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Abstract
We propose a set of kernel-based tools to eval-
uate the designs and tune the hyperparameters
of conditional sequence models, with a focus on
problems in computational biology. The back-
bone of our tools is a new measure of discrepancy
between the true conditional distribution and the
model’s estimate, called the Augmented Condi-
tional Maximum Mean Discrepancy (ACMMD).
Provided that the model can be sampled from, the
ACMMD can be estimated unbiasedly from data
to quantify absolute model fit, integrated within
hypothesis tests, and used to evaluate model relia-
bility. We demonstrate the utility of our approach
by analyzing a popular protein design model, Pro-
teinMPNN. We are able to reject the hypothesis
that ProteinMPNN fits its data for various pro-
tein families, and tune the model’s temperature
hyperparameter to achieve a better fit.

1. Introduction
Conditional sequence models constitute one of the most
prominent model classes of modern machine learning. Such
models have allowed progress in longstanding problems in
fields ranging from natural language generation to biomedi-
cal applications such as genomics and protein design. Ab-
stracting away the precise nature of the data, the objective
common to many of these problems can be summarized
as the prediction of high-dimensional discrete-valued se-
quences, given some possibly high-dimensional input infor-
mation about the sequence. For example, in protein design,
inverse folding models (Dauparas et al., 2022) seek to learn
the conditional distribution of amino acid sequences (pro-
teins) that are likely to fold to a given input protein backbone
3D geometry, or structure.
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In such problems, it is crucial to evaluate the properties
of the trained model. Model evaluation can help assess
the risk of using the model’s predictions in the real world,
such as performing in-vitro experiments (a time-intensive
process), guide hyperparameter searches, and deepen one’s
understanding of the model’s behavior. Two properties are
particularly important to measure: the first one is model ac-
curacy, which describes how well the model approximates
the true conditional distribution of the target variable given
the input. Models with high accuracy have learned the un-
derlying structure of the data, suggesting a high potential
value in deploying them in real-world applications. How-
ever, in practice, it is likely that models will not be perfectly
accurate. Inaccurate models can still be useful as long as
they fall back to conservative guesses (in the extreme case,
the prior distribution) when they are uncertain. From a
statistical perspective, this property is known as reliability
(Bröcker, 2008; Vaicenavicius et al., 2019; Widmann et al.,
2021), and will be the second property of interest in this
work.

Given a set of real samples, the standard approach to
evaluate models in protein design consists in using log-
likelihoods or sequence recovery (Dauparas et al., 2022;
Hsu et al., 2022; Gao et al., 2022). However, log-likelihoods
cannot be used to evaluate reliability, and are only relative
measures of accuracy: these methods can only be used to
compare models and would not alert the practitioner for
example if all models make very poor predictions. Instead,
to assess how far a model is from being optimally accurate
and consistent — and thus the potential value in improving
it, by for example collecting more data or increasing its com-
plexity, one should consider absolute rather than relative
metrics, that is, metrics that not only allow one to compare
models to each other, but also to evaluate a single model’s
performance without any other point of comparison. For
these metrics to have practical value, they should come with
estimators computable from data samples. These estimators
should be efficiently computable, recover the true metric
as in the large sample size limit (i.e. be consistent), and
preferably be centered around the true value of the metric
(i.e. be unbiased). Finally, to factor out the statistical error
coming from estimating these metrics using a finite number
of samples, these metrics should be integrable into hypothe-
sis tests built to detect statistically significant mismatches
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between the model and the data.

Contributions In this work, we introduce a set of abso-
lute evaluation metrics for measuring the accuracy and
the reliability of conditional sequence models. Both our
metrics are grounded in a new measure of divergence be-
tween conditional probability distributions, which we call
the Augmented Conditional Maximum Mean Discrepancy
(ACMMD), which extends the kernel-based conditional
goodness-of-fit framework of Jitkrittum et al. (2020); Glaser
et al. (2023); Widmann et al. (2021) to the case of sequence-
valued variables. We analyze the statistical properties of our
proposed metrics, which can be estimated using samples
from the data and the model. Under certain conditions, we
show that the ACMMD is able to detect any mismatch be-
tween the model and the data. In addition, we integrate the
ACMMD into hypothesis tests to detect such mismatches
from the model and the data samples. We showcase the util-
ity of our methods by using them in an in-depth analysis of
a popular inverse folding model - ProteinMPNN (Dauparas
et al., 2022). Our results demonstrate the theoretical proper-
ties of our methods, while also providing insight as to how
to gauge the certainty and applicability of ProteinMPNN for
designing proteins of varying topologies and evolutionary
families.

2. Problem Setting
We consider the problem of predicting a discrete sequence-
valued variable we are designing Y ∈ Y , for example a bio-
logical sequence, conditionally on a variable X ∈ X at our
disposal. The predicted sequence Y is allowed to have an ar-
bitrary length, e.g. Y = ∪∞ℓ=1Aℓ, where A is a finite set. In
protein design, X could be the 3D structure of a protein (e.g.
X = ∪∞ℓ=1R3ℓ) and Y the sequence of amino acids making
up the protein, in which case A is the set of amino acids.
Given a large number of i.i.d measurements {Xi, Yi}NT

i=1

from a distribution P(X,Y ), for example pairs of sequences
and structures from the Protein Data Bank (Ingraham et al.,
2019), we train a predictive model Q| : x 7−→ Q|x that
takes in a value x and outputs a distribution on Y , Q|x(Y )
that attempts to match the true conditional P(Y |X = x),
denoted P|x(Y ) in this work. After training, we are inter-
ested in quantifying how accurately Q| approximates P| on
average across all values of x after training, using a held-out
set of samples {Xi, Yi}Ni=1 ∼ P(X,Y ). Quantifying the
accuracy of Q| is known as the conditional goodness-of-fit
problem, and we address it in Section 3. Furthermore, we
will also be interested in quantifying the reliability of Q|, a
task which we address in Section 4.

3. Conditional Goodness–of–Fit with ACMMD
In this section, we propose a metric that quantifies the accu-
racy of a predictive sequence model. We will show that this
metric satisfies many desirable properties: first, it is abso-
lute and able to detect any differences between conditional
distributions. Second, it can be unbiasedly and efficiently
estimated using samples from the model and the data dis-
tribution. Third, it can be used in hypothesis tests to detect
statistically significant mismatches from such samples.

3.1. The Augmented Conditional MMD

We now propose a method to quantitatively evaluate the
conditional goodness–of–fit of Q| to P|. Our approach con-
sists in constructing a divergence D(P|, Q|), between the
conditional distribution of Y given X and the model Q|. By
definition, this divergence should satisfy:

(i) D(P|, Q|) ≥ 0

(ii) D(P|, Q|) = 0 ⇐⇒ P|x = Q|x, P(X)–a.e.
(1)

Combined, these two properties ensure that D(P|, Q|) is
absolute, e.g. assigns the known value lowest value 0 to the
best possible model, and is able to distinguish any mismatch
between the model and the data, which is crucial to prevent
blind spots in our evaluation. We borrow the idea of com-
paring Q| with P| by comparing the joint P(X,Y ) with a
joint that keeps the same marginal P(X) but swaps P| with
Q|. These two joint distributions are equal if and only if
Q| and P| match almost everywhere. To compare these two
distributions, we will use the Maximum Mean Discrepancy
(MMD) (Gretton et al., 2012) given by:

MMD(Q1,Q2) = sup
f∈HZ

∥f∥HZ≤1

EQ1 [f(Z)]− EQ2 [f(Z)].

(2)
Here, Z is some measurable space, Q1 and Q2 are prob-
ability measures on Z , and HZ is a reproducing kernel
Hilbert space (RKHS) of functions from Z to R with kernel
kZ (Berlinet & Thomas-Agnan, 2011). Applying this gen-
eral definition to the case at hand, we obtain a measure of
accuracy for Q|, defined below.
Definition 3.1 (Augmented Conditional MMD). Let
(X,Y ) ∈ X × Y with law PX ⊗ P|. Let Q| be a condi-
tional probability from X to Y . We define the Augmented
Conditional MMD (ACMMD) between P| and Q| as:

ACMMD(P|, Q|) := MMD(PX ⊗ P|,PX ⊗Q|) (3)

where the MMD is evaluated with a user-specified kernel
kX×Y on X × Y . Here, PX ⊗ P| is defined by (X,Y ) ∼
PX ⊗P| ⇐⇒ X ∼ PX , (Y |X = x) ∼ P|x, and similarly
for PX ⊗Q|.

Choice of kernel for ACMMD The ACMMD requires
specifying a kernel on the joint space X × Y . In this work,
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we will focus on the case where kX×Y is the tensor product
kernel kX ⊗ kY of two kernels kX and kY on X and Y
respectively:

kX×Y((x, y), (x
′, y′)) = kX (x, x′)kY(y, y

′) (4)

This choice is popular in practice, and the resulting
ACMMD retains its desirable properties, as we show next.

The ACMMD is a divergence between conditional proba-
bilities The ACMMD writes as divergence (which is sym-
metric, e.g. a distance) between joint distributions, while
we seek to use it to compare conditional distributions. The
following lemma shows that the same ACMMD can be for-
mulated in alternative manner that highlights its purpose as
a conditional distribution comparator.

Lemma 3.2. Under mild integrability conditions, we have:

ACMMD(P|, Q|) =
∥∥TKX (µP| − µQ|)

∥∥
HX ,HY

Where µP| and µQ| are the conditional mean embeddings
(Park & Muandet, 2020) of P| and Q|, KX (x, x′) :=
kX (x, x′)IHY (here, IHY the identity operator) is an
operator-valued kernel with associated vector-valued RKHS
HX ,HY ⊂ L2

PX
(X ,HY), and TKX is its associated integral

operator from L2
PX

(X ,HY) to HX ,HY . Moreover, if kX
and kY are C0-universal 1, then it holds that:

ACMMD(P|, Q|) = 0 ⇐⇒ P|x = Q|x, PX -a.e.

The complete statement (with the full set of assumptions,
and the definition of integral operators) and its proof can be
found in Appendix A. Lemma 3.2 shows that the ACMMD
can be understood as the result of a two-step procedure,
given by (1) computing the conditional mean embedding
µP| : x 7−→ EP|x [kY(y, ·)|X = x] of P| (resp. of Q|),
which is a function from X to HY , and (2) embed the
difference of these conditional mean embeddings into the
vector-valued RKHS HX ,HY ⊂ L2

PX
(X ,HY) with kernel

KX , before returning its associated RKHS norm. The sec-
ond part of the lemma gives sufficient conditions for the
ACMMD to discriminate between any non (PX–a.e) equal
conditional distributions, fulfilling the requirements speci-
fied in Equation (1): these conditions are to use universal
kernels kX and kY . Regarding kY , this requirement is not
very restrictive, as many universal kernels on sequences
have been shown to be universal (Amin et al., 2023a). The
difficulty in finding a universal kX will depend on the space
X (unspecified in this work) for the problem at hand.

1A kernel k is C0-universal if the associated RKHS Hk is dense
in C0(X ), the space of continuous functions on X vanishing at
infinity (Sriperumbudur et al., 2010)

Estimating the ACMMD from data Crucial to this work
is the fact that if the model Q| can be sampled from for any
x ∈ X , ACMMD 2 will admit tractable unbiased estimators.
To see this, we first rewrite ACMMD 2 in a form that will
make this property apparent.

Lemma 3.3. Let Z := (X,Y, Ỹ ) the triplet of random vari-
ables with law 2 PX⊗P|⊗Q|. Then, under the integrability
assumptions of Lemma 3.2, we have that:

ACMMD2(P|, Q|) = EZ1,Z2
[h(Z1, Z2)]

where Z1, Z2 are two independent copies of Z and h is a
symmetric function given by:

h(Z1, Z2) := kX (X1, X2)g((Y1, Ỹ1), (Y2, Ỹ2))

g((Y1, Ỹ1), (Y2, Ỹ2)) := kY(Ỹ1, Ỹ2) + kY(Y1, Y2)

− kY(Ỹ1, Y2)− kY(Y1, Ỹ2)

Lemma 3.3, proved in Appendix B.2, expresses ACMMD 2

as a double expectation given two independent samples of
(X,Y, Ỹ ) ∼ PX ⊗ P| ⊗ Q|. Leveraging this fact, we can
derive an unbiased and consistent estimator for ACMMD 2.

Lemma 3.4. Let {Xi, Yi, Ỹi}Ni=1
i.i.d∼ PX ⊗ P| ⊗ Q| be

samples from the data and the model. Then an unbiased es-
timator ̂ACMMD2(P|, Q|) of ACMMD2(P|, Q|) is given
by:

2

N(N − 1)

∑
1≤i<j≤N

h((Xi, Yi, Ỹi), (Xj , Yj , Ỹj)) (5)

Lemma 3.4, proved in Appendix B.2, shows that it is pos-
sible to unbiasedly estimate ACMMD2 even when the ana-
lytical model expectations are intractable, provided that one
can sample from the model. This estimator takes the form
of a U-statistics (Serfling, 2009, Chapter 5) with symmetric
probability kernel h, which are well-studied in the statistics
literature. In particular, they provide a generic framework
to obtain minimal-variance analogues of unbiased estima-
tors (Serfling, 2009, Chapter 5, p. 176). ̂ACMMD2 is a
consistent estimator of ACMMD2: under the integrability
assumptions of Lemma 3.2 the strong law of large numbers
applies (Serfling, 2009, Section 5.4, Theorem A), and we
have: ̂ACMMD2(P|, Q|)

a.s.−−−−→
N→∞

ACMMD2(P|, Q|). We

provide a more detailed characterization of the asymptotic
distribution of ̂ACMMD2 in Appendix B.

3.2. Testing Conditional Goodness–of–Fit with ACMMD

In the limit of infinitely many samples, a positive ACMMD
means that the model and the data differ. However, in

2Identifying Q| with its analogue Markov kernel Q̃| from (X ×
Y,X ⊗ Y ) such that Q̃|(x,y)(dy

′) := Q|x(dy
′).
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practice, when only a finite number of samples are avail-
able, our estimate ̂ACMMD2 is only a noisy version of
the true ACMMD2, meaning we cannot conclude whether
the model fits the data by directly inspecting its value. In-
stead, we need a procedure that accounts for the estimation
noise; we achieve this by using the ACMMD as part of a
hypothesis test deciding between two different hypotheses:{

H0 : ACMMD(P|, Q|) = 0

H1 : ACMMD(P|, Q|) > 0

In particular, we construct a test that takes as input a sample
{Xi, Yi, Ỹi}Ni=1 from the data and the model and outputs
a (binary) decision to reject (or not) the null hypothesis
H0 based on whether ̂ACMMD2(P|, Q|) exceeds a certain
threshold. Because of the estimation noise arising from the
use of finitely many samples, such a test cannot system-
atically output the right decision. Nonetheless, we build
our test to ensure a false rejection (e.g. reject H0 while
P| = Q| a.e) rate of α ∈ (0, 1), a common practice in statis-
tical testing (Gretton et al., 2012). To do so, we would like
to set the rejection threshold q1−α to be an estimate of the
1− α quantile of the distribution of ̂ACMMD2(P|, Q|) un-
der H0. However, since q1−α is not available in closed form,
we instead compute an estimate q̂1−α using the wild boot-
strap procedure (Arcones & Giné, 1992). This procedure
draws B samples { ˜ACMMD2

b}Bb=1 of the form:

˜ACMMD2
b :=

2

N(N − 1)

N∑
1≤i<j≤N

W b
i W

b
j h(Zi, Zj) (6)

where {W b
i }b=1...B

i=1...N are i.i.d. Rademacher random variables
independent of the data, from which we compute a quan-
tile estimate q̂1−α of this distribution of samples (see Ap-
pendix C for a precise definition of q̂1−α). Importantly, this
procedure guarantees an exact control of the false rejection
rate at level α. We prove this fact in Appendix C.3, where
we cast the wild bootstrap procedure as a Monte-Carlo es-
timation of the distribution of ̂ACMMD2 when P| = Q|,
which is valid non-asymptotically. Our test, which we call
the ACMMD test, is summarized in Algorithm 1. To the best
of our knowledge, this is the first conditional goodness-of-fit
test that is applicable to sequence models.

4. Assessing Reliability with ACMMD
In practice, our model Q| may not fit the data perfectly, and
it is important to distinguish (at a given level of inaccuracy)
models that remain consistent with their training data from
ones that fail more drastically. In this section, we show how
the ACMMD can be used to evaluate model reliability, a
statistical property capturing model and data consistency.

Problem Setting A model Q| is said to be reliable (Bröcker,
2008; Vaicenavicius et al., 2019; Widmann et al., 2021) if

Algorithm 1 ACMMD Conditional Goodness–of–fit Test

Input: {Xi, Yi, Ỹi}Ni=1
i.i.d.∼ PX ⊗ P| ⊗Q|

Parameters: Level α, kernel kX , kernel kY
// Estimate ACMMD using Equation (5)

̂ACMMD2← 2
N(N−1)

N∑
i,j=1
i<j

h((Xi, Yi, Ỹi), (Xj , Yj , Ỹj))

Sample { ˜ACMMD2
b}Bb=1 using Equation (6)

q̂1−α ← approx. (1− α)-quantile of { ˜ACMMD2
b}Bb=1

if ̂ACMMD2 ≤ q̂1−α then
Fail to reject H0

else
Reject H0

end if

the distribution of the target Y given that the model made a
specific prediction q is this prediction q itself, e.g. if:

q = P
(
Y ∈ · | Q|X = q

)
P(Q|X)–a.e. (7)

Here, Q|X ∈ P(Y) (the space of probability distributions on
Y) is the random variable obtained by evaluating the model
Q| at a random value of the input variable X . Reliability
differs from accuracy in that it does not require the model
to learn all the information between X and Y , but only to
make truthful predictions on average — thus, by assessing
reliability, one may be able to detect models that hallucinate
non-realistic sequences (such as repeats of the same token)
in regions of the input space where they are inaccurate,
instead of making a conservative guess, such as falling back
to the prior disitribution. In particular, reliability can be used
as an additional criterion to discriminate between models
that are equally accurate. From a theoretical perspective,
reliability and accuracy can be handled in a unified manner:
indeed, Equation 7 shows that reliability is defined as an
equality between the conditional distribution of Y given
a model prediction q, PQ

|q := P(Y = ·|Q|X = q) and a
“model” of this conditional distribution mapping q ∈ P(Y)
to itself, e.g. QRel

| : q 7−→ QRel
|q = q. We thus propose to

measure reliability using the ACMMD (a distance between
conditional distributions) between QRel

| and PQ
| .

Definition 4.1 (ACMMD for Reliability). The Augmented
Conditional MMD for reliability (ACMMD–Rel) between
P| and Q| as:

ACMMD–Rel(P|, Q|):= ACMMD(PQ
| , Q

Rel
| )

= MMD(P|Q|X ⊗ PQ
| ,P|Q|X ⊗Q|)

(8)
where the ACMMD is evaluated with a user-specified ker-
nel kP(Y)×Y on P(Y)× Y .

As for the ACMMD, we will restrict our attention to the
case where kP(Y)×Y is a tensor product kernel kP(Y) ⊗ kY
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between a kernel on P(Y) and a kernel on Y . Comparing
the ACMMD–Rel with the ACMMD, we see that the former
requires specifying a kernel on the space of probability
measures on sequences P(Y) instead of a kernel on X . Two
important points must be addressed when working with such
kernels. First, in order to have ACMMD–Rel(P|, Q|) = 0
if and only if Q| is reliable, we must find universal kernels
defined on P(Y). Second, as many kernels on probabilities
are intractable, we must design an approximation strategy
to estimate the ACMMD–Rel from data.

ACMMD–Rel can detect any pattern of unreliability
Our first goal is to ensure that ACMMD–Rel can detect
any pattern of unreliability. As ACMMD–Rel is a specific
instance of the ACMMD, we can apply Lemma 3.2, stating
that if the kernels kP(Y) and kY are universal, then

ACMMD–Rel(P|, Q|) = 0 ⇐⇒ Q| is reliable. (9)

The task of finding a universal kernel kY onY was addressed
in Section 3; thus, it remains to find a universal kernel kP(Y)

on P(Y). However, to the best of our knowledge, none
of the existing kernels defined on probability distributions
(Carmeli et al., 2010; Szabó et al., 2015; 2016; Meunier
et al., 2022; Glaser et al., 2023) have been shown to be
universal when Y is the space of arbitrary-length sequences.
In the next proposition, we show that many such kernels can
be constructed by following a simple recipe.

Proposition 4.2. Let kY be a kernel on Y vanishing at
infinity (on Y × Y). Suppose that kY has discrete masses,
i.e. that δy ∈ HY for all sequences y ∈ Y , where δy is the
Dirac function at y, and let σ > 0. Then the kernel kP(Y)

on P(Y) defined as

kP(Y)(q, q
′) := e−

1
2σ2 MMD2(q,q′), (10)

(where the MMD is computed in HY ) is a C0–universal
kernel on the space of probability distributions P(Y) (un-
der the topology of convergence in distribution or Total
Variation, which are identical, see (Amin et al., 2021)).

The proof, provided in Appendix D.2, relies on an argument
similar to prior work for universal kernels on probability
measures (Carmeli et al., 2010), but tailored to the special
case of sequences. Proposition 4.2 guarantees that any ker-
nel onY vanishing at infinity with the discrete mass property
(Amin et al., 2023a) can be used to construct a universal
kernel on P(Y). Kernels with discrete masses are studied
in detail in (Amin et al., 2023a). In particular, the tilted
Exponentiated Hamming Kernel 1

|y||y′|e
−λdH(y,y′) (where

|y| is the length of the sequence y) is a kernel with discrete
masses vanishing at infinity on Y ×Y , and can thus be used
to construct a universal kernel on P(Y).

Estimating ACMMD–Rel from data To estimate
ACMMD–Rel from the data {Xi, Yi}Ni=1 and samples from
the model {Ỹi ∼ Q|Xi

}Ni=1, one may try to use the gen-
eral ACMMD estimator proposed in Lemma 3.4, which,
specialized to the reliability setting, is given by:

2

N(N − 1)

∑
1≤i<j≤N

h(Zi, Zj)

h(Zi, Zj) := kP(Y)(Q|Xi
, Q|Xj

)g((Yi, Ỹi), (Yj , Ỹj))

This estimator requires evaluating kP(Y)(Q|Xi
, Q|Xj

) for
pairs i, j. Unfortunately, exact evaluation of these quanti-
ties for the universal kernels proposed in Proposition 4.2
is in general impossible, as MMD2(Q|Xi

, Q|Xj
) contains

intractable expectations under Q|Xi
and Q|Xj

. However,
MMDs can be unbiasedly estimated using samples from
Q|Xi

and Q|Xj
(Gretton et al., 2012; Schrab et al., 2022).

Inspired by this fact, we propose the following estimator:

̂ACMMD–Rel 2 :=
2

N(N − 1)

∑
1≤i<j≤N̂

h(Zi, Zj)

ĥ(Zi, Zj) := k̂ij × g((Yi, Ỹi), (Yj , Ỹj))

(11)

Here, k̂ij is an approximation of kP(Y)(Q|Xi
, Q|Xj

) ob-
tained by drawing R samples {Ỹ r

i }Rr=1 and {Ỹ r
j }Rr=1 from

Q|Xi
and Q|Xj

, and replacing the MMD2(Q|Xi
, Q|Xj

)

term in kP by an unbiased estimate M̂MD2
ij computed from

these samples. The full estimation procedure is provided in
Algorithm 2. This additional approximation step has several
implications: first, unlike ̂ACMMD2, ̂ACMMD–Rel 2 is
not unbiased. However, the bias of this estimator can be
controlled by increasing the number of samples R used to
estimate the MMD. Moreover, we show in the next propo-
sition that the estimator ̂ACMMD–Rel 2 is still consistent
provided that R is chosen appropriately.
Proposition 4.3. Assume that kY is bounded. Then, if
R ≡ R(N), with lim

N→∞
R(N) = +∞, ̂ACMMD–Rel 2

converges in probability to ACMMD–Rel 2 as N →∞.

Testing for reliability with ACMMD–Rel As an
ACMMD, ACMMD–Rel has the potential to be used to
test whether a model is reliable given some available data:
to do so, one can use Algorithm 1, replacing ̂ACMMD2 by
̂ACMMD–Rel 2, and performing quantile estimation using

the ĥ(Zi, Zj) instead of the h(Zi, Zj). A full description of
the algorithm is provided in Appendix D.3.1. An important
question to answer is whether the approximation of using ĥ
instead of h affects the false-rejection rate of the test. We
show in the next proposition that this is not the case.
Proposition 4.4. Assume that kY is bounded, and kP(Y)

is a kernel of the form of Equation 10. Then a reliabil-
ity test using ĥ(Zi, Zj) instead of h(Zi, Zj) to estimate
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Algorithm 2 Estimating ACMMD–Rel

Input: {Xi, Yi, Ỹi}Ni=1
i.i.d.∼ PX ⊗ P| ⊗Q|, model Q|

Parameters: kernel kY
for i in 1 to N do

[Ỹ r
i ∼ Q|Xi

for r in 1 to R ]
end for
for i, j in 1 to N do
%Use, e.g. Gretton et al. (2012, Equation 4)

M̂MD
2

ij := estimate mmd({Ỹ r
i }Rr=1, {Ỹ r

j }Rr=1)

ĥij := e−
1

2σ2 M̂MD
2

ij × g((Yi, Ỹi), (Yj , Ỹj))
end for
return

2

N(N − 1)

∑
1≤i<j≤N̂

hij

ACMMD–Rel and its (1 − α)–quantile under H0 has a
false-rejection rate of exactly α.

5. Related Work
Goodness-of-fit methods The goodness-of-fit problem is
a well-studied problem in the statistics and machine learn-
ing literature, for which many methods were developed
(Chwialkowski et al., 2016; Gorham & Mackey, 2017;
Grathwohl et al., 2020; Amin et al., 2023b; Baum et al.,
2023). Impressively, these methods can operate directly
from the model’s analytical form, without requiring access
to samples from the model – which may be hard to generate.
In these works, goodness-of-fit is defined as the problem
of evaluating the fit of unconditional models to their data,
which is unlike the conditional goodness-of-fit problem we
consider here. Evaluating conditional goodness-of-fit with
kernels was recently studied in Jitkrittum et al. (2020). How-
ever, the proposed method requires the output space Y to
be a subset of Rd, and is thus unsuitable for conditional
sequence models. The use of conditional goodness-of-fit
metrics to evaluate reliability was also done in Glaser et al.
(2023), in a method also limited to continuous output spaces.
Finally, we note that ACMMD–Rel 2 recovers an existing
calibration metric, the Squared Kernel Calibration Error
(SKCE) of Widmann et al. (2021). However, the latter did
not study the problems of universality, tractability and test
validity in the case of sequence-valued outputs.

Deep Protein Design Models (Deep Learning–powered)
conditional probability models have gained significant mo-
mentum in computational biology during the last decade.
In particular, such models have revolutionized the protein
design field (Johnson et al., 2023; Bennett et al., 2023). In-
verse folding models are trained on protein structures and
sequences in the protein data bank (PDB) (Ingraham et al.,
2019; Hsu et al., 2022; Dauparas et al., 2022). They con-

dition a sequence distribution on an input protein structure
— thus learning what sequences would likely fold into that
structure. The designs from these methods have been shown
to be highly stable and retain function (Sumida et al., 2024).
However, many of the leaps made using these models have
used small, simple structural scaffolds (like loop-helix-loop
motifs) (Bennett et al., 2023; Watson et al., 2023). Protein
engineers interested in leveraging these tools for novel scaf-
folds need to know how accurate and reliable the model is
on average. If the model is too imprecise, one might wish
to gather more data and train more bespoke models before
using the method to design experiments.

6. Experiments
We now investigate the behavior and utility of the ACMMD
and ACMMD–Rel metrics and tests in practice. We start
with a synthetic example showing that ACMMD is a nat-
ural measure of model distance. We then perform an ex-
tended analysis of a state-of-the-art inverse folding model,
ProteinMPNN. We show that ACMMD can detect small
perturbations in the model, and that it can be used to tune
its temperature parameter. Finally, we analyze the absolute
performance of ProteinMPNN.

6.1. A toy synthetic setting

We first study the behavior of ACMMD and ACMMD–Rel
in a synthetic setting where the data distribution and the
model are simple generative models on sequences. We set
the input variable X to be a single scalar p drawn from some
distribution PX with support in (0.3, 0.5). Y is a sequence
of arbitrary length with alphabet A = {A,B,STOP}. We
set the conditional distribution of Y given p to be:

p(yn|y0:n−1, x = p) =


A with probability p

B with probability p

STOP with probability 1− 2p

so long as yn−1 ̸= STOP. The model distribution Q| is
the same as the data, except for the fact that the first factor
Q|p(y0) is perturbed by a parameter ∆p:

Q|p(y0) =


A with probability p−∆p

B with probability p+∆p

STOP with probability 1− 2p

We set the kernel on Y to be the exponentiated Hamming
distance kernel kY(y, y′) = e−dH(y,y′), where dH(y, y′)
is the Hamming distance between y and y′, and kX to be
the Gaussian kernel kX (p, p′) = e−

1
2 (p−p′)2 . With such

choices, it is possible to show that:

ACMMD(P|, Q|) = C|∆p|

6
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for some C > 0 that does not depend on ∆p, and is com-
putable in closed form for discrete priors on X . The proof
and expression of C are given in Appendix D.4. From this
expression, we immediately see that ACMMD is 0 only if
∆p = 0, a manifestation of Lemma 3.2 which guarantees
that the ACMMD can detect any mismatch between the
model and the data when kX and kY are universal. More-
over, in this case, the ACMMD depends monotonically on
the shift |∆p|. Since |∆p| represents a natural measure of
how different the model is from the data, this fact suggests
that the ACMMD is a natural, well-behaved measure of
model distance. Additionally, we plot the average rejection
rate of the ACMMD test for various number of samples and
shifts in Figure 1. The results for ∆p = 0 confirm that our
test has the correct specified type-I error rate (0.05). More-
over, we see that the power of the test increases with the
number of samples, and the shift |∆p|.

0 500 1000
Num. Samples

−0.05

0.00

0.05

test

ACMMD Estimates

ACMMD2 ̂ACMMD2

0 500 1000
Num. Samples

0.0

0.5

1.0
ACMMD Test: Rejection Rate

α : 0.05
∆p : 0.0

∆p : 0.05
∆p : 0.07

∆p : 0.1
∆p : 0.2

Figure 1. Left panel: ACMMD estimates for a fixed shift value
∆p = 0.25 and various number of samples in the synthetic exam-
ple of Section 6.1. The analytic ACMMD value is given by the
horizontal line. Right panel: ACMMD test average rejection rate
for various number of samples and shifts in the same setting.

6.2. ACMMD Case Study: Inverse Folding Models

To demonstrate the utility of the ACMMD measures and
tests, we apply them to evaluate inverse folding models, a
popular model framework used in protein design. Inverse
folding models seek a distribution of amino acid sequences
that are likely to fold into a given input three-dimensional
structure, as discussed in Section 3. We focus our experi-
ments on evaluating ProteinMPNN (Dauparas et al., 2022),
a sampleable, commonly used model in this class. The sam-
pling temperature T of ProteinMPNN can also be varied,
letting the user control the trade-off between accuracy and
diversity of the generated sequences.

Data We leveraged the CATH taxonomy to select a set of
diverse (in sequence and structural topologies) protein struc-
tures to perform our ACMMD test on. CATH is a taxonomy
of protein structures that categorizes proteins according to
a hierarchy of structural organization (Sillitoe et al., 2021).
We used the S60 redundancy filtered set which includes

proteins that are at least 60% different in sequence identity
from each other. Of these, we selected all single domain
monomers (proteins where only one topological domain is
found in the monomer), and removed any topologies that
had fewer than 10 chains in its classification. This left us
with 17,540 structures.

Choice of kernel Key to the performance of our metrics
is the choice of the kernels kX , kY and kP(Y). For kY ,
we propose to use kernels that first embed each element –
or residue – of a sequence y using an embedding function
ϕY : A×Y 7−→ RdY , and evaluating a euclidean kernel on
RdY on the mean of the resulting embeddings, yielding a
kernel of the form:

kY(y, y
′) = kRdY

 1

|y|

|y|∑
i=1

ϕY(yi, y),
1

|y′|

|y′|∑
i=1

ϕY(y
′
i, y

′)


where we noted y = (y1, . . . , y|y|). As the input space
X is also sequence-valued, we follow the same recipe to
construct our a kernel kX , using an embedding function
ϕX : R3 × X 7−→ RdX . Finally, for the kernel on P(Y),
we will use a kernel of the form of Equation (10), with
kernel kY described above to compute the inner MMD. We
set our embedding functions ϕX and ϕY to a pair of recent
pre-trained neural networks that are commonly used for
representation learning of protein sequences and structures:
Gearnet (Zhang et al., 2023) for structures, and ESM-2 (Lin
et al., 2023) for sequences. Such two-step kernels allow us
to instill the complex structure present in the distribution
of protein structures and sequences within the ACMMD
maximizing the performance and meaningfulness of our
evaluation pipeline. Whether Proposition 4.2 holds for these
kernels is an open question, but we find that they perform
well in our experiments.
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Figure 2. Values of ̂ACMMD2, (left) and of the average rejection
rate of the ACMMD test (right) in the setting described in 6.2.1.
Each line corresponds to a different value for δT .

6.2.1. THE DISCRIMINATIVE POWER OF ACMMD

We first propose to evaluate the behavior of the ACMMD
and its associated test when comparing a known ground
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truth and a model distribution differing from the ground
truth in a controlled manner. To this end, we set the ground
truth to be a pre-trained ProteinMPNN model QT

| with tem-

perature T , and the model to be the same model QT+δT
|

with temperature T + δT . As ProteinMPNN’s probability
distribution is a continuous function of T , small changes
in T result in small changes in the predicted distribution
which will be hard to detect, translating into “low” val-
ues for ̂ACMMD2 relative to larger temperature changes.
Conversely, we posit that large changes in T will result in
large changes in the model distribution, and will be sim-
pler to detect by the ACMMD. To test these hypotheses,
we performed an estimation of ACMMD 2 for a ground
truth temperature T = 0.1 (the default in the ProteinMPNN
documentation) and δT ∈ {0, 0.01, 0.05, 0.1}. We used
the winged helix-like DNA binding domain superfamily
(CATH ID: 1.10.10.10), and performed bootstrap sampling
to produce dataset sizes ranging from 100 to 1000, and
100 different random seeds in order to obtain confidence
intervals of our estimates.
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Figure 3. Values of ̂ACMMD–Rel 2, (left) and of the average
rejection rate of the ACMMD–Rel test (right) in the setting de-
scribed in Section 6.2.1. Each line corresponds to a different value
for δT .

The results are shown in Figure 2. As expected,
ACMMD 2(QT

| , Q
T+δT
| ) robustly increases with increas-

ing values of δT . Additionally, we performed the ACMMD
test of Section 3.2 with a target type-I error rate of α = 0.05,
and 100 permutations to estimate the 1− α quantile of the
null distribution for the same values of N and δT , and
computed the average rejection rate of the null hypothe-
sis H0 : ACMMD2(QT

| , Q
T+δT
| ) > 0, which, if kX and

kY are universal, is equivalent to H0 : δT = 0. The re-
sults, shown in Figure 2 (right), empirically confirm that
the ACMMD test controls its type-I error rate and is able to
detect differences in temperatures of an order relevant for
ProteinMPNN. Similarly, we evaluate the behavior of the
ACMMD–Rel, which is used to assess the (lack of) reliabil-
ity of between model QT+δT

| w.r.t the data P|X ⊗QT
| , the

assumption being that QT+δT
| is not reliable when δT ̸= 0.

The results are shown in Figure 3, and exhibits similar be-
havior.

6.2.2. EVALUATION OF PROTEINMPNN ON THE CATH
DATASET

Now that we have confirmed the discriminative power of
the ACMMD on semi-synthetic data, we use our tests to
evaluate ProteinMPNN against real-world protein structures
and sequences from the CATH dataset. We perform a whole-
data evaluation, using samples of 5000 proteins across all
families in the dataset. Then we perform a fine-grain evalu-
ation on a subset of CATH superfamilies.

Whole-data Evaluation We first study the deviation of
ProteinMPNN from the true data by computing ̂ACMMD2

and estimating its mean and variance by bootstrapping over
10 random seeds. We find that ProteinMPNN with no tem-
perature adjustment (T = 1.0) has an ̂ACMMD2 value of
0.0916 (and a p-value < 0.01). Comparing this to the crite-
rion values obtained on similar dataset sizes in the toy data
experiments demonstrates that the model does not fit the
test data. This suggests that there is still much room for
improvement on solving the inverse folding problem.

On optimal temperature choices for ProteinMPNN
Practitioners vary the sampling temperature as a heuristic
method for sampling more certain sequences from Protein-
MPNN; lower temperature settings have been found to gen-
erate sequences with fewer unrealistic artifacts (e.g. runs of
alanines) which fold to more stable structures (Sumida et al.,
2024). However, the relationship between sampling temper-
ature, model reliability, and design accuracy has not been
fully established. To thoroughly evaluate this, designs from
different sampling temperatures conditioned on a diverse
set of backbone structures would need to be experimen-
tally characterized, which is resourse intensive in practice.
We leverage the ACMMD to understand at what sampling
temperature ProteinMPNN best fits the data, which gives
insight as to what temperature is optimum, by computing
̂ACMMD2 and ̂ACMMD–Rel 2 for varying temperature

values across 10 seeds for each temperature value. The
results are shown in Figure 4.

First, we observe that reducing the temperature below 1.0
improves both the model’s goodness-of-fit and its reliability.
This corroborates the empirical design success of lowering
the sampling temperature, suggesting that greater model fit
may increase the quality of samples from the model. The
decrease in reliability at higher temperature shows that even
though increasing the temperature increases the diversity of
the model’s predictions, this diversity does not necessarily
capture the one of the data distribution, as for instance the
prior would. The optimal temperature from the perspective
of goodness-of-fit is 0.4 (which lies outside the suggested
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temperature range of 0.1-0.3 in the ProteinMPNN docu-
mentation (Dauparas et al., 2022)). However, we notice
that model reliability continues to improve with even lower
sampling temperatures while accuracy slightly increases,
suggesting a trade-off between reliability and accuracy. Fur-
ther experiments will determine how this trade-off manifests
in the quality of designs from low-temperature settings.
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Figure 4. Evolution of ̂ACMMD2 (left) and ̂ACMMD–Rel 2

(right) between a pre-trained ProteinMPNN model and the CATH
S60 reference dataset, for varying temperature values

Structural superfamily evaluation The (H)omologous
superfamily tier within the CAT(H) hierarchy groups pro-
teins with the same similar folds and sequence identity.
While ProteinMPNN has shown great performance in de-
signing particular structural scaffolds, a practitioner aiming
to leverage this model on a yet untested structural family
may want some insight as to how well ProteinMPNN may fit
the distribution of proteins they are interested in. Thus, we
performed ACMMD evaluation separately on individual su-
perfamilies contained in our dataset to gain insights on what
types of structures ProteinMPNN does or does not fit well.
We filtered the superfamilies for groupings with at least 500
proteins under a length of 100, yielding 11 families. The re-
sults are shown in Figure 5. We find that the model fit varies
across families and the fit ranking is largely maintained
at different temperatures. With no temperature adjustment
(T = 1.0) the best fit superfamily (lowest ̂ACMMD2) is the
Homeodomain-like proteins (CATH ID: 1.10.10.60). These
structures are largely dominated by helical bundles - a class
of proteins that ProteinMPNN has demonstrated success
on designing (Dauparas et al., 2022; Watson et al., 2023;
Bennett et al., 2023). While the Immunoglobulin superfam-
ily has the highest fit at lower sampling temperatures, we
note that most of an immunoglobulin structure consists of
the beta sandwich of the framework, while, for antibody de-
sign, engineers are often most interested in the unstructured
complementarity determining regions (CDRs) of antibodies
(Kunik & Ofran, 2013; Liu et al., 2020; Jin et al., 2022). As
the criterion is calculated across the entire sequence, this
may not reflect that ProteinMPNN has learned the distribu-
tion of CDR loops well. Further work will extend these tests
to focus on subsequences of a domain to answer specific
questions of model fit on regions of interest.
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Figure 5. Value of ̂ACMMD2 between ProteinMPNN and the
CATH S60 reference dataset on a subset of 10 superfamilies for
two different temperatures T = 1.0 and T = 0.1.

7. Discussion
Advancing the computational evaluation of conditional se-
quence models is crucial for accelerating the development
of these methods for protein engineering. Given the lim-
itations of current evaluation methods, and leveraging re-
cent advancements in kernel methods for designing tests of
goodness-of-fit and calibration, we propose a criterion and
its associated test to principledly evaluate protein sequence
models for how well they have learned input-conditioned
sequence distributions. We discuss the statistical properties
of our metrics and develop testing frameworks from them.
Finally, we leverage them to investigate the performance
of inverse folding models under default and temperature-
adjusted settings. We develop novel insights on ideal tem-
perature settings for ProteinMPNN and discuss the trade-off
between design accuracy and model calibration that our
tests demonstrate for lower temperatures. Future work can
perform a more fine-grained evaluation, for example inves-
tigating which structures in particular cause the model to
make unreliable predictions and what features of the model’s
predictions do not match the data through the use of witness
functions, a by-product of MMDs (Lloyd & Ghahramani,
2015). We also note that protein engineering goals may
differ from pure modeling goals, and whether performance
under our metrics reflect experimental design success rates
requires further investigation to determine. Yet, barring or-
thogonal in silico validation data or experimental testing,
our methods offer a powerful framework to test conditional
sequence models for desirable statistical properties.

Impact Statement
The tools developed in this work assess the quality of se-
quences predictors. As such, they have the potential to in-
fluence various procedures in protein design, and, on longer
timescales, healthcare. However, the conclusions that they
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provide are only statistical: while they are guaranteed to
hold on average, they will not hold every time. Such tools
should thus be used with caution, and in conjunction with ex-
ternal help from domain experts to ensure that the real-world
actions they will influence remain beneficial to society.
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Szabó, Z., Gretton, A., Póczos, B., and Sriperumbudur, B. K.
Two-stage sampled learning theory on distributions. In
AISTATS, 2015.
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Supplementary Material of the paper Kernel-Based Evaluation of Conditional
Biological Sequence Models

A. Proof of Lemma 3.2
Let us first re-state the lemma in its complete form.

Lemma (Complete form of Lemma 3.2). Assume that X is locally-compact and second countable. Moreover, assume that
kX×Y = kX ⊗ kY , and that kX , kY satisfy the integrability conditions E [kX (X,X)kY(Y, Y )] < +∞ and E [kY(Y, Y )] <
+∞ (and similarly for Ỹ ). Then,

ACMMD2(P|, Q|) =
∥∥TKX (µP| − µQ|)

∥∥2
HX ,HY

Where µP| and µQ| are the conditional mean embeddings (Park & Muandet, 2020) of P| and Q|, given by: µP| : x 7−→
Ey∼P|xkY(y, ·) (and similarly for Q|), KX (x, x′) := kX (x, x′)IHY is an operator-valued kernel with associated vector-
valued RKHS HX ,HY ⊂ L2

PX
(X ,HY), and TKX is its associated integral operator from L2

PX
(X ,HX ,HY ) to HX ,HY ,

defined as

TKX f(x) =

∫
X
KX (x, x′)f(x′)PX(dx′) ∈ HY

for all f ∈ L2
PX

(X ,HY) and x ∈ X . Moreover, if kX and kY are C0-universal 3

ACMMD(P|, Q|) = 0 ⇐⇒ µP|x = µQ|x , PX -a.e.

Proof. Let us introduce the notations used in this proof. Let (Ω,F ,P) be the sample space, X(ω), Y (ω), Ỹ (ω) being
random variables on Ω corresponding to the input, target and the model. When clear, we will identify the measure P and
the push-forwards Y#P, Ỹ#P and drop the dependence of Y, Ỹ on ω. Given x ∈ X , we write Kx the linear operator from
HY to L(X ,HY), the space of linear operators from X toHY , such that (Kxf)(x

′) = KX (x, x′)f ∈ HY for all f ∈ HY .
When no confusion is possible, we may identify the notations kY(y, ·) and ky .

The existence of the conditional mean embeddings µP| and µQ| is guaranteed by (Park & Muandet, 2020, Definition 3.1)
under the integrability assumption

∫
kY(y, y)dP(y) < +∞ and

∫
kY(ỹ, ỹ)dP(ỹ) < +∞. The second integrability

assumption
∫
kX (x, x)kY(y, y)d(PX ⊗ P|)(x, y) =

∫
kX ⊗ kY((x, y), (x, y))d(PX ⊗ P|)(x, y) < +∞ guarantees the

existence of the mean embedding µPX⊗P| , defined as:∫
kX (x, ·)⊗ kY(y, ·)d(PX ⊗ P|)(x, y) ∈ HX ⊗HY

by (Gretton et al., 2012, Lemma 3) (and respectively for Q|). Here,HX ⊗HY is the tensor product Hilbert space ofHX
and HY , with kernel kX ⊗ kY . We actually prove a stronger form of the lemma, given by removing the norm from both
hands of the equality and replacing it with a suitable isometric isomorphism ϕ : HX ⊗HY 7−→ HX ,HY

ϕ(

∫
kX (x, ·)⊗ kY(y, ·)d(PX ⊗ P|)(x, y) =

∫
KxµP|dPX(x)

This isometric isomorphism is shown to exist in the “Currying lemma” of Carmeli et al. (2010, Example 6) regarding tensor
product kernels (note that both X – by assumption – and Y are locally compact and second-countable). This lemma shows
that the mapping:

ϕ : HX ⊗HY −→ F(X ,HY)

f ⊗ g 7−→ ϕ(f ⊗ g) = (x ∈ X 7−→ f(x)g ∈ HY)

is an isometric isomorphism between HX ⊗ HY and HX ,HY . This lemma gives both a representation formula for
elements ofHX ,HY , and a way to formalize the currying operation, (e.g. the transformation of a function of two variables
into a higher-order function of one variable and returning a function of one variable) on tensor-product spaces, since

3A kernel k is C0-universal if the associated RKHS Hk is dense in C0(X ), the space of continuous functions on X vanishing at
infinity (Sriperumbudur et al., 2010)
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(f ⊗ g)(x, y) = (ϕ(f ⊗ g)(x))(y). We refer to Carmeli et al. (2010, Example 6) for a proof. Proceeding with the proof of
Lemma 3.2, when f and g are kernel functions kX (x, ·) and kY(y, ·), the right-hand side of the equality can be related to
Kx as

ϕ(kX (x, ·)⊗ kY(y, ·))(x′) = kX (x, x′)kY(y, ·)
= K⋆

x′KxkY(y, ·)
= Kxky(x

′)

where the second to last equality follows from the reproducing property ofHX ,HY . Since ϕ is linear and unitary, it commutes
with the mean embedding operation: (Dinculeanu, 2000, Theorem 36), yielding:

ϕ(

∫
(kX (x, ·)⊗ kY(y, ·))d(PX ⊗ P|)(x, y)) =

∫
ϕ(kX (x, ·)⊗ kY(y, ·))d(PX ⊗ P|)(x, y)

=

∫
Kxkyd(PX ⊗ P|)(x, y)

To complete the proof, it remains to relate the right-hand side to the conditional mean embedding µP| , using∫
Kxkyd(PX ⊗ P|)(x, y) =

∫∫
KxkydPX(x)dP|x(y)

=

∫
Kx

∫
kydP|x(y)dPX(x)

=

∫
KxµP|(x)dPX(x)

as Kx is a bounded linear operator. We thus have that:

ϕ(

∫
kX (x, ·)⊗ kY(y, ·)d(P|X ⊗ P|)(x, y) =

∫
KxµP|dPX(x)

Combining this with the analogue of this result holding for µQ| allows to show the stronger form of Lemma 3.2. Let us now
prove the second part of the lemma. Assume ACMMD(P|, Q|) = 0, meaning

TKX (µP| − µQ|) = 0

By Carmeli et al. (2010, Theorem 2) KX is a C0-universal operator-valued kernel, the operator TKX is injective. This
implies that the conditional mean embeddings of P|x and Q|x are equal PX–almost everywhere. By Park & Muandet (2020,
Theorem 5.2) applied to the case where the marginals are equal, and since kX ⊗ kY is C0–universal, this implies that
P|x = Q|x, PX–almost everywhere, and in summary, ACMMD(P|, Q|) = 0 implies P|x = Q|x, PX–almost everywhere.
To prove the reverse direction, assume that P|x = Q|x, PX–almost everywhere Since Park & Muandet (2020, Theorem
5.2) also prove the reverse direction of the statement relied upon in the previous argument, we have that conversely
µP|(x) = µQ|(x), PX–almost everywhere. By linearity of TKX , we thus have that TKX (µP| − µQ|) = 0, and therefore
ACMMD(P|, Q|) = 0.

B. Asymptotic distribution of ̂ACMMD2

As discussed in the main text, it is possible to characterize the asymptotic distribution of N ̂ACMMD2. when P| = Q|, and√
N( ̂ACMMD2 −ACMMD2) when P| ̸= Q|. This characterization is given in the next lemma.

Lemma B.1. Assume that the integrability assumptions of Lemma 3.2 hold, and that EZ1,Z2
h(Z1, Z2)

2 < +∞, and that

• if P|x = Q|x P(X)–a.s, then E[ ̂ACMMD] = 0 and

N ̂ACMMD2 d−→
∞∑
j=1

λj(χ
2
1j − 1)

where {χ2
1j}∞j=1 are independent random χ2

1 variables, and λj are the eigenvalues of the operator defined as:

ϕ 7−→
∫

h(z, ·)ϕ(z)dP(z)
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• Assume moreover that kX and kY are C0-universal kernels, and that σ2
h = 4VZ2

[EZ1
h(Z1, Z2)] > 0. Then

√
N( ̂ACMMD2 −ACMMD 2])

d−→ N (0, σ2
h)

Proof. Since EZ1,Z2
h(Z1, Z2)

2 < +∞ we have that VZ1,Z2
EZ1,Z2

h(Z1, Z2)
2 < +∞. Let us define, as in Serfling (2009,

Section 5.1.5), the function h(z) = EZ2h(z, Z2), and define ζ := Vzh. For the first point, we will show that if P| = Q|,
P–a.s, then ζ = 0, and the result will follow from Serfling (2009, Setion 5.5.2). Indeed, noting k = kX ⊗ kY ,

h(z) = EZ2
h(z, Z2)

= EZ2

〈
k((x, y), ·)− k((x, y′), ·), k((X2, Y2), ·)− k(X2, Ỹ2)

〉
=
〈
k((x, y), ·),−k((x, y′), ·),Ez2

[
k((X2, Y2), ·)− k((X2, Ỹ2), ·)

]〉
Where we exchanged the order of integration and inner product, which is possible since h 7−→ ⟨k((x, y), ·)− k((x, ỹ), ·), h⟩
is a bounded linear functional for all (x, y, ỹ). Now,

Ez2k((X2, Y2), ·)− k((X2, Ỹ2), ·) = EPX

[
EP|k((X2, Y2), ·)− EQ|k((X2, Ỹ2), ·)

]
= 0

since P|x = Q|x PX–a.s. Thus, h(z) is a constant function, and ζ = 0. The second case follows by assumption from
Serfling (2009, Section 5.1.1).

B.1. Proof of Lemma 3.3

LetHX×Y := HX ⊗HY be the tensor-product RKHS of functions from X × Y with kernel kX ⊗ kY . The result can be
obtained by applying a “coupling” argument, and starting from the following object:

µPX⊗P|−PX⊗Q| :=

∫
(k((x(ω), y(ω)), ·)− k((x(ω), ỹ(ω)), ·)) dP(ω)

= Ex,y,ỹ [k((x, y), ·)− k((x, ỹ), ·)]
(12)

We first show that µPX⊗P|−PX⊗Q| is a well-defined element ofHX×Y . Indeed, the following operator

T : f ∈ H 7−→ Ezf((x, y))− f((x, ỹ))

satisfies
|Tf | ≤ E [|f(x, y)|+ |f(x, ỹ)|]

≤ ∥f∥HX×Y
(E
√
k((x, y), (x, y))

+ E
√
k((x, ỹ), (x, ỹ)))

and is bounded thanks to the integrability assumptions of Lemma 3.2. Applying the same argument as (Gretton et al., 2012,
Lemma 3), it follows that the object in Equation (12) is well-defined and belongs toHX×Y . Furthermore, by linearity of
integration, we have that: ∫

(k((x(ω), y(ω)), ·)− k((x(ω), ỹ(ω)), ·)) dP(ω)

=

∫
k((x(ω), y(ω)), ·)dP(ω)−

∫
k((x(ω′), ỹ(ω′)), ·)dP(ω′)

= µPX⊗P| − µPX⊗Q|

To conclude, note that:

ACMMD(P|, Q|)
2 =

∥∥µPX⊗P|−PX⊗Q|

∥∥2
HX×Y

=
〈
µPX⊗P|−PX⊗Q| , µPX⊗P|−PX⊗Q|

〉
HX×Y

= ⟨Ex,y,ỹ [k((x, y), ·)− k((x, ỹ), ·)] ,Ex,y,ỹ [k((x, y), ·)− k((x, ỹ), ·)]⟩HX×Y

= Ex1,y1,ỹ1
Ex2,y2,ỹ2

h((x1, y1, ỹ1), (x2, y2, ỹ2))
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Where the last equality was obtained by exchanging the order of integration and dot product, possible thanks to the
integrability assumptions of Lemma 3.2, by using the bilinearity of the inner product and the reproducing property of the
kernel k. The symmetry of h in (Z1, Z2) follows from the symmetry of kX ⊗ kY .

B.2. Proof of Lemma 3.4

Proof. The proof of the unbiasedness of ̂ACMMD2 follows by linearity of the expectation, and that each
h((Xi, Yi, Ỹi), (Xj , Yj , Ỹj)) is an unbiased estimator of ACMMD 2(P|, Q|).

C. Type-I error control of the ACMMD test
The goal of this section is to show that the ACMMD test is guaranteed to control its type-I error rate at level α.

C.1. Quantile estimation and Decision Rule

We first fully specify the way we compute our quantile estimate q̂1−α. Let bα := ⌈(1− α)(B + 1)⌉. Given B bootstrap
samples { ˜ACMMD2

b}Bb=1 and an ̂ACMMD2 estimate, we order them in increasing order in a sequence of size B + 1,
with ties broken arbitrarily. Let m = min{b ∈ [[1, B + 1]] | ˜ACMMD2

b = ˜ACMMD2
bα
}, and M = max{b ∈ [[1, B +

1]] | ˜ACMMD2
b = ˜ACMMD2

bα
}. We set q̂1−α to be the (m− 1)-th element with probability (bα − (1− α)(B + 1))/(M −

m + 1) (with the convention that the 0-th element is −∞), and the bα-th element otherwise The decision rule is then to
reject the null hypothesis if ̂ACMMD2 > q1−α.

C.2. Wild-bootstrap and permutation-based approaches are equivalent in the ACMMD test

To show that the ACMMD test is guaranteed to control its type-I error rate at level α, we show that the use of a wild
bootstrap procedure in the ACMMD test can be cast as a computationally efficient way to approximate the quantiles of the
random variable ̂ACMMD2 when P|x = Q|x PX–a.e.

Lemma C.1. Let {Zi}Ni=1 be i.i.d realizations of PX ⊗ P| ⊗ Q|, and let {W b
i }b=1...B

i=1...N be i.i.d. Rademacher random
variables independent of the data. Given a function σ : [[1, N ]] 7−→ {−1, 1}, define {Zσ

i }Ni=1 := {Xi, Y
σ
i , Ỹ σ

i }Ni=1, where
(Y σ

i , Ỹ σ
i ) = (Yi, Ỹi) if σ(i) = 1, and (Ỹi, Yi) otherwise. Then we have:

˜ACMMD2
b =

2

N(N − 1)

N∑
i,j=1
i<j

h(Zσb
i , Zσb

j ) := ̂ACMMD2
σb

for σb(i) := W b
i .

The W b
i should be understood as elements of a random swap σb, which for each i, swaps Yi and Ỹi with probability 1/2.

Proof. Without loss of generality, we fix i = 1 and j = 2, and fix b, dropping the b index. Note that h(Z1, Z2) and
h(Zσ

1 , Z
σ
2 ) share the same kX (X1, X2). The only differing term is

g((Y1, Ỹ1), (Y2, Ỹ2)) := kY(Y1, Y2)) + kY(Ỹ1, Ỹ2)− kY(Y1, Ỹ2)− kY(Ỹ
1, Y 2)

and we only need to show that W1W2g((Y1, Ỹ1), (Y2, Ỹ2)) = g((Y σ
1 , Ỹ σ

1 ), (Y σ
2 , Ỹ σ

2 )).

Case W 1 = W 2 = 1 In that case, Z1 = Zσ
1 and Z2 = Zσ

2 , and W1W2h(Z1, Z2) = h(Z1, Z2) = h(Zσ
1 , Z

σ
2 ). by

definition of σ.

Case W1 = W2 = −1 In that case, we have:

g((Y σ
1 , Ỹ σ

1 ), (Y σ
2 , Ỹ σ

2 )) = k(Ỹ1, Ỹ2) + k(Y1, Y2)k(Ỹ1, Y2)− k(Y1, Ỹ2)) = h(Z1, Z2)

implying again W1W2h(Z1, Z2) = h(Z1, Z2) = h(Zσ
1 , Z

σ
2 ).
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Case W1 = 1 and W2 = −1 In that case, we have:

h(Zσ
1 , Z

σ
2 ) = k((X1, Y1), (X2, Ỹ2)) + k((X1, Ỹ1), (X2, Y2))− k((X1, Y1), (X2, Y2))− k((X1, Ỹ1), (X2, Ỹ2))

= −h(Z1, Z2)

meaning again W1W2h(Z1, Z2) = −h(Z1, Z2) = h(Zσ
1 , Z

σ
2 ), and the last case is proved similarly.

C.3. Level of the ACMMD test

We now show that the ACMMD test has the desired type-I error rate.

Lemma C.2. Assume that P|x = Q|x PX–a.s. Then the probability that the ACMMD test rejects the null hypothesis is
exactly α.

The proof consists in 2 steps. First, we show that the decision rule is equivalent to a simpler one. Then, we analyze the latter
decision rule.

An equivalent decision rule This decision rule is equivalent to the one rejecting H0 if the position Q (with ties
broken uniformly at random) of ̂ACMMD2 in that sequence satisfies Q > bα, accepting it if Q < bα, and rejecting
it with probability bα − (1 − α)(B + 1) if Q = bα: Indeed, Q > M ⇐⇒ ̂ACMMD2 > q1−α (we always reject),
Q < m ⇐⇒ ̂ACMMD2 ≤ q1−α (we never reject), and for both rules, when the random position Q is in [[m,M ]], the null
is rejected with probability (bα − α(B + 1))/(M −m+ 1).

Analysis of the decision rule We derive the type-I error of our decision rule by analyzing the equivalent, latter one.
Our analysis follows a similar argument, in flavor, as Domingo-Enrich et al. (2023, Appendix C). Now, recall that from
Lemma C.1, the wild bootstrap quantile estimation are draws of ̂ACMMD on swapped samples Zσ , e.g. {Xi, Y

σ
i , Ỹ σ

i }Ni=1

parameterized by σ : [[1, N ]] 7−→ {−1, 1} where Y σ
i = Yi if σ(i) := wi and Y σ

i = Ỹi otherwise:

( ˜ACMMD2
b)

B
b=1 = ( ̂ACMMD2

σb
)Bb=1

using the notation of Lemma C.1. Note that σ is a random swap operator such that σ(i) = 1 with probability 0.5,
and σ(i) = −1 with probability 0.5. If P|x = Q|x a.e., then since the B swap maps σ1, . . . , σB are i.i.d. let us note
̂ACMMD2

σ0
= ̂ACMMD2, e.g. σ0(i) = 1. Then the random sequence ( ̂ACMMD2

σb
)Bb=0 is exchangeable. Since Q is the

position of ̂ACMMD2 within that sorted sequence, and that all positions are equally likely under exchangeability, we have:

P [Q < m] = 1/(B + 1)

P [Q > bα] = (B + 1− bα) /(B + 1)

P [Q < bα] = (bα − 1) /(B + 1)

Noting ∆((Xi, Y i, Ỹ i)Ni=1) the event that the null hypothesis is rejected, we have:

P
[
∆((Xi, Y i, Ỹ i)Ni=1)

]
= P [Q > bα] + P [Q = bα]P[Reject|Q = bα]

= (B + 1− bα) /(B + 1) + (bα − (1− α)(B + 1)) /(B + 1) = α,

thus showing that the ACMMD test has the desired type-I error rate.

D. Proofs related to ACMMD–Rel
D.1. Differences between the SKCE U-statistics and the ACMMD U-statistic

We recall the definition of the SKCE U-statistics estimator from (Widmann et al., 2021, Lemma 2):

ŜKCE =
2

N(N − 1)

∑
1≤i<j≤N

G((Q|Xi
, Yi), (Q|Xj

, Yj)) (13)
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where

G((q, y), (q′, y′)) := kP(Y)×Y((q, y), (q
′, y′))− EY∼qkP(Y)×Y((q, Y ), (q′, y′))

− EY ′∼q′kP(Y)×Y((q, y), (q
′, Y ′)) + EY∼qEY ′∼q′kP(Y)×Y((q, Y ), (q′, Y ′)).

= kP(Y)(q, q
′)× (kY(y, y

′)− EY∼qkY(Y, y
′)− EY ′∼q′kY(y, Y

′) + EY∼qEY ′∼q′kY(Y, Y
′))

(14)

Where the second equality holds when focusing on tensor product kernels. Comparing Equation (13) and Equation (14) with
the expression of the ACMMD U-statistics estimator given in Equation (5) and Lemma 3.3, we see that the SKCE population
criterion equals the ACMMD. However, the SKCE U-statistics estimator is different from the ACMMD U-statistics estimator:
while the ACMMD U-statistics only requires samples the conditional distributions Q|X , the SKCE U-statistics contains
expectations over the conditional distributions Q|X , which are rarely available in practice.

D.2. Proof of Proposition 4.2

Proof. We will show that the image of q 7→ µq is compact, and the result will follow from (Christmann & Steinwart, 2010).
LetM(Y) the Banach space of measures of sequences endowed with the total variation norm:

∥q∥TV := q+(Y) + q−(Y)

We recall that by the Riesz-Markov theorem, (M(Y), ∥ · ∥TV) can be identified with the topological dual of C0(Y),
(C0(S)⋆, ∥ · ∥op) through an isometric isomorphism q ∈M(Y) 7−→ q̃ ∈ C0(Y)⋆, and for which the following holds:

q̃(f) =

∫
Y
fdq, ∀f ∈ C0(Y).

Let B := {q ∈ M(Y) | ∥q∥TV ≤ 1}. As a unit ball, by the Banach-Alaoglu theorem, B is compact under the weak–⋆
topology and contains all distributions on sequences. We will show that q 7→ µq is continuous on B and the result will follow.
Given that this mapping is linear, it is sufficient to show continuity at 0. Moreover, since {B(0H, r)}r>0 is a neighborhood
basis of (H, ∥ · ∥H), it suffices to show that there is a neighborhood V of the null measure in the weak-⋆ topology such that
∥
∫
kY(y, ·)dq(y)∥2H =

∫
kY(y, y

′)d(q ⊗ q)(y, y′) < 1 for all q in V . Since the family

{q ∈M(Y),
∫

fi(x)dq(x) < ϵ, i ∈ 1, . . . k, fi ∈ C0(Y)}

form a neighborhood basis of the weak-⋆ topology, we can consider candidates of this form for V . In particular, let us set
{fi} = {x 7−→

√
kY(x, x) ∈ C0(Y)}, since kY ∈ C0(Y × Y), and ϵ = 0.5. On this neighborhood, we have:∫
k(y, y′)dq(y)dq(y′) ≤

∫ √
k(y, y)× k(y′, y′)dq(y)dq(y′) ≤ 0.52 < 1, ∀q ∈ V

showing the continuity of the map in question. As a consequence, the image of BM(S)(0, 1) by the map q 7−→ µq is
compact, implying from (Christmann & Steinwart, 2010) that the kernel

k̃(f, g) := exp(− 1

2σ2
∥f − g∥2H)

is universal on that set. Thus, we have shown that k̃ is universal onH under the strong topology (e.g. the norm topology in
H). This is equivalent to the TV topology of P(S) since k has discrete masses by proposition 9 of (Amin et al., 2023a), and
thus kP(Y) is universal on P(Y).

D.3. Proofs regarding the impact of approximate kernels

To prove the convergence of the ACMMD–Rel estimator and the validity of its test, we rely on an augmented U-statistics
formulation. Let:

U := (Q|X , Ỹ 1, . . . , Ỹ R, Ỹ , Y ) ∼ PQ|X ⊗Q⊗r
| ⊗Q| ⊗ PQ

| := U

U is the random variable which, for each model Q|X , concatenates the synthetic samples (Ỹ 1, . . . , Ỹ R) used to perform the
kernel approximation k̂P(Y)(q, q

′), the synthetic sample Ỹ used to evaluate h, and Ỹ , a sample from PQ
| the conditional
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Algorithm 3 ACMMD–Rel Conditional Goodness of fit Test

Input: {Xi, Yi, Ỹi}Ni=1
i.i.d.∼ PX ⊗ P| ⊗Q|

Parameters: Level α, kernel kX , kernel kY
// Estimate ACMMD–Rel using Algorithm 2 and collect the ĥ(Zi, Zj) of Equation (11)
̂ACMMD–Rel 2, {h(Zi, Zj)}1≤i<j≤N ← estimate acmmd rel({Xi, Yi, Ỹi}Ni=1, Q|Xi

)

[W b
i ∼ Rademacher for i ∈ 1, . . . , N for b ∈ 1, . . . , B]

[ ˜ACMMD2
b ← 2

N(N−1)

∑
1≤i<j≤N

W b
i W

b
j ĥ(Zi, Zj), for b in 1, . . . , B]

// See Appendix C.1 for how to compute q̂1−α

q̂1−α ← approx. (1− α)-quantile of { ˜ACMMD2
b}Bb=1

if ̂ACMMD2 ≤ q̂1−α then
Fail to reject H0

else
Reject H0

end if

distribution of Y given Q|X . Then, given N realizations {Ui}Ni=1, of U , the estimator ̂ACMMD–Rel 2 can be written as a
U-statistics on the {Ui}Ni=1

̂ACMMD–Rel 2 =
2

N(N − 1)

∑
1≤i<j≤N

ha(Ui, Uj)

where
ha(Ui, Uj) := k̂({Ỹ r

i }Rr=1, {Ỹ r
j }Rr=1)× (kY(Yi, Yj) + kY(Ỹi, Ỹj)− kY(Yi, Ỹj)− kY(Ỹi, Yj))

We also will note
ACMMD 2

a := EU1,U2∼U⊗U ha(U1, U2)

D.3.1. PROOF OF PROPOSITION 4.4

With this formalism, we now prove that the ACMMD–Rel test has the specified type-I error rate of α ∈ (0, 1), e.g. rejects
H0 when P|x = Q|x with probability α. Indeed, straightforward adaptations of the arguments in Appendix C.2 show that
that doing a wild bootstrap using the ĥ(Zi, Zj) is equivalent to estimating

2

N(N − 1)

∑
1≤i<j≤N

ha(U
σ
i , U

σ
j ) := ̂ACMMD–Rel 2σb

where Uσ
i := (Q|Xi

, Ỹ 1
i , . . . , Ỹ

R
i , Ỹ σ

i , Y σ
i ), where (Y σ

i , Ỹ σ
i ) = (Yi, Ỹi) if σ(i) = 1 and (Ỹi, Yi) otherwise. The same

argument to show that ACMMD test has the desired type-I error rate follows in this case too: Under P|x = Q|x, the sequence
{ ̂ACMMD–Rel 2σb

}Bb=0 is exchangeable (noting ̂ACMMD–Rel 2σ0
= ̂ACMMD–Rel 2, e.g. σ0(i) = 1 for all 1 ≤ i ≤ N ),

and we can repeat the derivations of the proof of Lemma C.2 to show that the ACMMD–Rel test has the desired type-I error
rate.

D.3.2. PROOF OF PROPOSITION 4.3

We prove a slightly more general version of the proposition, for kernels of the form ϕ(d(q, q′)2), where ϕ is a Lipschitz
function and d is a distance on P(Y). Setting ϕ = e−

·
σ2 , we recover the kernels of Proposition 4.3, which include the

exponentiated MMD kernel.

Proposition D.1. Assume that kY and kP(Y) is a kernel of the form kP(Y)(q, q
′) = ϕ(d(q, q′)), for a Lipschitz function ϕ

and a function d(q, q′) admitting an unbiased estimator of the form d̂({yr1}Rr=1, {yr2}Rr=1) where {yr1}rr=1 and {yr2}rr=1 are
R i.i.d samples of q and q′ respectively, with variance O( 1

R ) (the bound in uniform in q and q′). Then, assuming R ≡ R(N),
with lim

N→∞
R(N) = +∞, ̂ACMMD–Rel 2 converges in probability to ACMMD–Rel 2 as N →∞.
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Proof. As discussed above, the estimator ̂ACMMD–Rel 2 can be written as a U-statistics on the {Ui}Ni=1, where Ui =
(Q|Xi

, Ỹ 1
i , . . . , Ỹ

R
i , Ỹi, Yi), and using the kernel ha defined as (accounting approximating kY through d directly)

ha(Ui, Uj) := ϕ(d̂({Ỹ r
i }Rr=1, {Ỹ r

j }Rr=1))× (kY(Yi, Yj) + kY(Ỹi, Ỹj)− kY(Yi, Ỹj)− kY(Ỹi, Yj))

e.g.

̂ACMMD–Rel 2 =
2

N(N − 1)

∑
i<j

ha(Ui, Uj)

To study the convergence in probability of ̂ACMMD2
a to ACMMD2

a, we use finite-sample bounds on U -statistcs Hoeffding
(1994):

P

(
| ̂ACMMD2

a −ACMMD 2
a| > ∥ha∥∞

√
log(2/δ)

2⌊N/2⌋

)
≤ δ

for all δ > 0, where, by assumption, kY bounded, and k̂P(Y) is of the form ϕ(d̂({yr1}Rr=1, {yr2}Rr=1)) for some bounded
function ϕ, implying that ha is bounded. To show the dependence in R, we bound the difference ACMMDa and ACMMD.

|ACMMD 2
a −ACMMD 2| = EU,U

[
(k̂P(Y)({Y r

1 }Rr=1, {Y r
2 }Rr=1)− kP(Y)(Q|X1

, QX2))× (kY(Y1, Y2) + kY(Ỹ1, Ỹ2)

−kY(Y1, Ỹ2)− kY(Ỹ1, Y2))
]

≤ 4 ∥kY∥∞ |EPQ|⊗Q⊗r×PQ|⊗Q⊗r k̂P(Y)({Y r
1 }Rr=1, {Y r

2 }Rr=1)− kP(Y)(Q|X1
, QX2

)|

≤ 4 ∥kY∥∞ ∥ϕ∥Lip EPQ|⊗Q⊗r×PQ|⊗Q⊗r |d̂({Y r
1 }Rr=1, {Y r

2 }Rr=1)− d(Q|X1
, QX2

)|
≤ 4 ∥kY∥∞ ∥ϕ∥Lip×

EPQ|×PQ|

[
EQ⊗r×Q⊗r |d̂({Y r

1 }Rr=1, {Y r
2 }Rr=1)− d(Q|X1

, QX2
)|
∣∣∣ Q|X1

, QX2

]
≤ 4 ∥kY∥∞ ∥ϕ∥Lip EPQ|×PQ|

[√
VQ⊗r×Q⊗r d̂({Y r

1 }Rr=1, {Y r
2 }Rr=1)

∣∣∣ Q|X1
, QX2

]
Where the last inequality follows from Jensen’s inequality and the unbiasedness of d̂. The result follows by applying the
assumption on the variance of d̂ (a bound which we assume is uniform in Q|X)1, Q|X2

).

The term VQ⊗r×Q⊗r

[
d̂({Y r

1 }Rr=1, {Y r
2 }Rr=1)|Q|X1

, Q|X2

]
can be more precisely characterized depending on d̂. For

instance, we have, when d̂ is a U-statistics (for instance, using the MMD estimator of Gretton et al. (2012, Lemma 6, Equation
4)) , that (Serfling, 2009, section 5.2.1) VQ⊗r×Q⊗r d̂({Y r

1 }Rr=1, {Y r
2 }Rr=1) < ζ(Q1, Q|X2

)/R, where ζ(Q|X1
, Q|X2

) :=

V(Y1,Ỹ1),(Y2,Ỹ2)∼Q|X1
⊗Q|X2

(h̃((Y1, Ỹ1), (Y2, Ỹ2)) and h̃((Y1, Ỹ1), (Y2, Ỹ2)) = kY(Y1, Y2) + kY(Ỹ1, Ỹ2) − kY(Y1, Ỹ2) −
kY(Ỹ1, Y2), which is uniformly bounded by 4 ∥kY∥∞ for bounded kernels. Putting the two parts together, we thus have that:

P

({
̂ACMMD2

a −ACMMD2
}
> 4 ∥kY∥∞

√
log(2/δ)

2⌊N/2⌋ +
16 ∥kY∥2∞ ∥ϕ∥Lip√

R

)
≤ δ

for all δ > 0, showing the convergence in probability of ̂ACMMDa to ACMMD.

D.4. Additional Details for ACMMD and ACMMD–Rel in the synthetic example

D.4.1. DERIVATIONS OF ACMMD IN THE SYNTHETIC EXAMPLE

We first prove that ACMMD is proportional to ∆p.

Lemma D.2. In the setting described in Section 6.1, we have

ACMMD2(P|, Q|) = C ×∆p2
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for

C :=

∫∫
kX (p, p′)2(1− e−λ)

(1− 2p)(1− 2p′)

1− 4pp′(1 + e−λ)/2

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
dPX(p)dPX(p′)

Proof. Recall that we have

ACMMD2 = MMD2(PX ⊗ P|,PX ⊗Q|)
2 =

∫
kX (p, p′) (T11 + T22 − 2T12) dPX(p)dPX(p′)

where

T12 =

∫
kY(y, y

′)p(y|p)q(y′|p′)d(y)d(y′)

and T22 and T12 are defined similarly. For a sequence y, we define the the function len given by len(y) :=
min {i ∈ N|yi = STOP}, which intuitively returns the length of the sequence.

Computing Tij As we will see, a lot of the computations are agnostic to whether we are computing T11, T22 or T12. Note
that the exponentiated hamming distance kernel on Y writes as a product

kY(y, y
′) = e−λdH(y,y′) = e−λy

∑∞
i=0 δ(yi ̸=y′

i) =

∞∏
i=0

e−λδ(yi ̸=y′
i) =

max(len(y),len(y′))∏
i=0

e−λδ(yi ̸=y′
i)

let us define the following events

F (m) :=
{
min(len(y), len(y′)) = m

}
G(m, δm) :=

{
max(len(y), len(y′)) = m+ δm

}
which we further break down as

F1(m) = {len(y) = m} ∩ {len(y′) > m}
F2(m) = {len(y) > m} ∩ {len(y′) = m}
F3(m) = {len(y) = m} ∩ {len(y′) = m}

=⇒ F (m) = F1(m) ∪ F2(m) ∪ F3(m)

For which the following probabilities hold:

P (F1(m)) = P (len(y) = m)× P (len(y′) > m) = ((2p)m × (1− 2p))× (2p′)m+1

P (F2(m)) = P (len(y′) = m)× P (len(y) > m) = ((2p′)m × (1− 2p′))× (2p)m+1

P (F3(m)) = P (len(y′) = m)× P (len(y) = m) = ((2p′)m × (1− 2p′))× ((2p)m × (1− 2p))

P (G(m, δm)|F1(m)) = P (len(y′) = m+ δm|len(y) = m, len(y′) > m) = (2p′)δm−1 × (1− 2p′)δ(δm≥1)

P (G(m, δm)|F2(m)) = P (len(y) = m+ δm|len(y′) = m, len(y) > m) = (2p)δm−1 × (1− 2p)δ(δm≥1)

P (G(m, δm)|F3(m)) = δ(δm = 0)

Let us note
E(m, δm, i) := Fi(m) ∩G(m, δm)

We have that E(m, δm, i) ∩ E(m′, δm′, j) = ∅ if (m, δm, i) ̸= (m′, δm′, j).

Ω =

+∞⋃
m=0

3⋃
i=1

+∞⋃
δm=0

E(m, δm, i)
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Using the law of total probability, we have that Thus, using the law of total probability:

Tij(p, p
′) =

+∞∑
m=0

3∑
i=1

+∞∑
δm=0

P(E(m, δm, i))E(e−λdH(y,y′)|E(m, δm, i))

=

+∞∑
m=0

3∑
i=1

+∞∑
δm=0

P(Fi(m) ∩G(m, δm))E(e−λdH(y,y′)|E(m, δm, i))

=

+∞∑
m=0

3∑
i=1

P(Fi(m))

+∞∑
δm=0

P (G(m, δm)|Fi(m))E(e−λdH(y,y′)|E(m, δm, i))

=

+∞∑
m=0

3∑
i=1

P(Fi(m))E(e−λdH(y:m,y′
:m)|Fi(m))

×
+∞∑
δm=0

P (G(m, δm)|Fi(m))E(e−λdH(ym+1:m+max(δm,1),y
′
m+1:m+max(δm,1)) |E(m, δm, i), p, p′)

=

+∞∑
m=0

3∑
i=1

P(Fi(m))E(e−λdH(y:m,y′
:m)|Fi(m))×

+∞∑
δm=0

P (G(m, δm)|Fi(m))e−λ(max(0,δm−1)+δ(m>0))

=

+∞∑
m=0

3∑
i=1

P(Fi(m))E(e−λdH(y:m,y′
:m)|Fi(m))

max(m−1,1)∏
i=1

E(e−λδ(yi ̸=y′
i)|Fi(m)))

δ(m≥2)

×
+∞∑
δm=0

P (G(m, δm)|Fi(m))e−λ(max(0,δm−1)+δ(m>0))

where we break down the factorized hamming distance over the sequence into the sum of the hamming distances over each
coordinate, and made use of the fact that

dH(ym:m+δm, y′m:m+δm) = max(0, δm− 1) + δ(m > 0)

conditioned on Fi(m) and G(m, δm). The disjunction of cases is necessary in order to not count the term 0th term twice in
the event when m = 0. This representation is convenient since whenever m ≥ 2, for any 1 ≤ i ≤ m− 1,

P (δ(yi, y
′
i) = 1|Fi(m)) =

(pp′) + (pp′)

(p+ p)× (p′ + p′)
=

1

2
= P (δ(yi, y

′
i) = 0|Fi(m))

meaning we have

Tij(p, p
′) =

+∞∑
m=0

3∑
i=1

E(e−λδ(y0 ̸=y′
0)|Fi(m))P(Fi(m))

(
1 + e−λ

2

)max(m−1,0)

×
+∞∑

δm=0

P (G(m, δm)|Fi(m))e−λ(max(0,δm−1)+δ(m>0))
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Inserting the relevant event probabilities into the expression for Tij , we have

Tij(p, p
′) =

+∞∑
m=0

(
1 + e−λ

2

)max(m−1,0)

×
(
E(e−λδ(y0 ̸=y′

0)|F1(m))(2p)m × (1− 2p)(2p′)m+1 × (1− 2p′)e−λδ(m>0)
+∞∑
δm=1

e−λ(δm−1)(2p′)δm−1

+ E(e−λδ(y0 ̸=y′
0)|F2(m))(2p′)m × (1− 2p′)(2p)m+1 × (1− 2p)e−λδ(m>0)

+∞∑
δm=1

e−λ(δm−1)(2p)δm−1

+ E(e−λδ(y0 ̸=y′
0)|F3(m))(2p′)m × (1− 2p′)(2p)m(1− 2p)

)

=

+∞∑
m=0

(
1 + e−λ

2

)max(m−1,0)

×
(
E(e−λδ(y0 ̸=y′

0)|F1(m))(2p)m × (1− 2p)(2p′)m+1 × (1− 2p′)e−λδ(m>0)
+∞∑
δm=0

e−λδm(2p′)δm

+ E(e−λδ(y0 ̸=y′
0)|F2(m))(2p′)m × (1− 2p′)(2p)m+1 × (1− 2p)e−λδ(m>0)

+∞∑
δm=0

e−λδm(2p)δm

+ E(e−λδ(y0 ̸=y′
0)|F3(m))(2p′)m × (1− 2p′)(2p)m(1− 2p)

)

=

+∞∑
m=0

(
1 + e−λ

2

)max(m−1,0)

×
(
E(e−λδ(y0 ̸=y′

0)|F1(m))(2p)m × (1− 2p)(2p′)m+1 × (1− 2p′)× e−λδ(m>0)

1− 2p′e−λ

+ E(e−λδ(y0 ̸=y′
0)|F2(m))(2p′)m × (1− 2p′)(2p)m+1 × (1− 2p)× e−λδ(m>0)

1− 2pe−λ

+ E(e−λδ(y0 ̸=y′
0)|F3(m))(2p′)m × (1− 2p′)(2p)m(1− 2p)

)

Now, some simplification arise when m ≥ 1. Indeed, in that case, E(e−λδ(y0,y
′
0)|Fi(m)) is independent of i. Noting

T 1
ij(p, p

′) the sum of the terms for m ≥ 1, we thus have

T 1
ij(p, p

′) =

+∞∑
m=1

E(e−λδ(y0 ̸=y′
0)|F (m))

(
1 + e−λ

2

)m−1

×
(
(2p)m × (1− 2p)(2p′)m+1 × (1− 2p′)× e−λ

1− 2p′e−λ

+ (2p′)m × (1− 2p′)(2p)m+1 × (1− 2p)× e−λ

1− 2pe−λ

+ (2p′)m × (1− 2p′)(2p)m(1− 2p)

)
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Noting Aij the term E(e−λδ(y0 ̸=y′
0)|F (m)), which is constant for all m ≥ 1

T 1
ij(p, p

′) = Aij

+∞∑
m=1

(
1 + e−λ

2

)m−1

×
(
(2p)m × (1− 2p)(2p′)m+1 × (1− 2p′)× e−λ

1− 2p′e−λ

+ (2p′)m × (1− 2p′)(2p)m+1 × (1− 2p)× e−λ

1− 2pe−λ

+ (2p′)m × (1− 2p′)(2p)m(1− 2p)

)

= Aij(1− 2p)(1− 2p′)4pp′(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1)

+∞∑
m=0

(4pp′(1 + e−λ)/2)m

= Aij ×
(1− 2p)(1− 2p′)4pp′

1− 4pp′(1 + e−λ)/2

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
= C ×Aij

where

C(p, p′) =
(1− 2p)(1− 2p′)4pp′

1− 4pp′(1 + e−λ)/2

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
is a constant that does not depend on i, j. We compute the m = 0 sum, noted T 0

ij(p, p
′). We have

T 0
ij(p, p

′) =

(
E(e−λδ(y0 ̸=y′

0)|F1(0))× (1− 2p)(2p′)× (1− 2p′)× 1

1− 2p′e−λ

+ E(e−λδ(y0 ̸=y′
0)|F2(0))× (1− 2p′)(2p)× (1− 2p)× 1

1− 2pe−λ

+ E(e−λδ(y0 ̸=y′
0)|F3(0))× (1− 2p′)(1− 2p)

)
And we need to compute the terms E(e−λδ(y0 ̸=y′

0)|Fi(0)) indivdually.

i=1, i=2 For i = 1, we must have y0 ̸= y′0, since y0 = STOP, and len(y′) > 0. Thus, E(e−λδ(y0 ̸=y′
0)|F1(0)) = e−λ.

Similarly, E(e−λδ(y0 ̸=y′
0)|F2(0)) = e−λ.

i=3 In that case, we must have y0 = y′0 = STOP, since len(y) = len(y′) = 0. Thus, E(e−λδ(y0 ̸=y′
0)|F3(0)) = 1.

Putting this together, we have

T 0
ij(p, p

′) = (1− 2p)(1− 2p′)

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
With that notation, we have:

ACMMD2(P|,Q|) =

∫
kX (p, p′)C(p, p′)(A11 +A22 − 2A12)dPX(p)dPX(p′)

+

∫
kX (p, p′)(T 0

11(p, p
′) + T 0

22(p, p
′)− 2T 0

12(p, p
′))dPX(p)dPX(p′)

=

∫
kX (p, p′)C(p, p′)(A11 +A22 − 2A12)dPX(p)dPX(p′)

since T 0
ij does not depend on i, j. We can narrow the variation down even further: by noting pAij = P (δ(yi ̸= y′i) = 0|F (m))

(resp pBij = P (δ(yi ̸= y′i) = 0|F (0))), since E(e−λϵ) = p(ϵ = 0)(1− e−λ) + e−λ if ϵ is a Bernoulli random variable,

ACMMD2(P|,Q|) =

∫
kX (p, p′)C(p, p′)(1− e−λ)(pA11 + pA22 − 2pA12)dPX(p)dPX(p′)
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We now compute the probabilities pAij for i, j ∈ {1, 2}. In every case, such pAij can be written as:

pAij =
P (y0 = y′0 = A) + P (y0 = y′0 = B)

P ({y0 ∈ {A,B}} ∩ {y′0 ∈ {A,B}})
P (y0 = y′0 = A) + P (y0 = y′0 = B)

4pp′

and we have

pA11 =
pp′ + pp′

4pp′
=

1

2

pA22 =
(p+∆p)(p′ +∆p) + (p−∆p)(p′ −∆p)

4pp′
=

2pp′ + 2∆p2

4pp′

pA12 =
(p)(p′ +∆p) + (p)(p′ −∆p)

4pp′
=

1

2

=⇒ pA11 + pA22 − 2pA12 =
2pp′ + 2∆p2

4pp′
− 1

2
=

2∆p2

4pp′

Putting it together We thus have

ACMMD(P|,Q|) =

∫
C(p, p′)k(p, p′)(1− e−λ)

2∆p2

4pp′
dPX(p)dPX(p′)

Recalling that

C(p, p′) =
(1− 2p)(1− 2p′)4pp′

1− 4pp′(1 + e−λ)/2

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
yields the desired result.

D.4.2. CLOSED-FORM ACMMD–Rel EVALUATION

Assuming the same model, it is also possible to evalute ACMMD–Rel(P|, Q|) in closed form. Indeed, ACMMD–Rel
becomes a special case of the ACMMD formula given above, with the conditionned variable X set to be the models Q|X . It
is thus possible to show:
Lemma D.3. We have

ACMMD–Rel2(P|, Q|) = C ×∆p2

for

C =

∫∫
kP(Y)(q|p, q|p′)2(1− e−λ)

(1− 2p)(1− 2p′)

1− 4pp′(1 + e−λ)/2

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
dPX(p)dPX(p′)

The above lemma leaves the choice of the kernel kP(Y) open: the tractability of this expression will follow only if
such kernel can be tractably computed. In the next lemma, we derive a closed form solution for kP(Y)(q, q

′) when

kP(Y)(q, q
′) = e−

MMD2(q,q′)
2σ2 , where the MMD is computed with an Exponentiated Hamming kernel on Y .

Lemma D.4. We have
MMD2(q|p, q|p′) = T (p, p) + T (p′, p′)− 2T (p, p′)

Where
T (p, p′) = C(p, p′)A(p, p′) + T 0(p, p′)

C(p, p′) =
(1− 2p)(1− 2p′)4pp′

1− 4pp′(1 + e−λ)/2

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
A(p, p′) =

2pp′ + 2∆p2

4pp′
× (1− e−λ) + e−λ

T 0(p, p′) = (1− 2p)(1− 2p′)

(
2p′e−λ

1− 2p′e−λ
+

2pe−λ

1− 2pe−λ
+ 1

)
Combining the two lemmas allows us to obtain a computable expression for ACMMD–Rel(P|, Q|).

24



Kernel-Based Evaluation of Conditional Biological Sequence Models

0 500 1000
Num. Samples

0.0

0.5

1.0
ACMMD–Rel Test: Rejection Rate

α : 0.05
∆p : 0.0

∆p : 0.05
∆p : 0.07

∆p : 0.1
∆p : 0.2

0 500 1000
Num. Samples

0.0

0.5

1.0
ACMMD Test: Rejection Rate

α : 0.05
∆p : 0.0

∆p : 0.05
∆p : 0.07

∆p : 0.1
∆p : 0.2

0 500 1000
Num. Samples

−0.05

0.00

0.05

test

ACMMD Estimates

ACMMD2 ̂ACMMD2

0 500 1000
Num. Samples

0.00

0.05

test

ACMMD–Rel Estimates

ACMMD2 –Rel ̂ACMMD2 –Rel

Figure 6. Top left: Rejection Rate of the ACMMD test as a function of the dataset size, for different values of ∆p. Top right: Rejection
Rate of the ACMMD test as a function of ∆p, for different dataset sizes. Bottom left: Estimated ACMMD as a function of the dataset size.
Bottom right: Estimated ACMMD–Rel as a function of ∆p. To compute these estimates, we use dataset sizes of {10, 100, 200, 500, 1000},
used m = 5 atoms for the prior on p between p1 = 0.3, p2 = 0.45, used λ = 1, ∆p = 0.25, and average over 300 runs. In addition, we
plot the true value ACMMD(P|, Q|) using the closed-form expression derived above.
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E. Additional Experiments
E.1. Additional Experiments for the semi-synthetic ProteinMPNN data

In addition to the figures of Section 6.2.1, which use T = 0.1 to plot the estimates and rejection rates of ACMMD and
ACMMD–Rel on the ProteinMPNN synthetic data, we provide here the same plots for T = 1.0 the value used to train
ProteinMPNN. We notice that detecting a given change in temperature is sligtly simpler for T = 1.0 than for T = 0.1.
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Figure 7. ACMMD and ACMMD–Rel estimates and rejection rate in the semi-synthetic setting of Section 6.2.1. The different lines
indicate a different temperature shift between the two MPNN models. Top panel shows uses a base temperature of T = 1.0, while the
bottom panel uses T = 0.1.

E.2. Additional Experiments for the structural superfamily evalution

We include in Figure 8 the values of ̂ACMMD–Rel 2 for different superfamilies (which was not included in Section 6.2.2),
and compare it with the values of ̂ACMMD2. In line with the hyperparameter tuning results of Section 6.2.2, we notice
that high temperature are highly detrimental from a reliability perspective. Intuitively, increasing the temperature of
ProteinMPNN makes the model “underconfident”. Since a reliable model is neither over– nor underconfident, this decrease
of confidence is penalized by ACMMD–Rel. This also shows that increasing the temperature of a model does not make the
model fallbak to its prior distribution (otherwise the model would be more reliable). Instead, it just increases the uncertainty
of the model in a detrimental fashion.

F. Known Kernels for protein sequences and structures
In the context of inverse folding, computing the ACMMD requires a kernel on sequences kY and a kernel on protein
structures. This section contains a brief overview of non neural-network based, known kernels for protein sequences and
structures. The main desiderata to achieve when choosing kernels for computing goodness-of-fit criterion is to find kernels
that are able to detect (up to statistical noise) any deviation from a perfect fit between the model and the data. Such kernels
are referred to as universal.
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Figure 8. Value of ̂ACMMD2 (left) and ̂ACMMD–Rel 2 (right) between ProteinMPNN and the CATH S60 reference dataset on a
subset of 10 superfamilies for two different temperatures T = 1.0 and T = 0.1.

The protein formalism The most general formalism for the space protein structures is the set of equivalence classes of
graphs where the equivalence relationship is defined to the existence of a graph isomorphism. The need for equivalence
classes stems from the fact that different labelling policies exist for a given protein, meaning that a single protein can be
associated to multiple graphs. However, this labelling will in practice not be completely arbitrary: first, the set of candidate
labelling can be restricted to the ones consistent with covalent bounds. But in the inverse folding problem, the setting
is even simpler: the protein structure is restricted to its backbone, which is sequential by nature. This limits the set of
covalent-bound consistent labelling policies to two (the forward and the backward one), and my vague understanding is that
there is a terminal atom in protein, which suggests the existence of a canonical direction: thus, only one labelling policy
remain, and protein structures can thus be associated to the set of atom locations

⋃+∞
i=1 Ri. This set differs from the set of

protein sequences
⋃+∞

i=1 A in that the “alphabet” is the real line instead of a finite set of symbols. The restriction from the
space of graphs to the space of variable-length sequences since there it is known that no graph kernels commonly in use
are even characteristic (Kriege et al., 2020). The space

⋃+∞
i=1 X (for arbitrary X have been investigated by the time series

community), which have developed a set of kernels to carry out data analysis on it. We provide some background on such
kernels below.

Background: alignment kernels for real-valued sequences of arbitrary length Alignment kernels (Cuturi et al., 2007;
Cuturi & Blondel, 2017; Saigo et al., 2004; Vert et al., 2004) refer to a diverse set of variety of kernels constitute a family of
kernels on

⋃+∞
i=1 X i that are computed based on aggregating the similarities between all possible “alignment candidates”

between two inputs x1 and x2. There are two main subfamilies of alignment kernels, which both use slightly different
alignment definitions: local alignment kernels, and global alignment kernels.

Local alignment kernels Local alignment kernels (Saigo et al., 2004; Vert et al., 2004) are kernels of the form

kLA(x, y) =
∑

π∈Π(x,y)

exp(βs(x, y, π)) (15)

Where

s(x, y, π) =

|π|∑
i=1

s(x
(π1(i))
1 , x

(π2(i))
2 ) +

|π|−1∑
i=1

g(π1(i+ 1)− π1(i)) + g(π2(i+ 1)− π2(i))

and Π(x, y) is the set of all possible alignments of x and y, e.g. the set of all 2-tuple of p-long sequences

π := ((π1(1), . . . , π1(p)), (π2(1), . . . , π2(p))

where
1 ≤ π1(1) < π1(2) · · · < π2(p) ≤ n

1 ≤ π2(1) < π1(2) · · · < π2(p) ≤ m
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Importantly, local alignment kernels involve a gap function, and thus give a specific status to insertions and deletions, unlike
global alignment kernels, as we will see below. The local alignment kernel can be seen as computing the (soft) minimum of
a discrepancy within the set of all possible alignments. The use of a soft minimum (and not a hard one) is crucial to ensure
positive definiteness. Local alignment kernels seem to have been designed initially for finite alphabets target. When g = 0,
the necessary and sufficient condition on s to ensure that kLA is a positive definite is for s to be a conditionally positive
definite kernel 4. This is in particular verified if (s(xi, yi))1≤i,j≤|A| is positive definite. I need further reading to investigate
whether the case of infinite X was studied.

Global alignment kernels Global alignment kernels (Cuturi et al., 2007; Cuturi & Blondel, 2017) also perform a softmin
over alignment, but do not incorporate gaps in their score, and use a slightly different notion of alignment, namely:

π := ((π1(1), π2(1), . . . , (π1(p), π2(p))

where now, the constraints on π1 and π2 are

1 = π1(1) < π1(2) · · · < π2(p) = n

1 = π2(1) < π1(2) · · · < π2(p) = m

π1(i+ 1) ≤ π1(i) + 1 unitary increments
(π1(i+ 1)− π1(i)) + (π2(i+ 1)− π2(i)) ≥ 1 no repetitions

Unlike the previous alignment definition, this one explicitly maps each item in each sequence with another item in the other
sequence, and does not try to account for potential gaps. Let us call A the set of all alignment. The final definition for a
global alignment kernel is then:

kGA(x, y) =
∑

π∈A(x,y)

exp(

π∑
i=1

s(x
(π1(i))
1 , x

(π2(i))
2 ) (16)

As stated in Cuturi et al. (2007, Theorem 1), kGA will be positive definite if k(x, y) := exp(s(x, y)) is a positive definite
kernel such that k

(1−k) is positive definite.

4A kernel is c.p.d if
∑n

i,j=1 cicjs(x
(i), x(j)) ≥ 0∀c1, . . . , cn, c1 + · · ·+ cn = 0.
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