

)βp
T β
)2

⇒ inf
β∈[0,1/2]

(1− α)2βpσ2p
l G2−2βp

α2p−2τ̃
2(1−β)p
⋆

T 2β ≤ G2φ̃2

α2p−2
,

in which

φ̃ ≜ inf
β∈[0,1/2]

(1− α)βpφ̃1−β
⋆

(σl
G

)βp
T β = min

{
φ̃⋆,

√
(1− α)pφ̃⋆

(σl
G

)p
T

}
≤ φ̃⋆. (60)

Note that we have φ̃ = φ̃⋆ when T ≥ Gpφ̃⋆

(1−α)pσp
l

= Ω
(
Gp

σp
l

φ̃⋆

)
.

By above results and α = 1/2, we find

E
[
F (x̄cvx

T+1)− F⋆
]
≤ O

(
D2

ηT
+
ηφ̃2G2

T
+ η

(
σp
l G

2−p +G2
)
+ ησ

4
p−2
s σ

4− 4
p

l T
2
p−1

)
.

Plug in η = η⋆ (see (59)) to conclude that E
[
F (x̄cvx

T+1)− F⋆
]

converges at the rate of

O

 φ̃GD
T

+

(
σ

p
2

l G
1− p

2 +G
)
D

√
T

+
σ

2
p−1
s σ

2− 2
p

l D

T 1− 1
p

 .

29



Published as a conference paper at ICLR 2026

Unknown T . Next, we consider the in-expectation convergence for Stabilized Clipped SGD. This
anytime rate is also faster than the lower bound O(σlDT

1
p−1).

Theorem 13. Under Assumptions 1, 2 (with µ = 0), 3 and 4, for any T ∈ N, setting ηt =

min

{
γ⋆,

η⋆√
t
, λ⋆

τ̃⋆t
1
p

}
, τt = max

{
G

1−α , τ̃⋆t
1
p

}
, ∀t ∈ [T ] where α = 1/2,

γ⋆ =
D/G

φ̃⋆ψ̃⋆
, η⋆ =

D/G√
σp
l /G

p+1
, λ⋆ =

D√
σp
l

τ̃p
⋆
+

σ2
sσ

2p−2
l

τ̃2p
⋆

, (61)

and ψ̃⋆ ≜ 1+ln φ̃⋆, then Stabilized Clipped SGD (Algorithm 2) guarantees that E
[
F (x̄cvx

T+1)− F⋆
]

converges at the rate of

O

 φ̃⋆ψ̃⋆GD
T

+

(
σ

p
2

l G
1− p

2 +G
)
D

√
T

+
σ

2
p−1
s σ

2− 2
p

l D

T 1− 1
p

 .

Proof. By Lemmas 5 and 6, we can follow a similar argument until (56) in the proof of Theorem 11

to have when ηt = min

{
γ, η√

t
, λ

τt
1
p

}
, τt = max

{
G

1−α , τ t
1
p

}
, ∀t ∈ [T ],

F (x̄cvx
T+1)− F⋆ ≤O

 D2

γ + γ
σ2p
l G2(η/γ)βψ2(β,T )

α2p−2τ2p

T
+

D2

η + η
(
σp
l G

2−p

(1−α)2−p +G2
)

√
T

+

D2τ
λ + λ

(
σp
l

τp−1 +
σ2
sσ

2p−2
l

τ2p−1

)
T 1− 1

p

 , ∀β ∈ [0, 1] ,

where ψ(β, T ) =

{
1 + lnT β = 0

1 + 4
β β ∈ (0, 1]

is defined in (54).

Finally, we conclude after plugging in τ = τ̃⋆, γ = γ⋆, η = η⋆, λ = λ⋆ (see (36) and (61)), α = 1/2,
and the following fact:

inf
β∈[0,1]

γ⋆

(
η⋆
γ⋆

)β
ψ2(β, T )

(61)
≤ D/G

φ̃⋆ψ̃⋆
inf

β∈[0,1]

(
φ̃⋆ψ̃⋆

)β
ψ2(β, T )

≤ D/G

φ̃⋆ψ̃⋆

(
φ̃⋆ψ̃⋆

)β⋆

ψ2(β⋆, T ) where β⋆ =
2

max
{
ln
(
φ̃⋆ψ̃⋆

)
, 2
}

≤ D/G

φ̃⋆ψ̃⋆
· e2 ·

(
1 + 2max

{
ln
(
φ̃⋆ψ̃⋆

)
, 2
})2

= O
(
D/G

φ̃⋆ψ̃⋆
·
(
1 + ln2 φ̃⋆ + ln2 ψ̃⋆

))
= O

(
D/G

φ̃⋆
· ψ̃⋆

)
,

where the last step is by ln ψ̃⋆ ≤ 2

√
ψ̃⋆, 1 + ln2 φ̃⋆ ≤ ψ̃2

⋆ (since ψ̃⋆ = 1 + ln φ̃⋆ and φ̃⋆ ≥ 1), and

ψ̃⋆ ≥ 1.

Compared to Theorem 12, we only incur an extra multiplicative term ψ̃⋆ = 1 + ln φ̃⋆ = 1 +
ln (deff1 [p < 2]) in the higher-order O(T−1) part.

E.2 STRONGLY CONVEX CASE

We turn our attention to strongly convex objectives. In this setting, we recall that x̄str
T+1 denotes the

following weighted average iterate after T steps:

x̄str
T+1 =

∑T
t=1(t+ 4)(t+ 5)xt+1∑T
t=1(t+ 4)(t+ 5)

. (62)
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E.2.1 HIGH-PROBABILITY CONVERGENCE

Still, we first consider the high-probability convergence rate. Theorem 14 gives the anytime high-
probability rate of Clipped SGD improving upon Liu & Zhou (2023).
Theorem 14 (Full statement of Theorem 2). Under Assumptions 1, 2 (with µ > 0), 3 and 4, for any
T ∈ N and δ ∈ (0, 1], setting ηt = 6

µt , τt = max
{

G
1−α , τ⋆t

1
p

}
, ∀t ∈ [T ] where α = 1/2, then

Clipped SGD (Algorithm 1) guarantees that with probability at least 1− δ, both F (x̄str
T+1)−F⋆ and

µ ∥xT+1 − x⋆∥2 converge at the rate of

O

µD2

T 3
+

(
φ2 + ln2 3

δ

)
G2

µT 2
+

(
σp
l + σp

s ln
3
δ

)
G2−p +G2

µT
+
σ

4
p−2
s σ

4− 4
p

l + σ
2
p
s σ

2− 2
p

l ln2−
2
p 3
δ

µT 2− 2
p

 ,

where φ ≤ φ⋆ is a constant defined in (46) and equals φ⋆ when T = Ω
(
Gp

σp
l

φ⋆

)
.

Proof. First, the choice of ηt = 6
µt , ∀t ∈ [T ] satisfies ηt ≤ η

µ , ∀t ∈ [T ] for η = 6, fulfilling the
requirement of Lemma 7. In addition, our choices of ηt and τt also meet Conditions 1 and 2 (with
α = 1/2) in Lemma 9. Therefore, given T ∈ N and δ ∈ (0, 1], Lemmas 7 and 9 together yield that
with probability at least 1− δ,

ΓT+1 ∥x⋆ − xT+1∥2

2
+

T∑
t=1

Γtηt (F (xt+1)− F⋆) ≤ 4D2 + 2Astr
T

⇒ ΓT+1 ∥x⋆ − xT+1∥2

2
∑T
t=1 Γtηt

+

∑T
t=1 Γtηt (F (xt+1)− F⋆)∑T

t=1 Γtηt
≤ 4D2 + 2Astr

T∑T
t=1 Γtηt

, (63)

where Γt =
∏t
s=2

1+µηs−1

1+µηs/2
is introduced in (95) and Astr

T is a constant in the order of

O

(
max
t∈[T ]

Γtη
2
t τ

2
t ln

2 3

δ
+

T∑
t=1

σp
l Γtη

2
t τ

2−p
t +

T∑
t=1

(
σp
sΓtη

2
t τ

2−p
t +

σp
l G

2Γtη
2
t

αp−1τpt

)
ln

3

δ

+

T∑
t=1

(
σ2
sσ

2p−2
l Γtηt

τ2p−2
t

+
σ2p
l G2Γtηt

α2p−2τ2pt

)
1

µ
+

T∑
t=1

G2Γtη
2
t

)
. (64)

We use ηt = 6
µt , ∀t ∈ [T ] to compute

Γt =

t∏
s=2

1 + µηs−1

1 + µηs/2
=

t∏
s=2

s

s− 1
· s+ 5

s+ 3
=
t(t+ 4)(t+ 5)

30
, ∀t ∈ [T + 1] . (65)

So for any t ∈ [T ],

Γtηt =
(t+ 4)(t+ 5)

5µ
≤ 6t2

µ
and Γtη

2
t =

6(t+ 4)(t+ 5)

5µ2t
≤ 36t

µ2
, (66)

implying
T∑
t=1

Γtηt =

T∑
t=1

(t+ 4)(t+ 5)

5µ
=
T (T 2 + 15T + 74)

15µ
. (67)

Lastly, let us bound (63). For the L.H.S. of (63), we have

ΓT+1

2
∑T
t=1 Γtηt

(65),(67)
=

µ(T + 1)(T + 5)(T + 6)

4T (T 2 + 15T + 74)
≥ min

T∈N

µ(T + 1)(T + 5)(T + 6)

4T (T 2 + 15T + 74)
=

3µ

16
.

In addition, we observe that∑T
t=1 Γtηtxt+1∑T
t=1 Γtηt

(66)
=

∑T
t=1(t+ 4)(t+ 5)xt+1∑T
t=1(t+ 4)(t+ 5)

(62)
= x̄str

T+1.
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The above two results and the convexity of F together lead us to

3µ ∥x⋆ − xT+1∥2

16
+ F (x̄str

T+1)− F⋆ ≤ L.H.S. of (63). (68)

For the R.H.S. of (63), we plug (67) back into (63) to have

R.H.S. of (63) ≤ O
(
µD2 + µAstr

T

T 3

)
. (69)

One more step, we use (66) to upper bound (64) and obtain

µAstr
T ≤ 1

µ
· O

max
t∈[T ]

τ2t t ln
2 3

δ︸ ︷︷ ︸
I

+

T∑
t=1

σp
l τ

2−p
t t︸ ︷︷ ︸

II

+

T∑
t=1

(
σp
sτ

2−p
t t+

σp
l G

2t

αp−1τpt

)
ln

3

δ︸ ︷︷ ︸
III

+

T∑
t=1

(
σ2
sσ

2p−2
l t2

τ2p−2
t

+
σ2p
l G2t2

α2p−2τ2pt

)
︸ ︷︷ ︸

IV

+G2T 2

 . (70)

When τt = max
{

G
1−α , τ t

1
p

}
, ∀t ∈ [T ], we control the above four terms as follows.

• Term I. We have

max
t∈[T ]

τ2t t ln
2 3

δ
= τ2TT ln2

3

δ
≤
G2 ln2 3

δ

(1− α)2
T + τ2 ln2

(
3

δ

)
T 1+ 2

p . (71)

• Term II. We have
T∑
t=1

σp
l τ

2−p
t t

p≤2

≤ σp
l τ

2−p
T T 2 ≤

σp
l G

2−p

(1− α)2−p
T 2 + σp

l τ
2−pT 1+ 2

p . (72)

• Term III. We have
T∑
t=1

σp
sτ

2−p
t t

p≤2

≤ σp
sτ

2−p
T T 2 ≤ σp

sG
2−p

(1− α)2−p
T 2 + σp

sτ
2−pT 1+ 2

p ,

and for any β ∈ [0, 1/2]

T∑
t=1

σp
l G

2t

αp−1τpt
≤

T∑
t=1

σp
l G

2t

αp−1
(

G
1−α

)βp (
τt

1
p

)(1−β)p ≤ O
(
(1− α)βpσp

l G
2−βp

αp−1τ (1−β)p
T 1+β

)
.

Thus, for any β ∈ [0, 1/2],

T∑
t=1

(
σp
sτ

2−p
t t+

σp
l G

2t

αp−1τpt

)
ln

3

δ

≤O
((

σp
sG

2−p

(1− α)2−p
T 2 + σp

sτ
2−pT 1+ 2

p +
(1− α)βpσp

l G
2−βp

αp−1τ (1−β)p
T 1+β

)
ln

3

δ

)
. (73)

• Term IV. We have
T∑
t=1

σ2
sσ

2p−2
l t2

τ2p−2
t

p≥1

≤
σ2
sσ

2p−2
l

τ2p−2
T 1+ 2

p ,
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and for any β ∈ [0, 1/2],
T∑
t=1

σ2p
l G2t2

α2p−2τ2pt
≤

T∑
t=1

σ2p
l G2t2

α2p−2
(

G
1−α

)2βp (
τt

1
p

)2(1−β)p
≤ O

(
(1− α)2βpσ2p

l G2(1−βp)

α2p−2τ2(1−β)p
T 1+2β

)
.

Hence, for any β ∈ [0, 1/2],
T∑
t=1

(
σ2
sσ

2p−2
l t2

τ2p−2
t

+
σ2p
l G2t2

α2p−2τ2pt

)

≤O

(
σ2
sσ

2p−2
l

τ2p−2
T 1+ 2

p +
(1− α)2βpσ2p

l G2(1−βp)

α2p−2τ2(1−β)p
T 1+2β

)
. (74)

Next, for any fixed β ∈ [0, 1/2],

R.H.S. of (71) + R.H.S. of (74)

=
G2 ln2 3

δ

(1− α)2
T +

(1− α)2βpσ2p
l G2(1−βp)

α2p−2τ2(1−β)p
T 1+2β + τ2 ln2

(
3

δ

)
T 1+ 2

p +
σ2
sσ

2p−2
l

τ2p−2
T 1+ 2

p

(a)

≥2
(1− α)βpσp

l G
2−βp ln 3

δ

(1− α)αp−1τ (1−β)p
T 1+β + 2σsσ

p−1
l τ2−p ln

(
3

δ

)
T 1+ 2

p

(b)

≥
(1− α)βpσp

l G
2−βp ln 3

δ

αp−1τ (1−β)p
T 1+β + σp

sτ
2−p ln

(
3

δ

)
T 1+ 2

p

=R.H.S. of (73) −
σp
sG

2−p ln 3
δ

(1− α)2−p
T 2,

where (a) is by AM-GM inequality and (b) is due to α < 1, σl ≥ σs and p ≥ 1. Therefore, after
plugging (71), (72), (73), and (74) back into (70), we have for any β ∈ [0, 1/2],

µAstr
T ≤ 1

µ
· O

(((
(1− α)βpσp

l G
1−βp

αp−1τ (1−β)p
T β
)2

+
G2 ln2 3

δ

(1− α)2

)
T +

((
σp
l + σp

s ln
3
δ

)
G2−p

(1− α)2−p
+G2

)
T 2

+

(
τ2 ln2

3

δ
+ σp

l τ
2−p +

σ2
sσ

2p−2
l

τ2p−2

)
T 1+ 2

p

)
.

Combine the above bound on µAstr
T and (69) to have for any β ∈ [0, 1/2],

R.H.S. of (63) ≤O

µD2

T 3
+

G2 ln2 3
δ

(1−α)2 +
(

(1−α)βpσp
l G

1−βp

αp−1τ(1−β)p T β
)2

µT 2

+

(σp
l +σ

p
s ln 3

δ )G
2−p

(1−α)2−p +G2

µT
+
τ2 ln2 3

δ + σp
l τ

2−p +
σ2
sσ

2p−2
l

τ2p−2

µT 2− 2
p

 . (75)

We put (68) and (75) together, then use α = 1/2 and τ = τ⋆ (see (32)), and follow the same
argument of (46) to finally obtain

3µ ∥x⋆ − xT+1∥2

16
+ F (x̄str

T+1)− F⋆

≤O

µD2

T 3
+

(
φ2 + ln2 3

δ

)
G2

µT 2
+

(
σp
l + σp

s ln
3
δ

)
G2−p +G2

µT
+
σ

4
p−2
s σ

4− 4
p

l + σ
2
p
s σ

2− 2
p

l ln2−
2
p 3
δ

µT 2− 2
p

 .
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E.2.2 IN-EXPECTATION CONVERGENCE

Next, we consider the in-expectation convergence. Note that Theorem 15 is also the first result that
breaks the existing lower bound Ω(σ2

l T
2
p−2) (Zhang et al., 2020).

Theorem 15 (Full statement of Theorem 4). Under Assumptions 1, 2 (with µ > 0), 3 and 4, for
any T ∈ N, setting ηt = 6

µt , τt = max
{

G
1−α , τ̃⋆t

1
p

}
, ∀t ∈ [T ] where α = 1/2, then Clipped

SGD (Algorithm 1) guarantees that both E
[
F (x̄str

T+1)− F⋆
]

and µE
[
∥xT+1 − x⋆∥2

]
converge at

the rate of

O

µD2

T 3
+
φ̃2G2

µT 2
+
σp
l G

2−p +G2

µT
+
σ

4
p−2
s σ

4− 4
p

l

µT 2− 2
p

 ,

where φ̃ ≤ φ̃⋆ is a constant defined in (60) and equals φ̃⋆ when T = Ω
(
Gp

σp
l

φ̃⋆

)
.

Proof. By Lemmas 8 and 9, we can follow a similar argument until (70) in the proof of Theorem 14
to have

3µE
[
∥x⋆ − xT+1∥2

]
16

+ E
[
F (x̄str

T+1)− F⋆
]
≤ O

(
µD2 + µBstr

T

T 3

)
, (76)

where

µBstr
T ≤ 1

µ
· O

(
T∑
t=1

σp
l τ

2−p
t t+

T∑
t=1

(
σ2
sσ

2p−2
l t2

τ2p−2
t

+
σ2p
l G2t2

α2p−2τ2pt

)
+G2T 2

)
.

When τt = max
{

G
1−α , τ t

1
p

}
, ∀t ∈ [T ], we know

T∑
t=1

σp
l τ

2−p
t t

(72)
≤

σp
l G

2−p

(1− α)2−p
T 2 + σp

l τ
2−pT 1+ 2

p ,

and for any β ∈ [0, 1/2],

T∑
t=1

(
σ2
sσ

2p−2
l t2

τ2p−2
t

+
σ2p
l G2t2

α2p−2τ2pt

)
(74)
≤ O

(
σ2
sσ

2p−2
l

τ2p−2
T 1+ 2

p +
(1− α)2βpσ2p

l G2(1−βp)

α2p−2τ2(1−β)p
T 1+2β

)
.

Therefore, we can bound

µBstr
T ≤ 1

µ
· O

((
(1− α)βpσp

l G
1−βp

αp−1τ (1−β)p
T β
)2

T +

(
σp
l G

2−p

(1− α)2−p
+G2

)
T 2

+

(
σp
l τ

2−p +
σ2
sσ

2p−2
l

τ2p−2

)
T 1+ 2

p

)
, ∀β ∈ [0, 1/2] . (77)

We put (76) and (77) together, then use α = 1/2 and τ = τ̃⋆ (see (36)), and follow the same
argument of (60) to finally obtain

3µE
[
∥x⋆ − xT+1∥2

]
16

+ E
[
F (x̄str

T+1)− F⋆
]

≤O

µD2

T 3
+
φ̃2G2

µT 2
+
σp
l G

2−p +G2

µT
+
σ

4
p−2
s σ

4− 4
p

l

µT 2− 2
p

 .
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F THEORETICAL ANALYSIS

This section provides the missing analysis for every lemma used in the proof in Section E. As
discussed in Section 5, our refined analysis has two core parts: better application of Freedman’s
inequality and finer bounds for clipping error.

Before starting, we summarize the frequently used notation in the proof:

• x⋆ ∈ X, the optimal solution in the domain of the problem X.
• D = ∥x⋆ − x1∥, distance between the optimal solution and the initial point.
• Ft = σ(ξ1, · · · , ξt), the natural filtration induced by i.i.d. samples ξ1 to ξt from D.
• gt = g(xt, ξt), the stochastic gradient accessed at the t-th iteration for point xt.
• τt, the clipping threshold used at the t-th iteration.

• gc
t = clipτt(gt) = min

{
1, τt

∥gt∥

}
gt, the clipped stochastic gradient.

• dc
t = gc

t−∇f(xt), difference between the clipped stochastic gradient and the true gradient.
• du

t = gc
t − E [gc

t | Ft−1], the unbiased part in dc
t .

• db
t = E [gc

t | Ft−1]−∇f(xt), the biased part in dc
t .

F.1 GENERAL LEMMAS

We give two general lemmas in this subsection.

First, we apply Theorem 9 to obtain the following error bounds specialized for clipped gradient
methods. As mentioned, the technical condition required in Theorem 9 automatically holds for
clipped gradient methods.
Lemma 2 (Full statement of Lemma 1). Under Assumption 4 and assuming 0 < τt ∈
Ft−1, then for du

t = gc
t − E [gc

t | Ft−1], db
t = E [gc

t | Ft−1] − ∇f(xt), and χt(α) =
1 [(1− α)τt ≥ ∥∇f(xt)∥] ,∀α ∈ (0, 1), there are:

1. ∥du
t ∥ ≤ 2τt.

2. E
[
∥du

t ∥
2 | Ft−1

]
≤ 4σp

l τ
2−p
t .

3.
∥∥∥E [du

t (d
u
t )

⊤ | Ft−1

]∥∥∥ ≤ 4σp
sτ

2−p
t + 4 ∥∇f(xt)∥2.

4.
∥∥∥E [du

t (d
u
t )

⊤ | Ft−1

]∥∥∥χt(α) ≤ 4σp
sτ

2−p
t + 4α1−pσp

l ∥∇f(xt)∥
2
τ−p
t .

5.
∥∥db

t

∥∥ ≤
√
2
(
σp−1
l + ∥∇f(xt)∥p−1

)
σsτ

1−p
t + 2

(
σp
l + ∥∇f(xt)∥p

)
∥∇f(xt)∥ τ−p

t .

6.
∥∥db

t

∥∥χt(α) ≤ σsσ
p−1
l τ1−p

t + α1−pσp
l ∥∇f(xt)∥ τ

−p
t .

Proof. We invoke Theorem 9 with F = Ft−1, g = gt, f = ∇f(xt), ḡ = g(xt, ξt+1), τ = τt,
du = du

t , db = db
t , and χ(α) = χt(α) to conclude.

Compared to Lemma 1, the clipping threshold τt could be time-varying and random. Inequalities
4 and 6 provide a further (though minor) generalization by a new parameter α, which might be
useful in practice as mentioned in Remark 11. Especially, setting α = 1/2 will recover Lemma 1.
Moreover, as discussed in Section 5, Inequalities 2, 4 and 6 are all finer than existing bounds for
clipping error under heavy-tailed noise.

We then discuss Inequalities 3 and 5 not provided in Lemma 1. As far as we know, both of them are
new in the literature. As one can see, we do not require ∥∇f(xt)∥ (which turns out to be G under
Assumption 3) to set up τt now, which we believe could be useful for future work.

Next, we give two one-step descent inequalities for our algorithms. The analysis is standard in the
literature, which we reproduce here for completeness.
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Lemma 3. Under Assumptions 2 and 3, for any y ∈ X and t ∈ N:

• Clipped SGD (Algorithm 1) guarantees

F (xt+1)−F (y) ≤
∥y − xt∥2

2ηt
− (1 + µηt) ∥y − xt+1∥2

2ηt
+⟨dc

t ,y − xt⟩+ηt ∥dc
t∥

2
+4ηtG

2.

• Stabilized Clipped SGD (Algorithm 2) guarantees, if ηt is nonincreasing,

F (xt+1)− F (y) ≤∥y − xt∥2

2ηt
− (1 + µηt+1) ∥y − xt+1∥2

2ηt+1
+

(
1

ηt+1
− 1

ηt

)
∥y − x1∥2

2

+ ⟨dc
t ,y − xt⟩+ ηt ∥dc

t∥
2
+ 4ηtG

2.

Proof. By the convexity of f ,

f(xt+1)− f(xt) ≤ ⟨∇f(xt+1),xt+1 − xt⟩ .
= ⟨∇f(xt+1)−∇f(xt),xt+1 − xt⟩+ ⟨∇f(xt),xt+1 − xt⟩

Recall that dc
t = gc

t −∇f(xt), we hence have for any y ∈ X,

⟨∇f(xt),xt+1 − xt⟩ = ⟨dc
t ,xt − xt+1⟩+ ⟨gc

t ,xt+1 − y⟩+ ⟨dc
t ,y − xt⟩+ ⟨∇f(xt),y − xt⟩

≤ ⟨dc
t ,xt − xt+1⟩+ ⟨gc

t ,xt+1 − y⟩+ ⟨dc
t ,y − xt⟩+ f(y)− f(xt),

where the inequality is, again, due to the convexity of f . Combine the above two results to obtain

f(xt+1)− f(y) ≤⟨∇f(xt+1)−∇f(xt),xt+1 − xt⟩︸ ︷︷ ︸
I

+ ⟨dc
t ,xt − xt+1⟩︸ ︷︷ ︸

II

+ ⟨gc
t ,xt+1 − y⟩︸ ︷︷ ︸

III

+ ⟨dc
t ,y − xt⟩ . (78)

Next, we bound these three terms separately.

• Term I. By Cauchy-Schwarz inequality, G-Lipschitz property of f , and AM-GM inequal-
ity, there is

⟨∇f(xt+1)−∇f(xt),xt+1 − xt⟩ ≤ ∥∇f(xt+1)−∇f(xt)∥ ∥xt+1 − xt∥

≤ 2G ∥xt+1 − xt∥ ≤ 4ηtG
2 +

∥xt+1 − xt∥2

4ηt
. (79)

• Term II. By Cauchy-Schwarz inequality and AM-GM inequality, we know

⟨dc
t ,xt − xt+1⟩ ≤ ∥dc

t∥ ∥xt+1 − xt∥ ≤ ηt ∥dc
t∥

2
+

∥xt+1 − xt∥2

4ηt
. (80)

• Term III. For Clipped SGD, by the optimality condition of the update rule, there exists
∇r(xt+1) ∈ ∂r(xt+1) such that〈

∇r(xt+1) + gc
t +

xt+1 − xt
ηt

,xt+1 − y

〉
≤ 0,

which implies

⟨gc
t ,xt+1 − y⟩

≤ 1

ηt
⟨xt − xt+1,xt+1 − y⟩+ ⟨∇r(xt+1),y − xt+1⟩

=
∥y − xt∥2 − ∥y − xt+1∥2 − ∥xt+1 − xt∥2

2ηt
+ ⟨∇r(xt+1),y − xt+1⟩

≤∥y − xt∥2 − ∥y − xt+1∥2 − ∥xt+1 − xt∥2

2ηt
+ r(y)− r(xt+1)−

µ

2
∥y − xt+1∥2 ,

(81)
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where the last step is due to the µ-strong convexity of r (Assumption 2). For Stabilized
Clipped SGD, a similar argument yields that when ηt ≥ ηt+1,

⟨gc
t ,xt+1 − y⟩ ≤∥y − xt∥2

2ηt
− ∥y − xt+1∥2

2ηt+1
− ∥xt+1 − xt∥2

2ηt
+

(
1

ηt+1
− 1

ηt

)
∥y − x1∥2

2

+ r(y)− r(xt+1)−
µ

2
∥y − xt+1∥2 . (82)

We plug (79), (80), and (81) (resp. (82)) back into (78) and rearrange terms to obtain the desired
result for Clipped SGD (resp. Stabilized Clipped SGD).

F.2 LEMMAS FOR GENERAL CONVEX FUNCTIONS

In this section, we focus on the general convex case, i.e., µ = 0 in Assumption 2. As mentioned
before in Appendix C, it is enough to only analyze the Stabilized Clipped SGD method since it is
the same as the original Clipped SGD when the stepsize is constant.

F.2.1 TWO CORE INEQUALITIES

Before moving to the formal proof, we first introduce two quantities that will be used in the analysis:

Rt ≜ max
s∈[t]

∥x⋆ − xs∥√
ηs

, ∀t ∈ [T ] , and Nt ≜

〈
√
ηtd

u
t ,

x⋆ − xt
Rt

√
ηt

〉
, ∀t ∈ [T ] . (83)

Note that Rt ∈ Ft−1 and Nt ∈ Ft by their definitions. Importantly, Nt is a real-valued MDS due to

E [Nt | Ft−1] =

〈
√
ηtE [du

t | Ft−1] ,
x⋆ − xt
Rt

√
ηt

〉
= 0,∀t ∈ [T ] . (84)

Now we are ready to dive into the analysis. We first introduce the following Lemma 4, which
characterizes the progress made by Stabilized Clipped SGD after T iterations.

Lemma 4. Under Assumptions 1, 2 (with µ = 0) and 3, if ηt is nonincreasing, then for any T ∈ N,
Stabilized Clipped SGD (Algorithm 2) guarantees

∥x⋆ − xT+1∥2

2ηT+1
+

T∑
t=1

F (xt+1)− F⋆ ≤
D2

ηT+1
+ 2IcvxT ,

where

IcvxT ≜ 8max
t∈[T ]

(
t∑

s=1

Ns

)2

+ 2

T∑
t=1

ηt ∥du
t ∥

2
+ 4

(
T∑
t=1

∥∥√ηtdb
t

∥∥)2

+ 4G2
T∑
t=1

ηt.

Proof. We invoke Lemma 3 for Stabilized Clipped SGD with µ = 0 and y = x⋆, then replace the
subscript t with s, and use ∥x⋆ − x1∥ = D to have

F (xs+1)−F⋆ ≤
∥x⋆ − xs∥2

2ηs
−∥x⋆ − xs+1∥2

2ηs+1
+

(
1

ηs+1
− 1

ηs

)
D2

2
+⟨dc

s,x⋆ − xs⟩+ηs ∥dc
s∥

2
+4ηsG

2,

sum up which over s from 1 to t ≤ T to obtain

∥x⋆ − xt+1∥2

2ηt+1
+

t∑
s=1

F (xs+1)− F⋆ ≤
D2

2ηt+1
+

t∑
s=1

⟨dc
s,x⋆ − xs⟩+

t∑
s=1

ηs ∥dc
s∥

2
+ 4G2

t∑
s=1

ηs.

(85)

We recall the decomposition dc
s = du

s + db
s to have

t∑
s=1

⟨dc
s,x⋆ − xs⟩ =

t∑
s=1

⟨du
s ,x⋆ − xs⟩+

t∑
s=1

〈
db
s ,x⋆ − xs

〉 (83)
=

t∑
s=1

RsNs+

t∑
s=1

√
ηs

〈
db
s ,

x⋆ − xs√
ηs

〉
.
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We can bound
t∑

s=1

RsNs ≤

∣∣∣∣∣
t∑

s=1

RsNs

∣∣∣∣∣ Lemma 13
≤ 2Rtmax

S∈[t]

∣∣∣∣∣
S∑
s=1

Ns

∣∣∣∣∣ .
In addition, Cauchy-Schwarz inequality gives us

t∑
s=1

〈
√
ηsd

b
s ,

x⋆ − xs√
ηs

〉
≤

t∑
s=1

∥∥√ηsdb
s

∥∥ ∥x⋆ − xs∥√
ηs

(83)
≤ Rt

t∑
s=1

∥∥√ηsdb
s

∥∥ .
As such, we know

t∑
s=1

⟨dc
s,x⋆ − xs⟩ ≤ 2Rtmax

S∈[t]

∣∣∣∣∣
S∑
s=1

Ns

∣∣∣∣∣+Rt

t∑
s=1

∥∥√ηsdb
s

∥∥
≤ R2

t

4
+ 8max

S∈[t]

(
S∑
s=1

Ns

)2

+ 2

(
t∑

s=1

∥∥√ηsdb
s

∥∥)2

, (86)

where the second inequality is by RtX ≤ R2
t

8 + 2X2 (due to AM-GM inequality) for X =

2maxS∈[t]

∣∣∣∑S
s=1Ns

∣∣∣ and
∑t
s=1

∥∥√ηsdb
s

∥∥, respectively.

Plug (86) back into (85) to get

∥x⋆ − xt+1∥2

2ηt+1
+

t∑
s=1

F (xs+1)− F⋆

≤R
2
t

4
+

D2

2ηt+1
+ 8max

S∈[t]

(
S∑
s=1

Ns

)2

+ 2

(
t∑

s=1

∥∥√ηsdb
s

∥∥)2

+

t∑
s=1

ηs ∥dc
s∥

2
+ 4G2

t∑
s=1

ηs

≤R
2
t

4
+

D2

2ηt+1
+ 8max

S∈[t]

(
S∑
s=1

Ns

)2

+ 2

t∑
s=1

ηs ∥du
s∥

2
+ 4

(
t∑

s=1

∥∥√ηsdb
s

∥∥)2

+ 4G2
t∑

s=1

ηs︸ ︷︷ ︸
≜Icvxt

,

(87)
where the last step is by

t∑
s=1

ηs ∥dc
s∥

2
=

t∑
s=1

ηs
∥∥du

s + db
s

∥∥2 ≤ 2

t∑
s=1

ηs ∥du
s∥

2
+ 2

t∑
s=1

ηs
∥∥db

s

∥∥2
≤ 2

t∑
s=1

ηs ∥du
s∥

2
+ 2

(
t∑

s=1

∥∥√ηsdb
s

∥∥)2

.

Now we let at ≜
∥x⋆−xt∥2

2ηt
, ∀t ∈ [T + 1], bt ≜

∑t
s=1 F (xs+1) − F⋆, ∀t ∈ [T ] and ct ≜ D2

2ηt
+

Icvxt−1, ∀t ∈ [T + 1] where Icvx0 = 0. Note that bt is nonnegative, ct is nondecreasing as ηt is
nonincreasing, and

a1 =
∥x⋆ − x1∥2

2η1
=
D2

2η1
≤ D2

η1
= 2c1.

Moreover, (87) is saying that

at+1 + bt ≤
maxs∈[t] as

2
+ ct+1, ∀t ∈ [T ] .

Thus, we can invoke Lemma 14 to obtain
aT+1 + bT ≤ 2cT+1,

which means
∥x⋆ − xT+1∥2

2ηT+1
+

T∑
t=1

F (xt+1)− F⋆ ≤
D2

ηT+1
+ 2IcvxT .
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Equipped with Lemma 4, we prove the following in-expectation convergence result for Stabilized
Clipped SGD.
Lemma 5. Under the same setting in Lemma 4, Stabilized Clipped SGD (Algorithm 2) guarantees

E
[
∥x⋆ − xT+1∥2

]
2ηT+1

+

T∑
t=1

E [F (xt+1)− F⋆] ≤
D2

ηT+1
+ 2Jcvx

T ,

where

Jcvx
T ≜ 34

T∑
t=1

ηtE
[
∥du

t ∥
2
]
+ 4E

( T∑
t=1

∥∥√ηtdb
t

∥∥)2
+ 4G2

T∑
t=1

ηt.

Proof. We invoke Lemma 4 and take expectations to obtain

E
[
∥x⋆ − xT+1∥2

]
2ηT+1

+

T∑
t=1

E [F (xt+1)− F⋆] ≤
D2

ηT+1
+ 2E [IcvxT ] ,

where, by the definition of IcvxT ,

E [IcvxT ] = 8E

max
t∈[T ]

(
t∑

s=1

Ns

)2
+2

T∑
t=1

ηtE
[
∥du

t ∥
2
]
+4E

( T∑
t=1

∥∥√ηtdb
t

∥∥)2
+4G2

T∑
t=1

ηt.

Recall that Nt, ∀t ∈ [T ] is a MDS (see (84)). Therefore, by Lemma 12, there is

E

max
t∈[T ]

(
t∑

s=1

Ns

)2
 ≤ 4

T∑
t=1

E
[
N2
s

] (83)
≤ 4

T∑
t=1

ηtE
[
∥du

t ∥
2
]
.

Finally, we have

E [IcvxT ] ≤ 34

T∑
t=1

ηtE
[
∥du

t ∥
2
]
+ 4E

( T∑
t=1

∥∥√ηtdb
t

∥∥)2
+ 4G2

T∑
t=1

ηt = Jcvx
T .

F.2.2 BOUNDING RESIDUAL TERMS

With Lemmas 4 and 5, our next goal is naturally to bound the residual terms IcvxT and Jcvx
T . Note

that the G2
∑T
t=1 ηt part is standard in nonsmooth optimization. Hence, all important things are to

control the other terms left.

We now provide the bound in the following Lemma 6, a tighter estimation for the residual term
compared to prior works (e.g., Liu & Zhou (2023)), which is achieved due to our finer bounds for
clipping error under heavy-tailed noise.
Lemma 6. Under Assumptions 3, 4 and the following two conditions:

1. ηt and τt are deterministic for all t ∈ [T ].

2. τt ≥ G
1−α holds for some constant α ∈ (0, 1) and all t ∈ [T ].

We have:

1. for any δ ∈ (0, 1], with probability at least 1 − δ, IcvxT ≤ Acvx
T where IcvxT is defined in

Lemma 4 and Acvx
T is a constant in the order of

O

max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+

T∑
t=1

σp
l ηt

τp−2
t

+

(
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt

)2

+

T∑
t=1

G2ηt

 .
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2. Jcvx
T ≤ Bcvx

T where Jcvx
T is defined in Lemma 5 and Bcvx

T is a constant in the order of

O

 T∑
t=1

σp
l ηt

τp−2
t

+

(
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt

)2

+

T∑
t=1

G2ηt

 .

Proof. We observe that for any t ∈ [T ], τt ≥ G
1−α ≥ ∥∇f(xt)∥

1−α holds almost surely due to Condition
2 and Assumption 3, implying that χt(α) in Lemma 2 equals 1 for all t ∈ [T ]. Then Lemma 2 and
Assumption 3 together yield the following inequalities holding for any t ∈ [T ]:

∥√ηtdu
t ∥

Inequality 1

≤ 2
√
ηtτt ≤ 2max

t∈[T ]

√
ηtτt, (88)

E
[
∥√ηtdu

t ∥
2 | Ft−1

] Inequality 2

≤
4σp

l ηt

τp−2
t

, (89)∥∥∥E [ηtdu
t (d

u
t )

⊤ | Ft−1

]∥∥∥ Inequality 4

≤ 4σp
sηt

τp−2
t

+
4σp

l G
2ηt

αp−1τpt
, (90)

∥∥√ηtdb
t

∥∥ Inequality 6

≤
σsσ

p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt
. (91)

We first bound IstrT in high probability.

• Recall that Nt =
〈√

ηtd
u
t ,

x⋆−xt

Rt
√
ηt

〉
, ∀t ∈ [T ] is a real-valued MDS (see (84)), whose

absolute value can be bounded by Cauchy-Schwarz inequality

|Nt| ≤ ∥√ηtdu
t ∥
∥∥∥∥x⋆ − xt
Rt

√
ηt

∥∥∥∥ (83)
≤ ∥√ηtdu

t ∥
(88)
≤ 2max

t∈[T ]

√
ηtτt.

Moreover, its conditional variance can be controlled by

E
[
N2
t | Ft−1

]
=

(
x⋆ − xt
Rt

√
ηt

)⊤

E
[
ηtd

u
t (d

u
t )

⊤ | Ft−1

] x⋆ − xt
Rt

√
ηt

(83)
≤
∥∥∥E [ηtdu

t (d
u
t )

⊤ | Ft−1

]∥∥∥ (90)
≤ 4σp

sηt

τp−2
t

+
4σp

l G
2ηt

αp−1τpt
.

Therefore, Freedman’s inequality (Lemma 10) gives that with probability at least 1−2δ/3,∣∣∣∣∣
t∑

s=1

Ns

∣∣∣∣∣ ≤ 4

3
max
t∈[T ]

√
ηtτt ln

3

δ
+

√√√√8

T∑
s=1

(
σp
sηs

τp−2
s

+
σp
l G

2ηs

αp−1τps

)
ln

3

δ
, ∀t ∈ [T ] ,

which implies

max
t∈[T ]

(
t∑

s=1

Ns

)2

≤ 25

9
max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+ 16

T∑
t=1

(
σp
sηt

τp−2
t

+
σp
l G

2ηt

αp−1τpt

)
ln

3

δ
. (92)

• Note that
∥∥√ηtdu

t

∥∥ , ∀t ∈ [T ] is a sequence of random variables satisfying

∥√ηtdu
t ∥

(88)
≤ 2max

t∈[T ]

√
ηtτt and E

[
∥√ηtdu

t ∥
2 | Ft−1

] (89)
≤

4σp
l ηt

τp−2
t

.

Then by Lemma 11, we have with probability at least 1− δ/3,

T∑
t=1

ηt ∥du
t ∥

2 ≤ 14

3
max
t∈[T ]

ηtτ
2
t ln

3

δ
+ 8

T∑
t=1

σp
l ηt

τp−2
t

ln 3
δ≥1

≤ 14

3
max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+ 8

T∑
t=1

σp
l ηt

τp−2
t

.

(93)

40



Published as a conference paper at ICLR 2026

• Lastly, there is
T∑
t=1

∥∥√ηtdb
t

∥∥ (91)
≤

T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt
. (94)

Combine (92), (93) and (94) to have with probability at least 1− δ,

IcvxT = 8max
t∈[T ]

(
t∑

s=1

Ns

)2

+ 2

T∑
t=1

ηt ∥du
t ∥

2
+ 4

(
T∑
t=1

∥∥√ηtdb
t

∥∥)2

+ 4G2
T∑
t=1

ηt ≤ Acvx
T ,

where

Acvx
T ≜

(
28

9
+

28

3

)
max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+ 16

T∑
t=1

σp
l ηt

τp−2
t

+ 128

T∑
t=1

(
σp
sηt

τp−2
t

+
σp
l G

2ηt

αp−1τpt

)
ln

3

δ

+ 4

(
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt

)2

+ 4G2
T∑
t=1

ηt

=O

(
max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+

T∑
t=1

σp
l ηt

τp−2
t

+

T∑
t=1

(
σp
sηt

τp−2
t

+
σp
l G

2ηt

αp−1τpt

)
ln

3

δ

+

(
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
t

+
σp
l G

√
ηt

αp−1τpt

)2

+

T∑
t=1

G2ηt

 .

Note that by AM-GM inequality
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+
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√
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sηt

τp−2
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2ηt
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)
ln

3

δ
,

where (a) is by τt ≥ G
1−α in Condition 2 and (b) is due to σl ≥ σs, p > 1 and α ∈ (0, 1). Hence,

the order of Acvx
T can be simplified into

O

max
t∈[T ]

ηtτ
2
t ln

2 3

δ
+

T∑
t=1

σp
l ηt

τp−2
t

+

(
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σsσ
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√
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l G

√
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αp−1τpt

)2

+

T∑
t=1

G2ηt

 .

Now let us bound Jcvx
T . It can be done directly via (89) and (91). Hence, we omit the detail and

claim Jcvx
T ≤ Bcvx

T , where Bcvx
T is a constant in the order of

O

 T∑
t=1

σp
l ηt

τp−2
t

+

(
T∑
t=1

σsσ
p−1
l

√
ηt

τp−1
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+
σp
l G

√
ηt

αp−1τpt

)2

+

T∑
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G2ηt

 .

F.3 LEMMAS FOR STRONGLY CONVEX FUNCTIONS

In this section, we move to the strongly convex case, i.e., µ > 0 in Assumption 2. The algorithm
that we study is Clipped SGD.
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F.3.1 TWO CORE INEQUALITIES

We begin by introducing some notations that will be used later:

Γt ≜
t∏

s=2

1 + µηs−1

1 + µηs/2
, ∀t ∈ [T + 1] , (95)

which satisfies the equation

Γt(1 + µηt) = Γt+1(1 + µηt+1/2), ∀t ∈ [T ] . (96)

Equipped with Γt, we redefine

Rt ≜ max
s∈[t]

√
Γs(1 + µηs/2) ∥x⋆ − xs∥ ,∀t ∈ [T ] , (97)

Nt ≜

〈√
Γt

1 + µηt/2
ηtd

u
t ,

√
Γt(1 + µηt/2)(x⋆ − xt)

Rt

〉
, ∀t ∈ [T ] . (98)

By their definitions, Rt ∈ Ft−1 and Nt ∈ Ft. Moreover, Nt is still a MDS due to

E [Nt | Ft−1] =

〈√
Γt

1 + µηt/2
ηtE [du

t | Ft−1] ,

√
Γt(1 + µηt/2)(x⋆ − xt)

Rt

〉
= 0,∀t ∈ [T ] .

(99)

Again, we first show the progress made by Clipped SGD after T steps in the following Lemma 7.
Lemma 7. Under Assumptions 1, 2 (with µ > 0) and 3, if ηt ≤ η

µ for some constant η > 0, then for
any T ∈ N, Clipped SGD (Algorithm 1) guarantees

ΓT+1 ∥x⋆ − xT+1∥2

2
+

T∑
t=1

Γtηt (F (xt+1)− F⋆) ≤ (1 + η/2)D2 + 2IstrT ,

where

IstrT ≜ 4max
t∈[T ]

(
t∑

s=1

Ns

)2

+ 2

T∑
t=1

Γtη
2
t ∥du

t ∥
2
+

2η + 1

µ

T∑
t=1

Γtηt
∥∥db

t

∥∥2 + 4G2
T∑
t=1

Γtη
2
t .

Proof. We invoke Lemma 3 for Clipped SGD with µ > 0 and y = x⋆, then replace the subscript t
with s, and multiply both sides by Γsηs to have

Γsηs (F (xs+1)− F⋆)

≤Γs ∥x⋆ − xs∥2

2
− Γs(1 + µηs) ∥x⋆ − xs+1∥2

2
+ ⟨Γsηsdc

s,x⋆ − xs⟩+ Γsη
2
s ∥dc

s∥
2
+ 4Γsη

2
sG

2

(96)
=

Γs ∥x⋆ − xs∥2

2
− Γs+1(1 + µηs+1/2) ∥x⋆ − xs+1∥2

2
+ ⟨Γsηsdc

s,x⋆ − xs⟩+ Γsη
2
s ∥dc

s∥
2
+ 4Γsη

2
sG

2,

sum up which over s form 1 to t ≤ T to obtain

Γt+1(1 + µηt+1/2) ∥x⋆ − xt+1∥2

2
+

t∑
s=1

Γsηs (F (xs+1)− F⋆)

≤Γ1 ∥x⋆ − x1∥2

2
− µ

4

t∑
s=2

Γsηs ∥x⋆ − xs∥2 +
t∑

s=1

⟨Γsηsdc
s,x⋆ − xs⟩+

t∑
s=1

Γsη
2
s ∥dc

s∥
2
+ 4G2

t∑
s=1

Γsη
2
s

=
D2

2
− µ

4

t∑
s=2

Γsηs ∥x⋆ − xs∥2 +
t∑

s=1

⟨Γsηsdc
s,x⋆ − xs⟩+

t∑
s=1

Γsη
2
s ∥dc

s∥
2
+ 4G2

t∑
s=1

Γsη
2
s ,

(100)

where the last step holds by Γ1 = 1 and ∥x⋆ − x1∥ = D.
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We recall the decomposition dc
s = du

s + db
s to have

t∑
s=1

⟨Γsηsdc
s,x⋆ − xs⟩ =

t∑
s=1

⟨Γsηsdu
s ,x⋆ − xs⟩+

t∑
s=1

〈
Γsηsd

b
s ,x⋆ − xs

〉
(97),(98)
=

t∑
s=1

RsNs +

t∑
s=1

〈
Γsηsd

b
s ,x⋆ − xs

〉
.

By Lemma 13 and AM-GM inequality, there is

t∑
s=1

RsNs ≤ 2Rtmax
S∈[t]

∣∣∣∣∣
S∑
s=1

Ns

∣∣∣∣∣ ≤ R2
t

4
+ 4max

S∈[t]

(
S∑
s=1

Ns

)2

.

In addition, we use Cauchy-Schwarz inequality and AM-GM inequality to bound

t∑
s=1

〈
Γsηsd

b
s ,x⋆ − xs

〉
≤

t∑
s=1

Γsηs
∥∥db

s

∥∥ ∥x⋆ − xs∥ ≤
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s=1

Γsηs
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s

∥∥2
µ

+
µΓsηs ∥x⋆ − xs∥2

4
.

As such, we obtain

t∑
s=1

⟨Γsηsdc
s,x⋆ − xs⟩ ≤

R2
t

4
+ 4max

S∈[t]

(
S∑
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)2

+
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s=1

Γsηs
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s

∥∥2
µ

+
µΓsηs ∥x⋆ − xs∥2

4
.

(101)

Plug (101) back into (100) to get

Γt+1(1 + µηt+1/2) ∥x⋆ − xt+1∥2

2
+

t∑
s=1

Γsηs (F (xs+1)− F⋆)

≤R
2
t

4
+

(1 + µη1/2)D
2

2
+ 4max

S∈[t]

(
S∑
s=1
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)2

+

t∑
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Γsηs
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∥∥2
µ

+

t∑
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Γsη
2
s ∥dc

s∥
2
+ 4G2
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s=1

Γsη
2
s

≤R
2
t

4
+

(1 + η/2)D2

2

+ 4max
S∈[t]

(
S∑
s=1

Ns

)2

+ 2

t∑
s=1

Γsη
2
s ∥du

s∥
2
+

2η + 1

µ

t∑
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Γsηs
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s

∥∥2 + 4G2
t∑

s=1

Γsη
2
s︸ ︷︷ ︸

≜Istrt

, (102)

where the last step is by η1 ≤ η/µ and

t∑
s=1

Γsη
2
s ∥dc

s∥
2
=

t∑
s=1

Γsη
2
s

∥∥du
s + db

s

∥∥2 ≤ 2

t∑
s=1

Γsη
2
s ∥du

s∥
2
+ 2

t∑
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Γsη
2
s

∥∥db
s

∥∥2
ηs≤η/µ,∀s∈[T ]

≤ 2

t∑
s=1

Γsη
2
s ∥du

s∥
2
+

2η

µ

t∑
s=1

Γsηs
∥∥db

s

∥∥2 .
Now we let at ≜

Γt(1+µηt/2)∥x⋆−xt∥2

2 , ∀t ∈ [T + 1], bt ≜
∑t
s=1 Γsηs (F (xs+1)− F⋆) ,∀t ∈ [T ]

and ct ≜ (1+η/2)D2

2 + Istrt−1, ∀t ∈ [T + 1], where Istr0 = 0. Note that bt is nonnegative, ct is
nondecreasing, and

a1 =
Γ1(1 + µη1/2) ∥x⋆ − x1∥2

2
≤ (1 + η/2)D2

2
≤ (1 + η/2)D2 = 2c1.

Moreover, (102) is saying that

at+1 + bt ≤
maxs∈[t] as

2
+ ct+1, ∀t ∈ [T ] .
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Thus, we can invoke Lemma 14 to obtain

aT+1 + bT ≤ 2cT+1,

which means

ΓT+1(1 + µηT+1/2) ∥x⋆ − xT+1∥2

2
+

T∑
t=1

Γtηt (F (xt+1)− F⋆) ≤ (1 + η/2)D2 + 2IstrT .

Finally, we conclude from µηT+1 ≥ 0.

Equipped with Lemma 7, we prove the following in-expectation convergence result for Clipped SGD
under strong convexity.

Lemma 8. Under the same setting in Lemma 7, Clipped SGD (Algorithm 1) guarantees

ΓT+1E
[
∥x⋆ − xT+1∥2

]
2

+

T∑
t=1

ΓtηtE [F (xt+1)− F⋆] ≤ (1 + η/2)D2 + 2J str
T ,

where

J str
T ≜ 18

T∑
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2
tE
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t ∥
2
]
+

2η + 1
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ΓtηtE
[∥∥db

t

∥∥2]+ 4G2
T∑
t=1

Γtη
2
t .

Proof. Similar to the proof of Lemma 5, we take expectations on both sides of Lemma 7 and then
invoke Lemma 12. The calculations are omitted here to save space.

F.3.2 BOUNDING RESIDUAL TERMS

Like previously, we need to upper bound IstrT and J str
T , which is done in the following lemma.

Lemma 9. Under Assumptions 3, 4 and the following two conditions:

1. ηt and τt are deterministic for all t ∈ [T ].

2. τt ≥ G
1−α holds for some constant α ∈ (0, 1) and all t ∈ [T ].

We have:

1. for any δ ∈ (0, 1], with probability at least 1 − δ, IstrT ≤ Astr
T where IstrT is defined in

Lemma 7 and Astr
T is a constant in the order of
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.

2. J str
T ≤ Bstr

T where J str
T is defined in Lemma 8 and Bstr

T is a constant in the order of

O

(
T∑
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µ
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2
t

)
.

Proof. We observe that for any t ∈ [T ], τt ≥ G
1−α ≥ ∥∇f(xt)∥

1−α holds almost surely due to Condition
2 and Assumption 3, implying that χt(α) in Lemma 2 equals 1 for all t ∈ [T ]. Then Lemma 2 and
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Assumption 3 together yield the following inequalities holding for any t ∈ [T ]:√
Γtηt ∥du

t ∥
Inequality 1

≤ 2
√
Γtηtτt ≤ 2max

t∈[T ]

√
Γtηtτt, (103)
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] Inequality 2
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. (106)

• Similar to (92), we can prove now with probability at least 1− 2δ/3,

max
t∈[T ]

(
t∑
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9
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(107)

• Similar to (93), we can prove now with probability at least 1− δ/3,
T∑
t=1

Γtη
2
t ∥du

t ∥
2 ≤ 14

3
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• Lastly, there is
T∑
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Γtηt
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We combine (107), (108) and (109) to have with probability at least 1− δ,
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Now let us bound J str
T . It can be done directly via (104) and (106). Hence, we omit the detail and

claim J str
T ≤ Bstr

T , where Bstr
T is a constant in the order of
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F.4 EXISTING TECHNICAL RESULTS

This section contains some technical results existing (or implicitly used) in prior works.

First, Lemma 10 is the famous Freedman’s inequality, a useful tool to bound a real-valued MDS.
Lemma 10 (Freedman’s inequality (Freedman, 1975)). Suppose Xt ∈ R,∀t ∈ [T ] is a real-
valued MDS adapted to the filtration Ft, ∀t ∈ {0} ∪ [T ] satisfying for any t ∈ [T ], Xt ≤ b and
E
[
X2
t | Ft−1

]
≤ σ2

t almost surely, where b ≥ 0 and σ2
t are both constant, then for any δ ∈ (0, 1],

there is

Pr

 t∑
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2b

3
ln

1

δ
+

√√√√2

T∑
s=1

σ2
s ln

1

δ
, ∀t ∈ [T ]

 ≥ 1− δ.

Next, Lemma 11 is another concentration inequality. This is not a new result, and similar ideas were
used before in, e.g., Cutkosky & Mehta (2021); Zhang & Cutkosky (2022); Liu & Zhou (2023). We
provide a proof here to make the work self-contained.
Lemma 11. Suppose Xt ∈ R, ∀t ∈ [T ] is a sequence of random variables adapted to the filtration
Ft, ∀t ∈ {0} ∪ [T ] satisfying for any t ∈ [T ], |Xt| ≤ b and E

[
X2
t | Ft−1

]
≤ σ2

t almost surely,
where b ≥ 0 and σ2

t are both constant, then for any δ ∈ (0, 1], there is
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Proof. Note that we can bound
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]
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t .

Observe that Yt, ∀t ∈ [T ] is a real-valued MDS adapted to the filtration Ft, ∀t ∈ {0}∪ [T ] satisfying

Yt ≤ X2
t ≤ b2 and E

[
Y 2
t | Ft−1

]
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[
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]
≤ b2σ2
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Then Lemma 10 yields that, for any δ ∈ (0, 1], we have with probability at least 1− δ,
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which implies
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Hence, it follows that
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The following Lemma 12 is the famous Doob’s L2 maximum inequality. For its proof, see, e.g.,
Theorem 4.4.4 in Durrett (2019).
Lemma 12 (Doob’s L2 maximum inequality). Suppose Xt ∈ R, ∀t ∈ [T ] is a real-valued MDS,
then there is

E
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(
t∑
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Xs

)2
 ≤ 4

T∑
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E
[
X2
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.
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In addition, we need the following algebraic fact in our analysis.

Lemma 13 (Lemma C.2 in Ivgi et al. (2023)). Let a1, · · · , aT and b1, · · · , bT be two sequences in
R such that at is nonnegative and nondecreasing, then there is∣∣∣∣∣

t∑
s=1

asbs

∣∣∣∣∣ ≤ 2atmax
S∈[t]

∣∣∣∣∣
S∑
s=1

bs

∣∣∣∣∣ , ∀t ∈ [T ] .

Lastly, we introduce another algebraic inequality, the idea behind which can also be found in pre-
vious works like Ivgi et al. (2023); Liu & Zhou (2023). For completeness, we produce a proof
here.

Lemma 14. Let a1, · · · , aT+1, b1, · · · , bT and c1, · · · , cT+1 be three sequences in R such that bt
is nonnegative and ct is nondecreasing, if a1 ≤ 2c1 and

at+1 + bt ≤
maxs∈[t] as

2
+ ct+1, ∀t ∈ [T ] ,

then there is
aT+1 + bT ≤ 2cT+1.

Proof. We first use induction to show

at ≤ 2ct, ∀t ∈ [T ] . (110)

For the base case t = 1, we know a1 ≤ 2c1 by the assumption. Suppose (110) holds for all time not
greater than t for some t ∈ [T − 1]. Then for time t+ 1, we know

at+1

bt≥0

≤ at+1 + bt ≤
maxs∈[t] as

2
+ ct+1

(110)
≤

maxs∈[t] 2cs

2
+ ct+1 ≤ 2ct+1,

where the last inequality holds because ct is nondecreasing. Therefore, (110) is true by induction.
Hence, we know

aT+1 + bT ≤
maxs∈[T ] as

2
+ cT+1

(110)
≤

maxs∈[T ] 2cs

2
+ cT+1 ≤ 2cT+1,

where the last step is also because ct is nondecreasing.

G FULL THEOREMS FOR LOWER BOUNDS AND PROOFS

Please refer to Appendix G in the full version of this work.

H NUMERICAL SIMULATIONS

In this section, we provide some numerical simulations to support our theory. We limit our attention
to the additive noise model, i.e., g(x, ξ) = ∇f(x) + ξ, where all coordinates ξi are assumed to be

i.i.d. Moreover, we denote by σ ≜
(
E
[
|ξ1|p

]) 1
p .

Objective. We pick X = Rd, f(x) = ∥x− y∥1 for some y ∈ Rd, and r(x) = 0. Therefore, we
know F = f , argminx∈RdF (x) = y and F⋆ = 0. Moreover, we have µ = 0 and G =

√
d.

Noise. We choose ξi ∼ ϵZ i.i.d. for all i ∈ [d], where ϵ and Z are independent and satisfy
that Pr [ϵ = 2] = 1

3 and Pr [ϵ = −1] = 2
3 , and Z follows the Pareto distribution with the scale

parameter α−1
α and the shape parameter α = p+ 0.001, i.e., Pr [Z > z] =

(
α−1
αz

)α
1
[
z ≥ α−1

α

]
+

1
[
z < α−1

α

]
. Note that we have E [ϵZ] = 0, E

[
|ϵ|p
]
= 2p+2

3 and E [Zp] = α
α−p

(
α−1
α

)p
, implying

that E [ξi] = 0 and σ =
(
E
[
|ξ1|p

]) 1
p =

(
2p+2

3

) 1
p
(

α
α−p

) 1
p α−1

α .

Algorithms. We consider Liu & Zhou (2023) as the baseline, since it is closest to our setting, and
choose the stepsize ηt and the clipping threshold τt as follows:
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• Adopted from Theorem 4 in Liu & Zhou (2023): ηt = η
σlt1/p

and τt =

max
{
2
√
d, σlt

1/p
}

, where η = ∥x1 − y∥ and x1 is the initial point.

• Adopted from our Theorem 3: ηt = η

σ
2/p−1
s σ

2−2/p
l t1/p

and τt = max

{
2
√
d, σl

d
1/p
eff

t1/p
}

,

where η = ∥x1 − y∥ and x1 is the initial point.

Remark 12. For both ηt, we only keep the dominant term in the order of O(1/t1/p) for simplicity.
We pick η = ∥x1 − y∥ to match the optimal choice in theory. Moreover, ηt is set in an anytime
fashion, i.e., depending on t instead of T . σl =

√
dσ and σs = 2

2
p−1d

1
p− 1

2σ are set based on their

bounds given in (8) and (9), respectively. deff is set as its lower bound d
2− 2

p

2
4
p

−2
established in (11).

Parameter values. In experiments, we fix d = 50, set yi =
{
2i/d i ≤ d/2

−2i/d i > d/2
, initialize x1 = 0,

and let T = 10000. For two kinds of (ηt, τt), we run 10 trials for each and plot the mean (± standard
error) of the trajectory F (x̄cvx

t+1)−F⋆ = F (x̄cvx
t+1), as used in the convergence theory, where we recall

x̄cvx
t+1 = 1

t

∑t
s=1 xs+1. We test p ∈ {1.2, 1.4, 1.6, 1.8} and report the results in Figure 1.

Figure 1: Comparison between Liu & Zhou (2023) and this work when p = 1.2 (top left), p = 1.4
(top right), p = 1.6 (bottom left), p = 1.8 (bottom right).

Observation and Conclusion. In all cases, the (ηt, τt) pair chosen based on our work is faster,
matching the new theoretical finding when σs ̸= σl. As p approaches 2, the difference becomes
minor, which should be expected, since the improvement predicted by our theory is in the order of

Θ(1/d
2−p
2p

eff ) (see discussion under Theorem 3), which will vanish if p is close to 2.
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