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Abstract

Protein’s backbone flexibility is a crucial property
that heavily influences its functionality. Recent
work in the field of protein diffusion probabilistic
modelling has leveraged Normal Mode Analysis
(NMA) and, for the first time, introduced informa-
tion about large scale protein motion into the gen-
erative process. However, obtaining molecules
with both the desired dynamics and designable
quality has proven challenging. In this work,
we present NMA-tune, a new method that intro-
duces the dynamics information to the protein
design stage. NMA-tune uses a trainable com-
ponent to condition the backbone generation on
the lowest normal mode of oscillation. We imple-
ment NMA-tune as a plug-and-play extension to
RFdiffusion, show that the proportion of samples
with high quality structure and the desired dy-
namics is improved as compared to other methods
without the trainable component, and we show the
presence of the targeted modes in the Molecular
Dynamics simulations.

1. Introduction
Generative AI has had a tremendous impact on the field
of protein design in the recent years. Denoising diffusion
probabilistic models (DDPMs), such as RFdiffusion (Wat-
son et al., 2023), Chroma (Ingraham et al., 2023) or
FrameDiff (Yim et al., 2023b), have been applied to design
novel protein backbones with given structural properties.
A common task is to perform motif scaffolding, that is,
to design a stable protein backbone that consists of a
pre-defined motif and a scaffold that holds the motif in place.
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Motif scaffolding encompasses various other tasks ranging
from designing novel antibodies (Correia et al., 2014) to
scaffolding enzyme active sites (Watson et al., 2023).

However, often the biological mechanisms behind protein
functionality depend not only on the structure, but also on
the dynamics (Berendsen & Hayward, 2000). Currently, the
beginning stage of the design, more than validation and re-
finements stages, is limited by the available tools to include
dynamics constraints. Often Molecular Dynamics (MD)
simulations are ran to understand the relevant motions, then
one makes an informed change in the current design model
and runs the MD simulation again (Childers & Daggett,
2017). Since it is not immediately known how the MD tra-
jectory will change under a specific structure modification,
this step must be reiterated many times, which is inefficient
and costly.

Recently, a new method emerged that overcomes this
design→assess→refine loop. Komorowska et al. (2024)
introduce dynamics conditioning, a way to design a protein
backbone whose chosen subset of Cα carbons have user-
specified displacements in the lowest non-trivial normal
mode, which corresponds to the large scale collective
motion. They capture the coarse-grained dynamics using the
Normal Mode Analysis (NMA) (Bahar & Rader, 2005), a
computational method to obtain the eigenvectors of motion
under an assumed force-field. This is extended to joint
conditioning, which is structure and dynamics conditioning
applied together. Here, for ease, we call the dynamics con-
ditioning from Komorowska et al. (2024) NMA-guidance.

NMA-guidance takes first steps towards dynamics-informed
design, but also suffers from a number of shortcomings. In
DDPMs, the protein generation is driven by the uncondi-
tional term (does the new sample resemble real protein?)
and conditional term (does the sample meet the imposed
conditions?). Previous work uses a simple analytical func-
tion to link the dynamics of the protein with the probability
of sampling such protein under conditional real data distri-
bution. This method, while beneficial from the perspective
of the model design and generalisability, is sensitive to the
user defined sampling parameters. Moreover, the genera-
tion of high quality samples with both desired structural
and dynamical properties has not yet been achieved. This
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could be attributed to the significant challenge in structure
conditioning with motifs as implemented in Komorowska
et al. (2024).

To address the difficulty of balancing conditional and un-
conditional term (as in NMA-guidance), we develop a new
method for dynamics conditioning that creates designable
scaffolds with given dynamical properties. Our approach
retains the advantages of analytical approximation to the
conditional probability and the usage of some pre-trained
unconditional model, but crucially, we add a novel trainable
component that significantly corrects the conditional term.
We call this new methodology NMA-tune. In contrast to
the previous work on the dynamics conditioning that relied
on the weighted sum of the unconditional noise and the
educated guess of the conditional noise, NMA-tune learns
their best combination. The conditioner is a small neural
network (530K parameters in our experiments), requires
little computational resources to train, allows for faster com-
putation of the loss-guidance term and therefore decreases
sampling time, and lastly offers significant improvement in
joint conditioning efficiency.

Our contributions are as follows:

• We introduce NMA-tune, a method for turning an uncon-
ditional diffusion model into dynamics-conditional one.

• We provide the conditioner as a ready to use plug-in to
the open-source model RFdiffusion. Since RFdiffusion
is already able to do motif scaffolding, this constitutes
an extension to joint conditioning that can easily be used
by the wider research community.

• We evaluate the effectiveness of the conditioner and its
impact on the sample designability using 3 proteins cho-
sen from the literature. We found that for the dynamics
conditioned samples, there exist protein sequences that
will fold to protein backbones with desired normal modes,
and NMA-tune outperforms existing state-of-the-art.

• We run MD simulations on selected samples and perform
Principal Component Analysis (PCA) on their trajectories.
We observed higher overlap between the targeted normal
mode and largest principal component for the dynamics
conditioned samples. This orthogonal validation of NMA
trajectories indicates our method translates to success in
downstream, biological tasks.

2. Background and related work
Since we utilise NMA and diffusion based and score models
in our methodology, we start by providing an overview of
their underlying theory, and then discuss the specifics of the
RFdiffusion model.

2.1. Normal Mode Analysis

Normal Mode Analysis (Bahar & Rader, 2005; Bahar et al.,
1997; 2010) is a computationally efficient technique to de-
scribe functionally relevant protein motions without running
more expensive Molecular Dynamics simulation. Protein
residues are often represented as a coarse-grained system of
N Cα atoms, with positions given by flattened vector of co-
ordinates x∈R3N , and strengths of interactions given by the
matrix K∈R3N×3N . NMA assumes the atoms reside near
the energy minima and undergo harmonic motions about
them. The equation of the harmonic motion for the entire
system can be written as Mẍ = −Kx, where M∈R3N×3N

is a mass matrix. Eigenvectors solving this equation describe
the amplitudes and frequencies of oscillations, as well as the
directions of displacements of the individual atoms. NMA
has been empirically verified to correctly describe a wide
range of motions in proteins (Bauer et al., 2019). Impor-
tantly, often the lowest non-trivial modes of oscillations
capture the large-scale collective motions, and a subset of
the lowest modes can be sufficient to explain proteins’ dy-
namics (Bauer et al., 2019; Tama & Sanejouand, 2001).

2.2. Diffusion probabilistic models

DDPMs (Ho et al., 2020; Sohl-Dickstein et al., 2015) are
a class of diffusion generative models able to transform a
sample from a standard normal distribution xT ∼ N (0, 1)
into a sample from ground truth data distribution p0. The
key observation is that one can transform x0 ∼ p0 into
xT ∼ N (0, 1) by gradually adding Gaussian noise, and
then a neural network can learn to reverse this process.
The noise is firstly added according to the variance sched-
ule {βt} that specifies the noise magnitudes for each
step t ∈ [0, T ]. For each noising step pt(xt|xt−1) =
N (xt,

√
1− βtxt−1, βtI), and the marginal probability is

pt(xt|x0) = N (xt,
√
ᾱtx0, (1− ᾱt)I), where ᾱt =

∏t
i αi

and αi = 1 − βi. The noisy sample has a neat form of
xt =

√
ᾱtx0+

√
1− ᾱtϵ, where ϵ ∼ N (0, 1). It was shown

that the above noising can be reversed (Sohl-Dickstein
et al., 2015), and the reverse transition densities are given
by p(xt−1|xt, x0) = N ( 1√

ᾱt
(xt − 1−αt√

1−ᾱt
ϵ), 1−ᾱt−1

1−ᾱt
βtI).

However, the above forward and reverse densities are
tractable only if conditioned on x0, while by definition,
there is no information about x0 when sampling novel
data. This problem can be circumvented with the appro-
priate denoiser training objective. The denoiser ϵθ can
be trained with the noise-matching loss (Ho et al., 2020)
L = Et,x0,ϵ ||ϵ − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ)||2. ϵθ predicts

the added noise ϵ given a noisy version of x0. With this
formulation, the denoiser indirectly learns the conditional
pt(x0|xt). In the generation process, it iteratively makes
guesses about x0 given xt, starting from the fully noised xT .
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Score models (Hyvärinen, 2005; Vincent, 2011; Song &
Ermon, 2019; Song et al., 2021) operate on similar prin-
ciples to transform a sample from p0 into noisy xT . In
a diffusion based score model (Song et al., 2021), both
noising and denoising are expressed as the continuous-
time Stochastic Differential Equations (SDEs), with for-
ward dx = − 1

2β(t)xdt +
√

β(t)dw and the reverse
dx =

[
− 1

2β(t)x− β(t)∇x ln pt(x)
]
dt+

√
β(t)dw̄, where

dw and dw̄ are the Wiener process in forward and re-
verse time. Score models and DDPMs can be unified
into a single framework using the score-noise equivalence
∇xt

ln pt(xt|x0) = −ϵt/
√
1− ᾱt (for proof, see for exam-

ple, Appendix F in (Komorowska et al., 2024)), such that any
model that is a score predictor is a noise predictor as well.

2.3. Loss-guided diffusion

Often, the task is not simply to take a sample from p0,
but to sample from p0 subject to conditions y. The com-
mon methods for the conditional sampling include classi-
fier guidance (Dhariwal & Nichol, 2021), classifier-free
guidance (Ho & Salimans, 2022) and loss-guidance (Song
et al., 2023). In those frameworks, the reverse SDE re-
quires conditional ∇xt ln pt(xt|y), where y is the target
quantity, and pt(xt|y) is the probability density of xt

given that x0 is subject to y. Note that by Bayes’ rule
∇xt

ln pt(xt|y) = ∇xt
ln p(y|xt) +∇xt

ln pt(xt).

Both classifier guidance and classifier-free guidance rely
on the assumption that the denoiser is able to learn the
connection between xt and y. When this connection
is difficult to learn, such as in the case when y is the
eigenvector of Hessian matrix arising from inter-molecular
forces, loss-guidance is more suitable. The first step in the
loss-guided diffusion is to specify the model p(x0|y) =
p(x0) exp[−ly(x0)]

Zy
and Zy =

∫
p(x0) exp[−ly(x0)]dx0,

where ly(x0) is a custom loss function enforcing the condi-
tion y at t = 0, and Zy is the normalisation constant. This
additional loss term turns the unconditional sampling distri-
bution into a conditional one. p(y|x0) is key in finding the
loss-guidance term ∇xt

ln p(y|xt). Consider the integral

p(y|xt) =

∫
x0

p(y|x0)p(x0|xt)dx0. (1)

Although intractable, it can be approximated using a point
estimate of the mean of the posterior p(x0|xt), as done by
Chung et al. (Chung et al., 2022)

x̂0 := E[x0|xt] =
1√
ᾱt

(xt + (1− ᾱt)∇xt ln p(xt)), (2)

p(y|xt) ≈
∫
x0

p(y|x0)[δ(x̂0)− x0]dx0, (3)

hence

∇xt
ln p(y|xt) ≈ ∇xt

ln p(y|x̂0) =

= ∇xt
ln exp[−ly(x̂0)] = −∇xt

ly(x̂0).
(4)

This formulation of loss-guidance is crucial for our method
of dynamics conditioning, where we guide the sampling
with the custom loss function.

2.4. Related work and RFdiffusion

Protein DDPMs such as FrameDiff (Yim et al., 2023b),
Genie (Lin & AlQuraishi, 2023), RFdiffusion (Watson et al.,
2023) or Chroma (Ingraham et al., 2023) were found to
produce designable protein backbones both in the uncondi-
tional generation and in generation constrained with prop-
erties such as symmetry or presence of a given substruc-
ture. Didi et al. (2024) offer an extensive survey of struc-
ture conditioning methods, and additionally propose to use
Doob’s h-transform in the structure-conditional training
(motif amortisation). Yim et al. (2023a) use Continuous
Normalising Flow (Chen et al., 2018) trained with a flow-
matching objective (Lipman et al., 2023) instead of the
DDPM. In the follow-up work, unconditional FrameFlow
was complemented with motif-guidance (loss-guidance) and
motif amortisation, and was shown to beat RFdiffusion for
some motif-scaffolding targets. The focus of the aforemen-
tioned works was structure conditioning, and neither of
them has considered dynamical properties. Eigenfold (Jing
et al., 2023) incorporates the physical constraints for oscil-
lations into the diffusion SDE, but it has not been shown to
influence downstream dynamical protein properties. Includ-
ing coarse-grained NMA information in the conditioning is
the most recent direction firstly proposed in (Komorowska
et al., 2024). This work uses a loss-guidance formulation
to condition on the lowest normal mode, but in contrast to
our methodology, it does not have a trainable component,
and conditioning efficiency suffers from the approximations
needed for the loss-guidance term calculation. Also, Ko-
morowska et al. (2024) show how one can implement two
loss-guidance components at the same time, one for dynam-
ics, and second for the motif scaffolding. Since RFdiffusion
was trained to perform motif scaffolding if the motif in-
formation is provided, we have no need to include loss-
guidance for structure at inference, and we avoid fine-tuning
two guidance scales at the same time at inference.

RFdiffusion (Watson et al., 2023) is one of the leading dif-
fusion models for protein design, trained to perform both
unconditional and structure conditioned generation, and we
use it as the dynamics unconditional base model in this work.
It operates on [N,Cα, C] representation of the protein back-
bone. Atom coordinates are derived from two components:
the translations of Cα atoms from the origin, and residues’
orientation frames that position N and C atoms w.r.t. Cα.
Because of this division, the diffusion is decomposed into
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two SDEs as well, one purely on the Euclidean space of
Cα translations, and the second on SO(3) space of frame
rotations. The generation starts from fully noised xT , and
at each denoising step RFdiffusion directly predicts the
fully denoised sample x̂0, which makes it particularly well
suited for the approximation in the Equation 3. In the task
of motif scaffolding, the information about motif target is
explicitly contained in the noisy sample xt; motif Cα atoms
and frames are set to the ground truth and never noised.

3. NMA-tune
We tackle the following joint conditioning problem: can we
design a protein backbone consisting of heavy atoms that
will have a pre-defined structural motif, and motif Cα atoms
will move in the lowest non-trivial normal mode according
to the pre-defined displacement vectors?

Methodology. NMA-tune relies on finding a good approx-
imation to the guidance term ∇xt

ln p(y|xt) in Equation 4
using the neural network. We still take advantage of the
insight that a well-chosen loss function allows to draw a
probabilistic connection between x and y in cases when a
neural network will be unable to do so. Here, y is the eigen-
vector of the Hessian of the potential function. As pointed
out in (Komorowska et al., 2024), there are currently no
neural network architectures able to calculate eigenvectors
of a matrix and to broadly generalise to weakly restricted
set of unseen matrices.1 Our key innovation is that we
take this idea further and we improve the dynamics condi-
tioning by: 1) replacing ∇xt

ly(x̂0) with ∇x̂0
ly(x̂0) which

improves sampling speed; and 2) passing this term to a train-
able conditioner that finds a better conditional term than by
directly using the loss-guidance. The conditioner receives
both ∇x̂0 ly(x̂0) and the unconditional score, and learns the
best correction to the unconditional term along the path
specified by the loss.

Notation. We denote the 3D coordinates of [N,Cα, C]
backbone consisting of the L residues by the matrix x ∈
R3L×3. From L residues, M residues constitue the motif
enforced to have a given atomic placement, and the remain-
ing residues are the scaffold such that x = xM ∪ xS . The
function vM calculates, for a given x, the Cα displacement
vectors of M residues in the lowest non-trivial mode of
oscillation, and the output has the shape vM (x) ∈ RM×3.
The target displacements of M residues are arranged in the
matrix y ∈ RM×3. We denote the noise prediction cal-
culated from RFdiffusion output x̂0 as ϵRF , and ϵθ is the

1Spectre (Martinkus et al., 2022) shows a way to generate a
graph from Laplacian eigenvectors where the neural network must
exhibit an understanding of the eigenvectors. However, eigenvec-
tors of the Laplacian depend only on the graph edge weights, while
the dynamics conditioning problem requires calculating the second
order derivatives as well.

noise correction from the dynamics conditioner. The final
noise prediction is a sum of the RFdiffusion noise and the
conditioner correction

ϵ = ϵRF + ϵθ, (5)

where we freeze the parameters of ϵRF during training.

3.1. Loss-guidance term calculation

With the ideal choice of ly(x), backpropagating through
∇xt ly(x̂0) should give the desired guidance term. How-
ever, our goal is to find the ideal ∇xt

ly(x̂0) with the help
of the trainable conditioner ϵθ. For this reason, we can
avoid computationally expensive backpropagation through
the RFdiffusion to obtain ∇x̂t

ly(x̂0). Instead, we calculate
cheaper ∇x̂0 ly(x̂0): this quantity describes how the residues
of x̂0 should reposition to minimise the loss. Note that

∇xt ly(x̂0) =
∂x̂0

∂xt
∇x̂0 ly(x̂0), and (6)

∂x̂0

∂xt
=

1√
ᾱt

(I −
√
1− ᾱt

∂ϵ

∂xt
). (7)

Therefore, the expensive ∇xt
ly(x̂0) is equal to cheap

∇x̂0
ly(x̂0) multiplied by the term dependent on the Jaco-

bian ∂ϵ
∂xt

. We empirically found that ignoring the Jacobian
and passing ∇x̂0

ly(x̂0) as input to the conditioner yields sat-
isfactory results. Similar observations about neglecting the
Jacobian term were made by Poole et al. (2023). As detailed
in Equation 5, we keep the parameters of the RFdiffusion
network fixed and only train a substantially smaller correc-
tion network that takes ∇x̂0

ly(x̂0) as an additional context.

3.2. Dynamics loss for guidance

The condition y enforces that the selected subset of residues
should have user-specified relative displacement directions
and amplitudes. Therefore, the loss function should be
invariant to the protein rotations and its length. Note that
the presence of the motif introduces the frame of reference,
hence the need to use modified version of NMA-loss rather
than its first formulation from (Komorowska et al., 2024).
Modified NMA-loss is:

ly(x) = 1− cos (ỹ, ṽM (x))
2 (8)

where ỹ and ṽM (x) are matrices y and vM (x) flattened into
1D vectors and normalised. If ỹ and ṽM (x) have identical
entries (up to the eigenvector sign), the motif residues move
with the target amplitudes and angles with respect to each
other. vM (x) uses the in-built PyTorch function to calcu-
late matrix eigenvectors. The Hessian matrix was calculated
using the Biotite (Kunzmann & Hamacher, 2018) implemen-
tation of the Hinsen (Hinsen & Kneller, 1999) force-field
with cutoff radius 13Å, which is a coarse-grained model of
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Cα interactions, and ignores the presence of other atoms.
All operations described above allow for backpropagation
when taking ∇x̂0 .

y is extracted from a protein that contains the motif substruc-
ture, and the orientation of y w.r.t. the origin depends on
the motif orientation. For each x̂0, we find the best rotation
matrix R of the target motif Cα coordinates to x̂M,0 using
Kabsch alignment (Kabsch, 1976; 1978), and calculate the
loss only after applying R to y. This ensures that the loss
is invariant to protein rotations, and the displacements’ ori-
entations w.r.t. motif residues orientations should match the
target as well.

4. NMA-tune conditioner implementation and
training

4.1. Architecture and inputs

ϵθ is a rotation-equivariant Geometric Vectron Perceptron-
Graph Neural Network (GVP-GNN) with five layers, which
operates on vector and scalar features of nodes and edges.
Node vector features are normalised vectors ∇x̂0

ly(x̂0) and
normalised unconditional noises ϵRF . Node scalar features
are the magnitudes of vectors ∇x̂0 ly(x̂0), the magnitudes
of ϵRF , residue index along the backbone, and timestep
t. Edge features are the displacement vectors between Cα

atoms. Note that while RFdiffusion operates on [N,Cα, C]
representation, GVP operates on a fully-connected graph of
Cα atoms only, and it corrects the translational component
of the RFdiffusion noise without modifying the rotational
part. Workflow and architecture details are presented in Fig-
ure 6 in Appendix B. Whenever we say that the denoiser
takes as input scalar or vector features of x, we mean
Cα features selected from [N,Cα, C] backbone features.
GVP does not add correction to the noise added to xM,t in
order to avoid counteracting structure conditioning.

4.2. Training

The corrector ϵθ is trained with the noise-matching ob-
jective and a number of auxiliary losses. In a single
train step, [N,Cα, C] backbone is noised to time t with
the default RFdiffusion noise schedule and Tmax = 50.
RFdiffusion makes a prediction of x̂0, from which we get
the dynamics-unconditional noise with motif scaffolding.
For each protein, we randomly choose a motif that is kept
constant in xt with length uniformly sampled between 10-40
residues. Motifs longer than 25 residues are made discon-
tinuous, while the ones equal to 25 residues and shorter are
made to have 50% chance to be discontinuous. Timesteps of
motif residues are set to 0 for both RFdiffusion and ϵθ. Sim-
ilarly, motif ∇x̂0

ly(x̂0) and ϵRF vectors are set to 0 when
passed to the conditioner. With these inputs, the conditioner

makes the prediction of the conditional noise correction,
which is then summed with ϵRF .

The key part of ϵθ training is the minimisation of the noise-
matching loss on the Cα translations. In this way the con-
ditioner learns the valid protein structure, and to assure it is
also dynamics-aware, we minimise the NMA-loss. In order
to avoid the undesired effects of conditioning pointed out
in (Komorowska et al., 2024), such as unrealistic chain dis-
tances or radii of gyration, we introduce auxiliary losses to
enhance training and weight them appropriately. We denote
the expected position at t = 0, calculated using the corrected
noise ϵ, by x̂0,corr, original sample by x0, chain distances
between Cα in x by dCα

(x), and RG(x) is the radius of gy-
ration calculated using Cα of x. We define the chain loss as

Lchain =
MSE(dCα(x̂0,corr), dCα(x0))

MSE(dCα
(x̂0), dCα

(x0))
(9)

and the radius of gyration loss as

Lrg = |RG(x̂0,corr)−RG(x̂0)|. (10)

Lchain and Lrg ensure that large scale properties of
conditioned backbones do not deviate from RFdiffusion
predictions. All losses are weighted as

L = 0.05∗Lnoise+0.8∗LNMA+0.1∗Lchain+0.05∗Lrg (11)

where LNMA is the same as ly(x) in Equation 8. ϵθ is trained
for 10 epochs with Adam optimiser, which took ≈ 15h
on a single Nvidia A100 80GB. The learning rate 1e-4 is
decreased by 0.1 after 5000 gradient updates and batch
size is 32. The Lnoise term is the standard denoising loss
in the NMA-tune parametrisation Lnoise = Et,y,x0,ϵ ||ϵ −
(ϵRF (

√
ᾱtx0+

√
1− ᾱtϵ)+ϵθ(

√
ᾱtx0+

√
1− ᾱtϵ, y))||2.

Dataset for training ϵθ was based on the SCOPe
database (Fox et al., 2013; Chandonia et al., 2021). We
use the data preprocessing from Genie (Lin & AlQuraishi,
2023) to remove proteins with multiple chains or missing
atoms, and to assure no two domains share >40% sequence
identity. Additionally, we filter out proteins shorter than 50
or longer than 256 residues. 7139 proteins remained and we
used train:validation:test split 0.8:0.1:0.1.

Structure and dynamics targets We performed a litera-
ture search for proteins with well investigated protein hinge
motions and prioritised having a smaller set of high qual-
ity targets over a larger set but less carefully verified. We
chose: triglyceride lipase (Derewenda et al., 1992) (PDB
id: 4tgl), calmodulin (Khade et al., 2021) (PDB id: 1exr),
and HIV-1 protease in semi-open conformation (Hornak
et al., 2006) (PDB id: 1hhp). We extract four targets from
those, which we call after the protein they come from, that
is, 4tgl, 1exr, 1hhp for a single asymmetric unit of HIV-1
protease, and 1hhp assembly for protease biological assem-
bly (more discussion of the targets is in the Appendix D).
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We used PACKMAN software (Khade et al., 2020) to verify
that the hinge motion described in the literature is found at
our targets. 1hhp assembly target, which we derive from
two flexible flaps of two symmetrically positioned chains,
is the only discontinuous target that we use. We did not
use targets from (Komorowska et al., 2024), since those
were shown to have low designability scores even without
dynamics conditioning, thus preventing the generation of
designable dynamics-conditioned proteins. We focus on
hinge motions since they are the flagship example of impor-
tance of flexibility for function, and also NMA-guidance
was originally evaluated on hinge targets and we aim for a
comparable benchmark. Note that NMA-tune can in theory
be applied to any collective type of motion.

Evaluation metrics We evaluate the samples with respect
to the dynamics and designability. We measure the success
of the dynamics conditioning in terms of cosine similar-
ity (cossim) of vectors ỹ and ṽM (x). Designability metric
answers the question: for a given backbone structure, is
there a sequence that will fold into it? The metric is com-
puted using the standard pipeline of inverse-folding and
folding again, commonly used in other works (Yim et al.,
2023b; Lin & AlQuraishi, 2023; Yim et al., 2023a), and
we explain it here again for consistency. We follow the
RFdiffusion steps to compute the oxygen positions in the
RFdiffusion [N,Cα, C] generated backbone. For each such
backbone, we generate eight amino-acid sequences using
ProteinMPNN (Dauparas et al., 2022) at sampling temper-
ature 0.1, and we use the version of the model that uses
all four atoms instead of Cα only. The target motif amino-
acids are known and also passed to ProteinMPNN. Those
sequences are then folded with ESMFold (Lin et al., 2022) to
create the “ESMFold designs”. For each sample we choose
one design that has the lowest RMSD to the original back-
bone, which is called the self-consistency RMSD (scRMSD).
Additionally, we compute the self-consistency RMSD of
motif residues only, which is more informative about the
success of the motif placement than the global scRMSD.
Samples with scRMSD < 2 and sc-motif-RMSD < 1, and
whose chosen designs have pLDDT > 0.7 and pAE < 10,
are deemed designable. For calculations of both scRMSD
and sc-motif-RMSD, we use Cα representation. In the
end, we compute cossims between target displacements
and displacements in: 1) RFdiffusion Cα backbone out-
put (orig-cossim); and 2) ESMFold designed Cα backbone
(self-consistency-cossim, or sc-cossim). The latter amounts
to performing NMA again on the ESM design using the
same force-field parametrisation as utilised in the condition-
ing. Since ESMFold designs are a more faithful represen-
tation of the protein that will be synthesised than the direct
RFdiffusion outputs, sc-cossim quantifies whether the con-
ditioning effects can be observed in the real-world proteins.
And finally, as the last evaluation step, we select samples of

high structure quality to assess whether the targeted NMA
corresponds to the oscillation mode in the MD trajectory.
We give detailed description of this procedure in Section 5.2.

5. Results
5.1. Conditioning efficiency

Empirically, we found that upscaling ϵθ term was neces-
sary to observe the effect of conditioning (sampling details
and ablations are in the Appendix A). In RFdiffusion, but
also in other works in the field (Yim et al., 2023b; Lin &
AlQuraishi, 2023; Trippe et al., 2023), the diversity vs qual-
ity trade-off is controlled by downscaling the Gaussian noise
term at inference time by a parameter η ∈ [0, 1]. Smaller η
can potentially improve the sample quality but at the cost
of diversity. Since η was an important part of the origi-
nal RFdiffusion evaluation, we ablate how NMA-tune be-
haves for 3 η values and benchmark against NMA-guidance.
We reimplement and fine-tune NMA-guidance as a part of
RFdiffusion, so any difference in performance between the
two methods cannot be attributed to the base unconditional
model. Table 1 shows the comparison between structure-
only (column dynamics-cond: none) and jointly conditioned
samples (columns dynamics-cond: tune and dynamics-cond:
guid.). Note that structure-only samples set the upper bound
on designability achievable for joint conditioning. Targets
1exr and 1hhp have high designability in both conditioning
scenarios, but 4tgl and 1hhp assembly were not possible
to scaffold even with structure conditioning only. For the
latter two targets, we changed the designability threshold
of sc-motif-RMSD to < 3Å and < 2Å respectively. How-
ever, we still find these results informative, as they show
that: 1) dynamics conditioning can be successful even for
difficult structural targets; and 2) dynamics conditioning
can work well for future models with improved motif scaf-
folding capabilities. For each target we sampled scaffold of
different lengths. To ensure that differences in sc-cossim be-
tween NMA-tune and NMA-guidance are not caused by the
differences in scaffold lengths, we seeded generation of each
batch of 110 samples, and repeated the procedure for three
random seeds. Table 1 shows the mean over three seeds,
and the results for the individual runs are in the Appendix E.

Joint conditioning improves sc-cossim score across dif-
ferent targets, and our method consistently outperforms
NMA-guidance. Since dynamics conditioning is a very
novel direction in the generative protein modelling,
there are no other methods to compare ours other than
NMA-guidance. When we report the fraction of sam-
ples with sc-cossim above some threshold, we mean the
fraction of all samples that are designable and have de-
sired sc-cossim. Both NMA-guidance and NMA-tune sac-
rifice designability to achieve conditioning. However, eval-
uation of simple structural metrics such as Cα backbone
distance, radius of gyration and secondary structure compo-
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Table 1. Success rates for NMA-tune (tune) and NMA-guidance (guid.) evaluated on 4 targets and ablated with respect to noise scale η.
For each datapoint we take 110 samples. We average the results over 3 random seeds. Even though NMA-guidance produces more
designable samples overall, NMA-tune beats NMA-guidance in terms of successful structure and dynamics conditioned designable
samples. *Designability for 4tgl and 1hhp assembly is calculated according to the changed sc-motif-RMSD criterion. † stands for
1hhp assembly.

η = 0.0

Target 1hhp 1exr 1hhp a† 4tgl
Dynamics-cond tune guid. none tune guid. none tune guid. none tune guid. none

% designable* 58.2 67.3 72.7 53.3 68.8 81.8 20.3 47.7 51.8 11.5 13.2 13.0
% w. sc-cossim > 0.9 12.4 7.6 1.2 9.4 6.4 1.2 1.2 0.6 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 20.3 15.5 7.3 26.1 20.9 4.8 7.0 2.1 0.6 0.9 0.0 0.0
% w. sc-cossim > 0.7 29.1 22.7 11.8 33.0 30.0 11.5 9.1 5.2 1.2 2.4 1.5 0.3

η = 0.1

Target 1hhp 1exr 1hhp a† 4tgl
Dynamics-cond tune guid. none tune guid. none tune guid. none tune guid. none

% designable* 53.6 63.0 70.3 53.9 67.6 81.2 17.9 49.5 54.5 10.9 12.7 13.9
% w. sc-cossim > 0.9 10.9 6.7 3.0 10.0 5.8 0.6 1.5 0.3 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 20.3 13.3 10.0 22.4 21.5 7.0 4.2 1.5 1.5 0.0 0.3 0.0
% w. sc-cossim > 0.7 26.7 17.9 15.2 32.1 30.9 11.8 8.2 5.5 2.4 0.6 0.3 0.3

η = 1.0

Target 1hhp 1exr 1hhp a† 4tgl
Dynamics-cond tune guid. none tune guid. none tune guid. none tune guid. none

% designable* 42.7 58.5 57.3 46.4 59.7 68.2 15.8 36.7 37.6 8.2 13.9 13.3
% w. sc-cossim > 0.9 6.1 3.0 0.9 4.8 0.9 0.3 0.3 0.0 0.3 0.0 0.0 0.0
% w. sc-cossim > 0.8 13.9 11.5 6.1 17.3 9.7 1.8 2.4 0.9 0.3 0.3 0.3 0.0
% w. sc-cossim > 0.7 20.9 16.1 10.9 25.8 19.7 6.4 5.8 2.7 2.7 1.2 0.9 0.6

sition does not reveal significant differences between them.
We show structural sanity checks for sets of all samples and
for samples filtered for designability in Appendix B. Still,
NMA-tune wins in terms of designability and dynamics-
conditioning at the same time, which is the only subset of
samples that can be counted as successful designs. It is not
enough to obtain a high quality sample - a sample must
be both designable and meet the dynamics conditions,
and NMA-tune offers best designability/conditioning
strength trade-off.

Since force-field Hessian depends on the pair-wise distances,
modes of oscillation will be related to the structure, and
structure conditioned samples will match the dynamics tar-
gets to some degree. For example, a small fraction of struc-
ture conditioned samples for 1exr target has high sc-cossim
> 0.9. Still, jointly conditioned samples show improved
match to the dynamics target as compared to structure con-
ditioned only, as is in the case of 1exr and η = 0.0 where
the fraction of samples with best sc-cossim increases about
8 times with NMA-tune, and 5 times with NMA-guidance.
And for some cases, as for 1exr and η = 1.0, generating
the highest sc-cossim samples is possible only with the dy-
namics conditioning present. As expected, the designability
can go down as η increases for some targets, and dynamics

conditioning has a negative impact on the designability. De-
spite this undesired effect, the percentage of samples that
are designable and exhibit target dynamics is higher when
conditioning jointly, which means more efficient conditional
sampling overall. Figure 7 in Appendix B shows the distri-
butional shift of sc-cossims to higher values for designable,
dynamics-conditioned samples.

Additionally, our method not only increases the proportion
of effectively conditioned samples as compared to NMA-
guidance, but also offers a significant improvements of a
sampling speed. For example, on a single Nvidia A100
80GB, our method gives much faster sampling of a single
protein (note that official implementation of RFdiffusion is
compatible only with batch size 1). NMA-tune increases the
sampling time only by 8% as compared to sampling without
dynamics conditioning, while NMA-guidance causes the
increase by about 75%.

To gain an intuitive understanding of a good and a bad
match to the targeted normal mode, we show in Figure 1 the
visualisations of two samples, one with high sc-cossim and
another with low sc-cossim.
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(a) (b)

Figure 1. Examples of (a) a design that matches the targeted nor-
mal mode (sc-cossim= 0.96), and (b) one that shows poorer match
(sc-cossim= 0.68). Both visualisations show the ESMFold de-
signs for the RFdiffusion backbones. Green arrows show the
displacements of the targeted Cα atoms in the ESMFold designs,
and purple show the target displacement (arrows are upscaled for
clarity). Greater sc-cossim assures that the relative amplitudes and
angles of the green displacement vectors reflect amplitudes and
angles between purple displacement vectors.

5.2. MD evaluation

As a final step in our evaluation, we checked whether the
targeted normal mode is observed in the MD simulation of
the successfully conditioned sample. To this end, we chose
4 ESMFold designs that correspond to designable samples,
two with high and two with low sc-cossim, all for 1hhp
target. Since the way in which protein explores available
conformations is inherently stochastic, we run three inde-
pendent 500 ns simulations (replicas) per ESMFold design.
The following simulations show that short-term motions
of dynamics-conditioned samples are consistent with the
targeted mode. In the next paragraphs, we explain the
evaluation protocol and relevant metrics.

We perform PCA on the generated trajectories of Cα atoms
and extract the largest principal component. Similarly, as
with sc-cossim evaluated on the ESMFold design, we com-
pute the cosine similarity between the displacement vec-
tors of motif residues in the PCA mode and in the targeted
mode – we call this metric PCA-cossim. Note that due to
the probabilistic nature of MD simulations, proteins may ex-
plore less likely motions, even if the targeted normal mode
corresponds to the most probable collective motion. Since
there is never a guarantee that the most likely domain mo-
tion will occur in a given single replica, we report the best
PCA-cossim value from the three replicas for each sample.

Two designs were chosen from successfully dynamics-
conditioned NMA-tune samples, and the other two from
dynamics-unconditional samples. We selected designs with
low MolProbity score (as assessed by SwissModel ser-
vice (Waterhouse et al., 2024)): dynamics-conditioned with
sc-cossim 0.92 and 0.97 and MolProbity (Williams et al.,
2018) scores 1.68 and 1.91, and dynamics-unconditional
with sc-cossim 0.16 and 0.32 and MolProbity scores 1.52
and 1.69. For intuitive explanation of MolProbity see Ap-

Table 2. Values of PCA-cossim at 20-100 ns interval for NMA-
tune dynamics-conditioned and dynamics-unconditional sam-
ples. PCA-cossim is shifted to higher values for the dynamics-
conditioned samples.

dynamics-cond. dynamics-uncond.

sc-cossim 0.92 0.97 0.16 0.32
PCA-cossim 0.86 0.58 0.23 0.34

Table 3. Values of PCA-cossim computed using the tailored time
interval (durations in Table 7 in Appendix C).

dynamics-cond. dynamics-uncond.

sc-cossim 0.92 0.97 0.16 0.32
PCA-cossim (interval) 0.50 0.48 0.51 0.80

pendix C. Before running the simulations, the ESMFold
designs were minimised and equilibrated, with Cα RMSDs
to their initial structures remaining below 0.5 Å. A detailed
description of the simulation protocol and the subsequent
evaluations can be found in Appendix C.

Initially, PCA-cossim values were analysed during the early
simulation period (20–100 ns), once the proteins had equi-
librated but had not significantly deviated from their start-
ing structures. Table 2 shows the results: the first two
columns are for dynamics-conditioned samples and the last
two columns are for dynamics-unconditional samples. The
PCA-cossim values are higher for dynamics-conditioned
samples, indicating a higher overlap between the PCA mode
and the targeted mode. While improvements in PCA-cossim
due to dynamics conditioning are not as pronounced as im-
provements in sc-cossim, they remain significant. Dynamics
conditioning remains effective in the short-term simulated
motions, which is promising for the potential downstream
applications.

Finally, we analysed the presence of the targeted mode dur-
ing the later stages of the simulation, once the proteins had
enough time to sample alternative conformations. To this
end, we find the stable temporal regions by plotting Cα

RMSD vs time (Figure 8 in Appendix C), and perform PCA
on the trajectories from stable time intervals. As expected,
PCA-cossim is lower as compared to initial time intervals
(Table 3). While it is unsurprising that the direction of
the lowest oscillation mode differs between alternative con-
formations, the ideal scenario would involve the targeted
normal mode persisting in the new stable states reached
during the simulation. Together with the early PCA-cossim
results, these findings suggest that the initial motions of
dynamics-conditioned samples better align with the targeted
mode, indicating successful conditioning of the starting con-
formations.
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5.3. Limitations

There is room for improvement in terms of stability of the
designed proteins. The targeted mode does not prevail for
alternative states in the simulation in a consistent way, but it
still might occur spontaneously (sample sc-cossim=0.32).

Like NMA-guidance, NMA-tune takes the displacements’
directions into account, which does not allow for a direct
control of the absolute flexibility in the conditioned region.
Important direction for further work is to extend condition-
ing to the absolute values of displacement vectors as well.

6. Conclusions
In this work we present NMA-tune, the methodology for pro-
tein generative modelling conditioned on the normal mode
of oscillation. In contrast to existing techniques, NMA-tune
utilises RFdiffusion and benefits from the trainable con-
ditioner that allows sampling along the path specified by
loss-guided diffusion. NMA-tune outperforms existing tech-
niques as it produces designable samples with higher dy-
namics conditioning success rate.

Impact Statement
This paper presents work whose goal is to advance the gen-
eral methodology of generative protein design. The potential
consequences of our work for medicine and chemistry are
very broad and hard to quantify, and there is nothing specific
we are able to highlight here.
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Appendices

A. Sampling details
We used 50 sampling steps, which is the default in RFdiffusion. We observed it was necessary to upscale the conditional
term by some guidance scale to obtain samples both designable and with improved dynamics. We obtained best results
if introduced the sinusoidal time dependence for the guidance scale gs, such that gs = gsconst ∗ sin t ∗ π, where in the
sampling the normalised time flows from 1 to 0. Firstly, we set η = 0.0 and then searched over several gsconst. We did not
add dynamics conditioning correction in the last 3 generation steps. Then, the best guidance scales for each target were used
for experiments with η = 0.1 and η = 1.0 (the best guidance scale in a sense of the largest proportion of designable samples
with sccosim >0.9). We searched over gsconst ∈ 20, 40, 60, 80, 100 and additionally 120 for 1hhp assembly, and we chose
gsconst = 80 for all targets expect 1hhp assembly for which gsconst = 100. Additionally, for targets 1hhp and 1exr we
ablate the time scaling function in Table 4.

Table 4. NMA-tune ablation with respect to the guidance strength time scaling in the sampling. Linear corresponds to gs = gsconst ∗ t,
where time flows from 1 to 0, and constant is simply unscaled gsconst. Linear and constant scalings perform similar to sinusoidal scaling
from the main text, and still outperform NMA-guidance. We also searched for gsconst with finer interval. Values of gsconst chosen for
each linear scaling and target were 70 for 1hhp and 30 for 1exr, and for constant scaling were 70 for 1hhp and 20 for 1exr.

η = 0.0 η = 0.1 η = 1.0

Target 1hhp 1exr 1hhp 1exr 1hhp 1exr
Time scaling Linear Constant Linear Constant Linear Constant Linear Constant Linear Constant Linear Constant

% designable 59.39 38.18 63.64 64.55 55.76 31.52 62.42 68.79 39.70 27.58 61.21 57.88
% w. sc-cossim > 0.9 11.21 9.09 11.52 11.82 7.88 10.00 7.58 12.42 5.15 5.76 6.06 7.27
% w. sc-cossim > 0.8 19.39 16.67 29.39 32.12 17.27 14.85 25.76 33.64 13.33 11.21 18.48 18.79
% w. sc-cossim > 0.7 27.58 21.21 38.18 40.91 23.94 19.09 37.58 47.27 17.58 14.24 29.39 29.39

In every single protein generation, we uniformly sampled length of the scaffold before (prefix) and after (suffix) the motif,
between min and max values dependent on the target. For the discontinuous motif 1hhp assembly we also sampled gap
length between 20-50 residues.

We followed the steps in (Komorowska et al., 2024) to implement the benchmark method and also performed the gsconst
search. We evaluated the following values of gsconst in 1000 intervals: 2000 to 9000 for 1exr and 1hhp; 2000 to 5000 for
1hhp assembly; 2000 to 4000 for 4tgl. We chose 8000 for 1exr, 7000 for 1hhp, 4000 for 1hhp assembly, 2000 for 4tgl.
Similarly as in our method, we do not add the conditioning update in the last 3 steps.

For both methods we rescaled the corrected noise (which is the sum of the unconditional and conditional noise) such that
it has the same variance as the unconditional noise, in order to avoid too large denoising steps and improve designability.
However upon further investigation we found this effect was not affecting designability in a consistent way across different
time scalings and guidance strengths. In the end, fine-tuning the guidance strength was the crucial factor that determined
designability.

Table 5. Prefix and suffix ranges used in sampling.

Prefix min Prefix max Suffix min Suffix max

4tgl 30 70 20 70
1exr 30 70 20 70
1hhp 30 50 30 50
1hhp assembly 30 50 30 50

Sampling was done on a single NVIDIA A100 80GB and the compute resources are comparable to only running RFdiffusion
sampling.
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B. Extra figures
Figures 2 and 3 show mean Cα backbone distance, radius of gyration and secondary structure composition for samples
η = 0 without filtering for sc-RMSD. For both NMA-tune and NMA-guidance, the Rg distribution has a longer tail for the
dynamics-conditioned samples as compared to dynamics-unconditional, however it remains in the physical range. Both
methods do disturb secondary structure distribution, however the ratio helix:sheet:coil is preserved.
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Figure 2. Structure metrics for NMA-tune. Top row: 1exr target. Bottom row: 1hhp assembly target.
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Figure 3. Structure metrics for NMA-guidance. Top row: 1exr target. Bottom row: 1hhp assembly target.

Figures 4 and 5 show the same statistics as Figures 2 and 3, but for samples filtered for designability across all seeds.
Statistics follow similar trend as when calculated over samples without filtering.

In the end, we perform a sanity check whether the differences in designability come from sampling more novel structures.
To this end, to evaluate novelty and diversity for targets 1exr and 1hhp assembly. For novelty, we compute the TM-score
to AFDB and PDB100 databases available at Foldseek (van Kempen et al., 2024) server, and for each sample retain the
max score. Table 6 shows mean values of those max TM-scores (the lower, the more novel samples). While it seems that
NMA-tune outperforms NMA-guidance by a narrow margin, novelty of both methods remains in the range comparable to
other generative models. We calculate diversity using MaxCluster (Herbert & Sternberg, 2008) with hierarchical clustering
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Figure 4. Structure metrics for NMA-tune (designable samples). Top row: 1exr target. Bottom row: 1hhp assembly target.
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0.0

0.1

0.2

0.3

0.4

D
en

si
ty

Uncond.

NMA-guidance

Uncond. NMA-guidance

89.0 88.5

0.2 0.3
10.8 11.3

Helix Sheet Coil

3.74 3.75 3.76 3.77 3.78

Backbone mean Cα-distance [Å]
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Figure 5. Structure metrics for NMA-guidance (designable samples). Top row: 1exr target. Bottom row: 1hhp assembly target.

1exr, η=0.0 1exr, η=1.0 1hhp a,η =0.0 1hhp a, η=1.0

NMA-tune 0.68 0.64 0.52 0.53
NMA-guid. 0.71 0.68 0.57 0.55

Table 6. Mean TM-score across different targets and noise levels.

(single linkage method), in sequence independent mode, with a TM-score threshold 0.6. From the set of all 110 samples
generated per target per noise scale for one seed, we take samples for η = 0.0 and η = 1.0 together, and discard the
non-designable samples. Results for the remaining designable samples are as follows (clusters / num of designable samples):
NMA-tune: 1exr target: 13/118; 1hhp assembly target: 32/34
NMA-guidance: 1exr target: 10/137; 1hhp assembly target: 52/91
As expected, diversity depends on the scaffolding target. Neither of the methods collapses to sample from a single cluster.
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Figure 6. Conditioning framework diagram. The conditioner is a GVP based graph neural network, which operates on scalar (s) and
vector (v) inputs. Firstly the tuple (s,v) are projected onto node and edge features. Then, inside the conditioner there are 5 stacks of
graph convolution where the message passing function is the gated GVP, followed by the normalisation layer that normalises scalar
and vector features, feedforward layer with a single gated GVP and another normalisation layer, which sums up to 530K parameters.
In a training step, RFdiffusion takes noised [N,C,Cα] coordinates of the protein with a pre-selected structural motif and makes the
dynamics-unconditional prediction of fully denoised sample x̂0. The dynamics-unconditional noise is derived from x̂0. The lowest
oscillation mode in x̂0 is used to calculate the gradient of the NMA-loss. Next, the features are passed to the conditioner which performs
message-passing on the graph of Cα atoms, and it outputs its correction.

Figure 7. The plot of sc-cossim vs orig-cossim for conditional (left) and unconditional (right) samples for the 1exr target at ns=0.0.
Conditional samples exhibit both higher orig-cossim and sc-cossim. Backbones with scRMSD=0 should lie on the line y = x.
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C. Extended MD discussion
C.1. Scoring of sample quality

MolProbity is a validation tool for macromolecular 3D structures, such as proteins and nucleic acids. Its overall score is
derived from a combination of geometric and stereochemical parameters (e.g., clash score, percentage of Ramachandran
outliers, sidechain rotamers) that assess the quality of an atomic model. A lower MolProbity score indicates fewer geometric
inconsistencies and generally denotes a higher quality structure, ensuring the accuracy of atomic coordinates. SwissModel is
a homology modeling server that generates 3D protein models based on known structural templates and provides quantitative
assessments of model quality.

C.2. Simulation protocol

Molecular dynamics (MD) simulations were performed using GROMACS 2024 version and NVIDIA A100 80GB GPU.
Simulations were carried out with Amber94 forcefield, in explicit solvent using TIP3P water models, with the system
solvated in an octahedral box. Counter ions were added to neutralise the system, with a salt concentration of 150 mM.
Periodic boundary conditions were applied to all replicas. The initial energy minimisation was performed using the steepest
descent algorithm, with a maximum force tolerance of 10 kJ/mol/nm. A maximum of 50,000 steps was set to ensure system
stabilisation. Following energy minimisation, the system was equilibrated in the NVT ensemble for 100 ps using a leap-frog
integrator. The temperature was maintained at 300 K using a velocity-rescale thermostat. Next, the system was equilibrated
in the NPT conditions for 100 ps under similar conditions: the pressure was maintained at 1 bar using a Parrinello-Rahman
barostat. The simulations were performed in NPT conditions for a total of 500 ns each, with a time step of 2 fs. Coordinates
and velocities were recorded at 10 ps intervals. All simulations were carried out with a cut-off distance of 1.0 nm for
short-range electrostatic and van der Waals interactions. Long-range electrostatic interactions were treated with the Particle
Mesh Ewald method. When selecting the appropriate samples for simulations, we verified the motif residues in the ESMfold
are indeed flexible, and the L2 norm of concatenated displacements vectors of the motif residues were 0.31, 0.56, 0.90, 0.60
for samples with sc-cossim 0.97, 0.92, 0.32, 0.16 respectively. Figure 8 shows how Cα RMSD w.r.t the starting structure

Figure 8. Cα RMSD vs. time during the simulations. Best-of-three replica, whose PCA-cossim is reported in Table 2, is plotted in red.

changes in time. Different replicas reach stable states in different time intervals, therefore for each one of them we choose
the tailored time interval where RMSD flattens (Table 7). Even if a given replica does not seem to converge to a stable
region for a longer time, we still try to find the best interval, and perform PCA for consistency.

Table 7. Time intervals of trajectories used to compute PCA-cossim in Table 3.

sc-cossim 0.92 0.16 0.97 0.32

replica 1 2 3 1 2 3 1 2 3 1 2 3
interval start, end (ns) 300, 500 100, 300 80, 500 225, 500 225, 400 225, 500 150, 300 150, 400 100, 225 100, 200 100, 250 100, 250

Computing PCA-cossim in all cases requires finding the rotation matrix R (as in the NMA-loss in the Equation 8). R aligns
the frame of reference of the target displacements with the frame of the motif in the simulated sample. Since the motif
residues are moving in the simulation, there is no one constant frame of reference. For this reason we align the target motif
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residues onto the average positions of the motif residues in the sample, and the positions are averaged over any given time
interval specified in text.
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D. Details of the hinge targets
4tgl (Figure 9) has been found to exhibit hinge motion of the lid residues 82-96. We found that choosing residues 70-89 as
the motif resulted in protein close-to-designable. Additionally we used PACKMAN (Khade et al., 2020), a tool for finding
protein hinges in the query structure, and we found presence of the hinge at residues 75-90.

Khade et al. (2021) found hinge motions at residues 62-87 of 1exr (Figure 10). Choosing residues 64-81 as the motif
resulted in the designable samples.

1hhp and 1hhp assembly (Figures 11 and 12) are targets are extracted from flexible flaps of HIV-1 protease. Protease
undergoes transformation between closed and open conformations with a pronounced movement of flaps (residues 43-58).
We obtained two targets, one extracted from a single chain in the asymmetric unit, the other from a biological assembly
with two chains. Residues for 1hhp target were 46-54, and for 1hhp assembly target they were 46-50 and 145-149. For
1hhp assembly, the exact hinge motion was found by PACKMAN not exactly at the flap, but at the spatially close residues
that are placed near the flap in the gap between the two units in the assembly. We further confirmed that the target residues
in 1hhp assembly are indeed active in the lowest frequency motion using the elNemo software (Suhre & Sanejouand, 2004).

Figure 9. 4tgl target

Figure 10. 1exr target
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Figure 11. 1hhp target

Figure 12. 1hhp assembly target
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E. Individual results for 3 sampling runs
E.1. seed 1997

η = 0.0

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no NMA-t guid. no

% designable 60.9 63.6 65.5 53.6 66.4 85.5 20.9 46.4 50.0 10.0 16.4 16.4
% w. sc-cossim > 0.9 11.8 4.5 0.9 10.0 3.6 0.9 0.0 0.9 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 20.9 15.5 8.2 30.9 18.2 5.5 4.5 3.6 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.7 27.3 19.1 12.7 40.0 27.3 13.6 6.4 4.5 0.0 1.8 0.9 0.0

η = 0.1

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no NMA-t guid. no

% designable 50.9 61.8 64.5 51.8 73.6 83.6 16.4 47.3 58.2 13.6 11.8 16.4
% w. sc-cossim > 0.9 16.4 8.2 3.6 11.8 6.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 22.7 12.7 10.0 23.6 23.6 8.2 4.5 1.8 1.8 0.0 0.0 0.0
% w. sc-cossim > 0.7 27.3 17.3 12.7 32.7 37.3 12.7 9.1 7.3 2.7 0.0 0.0 0.0

η = 1.0

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no NMA-t guid. no

% designable 41.8 57.3 60.0 53.6 58.2 69.1 10.0 36.4 36.4 10.0 15.5 13.6
% w. sc-cossim > 0.9 5.5 0.9 0.0 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 12.7 12.7 3.6 20.9 6.4 0.9 0.9 0.9 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.7 19.1 17.3 11.8 30.0 19.1 1.8 4.5 2.7 2.7 0.0 0.9 1.8
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E.2. seed 1999

η = 0.0

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no tune guid. no

% designable 55.5 69.1 73.6 55.5 68.2 80.9 16.4 45.5 52.7 16.4 10.0 13.6
% w. sc-cossim > 0.9 13.6 9.1 1.8 10.9 10.0 1.8 0.9 0.9 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 21.8 16.4 7.3 24.5 23.6 7.3 5.5 0.9 0.9 2.7 0.0 0.0
% w. sc-cossim > 0.7 36.4 24.5 9.1 31.8 29.1 12.7 8.2 3.6 1.8 5.5 1.8 0.0

η = 0.1

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no tune guid. no

% designable 56.4 60.9 77.3 57.3 70.0 82.7 19.1 46.4 48.2 11.8 8.2 10.9
% w. sc-cossim > 0.9 8.2 6.4 4.5 9.1 3.6 0.9 2.7 0.9 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 21.8 12.7 10.9 21.8 18.2 9.1 3.6 2.7 2.7 0.0 0.0 0.0
% w. sc-cossim > 0.7 28.2 19.1 18.2 32.7 27.3 13.6 7.3 6.4 3.6 1.8 0.0 0.0

η = 1.0

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no tune guid. no

% designable 44.5 56.4 56.4 47.3 60.0 69.1 19.1 39.1 42.7 7.3 11.8 13.6
% w. sc-cossim > 0.9 6.4 3.6 1.8 4.5 0.9 0.0 0.9 0.0 0.9 0.0 0.0 0.0
% w. sc-cossim > 0.8 16.4 9.1 5.5 19.1 10.9 1.8 4.5 1.8 0.9 0.9 0.0 0.0
% w. sc-cossim > 0.7 26.4 14.5 10.0 29.1 19.1 9.1 6.4 4.5 3.6 1.8 0.9 0.0
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E.3. seed 2007

η = 0.0

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no tune guid. no

% designable 58.2 69.1 79.1 50.9 71.8 79.1 23.6 50.0 52.7 8.2 16.4 9.1
% w. sc-cossim > 0.9 11.8 9.1 0.9 7.3 5.5 0.9 2.7 0.0 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 18.2 14.5 6.4 22.7 20.9 1.8 10.9 1.8 0.9 0.0 0.0 0.0
% w. sc-cossim > 0.7 23.6 24.5 13.6 27.3 33.6 8.2 12.7 7.3 1.8 0.0 1.8 0.9

η = 0.1

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no tune guid. no

% designable 53.6 66.4 69.1 52.7 59.1 77.3 18.2 52.7 57.3 7.3 17.3 14.5
% w. sc-cossim > 0.9 8.2 5.5 0.9 9.1 7.3 0.9 1.8 0.0 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 16.4 14.5 9.1 21.8 22.7 3.6 4.5 0.0 0.0 0.0 0.9 0.0
% w. sc-cossim > 0.7 24.5 17.3 14.5 30.9 28.2 9.1 8.2 2.7 0.9 0.0 0.9 0.9

η = 1.0

Target 1hhp 1exr 1hhp a 4tgl
Dynamics-cond tune guid. no tune guid. no tune guid. no tune guid. no

% designable 41.8 61.8 55.5 38.2 60.9 66.4 18.2 34.5 33.6 7.3 14.5 12.7
% w. sc-cossim > 0.9 6.4 4.5 0.9 1.8 1.8 0.9 0.0 0.0 0.0 0.0 0.0 0.0
% w. sc-cossim > 0.8 12.7 12.7 9.1 11.8 11.8 2.7 1.8 0.0 0.0 0.0 0.9 0.0
% w. sc-cossim > 0.7 17.3 16.4 10.9 18.2 20.9 8.2 6.4 0.9 1.8 1.8 0.9 0.0
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