
Gaussian Graph Network: Learning Efficient and
Generalizable Gaussian Representations from

Multi-view Images

Shengjun Zhang, Xin Fei, Fangfu Liu, Haixu Song, Yueqi Duan∗

Tsinghua University
{zhangsj23, feix21}@mails.tsinghua.edu.cn, duanyueqi@tsinghua.edu.cn

Abstract

3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis
performance. While conventional methods require per-scene optimization, more
recently several feed-forward methods have been proposed to generate pixel-aligned
Gaussian representations with a learnable network, which are generalizable to
different scenes. However, these methods simply combine pixel-aligned Gaussians
from multiple views as scene representations, thereby leading to artifacts and extra
memory cost without fully capturing the relations of Gaussians from different
images. In this paper, we propose Gaussian Graph Network (GGN) to generate
efficient and generalizable Gaussian representations. Specifically, we construct
Gaussian Graphs to model the relations of Gaussian groups from different views.
To support message passing at Gaussian level, we reformulate the basic graph
operations over Gaussian representations, enabling each Gaussian to benefit from
its connected Gaussian groups with Gaussian feature fusion. Furthermore, we
design a Gaussian pooling layer to aggregate various Gaussian groups for efficient
representations. We conduct experiments on the large-scale RealEstate10K and
ACID datasets to demonstrate the efficiency and generalization of our method.
Compared to the state-of-the-art methods, our model uses fewer Gaussians and
achieves better image quality with higher rendering speed.

1 Introduction

Novel view synthesis is a fundamental problem in computer vision due to its widespread applications,
such as virtual reality, augmented reality, robotics and so on. Remarkable progress has been made
using neural implicit representations [33, 42, 43], but these methods suffer from expensive time
consumption in training and rendering [28, 13, 1, 40, 65, 11, 17, 34]. Recently, 3D Gaussian
Splatting (3DGS) [21] has drawn increasing attention for explicit Gaussian representations and
real-time rendering performance. Benefiting from rasterization-based rendering, 3DGS avoids dense
points querying in scene space, so that it can maintain high efficiency and quality.

Since 3DGS relies on per-subject [21] or per-frame [31] parameter optimization, several generaliz-
able methods [68, 6, 4, 45] are proposed to directly regress Gaussian parameters with feed-forward
networks. Typically, these methods [6, 4] generate pixel-aligned Gaussians with U-Net architectures,
epipolar transformers or cost volume representations for depth estimation and parameter predictions,
and directly combine Gaussian groups obtained from different views as scene representations. How-
ever, such combination of Gaussians leads to superfluous representations, where the overlapped
regions are covered by similar Gaussians predicted separately from multiple images. While a simple
solution is to delete redundant Gaussians, it ignores the connection among Gaussian groups. As

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a)

(b) (c)

Figure 1: Comparison of previous methods and ours. (a) We visualize the rendering results of various
methods and report the number of Gaussians in parentheses. (b) Previous pixel-wise methods can be
considered as a degraded case of Gaussian Graphs without edges. (c) We report PSNR as well as the
number of Gaussians for pixelSplat [4], MVSplat [6] and GNN under different input settings.

illustrated in Figure 1a, pixelSplat [4] and MVSplat [6] suffer from artifacts with several times as
many Gaussians as ours, while the deletion of similar Gaussians hurts rendering quality.

To tackle the challenge, we propose Gaussian Graphs to model the relations of Gaussian groups from
multiple views. Based on this structure, we present Gaussian Graph Network (GGN), extending
conventional graph operations to Gaussian domain, so that Gaussians from different views are not
independent but can learn from their neighbor groups. Precisely, we reformulate the scalar weight of
an edge to a weight matrix to depict the interactions between two Gaussian groups, and introduce a
Gaussian pooling strategy to aggregate Gaussians. Under this definition, previous methods [4, 6] can
be considered as a degraded case of Gaussian Graphs without edges. As shown in Figure 1b, our
GGN allows message passing and aggregation across Gaussians for efficiency representations.

We conduct extensive experiments on both indoor and outdoor datasets, including RealEstate10K [69]
and ACID [26]. While the performance of previous methods declines as the number of input views
increases, our method can benefit from more input views. As shown in Figure 1c, our model
outperforms previous methods under different input settings with higher rendering quality and fewer
Gaussian representations. Our main contributions can be summarized as follows:

• We propose Gaussian Graphs to construct the relations of different Gaussian groups, where each
node is a set of pixel-aligned Gaussians from an input view.

• We introduce Gaussian Graph Network to process Gaussian Graphs by extending the graph
operations to Gaussian domain, bridging the interaction and aggregation across Gaussian groups.

• Experimental results illustrate that our method can generate efficient and generalizable Gaussian
representations. Our model requires fewer Gaussians and achieves better rendering quality.

2 Related Works

2.1 Neural Implicit Representations

Early researches focus on capturing dense views to reconstruct scenes, while neural implicit represen-
tations have significantly advanced neural processing for 3D data and multi-view images, leading
to high reconstruction and rendering quality [32, 38, 64, 43]. In particular, Neural Radiance Fields
(NeRF) [33] has garnered considerable attention with a fully connected neural network to represent

2



complex 3D scenes. Subsequently, following works have emerged to address NeRF’s limitations
and enhance its performance. Some studies aim to solve the long-standing problem of novel view
synthesis by improving the speed and efficiency of training and inference [17, 13, 34, 40, 28, 65, 11].
Other research focuses on modeling complex geometry and view-dependent effects to reconstruct
dynamic scenes [8, 22, 39, 48, 55, 25, 52, 47, 23, 51]. Additionally, some studies [50, 46, 61, 56]
have worked on reconstructing large urban scenes to avoid blurred renderings without fine details,
which is a challenge for NeRF-based methods due to their limited model capacity. Furthermore, other
works [36, 49, 54, 59] apply NeRF to novel view synthesis with sparse input views by incorporating
additional training regularizations, such as depth, correspondence, and diffusion models.

2.2 3D Gaussian Splatting

More recently, 3D Gaussian Splatting (3DGS) [21] has drawn significant attention in the field of
computer graphics, especially in the realm of novel view synthesis. Different from the expensive
volume sampling strategy in NeRF, 3DGS utilizes a much more efficient rasterization-based splatting
approach to render novel views from a set of 3D Gaussian primitives. However, 3DGS may suffer
from artifacts, which occur during the splatting process. Thus, several works [62, 12, 19, 24] have
been proposed to enhance the quality and realness of rendered novel views. Since 3DGS requires
millions of parameters to represent a single scene, resulting in significant storage demands, some
researches [30, 35, 14, 10, 20] focus on reducing the memory usage to ensure real-time rendering
while maintaining the rendering quality. Other works [70, 58] are proposed to reduce the amount
of required images to reconstruct scene. Besides, to extend the capability of 3D Gaussians from
representing static scenes to 4D scenarios, several works [53, 9, 63, 57] have been proposed to
incorporate faithful dynamics which are aligned with real-world physics.

2.3 Generalizable Novel View Synthesis

Optimization-based methods train a separate model for each individual scene and require dozens
of images to synthesis high-quality novel views. In contrast, feed-forward models learn powerful
priors from large-scale datasets, so that 3D reconstruction and view synthesis can be achieved via a
single feed-forward inference. A pioneering work, pixelNeRF [66], proposes a feature-based method
to employ the encoded features to render novel views. MVSNeRF [5] combines plane-swept cost
volumes which is widely used in multi-view stereo with physically based volume rendering to further
improve the quality of neural radiance field reconstruction. Subsequently, many researches [2, 3, 15,
18, 37, 41, 27] have developed novel view synthesis methods with generalization and decomposition
abilities. Several generalizable 3D Gaussian Splatting methods have also been proposed to leverage
sparse view images to reconstruct novel scenes. While Splatter Image [45] and GPS-Gaussian [68]
regress pixel-aligned Gaussian parameters to reconstruct single objects or humans instead of complex
scenes, pixelSplat [4] takes sparse views as input to predict Gaussian parameters by leveraging
epipolar geometry and depth estimation. MVSplat [6] constructs a cost volume structure to directly
predict depth from cross-view features, further improving the geometric quality.

However, these methods follow the paradigm of regressing pixel-aligned Gaussians and combine
Gaussians from different views directly, resulting in an excessive number of Gaussians when the
model processes multi-view inputs. In comparison, we construct Gaussian Graphs to model the
relations of Gaussian groups. Furthermore, we introduce Gaussian Graph Network with specifically
designed graph operations to ensure the interaction and aggregation across Gaussian groups. In this
manner, we can obtain efficient and generalizable Gaussian representations from multi-view images.

3 Method

The overall framework is illustrated in Figure 2. After predicting positions and features of Gaussian
groups from input views with extracted feature maps, we build a Gaussian Graph to model the relations.
Then, we process the graph with Gaussian Graph Network via our designed graph operations on
Gaussian domain for information exchange and aggregation across Gaussian groups. We leverage
the fused Gaussians features to predict other Gaussian parameters, including opacity α, covariance
matrix Σ and colors c.

3



Figure 2: Overview of Gaussian Graph Network. Given multiple input images, we extract image
features and predict the means and features of pixel-aligned Gaussians. Then, we construct a Gaussian
Graph to model the relations between different Gaussian nodes. We introduce Gaussian Graph
Network to process our Gaussian Graph. The parameter predictor generates Gaussians parameters
from the output Gaussian features.

3.1 Building Gaussian Graphs

Given N input images I = {Ii} ∈ RN×H×W×3 and their corresponding camera parameters
C = {ci}, we follow the instructions of pixelSplat [4] and MVSplat [6] to extract image features:

F = Φimage(I), F = {Fi} ∈ RN×H
4 ×W

4 ×C , (1)

where Φimage is a 2D backbone. We predict the means and features of pixel-aligned Gaussians:

µi = ψunproj (Φdepth(Fi), ci) ∈ RHW×3, fi = Φfeat(Fi) ∈ RHW×D, (2)

where Φdepth and Φfeat stand for neural networks to predict depth maps and Gaussian features, and
ψunproj is the unprojection operation.

We build a Gaussian Graph G with nodes V = {vi} = {(µi, fi)}1≤i≤N . To model the relations
between nodes, we define its adjacency matrix A = [aij ]N×N as:

aij =

{
1, i = j

ψoverlap(vi, vj), i ̸= j
(3)

where ψoverlap(vi, vj) computes the overlap ratio between view i and view j. To limit further
computational complexity, we prune the graph by preserving edges with top n weights and ignore
other possible edges. The degree matrix D = [dij ]N×N satisfies dii =

∑
j aij . Thus, the scaled

adjacency can be formulated as:

Ã = D−1A or Ã = D− 1
2AD− 1

2 . (4)

3.2 Gaussian Graph Network

Linear Layers. Assuming that a conventional graph has N nodes with features {gi} ∈ RN×C and
the scaled adjacency matrix A = [ãij ]N×N , the basic linear operation can be formulated as:

ĝi =

N∑
j=1

ãijgjW ∈ RD, (5)

where W ∈ RC×D is a learnable weight. Different from the vector nodes gi in conventional graphs,
each node of our Gaussian Graph contains a set of pixel-aligned Gaussians vi = {µi, fi}. Therefore,
we extend the scalar weight ask of an edge to a matrix Es→k = [es→k

ij ]HW×HW , which depicts the
detailed relations at Gaussian-level between vs and vk. For the sake of simplicity, we define

es→k
ij =

{
1, ψproj(µs,i, cs) = ψproj(µk,j , cs)

0, ψproj(µs,i, cs) ̸= ψproj(µk,j , cs)
(6)

4



Algorithm 1 Gaussian Graph Network

Input: Multi-view images I = {Ii}, camera parameters C = {ci}, the number of graph layers h
Output: Gaussian parameters (µ,Σ, α, c)
F ← Φimage(I, C)
µi ← ψunproj (Φdepth(Fi), ci) , fi ← Φfeat(Fi) i = 1, 2, · · · , N
Ã← D−1A
for k ← 1 to h do

fi ← σ
(∑

ãijE
j→ifjW

)
i = 1, 2, · · · , N

end for
(µ, f)←

⋃l
s=1 ϕpooling(G

s)
R,S, α, c← ψR(f), ψS(f), ψα(f), ψc(f)
Σ← RSS⊤R⊤

where µs,i is the center of the i-th Gaussian in Gaussian group vs, and ψproj is the projection function
which returns coordinates of the occupied pixel. In this manner, the linear operation on a Gaussian
Graph can be defined as:

f̂i =
N∑
j=1

ãijE
j→ifjW ∈ RD. (7)

Pooling layers. If we have a series of connected Gaussian Graphs {Gs}1≤s≤l, where Gs ⊆ G, then
we operate the specific pooling operation on each Gs and combine them together:

ϕpooling(G) =

l⋃
s=1

ϕpooling(G
s). (8)

If Gs only contains one node vs, ϕpooling(Gs) = vs. Otherwise, we start with a random selected
node vsi = (µs

i , f
s
i ) ∈ Gs. Since Gs is a connected graph, we can randomly pick up its neighbor vsj

with corresponding camera parameters csj . We define a function ψsimilarity:

ψsimilarity

(
vsj,m, v

s
i

)
= max

n
ej→i
mn , (9)

where vsj,m is the m-th Gaussian in node vsj . We define the merge function ψmerge:

ψmerge

(
vsj,m, v

s
i

)
=

{
∅, ψsimilarity

(
vsj,m, v

s
i

)
= 1

vsj,m, otherwise
(10)

Then, we merge two nodes together to get a new node

vsnew =

HW⋃
m=1

ψmerge

(
vsj,m, v

s
i

)
∪ vsi (11)

In this manner, we aggregate a connected graph Gs step by step to one node. Specifically, previous
methods can be considered as a degraded Gaussian Graph without edges:

ϕpooling(G) =

N⋃
s=1

ϕpooling(G
s) =

N⋃
s=1

vs. (12)

where ϕpooling degenerates to simple combination of nodes.

Parameter prediction. After aggregating the Gaussian Graph (µ, f) = ψpooling(G), we predict the
rotation matrix R, scale matrix S, opacity α and color c:

R = ϕR(f), S = ϕS(f), α = ϕα(f), c = ϕc(f) (13)

where ϕR, ϕS , ϕα and ϕc are prediction heads. The covariance matrix can be formulated as:

Σ = RSS⊤R⊤. (14)

Our Gaussian Graph Network is illustrated in Algorithm 1, where σ stands for non-linear operations,
such as ReLU and GeLU.

5



Table 1: Quantitative comparison on RealEstate10K (re10K) [69] and ACID [26] benchmarks. We
evaluate all models with 4, 8, 16 input views and report PSNR as well as the number of Gaussians (K).
† Models accept multi-view inputs, and only preserve Gaussians from two input views for rendering.

Datasets Methods 4 views 8 views 16 views

PSNR Gaussians PSNR Gaussians PSNR Gaussians

re10k

pixelSplat [4] 20.19 786 18.78 1572 17.80 3175
pixelSplat† 20.84 393 20.79 393 20.75 393

MVSplat [6] 20.86 262 19.69 524 19.18 1049
MVSplat† 21.48 131 21.39 131 21.34 131

Ours 24.76 102 25.15 126 26.18 150

ACID

pixelSplat [4] 20.15 786 18.84 1572 17.32 3175
pixelSplat† 23.12 393 23.07 393 23.04 393

MVSplat [6] 20.30 262 19.02 524 17.64 1049
MVSplat† 23.78 131 23.72 131 23.70 131

Ours 26.46 102 26.94 126 27.69 150

Table 2: Novel view synthesis results with two-view inputs. We report the average results of PSNR,
SSIM and LPIPS on all test scenes.

Method Param (M) RealEstate10K [69] ACID [26]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

pixelNeRF [66] 28.2 20.43 0.589 0.550 20.97 0.547 0.533
MuRF [59] 5.3 26.10 0.858 0.143 28.09 0.841 0.155

pixelSplat [4] 125.4 25.89 0.858 0.142 28.14 0.839 0.150
MVSplat [6] 12.0 26.39 0.869 0.128 28.25 0.843 0.144

Ours 12.5 26.42 0.870 0.126 28.40 0.845 0.143

4 Experiments

We validate our proposed Gaussian Graph Network for novel view synthesis. In Section 4.1, we
compare various methods on RealEstate10K [69] and ACID [26] under different input settings. In
Section 4.2, we analyze the efficiency of our representations. In Section 4.3, we further validate the
generalization of our Gaussian representations under cross dataset evaluation. In Section 4.4, we
ablate our designed operations of Gaussian Graph Network.

4.1 Multi-view Scene Reconstruction and Synthesis

Datasets. We conduct experiments on two large-scale datasets, including RealEstate10K [69]
and ACID [26]. RealEstate10K dataset comprises video frames of real estate scenes, which are
split into 67,477 scenes for training and 7,289 scenes for testing. ACID dataset consists of natural
landscape scenes, with 11,075 training scenes and 1,972 testing scenes. For two-view inputs, our
model is trained with two views as input, and subsequently tested on three target novel views for
each scene. For multi-view inputs, we construct challenging subsets for RealEstate10K and ACID
across a broader range of each scenario to evaluate model performance. We select 4, 8 and 16 views
as reference views, and evaluate pixelSplat [4], MVSplat [6] and ours on the same target novel views.

Implementation details. Our model is trained with two input views for each scene on a single A6000
GPU for 300,000 iterations, utilizing the Adam optimizer. Following the instruction of previous
methods [4, 6], all experiments are conducted on 256 × 256 resolutions for fair comparison. The
image backbone is initialized by the feature extractor and cost volume representations in MVSplat [6].
The number of graph layer is set to 2. The training loss is a linear combination of MSE and LPIPS [67]
losses, with loss weights of 1 and 0.05.

Results. As shown in Table 1 and Table 2, our Gaussian Graph benefits from increasing input
views, whereas both pixelSplat [4] and MVSplat [6] exhibit declines in performance. This distinction
highlights the superior efficiency of our approach, which achieves more effective 3D representation

6



Figure 3: Visualization results on RealEstate10K [69] and ACID [26] benchmarks. We evaluate all
models with 4, 8, 16 views as input and subsequently test on three target novel views.

with significantly fewer Gaussians compared to pixel-wise methodologies. For 4 view inputs, our
method outperforms MVSplat [6] by about 4dB on PSNR with more than 2× fewer Gaussians.
For more input views, the number of Gaussians in previous methods increases linearly, while our
GGN only requires a small increase. Considering that previous methods suffer from the redundancy
of Gaussians, we adopt these models with multi-view inputs and preserve Gaussians from two
input views for rendering. Under this circumstance, pixelSplat [4] and MVSplat [6] achieve better
performance than before, because the redundancy of Gaussians is alleviated to some degree. However,
the lack of interaction at Gaussian level limits the quality of previous methods. In contrast, our
Gaussian Graph can significantly enhance performance by leveraging additional information from
extra views. Visualization results in Figure 3 also indicate that pixelSplat [4] and MVSplat [6] tend to
suffer from artifacts due to duplicated and unnecessary Gaussians in local areas, which increasingly
affects image quality as more input views are added.

7



Table 3: Inference time comparison across different views. We train our model on 2 input views and
report the inference time for 4 views, 8 views, and 16 views, respectively.

2 views 4 views 8 views 16 views

pixelSplat [4] 125.4 137.3 298.8 846.5 2938.9
MVSplat [6] 12.0 60.6 126.4 363.2 1239.8

Ours 12.5 75.6 148.1 388.8 1267.5

Figure 4: Efficiency analysis. We report the number of Gaussians (M), rendering frames per second
(FPS) and reconstruction PSNR of pixelSplat [4], MVSplat [6] and our GGN.

4.2 Efficiency Analysis.

In addition to delivering superior rendering quality, our Gaussian Graph network also enhances
efficiency in 3D representations. As illustrated in Figure 4, when using 24 input images, our model
outperforms MVSplat by 8.6dB on PSNR with approximately one-tenth the number of 3D Gaussians
and more than three times faster rendering speed. Additionally, we compare the average inference
time of our model with pixel-wise methods in Table 3. Our GGN is able to efficiently remove
duplicated Gaussians and enhance Gaussian-level interactions, which allows it to achieve superior
reconstruction performance with comparable inference speed to MVSplat.

4.3 Cross Dataset Generalization.

To further demonstrate the generalization of Gaussian Graph Network, we conduct cross-dataset
experiments. Specifically, all models are trained on RealEstate10K [69] or ACID [26] datasets, and
are tested on the other dataset without any fine-tuning. Our method constructs the Gaussian Graph
according to the relations of input views. As shown in Table 4, our GGN consistently outperforms
pixelSplat [4] and MVSplat [6] on both benchmarks.

Figure 5: Visualization of model performance for cross-dataset generalization on RealEstate10K [69]
and ACID [26] benchmarks.

8



Table 4: Cross-dataset performance and efficiency comparisons on RealEstate10K [69] and ACID [26]
benchmarks. We assign eight views as reference and test on three target views for each scene.

Train Data Test Data Method PSNR↑ SSIM↑ LPIPS↓ Gaussians (K) FPS

ACID re10k
pixelSplat 18.65 0.715 0.276 1572 64
MVSplat 19.17 0.731 0.270 524 133

Ours 24.75 0.759 0.252 126 208

re10k ACID
pixelSplat 19.75 0.724 0.264 1572 64
MVSplat 20.58 0.735 0.239 524 133

Ours 25.21 0.762 0.234 126 208

Table 5: Ablation study results of GGN on RealEstate10K [69] benchmarks. Each scene takes eight
reference views and renders three novel views.

Models PSNR↑ SSIM↑ LPIPS↓ Gaussians (K)

Gaussian Graph Network 25.15 0.786 0.232 126
w/o Gaussian Graph linear layer 24.72 0.778 0.246 126
w/o Gaussian Graph pooling layer 20.25 0.725 0.272 524
Vanilla 19.74 0.721 0.279 524

4.4 Ablations

To investigate the architecture design of our Gaussian Graph Network, we conduct ablation studies
on RealEstate10K [69] benchmark. We first introduce a vanilla model without Gaussian Graph
Network. Then, we simply adopt Gaussian Graph linear layer to model relations of Gaussian groups
from multiple views. Furthermore, we simply introduce Gaussian Graph pooling layer to aggregate
Gaussian groups to obtain efficient representations. Finally, we add the full Gaussian Graph Network
model to both remove duplicated Gaussians and enhance Gaussian-level interactions.

Gaussian Graph linear layer. The Gaussian Graph linear layer serves as a pivotal feature fusion
block, enabling Gaussian Graph nodes to learn from their neighbor nodes. The absence of linear
layers leads to a performance drop of 0.43 dB on PSNR.

Gaussian Graph pooling layer. The Gaussian Graph pooling layer is important to avoid duplicate
and unnecessary Gaussians, which is essential for preventing artifacts and floaters in reconstructions
and speeding up the view rendering process. As shown in Table 5, the introduction of Gaussian
Graph pooling layer improves the rendering quality by 4.9dB on PSNR and reduces the number of
Gaussians to nearly one-fourth.

5 Conclusion and Discussion

In this paper, we propose Gaussian Graph to model the relations of Gaussians from multiple views.
To process this graph, we introduce Gaussian Graph Network by extending the conventional graph
operations to Gaussian representations. Our designed layers bridge the interaction and aggregation
between Gaussian groups to obtain efficient and generalizable Gaussian representations. Experiments
demonstrate that our method achieves better rendering quality with fewer Gaussians and higher FPS.

Limitations and future works. Although GGN produces compelling results and outperforms
prior works, it has limitations. Because we predict pixel-aligned Gaussians for each view, the
representations are sensitive to the resolution of input images. For high resolution inputs, e.g.
1024× 1024, we generate over 1 million Gaussians for each view, which will significantly increase
the inference and rendering time. GGN does not address generative modeling of unseen parts of the
scene, where generative methods, such as diffusion models can be introduced to the framework for
extensive generalization. Furthermore, GGN focuses on the color field, which does not fully capture
the geometry structures of scenes. Thus, a few directions would be focused in future works.

Acknowledgements. This work was supported by the National Natural Science Foundation of
China under Grant 62206147. We thank David Charatan for his help on experiments in pixelSplat.

9



References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P

Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In ICCV, pages
5855–5864, 2021.

[2] Shengqu Cai, Anton Obukhov, Dengxin Dai, and Luc Van Gool. Pix2nerf: Unsupervised conditional p-gan
for single image to neural radiance fields translation. In CVPR, pages 3981–3990, 2022.

[3] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis. In CVPR, pages 5799–5809, 2021.

[4] David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats from
image pairs for scalable generalizable 3d reconstruction. arXiv preprint arXiv:2312.12337, 2023.

[5] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf:
Fast generalizable radiance field reconstruction from multi-view stereo. In ICCV, pages 14124–14133,
2021.

[6] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images. arXiv
preprint arXiv:2403.14627, 2024.

[7] Yilun Du, Cameron Smith, Ayush Tewari, and Vincent Sitzmann. Learning to render novel views from
wide-baseline stereo pairs. In CVPR, pages 4970–4980, 2023.

[8] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenenbaum, and Jiajun Wu. Neural radiance flow for 4d
view synthesis and video processing. In ICCV, pages 14304–14314. IEEE Computer Society, 2021.

[9] Bardienus P Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu, Mike Zheng Shou, Shuran Song, and
Jeffrey Ichnowski. Md-splatting: Learning metric deformation from 4d gaussians in highly deformable
scenes. arXiv preprint arXiv:2312.00583, 2023.

[10] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint arXiv:2311.17245,
2023.

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In CVPR, pages 5501–5510, 2022.

[12] Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable 3d gaussian:
Real-time point cloud relighting with brdf decomposition and ray tracing. arXiv preprint arXiv:2311.16043,
2023.

[13] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. Fastnerf:
High-fidelity neural rendering at 200fps. In ICCV, pages 14346–14355, 2021.

[14] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians with
lightweight encodings. arXiv preprint arXiv:2312.04564, 2023.

[15] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylenerf: A style-based 3d-aware generator
for high-resolution image synthesis. arXiv preprint arXiv:2110.08985, 2021.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, pages 770–778, 2016.

[17] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia. Efficientnerf efficient neural radiance fields.
In CVPR, pages 12902–12911, 2022.

[18] Wonbong Jang and Lourdes Agapito. Codenerf: Disentangled neural radiance fields for object categories.
In ICCV, pages 12949–12958, 2021.

[19] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin Ma.
Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. arXiv preprint
arXiv:2311.17977, 2023.

[20] Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. An efficient 3d gaussian representation for
monocular/multi-view dynamic scenes. arXiv preprint arXiv:2311.12897, 2023.

10



[21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ToG, 42(4):1–14, 2023.

[22] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In CVPR, pages 6498–6508, 2021.

[23] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural dynamic
image-based rendering. In CVPR, pages 4273–4284, 2023.

[24] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for inverse
rendering. arXiv preprint arXiv:2311.16473, 2023.

[25] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Efficient
neural radiance fields for interactive free-viewpoint video. In SIGGRAPH Asia, pages 1–9, 2022.

[26] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo Kanazawa.
Infinite nature: Perpetual view generation of natural scenes from a single image. In ICCV, pages 14458–
14467, 2021.

[27] Fangfu Liu, Chubin Zhang, Yu Zheng, and Yueqi Duan. Semantic ray: Learning a generalizable semantic
field with cross-reprojection attention. In CVPR, pages 17386–17396, 2023.

[28] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields.
NeurIPS, 33:15651–15663, 2020.

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In ICCV, pages 10012–10022, 2021.

[30] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. arXiv preprint arXiv:2312.00109, 2023.

[31] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy
networks: Learning 3d reconstruction in function space. In CVPR, pages 4460–4470, 2019.

[33] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[34] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ToG, 41(4):1–15, 2022.

[35] KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compact3d: Compressing gaussian splat radiance field models with vector quantization. arXiv preprint
arXiv:2311.18159, 2023.

[36] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and Noha
Radwan. Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs. In CVPR,
pages 5480–5490, 2022.

[37] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative neural
feature fields. In CVPR, pages 11453–11464, 2021.

[38] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In CVPR, pages 165–174, 2019.

[39] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural radiance
fields for dynamic scenes. In CVPR, pages 10318–10327, 2021.

[40] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In ICCV, pages 14335–14345, 2021.

[41] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields for
3d-aware image synthesis. NeurIPS, 33:20154–20166, 2020.

[42] Vincent Sitzmann, Semon Rezchikov, William T. Freeman, Joshua B. Tenenbaum, and Frédo Durand.
Light field networks: Neural scene representations with single-evaluation rendering. In NeurIPS, 2021.

11



[43] Vincent Sitzmann, Michael Zollhofer, and Gordon Wetzstein. Scene representation networks: Continuous
3d-structure-aware neural scene representations. NeurIPS, 32, 2019.

[44] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable patch-based neural
rendering. In ECCV, pages 156–174. Springer, 2022.

[45] Stanislaw Szymanowicz, Christian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast single-view
3d reconstruction. arXiv preprint arXiv:2312.13150, 2023.

[46] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan,
Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. In
CVPR, pages 8248–8258, 2022.

[47] Fengrui Tian, Shaoyi Du, and Yueqi Duan. Mononerf: Learning a generalizable dynamic radiance field
from monocular videos. In ICCV, pages 17903–17913, 2023.

[48] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and Christian
Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene
from monocular video. In ICCV, pages 12959–12970, 2021.

[49] Prune Truong, Marie-Julie Rakotosaona, Fabian Manhardt, and Federico Tombari. Sparf: Neural radiance
fields from sparse and noisy poses. ieee. In CVPR, volume 1, 2023.

[50] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction of
large-scale nerfs for virtual fly-throughs. In CVPR, pages 12922–12931, 2022.

[51] Haithem Turki, Jason Y Zhang, Francesco Ferroni, and Deva Ramanan. Suds: Scalable urban dynamic
scenes. In CVPR, pages 12375–12385, 2023.

[52] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yanshun Zhang, Yingliang Zhang, Minye Wu,
Jingyi Yu, and Lan Xu. Fourier plenoctrees for dynamic radiance field rendering in real-time. In CVPR,
pages 13524–13534, 2022.

[53] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

[54] Jamie Wynn and Daniyar Turmukhambetov. Diffusionerf: Regularizing neural radiance fields with
denoising diffusion models. In CVPR, pages 4180–4189, 2023.

[55] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil Kim. Space-time neural irradiance fields for
free-viewpoint video. In CVPR, pages 9421–9431, 2021.

[56] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai, and
Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene rendering. In
ECCV, pages 106–122. Springer, 2022.

[57] Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang. Physgaussian:
Physics-integrated 3d gaussians for generative dynamics. arXiv preprint arXiv:2311.12198, 2023.

[58] Haolin Xiong, Sairisheek Muttukuru, Rishi Upadhyay, Pradyumna Chari, and Achuta Kadambi. Sparsegs:
Real-time 360 {\deg} sparse view synthesis using gaussian splatting. arXiv preprint arXiv:2312.00206,
2023.

[59] Haofei Xu, Anpei Chen, Yuedong Chen, Christos Sakaridis, Yulun Zhang, Marc Pollefeys, Andreas Geiger,
and Fisher Yu. Murf: Multi-baseline radiance fields. arXiv preprint arXiv:2312.04565, 2023.

[60] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Fisher Yu, Dacheng Tao, and Andreas Geiger.
Unifying flow, stereo and depth estimation. TPAMI, 2023.

[61] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai, and
Dahua Lin. Grid-guided neural radiance fields for large urban scenes. In CVPR, pages 8296–8306, 2023.

[62] Zhiwen Yan, Weng Fei Low, Yu Chen, and Gim Hee Lee. Multi-scale 3d gaussian splatting for anti-aliased
rendering. arXiv preprint arXiv:2311.17089, 2023.

[63] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642, 2023.

12



[64] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Basri Ronen, and Yaron Lipman.
Multiview neural surface reconstruction by disentangling geometry and appearance. NeurIPS, 33:2492–
2502, 2020.

[65] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for real-time
rendering of neural radiance fields. In ICCV, pages 5752–5761, 2021.

[66] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one or
few images. In CVPR, pages 4578–4587, 2021.

[67] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, pages 586–595, 2018.

[68] Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, and Yebin Liu.
Gps-gaussian: Generalizable pixel-wise 3d gaussian splatting for real-time human novel view synthesis.
arXiv preprint arXiv:2312.02155, 2023.

[69] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

[70] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang. Fsgs: Real-time few-shot view synthesis
using gaussian splatting. arXiv preprint arXiv:2312.00451, 2023.

13



A Gaussian Graph Network

In this section, we explain the definition of several functions in our method.

Unprojection ψunproj and projection ψproj . The camera parameter ci includes the extrinsic matrix
ME , the intrinsic matrix MI ∈ R3×3 and camera origin o. Assuming that uI ∈ R2 is pixel
coordinates from Ii and ddepth ∈ R is the estimated depth, the mean µ ∈ R3 of pixel-aligned
Gaussian is:

µ = o+ ddepthuw, [uw, 1]
⊤ =ME [uc, 1]

⊤, [uc, 1]
⊤ =M−1

I [u, 1]⊤. (15)

The projection function ψproj can be considered as the inverse process of unprojection, which projects
3D coordinates to pixel coordinates.

Overlap ψoverlap. For view vi = (µi, fi) and view vj = (µj , fj), we project µi on view j and
obtain M occupied pixels and HW −M unoccupied pixels. We define ψoverlap(vi, vj) = β M

HW ,
where β is a hyperparameter. The β is set to 0 at 0 iteration, 0.1 at 10,000 iterations and 0.2 at 50,000
iterations, in order to gradually enhance the influence of neighbor nodes.

B More Experiment Settings

B.1 Baselines

We choose NeRF-based methods [66, 44, 7, 59] and Gaussian-based methods [4, 6] as our baselines.
We report performance of these methods according to the results in previous articles [6]. For new
input settings, we employ their released checkpoints for comparison.

NeRF-based methods. pixelNeRF [66] is trained for 500,000 iterations with a batch size of 12. The
hyperparameters are set to the same as previous experiments in the original paper. The near and far
planes is set to be 0.1 and 10.0. GPNR [44] is trained for 250,000 iterations with a batch size of
4,098. The learning rate is set to 10−4. AttnRend [7] is trained for 300,000 iterations with a batch
size of 32. After 150,000 iterations, LPIPS loss is added to the total loss for further training.

Gaussian-based methods. pixelSplat [4] uses a pre-trained ResNet-50 and a ViT-B/8 vision trans-
former for image feature extraction. Is is trained for 300,000 steps using a batch size of 7 with an
MSE loss for the first 150,000 iterations and supplement it with an LPIPS loss with weight 0.05
starting at 150,000 steps. pixelSplat predicts 3 Gaussians for each pixel and divides each Gaussian’s
opacity value by 3. MVSplat [6] initializes the image backbone with the UniMatch [60] pre-trained
weight, and is trained for 300,000 iterations with a batch size of 14.

B.2 Training Details

The image backbone Φimage consists of a ResNet [16] for per-image feature extraction and a Swin
Transformer [29] for cross-view interaction. For Φdepth, we adopt cost volume representations for
depth estimation and a 2D UNet for depth refinement, following the instructions of MVSplat [6]. For
Φfeat, we employ a simple CNN network and upsampling operations.

Table 6: Details of network architecture.

Config GGN

ResNet layers [4, 4, 4]
ResNet channels [32, 64, 128]
Transformer layers [2, 2, 2, 2, 2, 2]
Transformer channels [128, 128, 128, 128, 128, 128]
Cost volume UNet [128, 128, 128]
Depth refine UNet [64, 64, 64]

Table 7: Details of training settings.

Config GGN

optimizer Adam
scheduler OneCycleLR
learning rate 2× 10−4

weight decay 10−4

batch size 4
iterations 300,000

C Additional Results

We provide additional quantitative results and visualization results. As illustrated in Table 8 and
Table 9, our GGN outperforms previous methods on all metrics with high FPS and fewer Gaussians.

14



Visualization results draw the same conclusion that our method generates efficient and generalizable
Gaussian representations.

D Societal Impact

Our method focuses on generalizable novel view synthesis which can be used for application ranging
from virtual reality to robotics. However, it can also have potential negative societal impact. Our
method relies on large amounts of data and with large computational resources, which potentially has
a negative impact on global climate change. What’s more, accurate rendering of a scene may raise
privacy concerns that need to be addressed carefully.

Table 8: Model performance and Gaussian numbers (K) of multi-view inputs on RealEstate10K [69].
† Models accept multi-view inputs, and only preserve Gaussians from two input views for rendering.

Views Methods PSNR↑ SSIM↑ LPIPS↓ Gaussians (K) FPS↑

4 views

pixelSplat 20.19 0.742 0.224 786 110
pixelSplat† 20.84 0.765 0.2217 393 175
MVSplat 20.86 0.763 0.217 262 197
MVSplat† 21.48 0.768 0.213 131 218
Ours 24.76 0.784 0.172 102 227

8 views

pixelSplat 18.78 0.690 0.304 1572 64
pixelSplat† 20.79 0.754 0.243 393 175
MVSplat 19.69 0.768 0.238 524 133
MVSplat† 21.39 0.766 0.215 131 218
Ours 25.15 0.793 0.168 126 208

16 views

pixelSplat 17.80 0.647 0.320 3175 37
pixelSplat† 20.75 0.754 0.245 393 175
MVSplat 19.18 0.753 0.250 1049 83
MVSplat† 21.34 0.765 0.215 131 218
Ours 26.18 0.825 0.154 150 190

Table 9: Model performance and Gaussian numbers (K) of multi-view inputs on ACID [26]. † Models
accept multi-view inputs, and only preserve Gaussians from two input views for rendering.

Views Methods PSNR↑ SSIM↑ LPIPS↓ Gaussians (K) FPS↑

4 views

pixelSplat 20.15 0.704 0.278 786 110
pixelSplat† 23.12 0.742 0.219 393 175
MVSplat 20.30 0.739 0.246 262 197
MVSplat† 23.78 0.742 0.221 131 218

Ours 26.46 0.785 0.175 102 227

8 views

pixelSplat 18.84 0.692 0.304 1572 64
pixelSplat† 23.07 0.738 0.232 393 175
MVSplat 19.02 0.705 0.280 524 133
MVSplat† 23.72 0.744 0.223 131 218

Ours 26.94 0.793 0.170 126 208

16 views

pixelSplat 17.32 0.665 0.313 3175 37
pixelSplat† 23.04 0.694 0.279 393 175
MVSplat 17.64 0.672 0.313 1049 83
MVSplat† 23.70 0.709 0.278 131 218

Ours 27.69 0.814 0.162 150 190

15



Figure 6: Additional visualization results on RealEstate10K [69] and ACID [26] benchmarks. We
evaluate all models with 4, 8, 16 views as input and subsequently test on three target novel views.

16



Figure 7: Additional visualization results of model performance for cross-dataset generalization on
RealEstate10K [69] and ACID [26] benchmarks.

Figure 8: Visualization results of ablation study on RealEstate10K [69] and ACID [26] benchmarks.

17



Figure 9: Visualization results of large-scale scenes from RealEstate10K and ACID benchmarks.

18



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide claims made in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

19



Justification: We provide assumptions and proofs both in Section 3 and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We propose a new network architecture and describe it clearly and fully in
Section 3, Section 4 and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20



Answer: [Yes]

Justification: We will release our codes when we prepare it well.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide implementation details in both Section 4 and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the experimental setting in previous studies, which do not include
error bars in their experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report information on the computer resources in Section 4 and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential societal impacts in appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use existing asserts.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

23

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new asserts.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24


	Introduction
	Related Works
	Neural Implicit Representations
	3D Gaussian Splatting
	Generalizable Novel View Synthesis

	Method
	Building Gaussian Graphs
	Gaussian Graph Network

	Experiments
	Multi-view Scene Reconstruction and Synthesis
	Efficiency Analysis.
	Cross Dataset Generalization.
	Ablations

	Conclusion and Discussion
	Gaussian Graph Network
	More Experiment Settings
	Baselines
	Training Details

	Additional Results
	Societal Impact

