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Abstract

Multimodal dataset distillation aims to synthesize a small set of image-text pairs
that enables efficient training of large-scale vision-language models. While dataset
distillation has shown promise in unimodal tasks, extending it to multimodal
contrastive learning presents key challenges: learning cross-modal alignment
and managing the high computational cost of large encoders. Prior approaches
address scalability by freezing the text encoder and updating only the image en-
coder and text projection layer. However, we find this severely limits semantic
alignment and becomes a bottleneck for performance scaling. We propose Cov-
Match, a scalable dataset distillation framework that aligns the cross-covariances of
real and synthetic features while regularizing feature distributions within each
modality. Unlike prior approaches, CovMatch enables joint optimization of
both encoders, leading to stronger cross-modal alignment and improved perfor-
mance. Evaluated on Flickr30K and COCO, CovMatch outperforms state-of-
the-art multimodal distillation methods and achieves up to 6.8% absolute gains
in retrieval accuracy using only 500 synthetic pairs. Our code is available at
https://github.com/Yongalls/CovMatch.

1 Introduction

Dataset distillation aims to synthesize a compact and representative dataset from a much larger one,
enabling efficient model training with significantly reduced computational cost. While this approach
has shown strong results in unimodal settings, particularly in image classification, its extension to
multimodal tasks remains underexplored. The success of large-scale multimodal models such as CLIP
[36] has relied on training with massive image-text datasets, often comprising hundreds of millions
of examples, which poses serious computational and storage challenges. This gap motivates the study
of multimodal dataset distillation, which seeks to generate a small, high-quality set of image-text
examples that enables efficient multimodal training. However, distillation in the multimodal setting
introduces new challenges that are both algorithmic and computational.

A central difficulty in vision-language distillation lies in learning accurate cross-modal correspon-
dences between image and text, which typically involves powerful pretrained encoders and contrastive
learning frameworks. Incorporating such setups into a distillation pipeline significantly amplifies the
computational and memory burden, especially under the standard bi-level optimization framework
of dataset distillation [41]], where the inner loop updates model parameters using the synthetic data,
and the outer loop updates the synthetic dataset based on the model’s performance on real data.
Computing gradients for the outer loop requires tracking how model parameters evolve with respect
to synthetic data, often necessitating full unrolling of the inner loop, which is expensive even in
unimodal settings. In multimodal contrastive learning, scalability is even more constrained, as it
involves significantly larger models, such as NFNet (140MB) and BERT (450MB), compared to the
lightweight ConvNets (e.g., 1.24MB) commonly used in unimodal distillation.
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Figure 1: Comparison of multimodal dataset distillation frameworks. Prior methods freeze the entire
text encoder and pass distilled text only through a linear projection. In contrast, we freeze only the
input embedding layer (i.e., token and position embedding module) and include the transformer
layers in the distillation process.

Table 1: Resource requirements for long-term trajectory matching methods on a single A100 80GB GPU.
For the unimodal case, we apply MTT [5] to distill CIFAR-10 using a 1.24MB ConvNet. In the multimodal
setting, we distill COCO [26] using NFNet (140MB) and BERT (450MB) as encoders, applying MTT and Tesla
[8] by matching trajectories for both modalities. The cost of storing expert trajectories scales with model size
and checkpoint count, while distillation cost scales with model complexity, synthetic steps, and synthetic data
batch size |B%¥"|. Despite using reduced hyperparameters, long-term matching in the multimodal case remains
costly. In contrast, CovMatch requires no expert trajectories and achieves distillation with much lower cost,
scaling only with model complexity and the batch sizes |B%"| and |B*?|.

Method Hyper-parameters Expert Distill
checkpoints synsteps |B¥"| |B*¥| | storage time | memory time
MTT (unimodal) 5000 50 128 - 6.2GB  1.5h 15GB 1.0 secfit
MTT (multimodal) 200 8 20 - 120GB 132h | 71GB 16.9 secfit
Tesla (multimodal) 200 8 20 - 120GB  132h | 22GB 19.2 secfit
CovMatch - - 100 128 0GB Oh 15GB 1.2 secfit

To address scalability issues, initial multimodal distillation methods such as MTT-VL [43] and
LoRS [45]] adopt Matching Training Trajectories (MTT) [3]] as a surrogate for bi-level optimization,
while freezing the text encoder and updating only the image encoder and the projection layers.
MTT precomputes and stores expert training trajectories from real data, and optimizes the synthetic
dataset to match segments of these trajectories. While MTT avoids full unrolling of the inner
optimization loop, it still requires storing expert checkpoints and unrolling gradients with respect to
the synthetic data to align with the expert trajectories. Applying MTT to both image and text encoders
in multimodal setups exacerbates scalability issues, as summarized in Table[I] For instance, storing
expert trajectories for large backbones such as NFNet (image encoder) and BERT (text encoder) can
require over 120GB of storage and 5 days of training on a single A100 GPU. Moreover, synthesizing
just 100 image-text pairs for COCO dataset [26] requires over 70GB of memory for distillation,
necessitating the use of high-end GPUs like the A100 80GB. Even memory-efficient variants like
Tesla [[8] remain costly due to expert trajectory storage. As a result, current approaches typically
freeze the text encoder, as shown in Figure[T|left), and synthesize image-text pairs that update only
the image encoder and the image/text projection layers.

However, we find that freezing the text encoder and relying solely on the projection layer for aligning
modalities severely limits the capacity for semantic alignment in multimodal contrastive learning.
In particular, this design becomes a bottleneck in scaling the performance of dataset distillation. In
our analysis, we train vision-language models using LoRS-generated synthetic image-text pairs [43]]
and observe that captions corresponding to the same image in the original Flickr30K dataset [35]]
fail to form coherent clusters in the text embedding space, even as the size of the synthetic dataset
increases (Figure[2{a)). This indicates that a frozen text encoder is insufficient to support the semantic
alignment necessary for effective cross-modal learning. As a result, image-text retrieval performance
with the LoRS saturates with increasing synthetic data size and, beyond N = 1000 image-text pairs,
underperforms models trained on randomly sampled real pairs (Figure {c)).



Motivated by these observations, we propose a new vision-language dataset distillation framework
(Figure[I|right)) that synthesizes image-text pairs to update both image and text encoders, enabling
stronger cross-modal alignment while remaining scalable even with large pretrained models. The
core idea is to simplify the inner optimization of the bi-level distillation framework into a closed-
form solution, thereby avoiding the high memory and computational cost associated with unrolled
optimization or trajectory matching. Inspired by prior works in the unimodal setting such as KIP [32]
and FrePo [54], we fix the encoders during each distillation step and optimize only the linear projection
layers. By adopting the linear multimodal contrastive loss [31]], the inner optimization admits a
closed-form solution, reducing the bi-level objective to maximizing the trace of inner product between
the cross-covariance matrices of real and synthetic image-text features. This enables efficient outer
optimization without unrolling, as gradients are simply backpropagated through the fixed encoders.

Building on this insight, we introduce Cross-Covariance Matching (CovMatch), an efficient algorithm
for multimodal dataset distillation. CovMatch aligns cross-covariance matrices between real and
synthetic pairs sampled at each distillation step, and includes a regularization term that matches
feature distributions within each modality to prevent trivial solutions. To ensure the synthetic data
remains informative for encoder training, we incorporate a lightweight online model update, where
the encoders are updated using a small batch of real image-text pairs before each distillation step,
keeping the alignment statistics in sync with the evolving representations.

We evaluate CovMatch on image-text retrieval tasks using the Flickr30K [35] and COCO [26]
benchmarks. CovMatch consistently outperforms state-of-the-art multimodal distillation methods,
including MTT-VL [43] and LoRS [45]. Remarkably, with just 500 synthetic pairs, CovMatch
achieves absolute improvements of 6.8% on Flickr30K and 6.1% on COCO in average retrieval
accuracy over the best-performing baseline. These gains are largely attributed to CovMatch’s ability
to jointly optimize both image and text encoders without compromising scalability.

2 Motivation

2.1 Preliminaries

We introduce the problem of multimodal dataset distillation for image-text contrastive learning and
briefly summarize existing approaches. A detailed review of related works is provided in Appendix [A]

Image-Text Contrastive Learning Image-text contrastive learning aims to map visual and textual
data into a shared embedding space using a bidirectional contrastive loss [36]. Given a dataset of
paired image-text samples 7 = {(z%, )}, where ¢, € RV and x} € R! denote the i-th image and
text inputs, the goal is to train an image encoder f, : R® — R% and a text encoder fi : Rl — R%,

each followed by a trainable linear projection layer, G, € R**% and G; € R**% These projection
layers map the modality-specific embeddings into a shared space R that captures semantic similarity.
For a given pair (x,, x;), the encoders produce intermediate representations h, = f,(z,;6,) and
hy = fi(z1;0;), which are then projected as z, = G,h, and z; = Gh;. The similarity between
image 2, and text z] is computed using cosine similarity, s;; := cos(z%, 27 ) = (2%, 2] ) /|| 25| |27 ||
in the shared embedding. The model is trained using the InfoNCE loss [34] with temperature 7 > 0:

exp(s4/T) exp(sii/T)
L _ - 4t log=—— 7 | 1
NCET T M Z j;éz exp(sij/T) e Zﬁéi exp(s;i/T) W

Main Goal of Vision-Language Dataset Distillation The goal of vision-language dataset dis-
tillation is to compress a large dataset 7 = {(z%,2})}M, into a much smaller synthetic dataset
S = {(&1,2)}Y, with N < M, such that a model trained on S achieves comparable image-
text ahgnment performance to one trained on 7. Following prior work [43| 45], we evaluate
S using standard image-to-text and text-to-image retrieval metrics. Let d : R* x R* — R de-
note a similarity metric in the shared embedding space. The image and text representations are
computed as z,(0,,Gy) = Gy fo(y;6,) and 2(6;, G;) = G, fi(xy;0;), given model parameters
© = (0,,0;,G,,G)). Given a test set D™, the objective is to ensure that the expected similarity
remains consistent between models trained on the full dataset 7 and on the synthetic dataset S:

E (o, w~ped(20(05, G3), 2107, G 2 By wpynpies [d(20 (0, Go), 2001, G1)], ()
where ©* = (8,67, G*,G7) and © = (0,6, G, G;) are the parameters trained on 7 and S, resp.
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Figure 2: (a) T-SNE visualization of text embeddings from the Flickr30K test set. Models are trained
with N = 500 synthetic pairs distilled by LoRS (left) and CovMatch (right). (b) Intra- and inter-pair
average similarity of test captions for models trained with N = 100 and 500 synthetic samples. (c)
Retrieval performance as a function of the number of synthetic pairs V.

Bi-Trajectory Matching As an initial approach to vision-language dataset distillation, recent
works such as MTT-VL and LoRS [43] 45]] build on Matching Training Trajectories (MTT) [3]],
originally proposed for image classification. MTT constructs synthetic datasets by matching the
training trajectories of models trained on real data. To extend this to the multimodal setting, MTT-VL
introduces bi-trajectory matching, where both image and text encoders are jointly trained using the
contrastive loss ﬂ, and the synthetic dataset is optimized to reproduce their joint training dynamics.
Let 7* = {Of },_, denote the expert trajectory with model parameters ©; = (05, ;, O, ;) obtained

img,t°
from training on the real dataset 7. A student model is initialized at a random epoch s with ©, = O

and trained on synthetic data S for R’ steps to yield (:)H r’. The synthetic dataset is then updated by
minimizing the bi-trajectory matching loss:

r ||@img7s+R’ - @i*mg,erRH% ||@lxt,s+R’ - G)rxt,s+R“§ 3)
bi-trajectory —
ey ||®ikmg7s - Gi*mg,erRH% ||@t*xt,s - 9&[,5+RH% ’

where R is a target step for matching. This objective encourages the model trained on S to follow the
update trajectory of the model trained on real data. However, computing this loss requires unrolling
R/ steps of gradient descent for both encoders, leading to significant memory and compute overhead
(Table[T). To mitigate this, prior work freezes the pre-trained text encoder (e.g., BERT) and updates
only its projection layer G;. As a result, only O+ = G is trainable on the text side, while
Oimg,t = (0v,t, Gy,¢) remains trainable. We discuss the limitations of this partial freezing strategy.

2.2 Limitations of Bi-Trajectory Matching Methods with a Frozen Text Encoder

We find that freezing the text encoder and updating only the projection layer for modality alignment
severely limits semantic alignment in multimodal contrastive learning, creating a bottleneck for
scaling the performance of dataset distillation. To investigate this, we train vision-language models
using synthetic image-text pairs generated by LoRS [45], which freezes the text encoder during
distillation. We visualize the resulting text embeddings from the Flickr30K test set [35] in Figure |Zka).
Captions associated with the same image (red for the top image, blue for the bottom) fail to form
tight clusters in the shared embedding space, suggesting that the frozen text encoder cannot adapt to
visual context. In contrast, our method, CovMatch, which jointly optimizes both encoders, yields
more semantically coherent text embeddings that better reflect shared visual semantics.

To quantify this observation, we measure the average intra- and inter-pair cosine similarities between
text embeddings. Intra-similarity is computed among captions corresponding to the same image,
while inter-similarity is computed among captions of different images. As shown in Figure 2(b),
LoRS yields a relatively small gap between intra- and inter-similarity, whereas CovMatch produces a
significantly larger gap, indicating stronger semantic alignment. This pattern remains consistent as
the number of synthetic samples increases from N = 100 to N = 500.

This limited alignment in LoRS leads to poor performance scaling: as shown in Figure 2}c), retrieval
accuracy saturates or even degrades beyond N = 1,000 synthetic pairs, eventually falling below
models trained on randomly sampled real pairs. In contrast, CovMatch maintains steady performance
gains with more synthetic data, enabled by its efficient cross-covariance alignment objective. This
scalable formulation allows the synthetic dataset to effectively support the joint training of both
encoders, a key factor in its superior alignment and retrieval performance.



3 Method

3.1 Cross-Covariance Alignment: Closed-Form Solution for Linearized Contrastive Learning

To develop a compute-efficient multimodal dataset distillation method that updates both image and
text encoders, we revisit the original formulation of dataset distillation. In the context of image-text
contrastive learning, the distillation objective can be framed as a bi-level optimization problem:

S* = arg min CNCE(C:);T) where © = arg min Lnce(0;8). 4
S )

Here, the inner loop learns model parameters © from the synthetic dataset S, while the outer loop
updates S to improve performance on the real dataset 7. However, computing gradients of the outer
loss with respect to S requires backpropagating through the entire inner optimization, which is costly
in both memory and computation. To mitigate this, prior work in unimodal distillation has proposed
simplifying the inner loop to admit a closed-form solution. For instance, FrePo [54] considers training
only the final linear layer while fixing the feature extractor. Under this setting, the outer objective can
be approximated as a kernel ridge regression problem based on the Gram matrix of neural features
from real and synthetic inputs. This allows the synthetic dataset to be updated by backpropagating
only through the conjugate kernel and fixed feature extractor, greatly reducing the computational cost.

Following this insight, we propose a distillation framework for image-text contrastive learning in
which the inner optimization admits a closed-form solution, enabling direct gradient updates to
the synthetic dataset S. To achieve this, we fix the image and text encoders f,(-;6,) and f;(-;6;)
and optimize only the linear projection layers G, and G at each distillation step. Given an input
pair (x,, x;), we extract features h,, = f,(x,;60,) and h; = f;(z;;6,;), and project them to a shared
embedding space as z, = G,h, and z; = G h;. We adopt the linear contrastive loss from [31} [15]:

|D| D]

1 T
Elm(GvaGla ) WZZ Sij— Su 2|D| |D|—1 ZZ Sji— Su |G Gl”Fa

i=1 j#i i=1 j#i
&)

where s;; := (G,hi)T(Gihl) and D = {(hi, hi)}IPL. This loss is equivalent to a trace-based
cross-covariance formulation::

Lin(Gu, Gii D) = = Tr(G.CPG) ) + LG Gl (©)
where the cross-covariance matrix C? is given by
1 Dl _
cP = WZ(% — i) (hy = ) T @)
i=1

with pp, and pp, denoting the empirical means of the image and text features, respectively.
Under this setup, the dataset distillation objective can be written as

S* = arg min Llin(év, GZ;T) where G, G; = arg min Ly, (G, Gi; S), (8)
S leer

which is equivalent to

S* = argmin — Tr(G,C7 G} where G, G; = argmin — Tr(G,C°G]) + gHGIGlH%, ©)
S G,Gi

with C7 and C€ denoting the cross-covariance matrices of the real and synthetic datasets, respectively.
The inner loss further admits the reformulation:

1 1
- T(G.05G) + BIGTGillE = BIGI G = S CollF = 1O
2 2 p 2p
where the optimal solution satisfies G’Iél = %C’S . Substituting this into the outer loss in (9) yields
S* = arg maXTr(CTTC’S), (10)
s

indicating that the optimization reduces to aligning the cross-covariances of real and synthetic
data. We provide theoretical justification for linear contrastive loss () and complete derivation in

Appendix
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Figure 3: Illustration of our proposed method, CovMatch. At each distillation step, CovMatch
updates the synthetic image-text pairs using a matching loss computed with an alternately updated
online model. The loss consists of two components: 1) Cross-covariance matching loss (TT),
computed as the distance between the cross-covariance matrices of real and synthetic features
(extracted before the projection layers); and 2) Feature matching loss (12), computed as the distance
between the mean feature vectors of real and synthetic data after the projection, applied independently
to each modality.

3.2 CovMatch: Cross-Covariance Matching Algorithm

Cross-Covariance Matching Loss As shown in (T0), multimodal dataset distillation for linear
contrastive learning can be reformulated as aligning the cross-covariance matrices of real and synthetic
datasets. However, directly optimizing the trace objective in (I0) can lead to training instability,
as the trace is unbounded. To mitigate this, we instead frame the objective as a Frobenius norm
minimization between the real cross-covariance C”7 and the ideal projection-based approximation
GI Gy = LCS:

LT, 8) = lp- €T = C¥f. (11)

Here, the hyperparameter p adjusts the scale differences between real and synthetic data, possibly
arising from dataset size mismatches. We note that a similar objective is considered in ClipCov
[[17]] for selecting a subset of image-text pairs for data-efficient contrastive pretraining. However,
due to the combinatorial complexity of subset selection, ClipCov approximates the objective using
heuristics such as maximizing CLIP similarity scores [13]]. In contrast, CovMatch directly optimizes
the synthetic dataset in continuous space to minimize the cross-covariance alignment loss.

Feature Matching Loss While align-
ing the cross-covariance matrices be-
tween the real and synthetic datasets is
central to multimodal dataset distillation,
relying solely on this can lead to subop-
timal solutions. As shown in Fig. @{a),
the cross-covariance matrix C7 derived 2
from the full Flickr30K dataset exhibits a O T e 00 750 O <566 6500
low-rank structure, indicating that match- Index Distillation steps

ing it alone may impose insufficient (a) Sinuglar values (b) Matching loss
constraints, particularly as the synthetic
dataset grows. Fig. f(b) further shows
that optimizing only for cross-covariance
can result in notable mismatches in the
mean feature embeddings.

1500

=
=)

feat

1000,

L cov

—pfeat e feat

o
o]
IS

Lieat 4,

o
=3
S

Singular values
L cov

Figure 4: (a) Singular values of the cross-covariance ma-
trix C7 computed on the full Flickr30K dataset, show-
ing its low-rank structure. (b) Evolution of the cross-
covariance matching loss £V (T1)) and the feature match-
ing loss £ + £feat (T2)) during distillation with only the
To mitigate this, we introduce a feature cross-covariance objective for 500 synthetic pairs.
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Algorithm 1 Dataset Distillation via Cross-Covariance Matching (CovMatch)

1: Require: Full training set 7, pretrained weights 65" ™ for image encoder f,, pretrained

weights 67" for text encoder f;, the learning rate « for the distilled data
2: repeat
3 Initialize 91“ 91 — 95))relramed7 Q?re[ramed
4: Randomly initialize projection layers G,,, G|
5: fort=0to7T —1do
6: Sample mini-batch pairs B” ~ 7 and BS ~ S
7 Compute the matching loss £LEMa<h (T3} on (B7, B®)
8: Update S < S — o - V g LCovMatch
9: Train the model (6., 6;, G, G;) with T for one step.
10: end for
11: until convergence
12: Output: S

modality m € {v, [} (vision, language), the loss is defined as:

7] S|

. 1 . 1 i 2
‘C%Ldl(,rv S) = Hm Z G+ fn (T35 0m) — E ZGm fm (@i 0m)|| » m e {v, 1} (12)
i=1 j=1

Here, {(2,zi)}\”} and {(27,21)}!°!| denote the real and synthetic datasets, respectively.

Training Algorithm for CovMatch Our final objective combines cross-covariance alignment and
feature matching losses:

ﬁCovMalch = LV 1 ). (ﬁ?al 4 )Cgeal)7 13)

where )\ balances the contributions of the two terms. At each distillation step, the synthetic dataset S
is updated to minimize this combined loss.

To prevent overfitting to a fixed model state, we apply an online model update to the image and
text encoders using a batch of real data for a single gradient step before each distillation step. For
additional stability, we periodically reinitialize the model: every T steps, the encoders are reset to their
pretrained weights and the projection layers are randomly reinitialized. The full training algorithm is
presented in Algorithm [I] Figure [3|provides an overview of CovMatch, aligning cross-covariance
and feature distributions between real and synthetic data.

4 Experimental Results

4.1 Experiment Setup

Dataset and Tasks We evaluate the effectiveness of CovMatch on the Flickr30K [35]] and COCO
[26] datasets, following prior work [43]45]. Both datasets consist of image-caption pairs: Flickr30K
contains approximately 31K images and COCO contains 123K images, each annotated with five
captions. We adopt the Karpathy split [18] for both datasets, yielding train/validation/test splits of
29K/1K/1K for Flickr30K and 113K/5K/5K for COCO, respectively. We assess model performance
using a cross-modal retrieval task, where the objective is to retrieve the correct item from one modality
(image or text) given a query from the other. Specifically, we compute cosine similarity between
embeddings to retrieve the top-K closest matches, and evaluate how often the correct match is
included. We denote text-to-image retrieval as IR@K (i.e., retrieving the relevant image given a text
query), and image-to-text retrieval as TR@K (i.e., retrieving the relevant text given an image query).

Network Architectures Following [43| 45], we use an ImageNet-pretrained Normalizer-Free
ResNet (NFNet) [4] as the image encoder and a pretrained BERT-base model [9] as the text encoder.
Each encoder is followed by a trainable linear projection layer that maps features into a shared
embedding space. Additional results with alternative architectures are reported in the Appendix



Table 2: Performance comparison on Flickr30K and COCO with various number of synthetic pairs.
Using 100, 200, 500 pairs corresponds to approximately 0.3%, 0.7%, 1.7% of the full dataset for
Flickr30k, and 0.1%, 0.2%, 0.4% for COCO. The performance achieved by training on the full dataset
is as follows: IR@1=48.7, IR@5=79.2, IR@10=87.2, TR@1=61.6, TR@5=85.9, and TR@10=91.5
for Flickr30k, and IR@1=25.1, IR@5=53.9, IR@10=67.5, TR@1=33.0, TR@5=62.8, TR@10=75.0.
for COCO. The reported values are averages of five runs, and the full results with standard deviations
are provided in the Table[T4]and Table[I3]

Pais Method | Flickr30k | €OCo
| Rel IR@5 IR@I0 TR@! TR@5 TR@I0 | Avg | IR@l IR@5 IR@I0 TR@! TR@5 TR@IO | Avg
Random | 20 7.5 126 33 104 160 |86 | 07 28 5. 10 40 69 | 34
Herding | 22 80 134 30 99 156 |87 | 07 29 53 L1 4l 68 | 35
o KCemer | 20 76 130 28 97 164 | 86| 07 32 60 09 42 76 | 38
MTT-VL | 47 157 246 99 283 391 |204| 13 54 95 25 100 157 | 74
LoRS | 83 241 351 118 358 492 |274| 18 701 122 33 122 196 | 94
CovMatch | 101 286 409 148 380 506 |305| 28 105 177 38 131  2L1 | 115
Random | 33 115 184 57 158 239 | 131 | LI 46 83 17 65 1Ll | 56
Herding | 30 113 183 47 154 229 |126| 12 47 85 16 66 112 | 56
sop KCemer | 32 1Ll 177 53 152 232 |126| 12 51 89 19 67 116 | 59
MTT-VL | 46 160 255 102 287 419 |212| 17 65 123 33 119 194 | 92
LoRS | 86 253 366 145 387 534 [295| 24 93 155 43 142 226 | 114
CovMatch | 123 336 458 174 417 558 |344| 38 134 218 53 173 270 | 148
Random | 69 210 312 100 280 387 |226| 22 88 149 35 119 192 |10l
Herding | 68 208 309 93 264 368 |218| 23 88 148 29 112 189 | 98
sop KeCemer | 69 221 322 106 295 406 |237| 24 90 154 36 124 200 | 105
MTT-VL | 66 202 300 133 328 468 |250| 25 89 158 50 172 260 | 126
LoRS | 100 289 416 155 398 537 |316| 28 99 165 53 183 279 |I35
CovMatch | 147 384 514 199 467 595 |384| 54 180 282 81 235 346 | 196

Table 3: Cross-Architecture evaluation results on Flickr30K using 100 synthetic pairs. Reported
values are averaged over six retrieval metrics: IR@1, IR@5, IR@10, TR@1, TR@5, and TR@10.
Full results are provided in Table

Text encoder BERT DistilBERT
Image encoder | NFNet NF-ResNet NF-RegNet ViT | NFNet NF-ResNet NF-RegNet ViT
Random 8.4 8.9 8.3 10.8 9.4 10.2 8.7 11.5
MTT-VL 20.4 8.4 7.5 9.6 20.2 7.5 7.0 8.5
LoRS 28.1 8.8 8.4 9.3 23.5 8.9 8.3 8.9
CovMatch 30.2 15.5 14.6 151 | 271 16.1 14.6 134

Baselines We compare CovMatch against both coreset selection and dataset distillation methods.
For coreset selection, we include Random (uniform sampling), Herding [7]], and K-Center [38]], all
adapted to the multimodal setting as in [43]]. For dataset distillation, we evaluate MTT-VL [43]] and
LoRS [45]]. Following their original protocols, these methods freeze the text encoder during both
distillation and evaluation due to computational and optimization constraints. In contrast, all other
baselines fine-tune the entire network. Further implementation details are available in Appendix [B]

4.2 Main Results

Flickr30K and COCO We evaluate CovMatch on both Flickr30K and COCO, comparing its
performance against several baselines across varying numbers of synthetic image-text pairs, as
presented in Table[2] A key observation is that performance gains from existing dataset distillation
methods quickly saturate as the number of synthetic pairs increases—even in the extremely low-data
regime (i.e., under 2% of the full dataset). This result indicates that fine-tuning the text encoder is
critical for effective multimodal contrastive learning, particularly when scaling to larger synthetic
datasets. By jointly optimizing both the image and text encoders through cross-covariance alignment,
CovMatch consistently outperforms prior methods and establishes new state-of-the-art results across
all settings. Notably, on Flickr30K with 500 synthetic pairs, CovMatch achieves a 6.8% absolute
improvement over the strongest baseline.

Cross-Architecture Generalization One of the essential characteristics of a distilled dataset is
its ability to generalize across different, unseen architectures. To demonstrate CovMatch’s cross-
architecture generalizability, we distill the dataset with NFNet and BERT, and then evaluate it with
alternative architectures—NF-ResNet [3], NF-RegNet [44], ViT [10] for the image encoder, and
DistilBERT [37]] for the text encoder. As shown in Table [3| the dataset distilled by CovMatch
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Figure 5: (a) Ablation on the scaling factor p in (II). Scaling the real cross-covariance C7 is
particularly important when N is small. (b) Ablation on the feature matching weight A in (T3).
The optimal value of A tends to increase as N increases. (c¢) Ablation on the online model update
strategy. Updating with real data exhibits the best performance. All ablation studies are conducted on
Flickr30k with varying N.
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Figure 6: Comparison of the top five retrieved captions from models trained with LoRS- and
CovMatch-generated synthetic image-text pairs, given an image query. Each model is trained on 500
synthetic pairs, and queries are from the Flickr30K test set. Ground-truth captions (i.e., five captions
paired with the query image in Flickr30K test set) are highlighted in blue.

generalizes effectively to both unseen image and text encoders, whereas baseline methods perform
comparably to or worse than random selection. We attribute this to the fact that prior methods only
optimize the image encoder and projection layers during distillation, which induces overfitting to the
specific architecture used in training.

4.3 Ablation Study and Further Analysis

Scaling Factor p  CovMatch introduces a scaling factor p in (TT) when aligning the cross-covariance
matrix of the synthetic dataset with that of the real dataset, where p originates from the regularization
term in the inner optimization of the original bi-level optimization problem (9). Figure 5(a) presents
the impact of varying p across different numbers of synthetic image-text pairs. The results indicate
that appropriate scaling becomes particularly important when the number of synthetic samples is
small. This finding is consistent with the intuition that stronger regularization is required in low-data
regimes to prevent overfitting.

Feature Matching We also investigate the effect of the feature matching objective by varying its
weighting coefficient X in (T3). As shown in Figure[5(b), incorporating feature matching significantly
enhances performance, particularly when a larger number of synthetic pairs is used. Moreover,
the optimal value of A tends to increase with the number of pairs. This observation is consistent
with our intuition: as the number of synthetic samples grows, aligning cross-covariance—a second-
order statistic—becomes easier, even when the underlying feature distributions remain misaligned.
Consequently, stronger feature-level regularization is required to constrain the optimization toward
semantically meaningful representations.

Online Model Update Figure [5[c) shows the impact of the online model update. We compare
three update strategies: (1) fixing the encoder, (2) updating the encoder with the synthetic set S, and
(3) updating it with the real data from 7 —the latter being the strategy adopted in our method. The
result reveals that updating the online model is crucial for preventing overfitting to a fixed model



state. Additionally, further improvements are achieved by updating the online model with real data
from 7T, rather than with the synthetic dataset S.

Qualitative Analysis In contrast to previous methods, CovMatch incorporates the text encoder
into both the distillation and evaluation processes. To illustrate the impact of this design, we provide
text-retrieval examples in Figure[6] For each image query, we show the top five retrieved captions
using models trained on synthetic image-text pairs generated by LoRS and CovMatch, respectively;
the ground-truth caption (from the five true captions paired with the image) is highlighted in blue. As
shown, CovMatch leads to stronger alignment between visual and textual modalities, retrieving more
ground-truth captions. While LoRS often captures only basic semantics (e.g., “boy”’), CovMatch
enables alignment with more nuanced concepts (e.g., “karate”), reflecting the tighter clustering of
text representations seen in Figure 2a). More examples are provided in Appendix [F}

5 Conclusion

In this work, we revisit the original bi-level optimization formulation of dataset distillation and, under
the assumption of linear contrastive learning, derive a simplified objective that facilitates the inclusion
of the text encoder in the multimodal dataset distillation framework. We present CovMatch, a
lightweight and scalable algorithm for multimodal dataset distillation that aligns the cross-covariance
of image-text embeddings between real and synthetic datasets, with additional regularization via
feature distribution alignment within each modality. CovMatch outperforms existing algorithms with
significant performance improvements, enhancing cross-modal retrieval ability, cross-architecture
generalization and scalability.

Limitations and Future Works We assume a scenario in which image and text encoders, pre-
trained within their respective modalities, are available. Accordingly, our method focuses on dataset
distillation to effectively fine-tune image-text contrastive models. However, we have not yet explored
scenarios where pretrained image and text encoders are unavailable, requiring training from scratch.
Distilling datasets for pretraining image-text contrastive models presents a promising direction for
future work.

Broader Impact This paper introduces a computationally and memory-efficient multimodal dataset
distillation method. CovMatch demonstrates strong generalization across different network archi-
tectures, highlighting its versatility and robustness. These features, combined with its enhanced
scalability, make it a highly practical solution for real-world applications. Additionally, our new
framework, which freezes only the input embedding layer while incorporating the transformer layers
of the text encoder in the distillation process, provides a solid foundation for future research and
serves as a starting point for the development of more efficient and scalable multimodal learning
methods.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly highlight the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section 3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed information of dataset, performance metric, network
architectures, and implementation details in Section [4.1]and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide all the code and scripts required to reproduce our main experimental
results in the supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all detailed information of our experimental setting in Section 4]
and Appendix
Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the standard deviations for our main results in Table[T4]and Table[I5]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the memory usage and execution time of our method with the GPU
in Table [Tl

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research is conducted with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts of our work in Section 3}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the code and our distilled dataset in the supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLMs solely for writing and editing purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works

Traditional Dataset Distillation Dataset distillation, introduced in [41], aims to create a small
synthetic set S, so that a model #° trained on S achieves good generalization performance, performing
well on the full dataset 7T

S* =arg HEHET(HS), with 65 = argmein £5(8),

Here, £7 and £° are losses on 7 and S, respectively. To address the bi-level optimization’s
computational complexity and memory demands, existing works have employed two methods:
closed-form approximation and surrogate-based matching.

Closed-form approximation methods obtain meta-gradient Vs£7 (6¢) in closed-form by approxi-
mating the inner optimization. For example, KIP [32}133] and FrePo [54] obtain closed-form solution
for inner optimization by approximating it to kernel ridge regression. RCIG [27] assumes that the
inner optimization is convex and computes the meta-gradient via implicit gradient.

Surrogate-based matching methods replace the original objective with a simpler surrogate objective. It
can be further categorized into two groups: short-term matching and long-term matching. Short-term
matching methods aim to optimize the synthetic dataset such that it emulates the short-range behavior
of the model with a given parameter 6. For example, DC [S3]], DSA [51]], and DCC [21] matches
gradient of neural network computed with synthetic and real dataset V£ (0) and V£ (6). DM
[52]] and CAFE [40] matches distribution of S and 7 in the feature space. Since these approaches do
not involve unrolled optimization, they are computationally efficient. In contrast, long-term matching
methods, such as MTT [5] and TESLA [8]], aim to emulate long-term behavior by matching network
parameters after several steps of training on the synthetic dataset. Although long-term matching
has demonstrated superior performance compared to short-term matching methods, it introduces
substantial costs. While TESLA [8] improves memory efficiency by making memory usage constant
with respect to the number of synthetic steps, it still inherits the drawbacks of trajectory preparation
and high computational overhead inherent to long-term matching.

Image-Text Retrieval Image-text retrieval, the canonical multimodal retrieval task, aims to align
visual and textual representations within a shared semantic space. Early methods such as De-
ViSE [12] and Deep CCA [1] introduce joint embedding frameworks, later enhanced by VSE++ [1L1]]
through hard-negative mining. Fine-grained cross-encoder models like SCAN [20] and VSRN [24]
capture region—word interactions to improve alignment accuracy, though at the expense of effi-
ciency. The paradigm has shifted with large-scale contrastive dual-encoders—notably CLIP [36] and
ALIGN [16]]—which trained image—text encoders on web-scale noisy data, establishing a foundation
for efficient zero-shot retrieval. Building on this, LiT [50] enhances data efficiency by freezing the
image encoder, SLIP [30] integrates self-supervised objectives, and SigL.IP [49] introduces a pairwise
sigmoid loss for improved stability. To retain fine-grained matching without full cross-attention,
FILIP [46] employes late interaction between token—patch pairs, while fusion-based pretraining
frameworks such as ALBEF [23]], BLIP [22], and CoCa [47] combine contrastive learning with
image-conditioned language modeling to mitigate noisy supervision. Beyond empirical successes, a
few recent works have provided theoretical insights into multimodal contrastive learning. The work
in [31]] showes that for linear models, each step of loss minimization via gradient descent can be
interpreted as performing singular value decomposition (SVD) on the contrastive cross-covariance
matrix between modalities, which forms a key insight motivating our work.

Multimodal Dataset Distillation Recent efforts have extended dataset distillation techniques to
the image-text contrastive learning setting. MTT-VL [43]] adapts the MTT [5] framework in a naive
manner, matching the parameters of the image and text encoders independently. LoRS [45] further
improves performance by jointly distilling the ground-truth similarity matrix between image-text
pairs, effectively capturing cross-modal correspondence. In addition to contrastive tasks, other
works have explored dataset distillation in different domains and problem settings. The work in [19]
addresses a multimodal classification task with audio and video modalities by matching cross-modal
distributions, while [25} 28] investigate dataset distillation for natural language processing tasks and
[42} 6] extend it to video classification. In parallel, ClipCov [17] proposes a dataset selection method
for multimodal contrastive learning, aiming to preserve the cross-covariance structure of the original
dataset. While ClipCov relies on heuristic surrogate objectives to approximate cross-covariance
preservation, our work, CovMatch, directly optimizes the synthetic dataset to achieve this objective.
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B Implementation Details

Distillation The synthetic dataset is initialized with randomly selected real image-text pairs from
the training set. During distillation, both the synthetic image pixels and text input embeddings are
optimized using SGD with momentum 0.5 and a learning rate of 1.0. At each distillation step, the
cross-covariance matrix and feature means are computed using a batch of 128 real samples. For the
synthetic data, the entire set is used for these computations, except in the 500-pair setting, where a
batch of 256 synthetic samples is used to reduce memory consumption. We set the scaling factor to
p = 2 for 100 synthetic pairs and p = 1 for 200 or more pairs. The feature matching weight \ is fixed
at 0.1 for 100 and 200 pairs, and increased to 0.5 or 0.6 for 500 pairs to impose stronger regularization
on cross-covariance alignment. Note that all network components—including the image encoder,
text encoder, and projection layers—are updated with one step of training on the real dataset at each
distillation step, and re-initialized every 50 updates. We distill for 10,000 iterations by default; for the
500-pair setting, we extend this to 20,000 iterations to ensure full convergence, even after reaching
95% of the final performance. A summary of the hyperparameter used in CovMatch is provided in
Table ]

Table 4: Hyper-parameters used for CovMatch. A dash (-) in the synthetic batch size denotes that the
entire synthetic set is used for computing the matching loss.

Dataset Flickr30k COCO

Pairs 100 200 500 | 100 200 500

Scaling factor p 2 1 1 2 1 1
Feature match weight A | 0.1 0.1 0.6 | 0.1 0.1 0.5
Batch size (real) 128 128 128 | 128 128 128
Batch size (syn) - - 256 - - 256

Learning rate (img) 1 1 1 1 1 1

Learning rate (txt) 1 1 1 1 1 1
Iteration 200 200 400 | 200 200 400

Evaluation During the evaluation stage, we train the model using SGD optimizer with momentum
0.9, weight decay Se-4, batch size 128, and learning rate 0.01 for the image and text encoders and 0.1
for the projection layers. Training is conducted for 100 epochs, and we employ a multi-step learning
rate scheduler that decays the learning rate by a factor of 0.1 at the 50th epoch.

Network Architectures In Table[5] we provide detailed information on all the models used in our
experiments. For image encoders, we use NFNet, NF-ResNet, NF-RegNet, and ViT, and for text
encoders, we employ BERT and DistilBERT.

Table 5: Detailed information of the models.

Network Architecture \ Model Parameter Count
NFNet [4] nfnet_lI0 26.4M
NF-ResNet [3] nf_resnet50 25.6M
NF-RegNet [44] nf_regnet_bl 21.0M
ViT [10] vit_base_patch16_224 85.8M
BERT [9] bert-base-uncased 110.0M
DistilBERT [37]] distilbert-base-uncased 66.0M

C Discussion about Linearized Contrastive Learning

In Section we derived the cross-covariance alignment objective under the linearized contrastive
learning assumption. In this section, we provide theoretical justification for using the linear contrastive
loss (3)) and full derivation for Equation (6).
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Theoretical Justification for Linearized Contrastive Objective We note that the linear contrastive
loss (3)) can be interpreted as a high-temperature approximation of the InfoNCE loss (). Specifically,
under the assumption of a large temperature 7 > 0, the softmax in the InfoNCE loss flattens, and a
first-order Taylor expansion yields

1og(z exp(s;; /7)) =~ log (Z (1 + S%) )
i i
zlog<M1_12(l+%))+log(M—1)
J#i

1

S sy 4 log(M - 1),

(M —1) i3+ 1og( )
J#i

Substituting this into the InfoNCE loss (I)) leads to the linearized form

LNcE & — 1 ZZ Sij — Sii) — 1 ZZ sj; — ;i) + Constant,

i=1 j#i i=1 j#i

which is equivalent to (3)), up to a constant scaling and shift. This derivation provides justification for
using the linearized objective as an approximation of InfoNCE when 7 is large.

Also, recent work has shown that fine-tuning large neural networks (e.g., foundation models) often
operates in the Neural Tangent Kernel (NTK) regime [[14], where the training dynamics are well
approximated by a linear model over a high-dimensional feature space derived from the model’s
gradients [29]]. This connection suggests that our analysis in the linear regime can meaningfully
inform behavior in more general, non-linear settings.

Equivalence between Eq. (3) and Eq. (6) Remind that the cross-covariance matrix of the dataset
— {(pi pinIPl
= {(h}, h})},;_; is defined as
D] D]

1 X )
S (- DI C Rl hy(hi) " =D )7, (4
71y 2 (e~ = )T m\fl QDT = Pl ) )

with pp, and pp, denoting the empirical means of the image and text features, respectively. The
cross-covariance alignment term can be written as

~Tr(G,CPG) ==Y g, CPq,, (15)

where G = [gu,s---,00.] € R¥** and G = [gi,,...,q..] € R¥“*=. Note that the similarity
terms in (5)) can be expressed as

z

sij = (Guhl) T (Gih]) = (gu) Thi(B]) T g, -

k=1
Then, the linear contrastive loss @) can be written as:
|D| D] |D|
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Hence, the linear contrastive loss (©) is equivalent to cross-covariance alignment term with a regular-
ization term on the projection matrices (6)).
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D Generalization to Video-Text Retrieval Tasks

To further evaluate the generalizability of CovMatch beyond image—text data, we conduct experiments
on the video—text retrieval task. For this study, we construct a computationally-manageable subset
of the WebVid-10M dataset [2], consisting of 49K training and 1K test video—text pairs. We use a
pretrained VideoResNet (r3d_18) [39]] as the video encoder and BERT as the text encoder. For the
synthetic dataset, we distill 500 video—text pairs, sampling four frames per video.

As shown in Table @, CovMatch outperforms both MTT-VL [43]] and LoRS [45], demonstrating
superior retrieval performance. The result indicates that CovMatch generalizes effectively to the
video-text retrieval task, underscoring its robustness across modalities. Its strong performance on this
more complex task also highlights the CovMatch’s computational efficiency.

Table 6: Performance comparison on video-text retrieval task with N = 500. The performance
achieved by training on the full dataset is as follows: VR@1=15.2, VR@5=38.9, VR@10=53.6,
TR@1=14.2, TR@5=38.4, TR@10=52.8.

Method | VR@1 VR@5 VR@I0 TR@1 TR@5 TR@I0 | Avg

Random 1.1 52 9.6 1.8 5.8 10.2 5.6
MTT-VL 2.0 83 13.9 22 8.8 13.7 8.1
LoRS 24 8.7 14.1 2.8 8.5 13.4 8.3

CovMatch 3.0 114 19.0 34 11.1 18.0 11.0

E More Ablation Studies

E.1 Distillation with Other Networks

We use NFNet as the image encoder and BERT as the text encoder for our main results. In this
section, we evaluate the generalization ability of our method by applying it to alternative network
architectures for both the image and text encoders. The results, summarized in Table|/} demonstrate
that CovMatch consistently outperforms all baseline methods across a range of encoder choices,
confirming its robustness to architectural variations.

Table 7: Distillation with various network architectures for both image and text encoders on Flickr30k
using 100 synthetic pairs. The average retrieval performance is reported. Note that for MTT-VL with
the ViT model, the low-rank adaptation matching technique is employed, which involves matching
the trajectories of a small subset of model parameters using low-rank matrices.

Image encoder ~ Text encoder | Random MTT-VL LoRS CovMatch

NFNet BERT 8.6 20.4 27.4 30.5
NF-ResNet BERT 9.1 14.4 20.7 253
NF-RegNet BERT 1.7 16.6 22.0 26.6

ViT BERT 11.3 20.7 29.9 359

NFNet DistilBERT 9.5 24.0 26.0 29.1

E.2 Ablation on Frozeness of Text Encoder

As shown in Figure[T] our method distills the text modality into synthetic embeddings used as inputs
to the transformer layers of the text encoder, whereas baseline methods distill text embeddings as
inputs to the text projection head, bypassing the text encoder entirely. Consequently, under the
baselines, the text encoder is never involved—even at evaluation. To enable a fairer comparison in
which the text encoder can be trained during evaluation for the baselines, we adapt our framework
(Figure [1)) to them: instead of feeding distilled text embeddings directly into the projection head,
we modify the baselines to distill synthetic embeddings that serve as inputs to the text encoder’s
transformer layers. In this setup, we freeze the text encoder during distillation and unfreeze it only at
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evaluation. We made this choice for two reasons: (i) unfreezing the text encoder during distillation
incurs substantial compute and storage overhead; and (ii) despite the high cost, when we did unfreeze
it and included it in trajectory matching, the text-encoder trajectory-matching loss did not decrease
(unlike the projection head), leading to optimization failure and unstable training.

As reported in Table 8] unfreezing the text encoder only for evaluation yields a small improvement
for the baselines, but our method still significantly outperforms them. This observation confirms that
baseline methods, which do not incorporate the text encoder during distillation, cannot fully benefit
from unfreezing it during evaluation, resulting in only marginal performance gains.

Also, we conduct an additional ablation study that investigates the effect of freezing the text encoder
for our method during both the distillation and evaluation stages. As shown in Table[J] freezing the
text encoder during evaluation leads to a significant performance drop, highlighting the importance
of training not only the image encoder and projection layers but also the text encoder for strong
image-text retrieval ability. Moreover, we observe that freezing the text encoder during distillation
also causes a substantial drop in performance (from 38.4 to 29.4 in average score). These findings
suggest that involving the text encoder during distillation is critical for maximizing the effectiveness
of our method.

Table 8: Results of unfreezing text encoder during the evaluation stage of baseline method on
Flickr30k with N = 500.

Method | IR@l IR@5 IR@10 TR@1 TR@5 TR@I0 | Avg

LoRS (frozen) 10.0 28.9 41.6 15.5 39.8 53.7 31.6
LoRS (unfrozen) | 10.0 28.0 41.5 17.7 42.5 57.0 32.8
CovMatch 14.7 38.4 514 19.9 46.7 59.5 38.4

Table 9: Effect of freezing the text encoder during the distillation and evaluation stages of CovMatch
on Flickr30k with N = 500.

Distill Eval | IR@1 IR@5 IR@10 TR@I TR@5 TR@IO | Avg

Frozen Frozen 4.3 13.4 21.1 6.5 20.6 30.6 16.1
Frozen Unforzen 9.8 27.8 40.2 15.1 35.8 48.0 294
Unfrozen Frozen 4.5 14.7 22.6 8.4 23.2 334 17.8
Unfrozen Unfrozen 14.7 38.4 51.4 19.9 46.7 59.5 384

E.3 Ablation on Batch Size

While our original objective aims to match the cross-covariance matrix and mean feature of the entire
training dataset with those of the synthetic set, computing the exact statistics over the full training
set at every distillation step is computationally prohibitive, since the embeddings are continuously
updated by the online model. To address this, we approximate the full-dataset statistics using mini-
batches sampled from the training set at each step. This strategy introduces some variance, but
allows the method to remain tractable. We investigate the impact of the size of this mini-batches
in Table [I0] The result shows a clear trend: larger batch sizes consistently yield better retrieval
performance. This improvement arises because larger batches produce more accurate estimates of the
true cross-covariance, enabling stronger alignment between real and synthetic features and thus more
effective distillation. However, this performance gain comes at the cost of increased per-iteration
computation time, highlighting an inherent trade-off between statistical fidelity and computational
efficiency in our cross-covariance matching framework.

E.4 Ablation on Projection Layers
We adopt a two-layer projection network with GELU activation, following prior baseline designs. To

explore the design space of projection layers, we investigate two key architectural factors: projection
dimension (i.e., dimension of projected output) and projection depth (i.e., number of layers in the
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Table 10: Effect of batch size on performance and distillation time on Flickr30k with N = 100. Our
default configuration uses a batch size of 128.

Batchsize | 64 128 256 512 1024

Performance 29.1 305 304 309 3I1.1
Time (Secf/iter) | 1.02 1.22 136 1.79 3.50

Table 11: Effect of projection dimension on Table 12: Effect of projection depth on
Flickr30k with N=100. Flickr30k with N=100.
Projection Dim | 256 768 2304 4096 Projection Depth | 1 2 3
Performance | 16.1 260 30.5 289 Performance | 29.5 30.5 19.9

projection network). Note that our default configuration uses a projection dimension of 2304. As
shown in Table[T1] reducing the projection dimension leads to noticeable performance degradation,
likely due to loss of information. Also, as shown in Table[T2] single-layer projection network achieved
performance comparable to our default two-layer setup, but deeper networks (3 layers) significantly
degraded the performance. These results highlight that both the dimensionality and depth of the
projection head play an important role, and an overly compact or overly deep design can hinder
retrieval effectiveness.

E.5 Ablation with Single Modality

We conduct an ablation study to assess the impact of distilling each modality individually. Specifically,
we perform distillation while freezing either the synthetic image or text inputs. As shown in Table[T3]
freezing either modality leads to a substantial drop in performance, indicating that both image and
text play essential roles in effective model training. Notably, the performance degradation is more
severe when the images are frozen, suggesting that learning the image modality is more critical.

Table 13: Ablation study on single-modality distillation using 100 image-text pairs on Flickr30k. The
results show that jointly optimizing both modalities is crucial for effective performance.

Method | IR@1 IR@5 IR@10 TR@1 TR@5 TR@I0 | Avg

Image-only 7.1 22.0 329 11.0 30.7 43.1 24.5
Text-only 5.8 20.0 30.6 8.2 25.1 353 20.8
Both 10.1 28.6 40.9 14.8 38.0 50.6 30.5

F More Qualitative Results

In Figure|/| we provide more examples of qualitative analysis described in Section

G Visualizations

We present visualizations of N' = 100 distilled image-text pairs from the COCO dataset in Figure 8]
The image-text pair on the left represents the initial pair before distillation, while the image-text
pair on the corresponds to the distilled pair after distillation. We observe that the images are
transformed into a DeepDream-like style [48]], exhibiting high-frequency components. The text
representations are visualized by retrieving the nearest caption from the training set in the text
embedding space.
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@ ashaggy dog runs in front of three people on
the beach

@ aman in a gray shirt jumps over the top of a
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sand dune in the desert

o i sneakers
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down a beach
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® aman in a black shirt fishing on a rocky shore
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@ awoman in a blue shirt and white shorts playing tennis @ ayoung woman in a fashionable tennis outfit
@ awoman in a red shirt and white skirt playing tennis between volleys
with a blue racket @ the young lady is hitting her tennis ball on the field
@ young female tennis player in a red shirt hitting the ball (3@ awoman in a red shirt and white skirt playing tennis
@  a female soccer player in a yellow uniform in a soccer with a blue racket
field @ ayoung lady in white holding a tennis racket
® a pro basketball player in a white miami uniform makes ® woman in a white dress standing with a tennis
a defensive move racket and two people in green behind her
S 2N J
LoRS
@ seven men wearing cowboy hats are near the fence of a rodeo field while one contestant is in the process of
roping an animal
@ four horses with cowboy riders running near a fifth horse that has no rider
@ a cowboy is viciously thrown about as he attempts to hold on to a horse he is riding in a rodeo competition
@ two men are trying to rope in a bull who is crashing down on one of them, in a contest at a corral
® hispanics are on horseback trying to wrangle a free horse
J
CovMatch
@ people at a rodeo are watching a cowboy getting thrown from the bull
@ arodeo scene with a big crowd watching three men being thrown from bucking broncos
@ two men are trying to rope in a bull who is crashing down on one of them, in a contest at a corral
@ man falling off of a bucking bull, at a rodeo, in front of spectators
® acowboy is bucked off a steer while other men watch from the stands
J

Figure 7: Comparison of the top five retrieved captions from models trained with LoRS- and
CovMatch-generated synthetic image-text pairs, given an image query. Each model is trained on 500
synthetic pairs, and queries are from the Flickr30K test set. Ground-truth captions (i.e., five captions
paired with the query image in Flickr30K test set) are highlighted in blue.

aboyin glassesand amanona a kitchen has a a cat laying down on a pristine white a white tile
a cap skateboarding skateboard window view of a top of a cardboard bathroom with a bathroom with a
down some stairs jumping a ramp staircase box glass shower toilet and slippers

two people are aman is playing a modern fridge a metallic refrigerator ~ a man with abear ~ amanis wearing a
playing on a wii the wii in a room pulled away from freezer in a kitchen standing nexttoa  suit and tie
in a house of people the wall next to food beautiful woman

Figure 8: Examples of distilled image-text pairs from the COCO dataset with N = 100 pairs. (Left)
Initial image-text pair before distillation. (Right) Distilled image-text pairs.

27



H Full Results

Table [T4] and Table[T3] present the full results for Flickr30k and COCO, respectively. Table[I6]shows
the results of the cross-architecture generalization experiment on Flickr30k using N = 100 synthetic
pairs.

Table 14: Performance comparison on Flickr30K. The performance trained by full dataset is
IR@1=48.7, IR@5=79.2, IR@10=87.2, TR@1=61.6, TR@5=85.9, and TR@10=91.5%.

Pairs  Ratio  Metrics Coreset Sglection Distillation
Random  Herding K-Center | MTT-VL LoRS CovMatch
IR@1 2.0£0.2 22403 2.04+0.2 4.740.2 8.3£0.2 10.1+0.2
IR@5 7.54+0.7 8.0£0.8 7.6+£0.7 | 157£0.5 24.1+£0.2 28.6+0.4
100 03 % IR@10 | 12.6£1.0 134+1.0 13.0£1.0 | 24.6£1.0 35.1+£0.3  40.910.6
TR@1 3.3£0.1 3.0£0.7 2.84+0.5 99+03 11.8+0.2 14.840.9
TR@5 | 104£05 99+£1.0 9.7+1.0 | 283£0.5 35.8+0.6 38.0+0.4
TR@10 | 16.0£0.6 15.6+1.1 164409 | 39.1+£0.7 49.2+0.5 50.6£0.6
IR@1 3.3£0.2 3.0£0.2 3.2+0.1 4.6+0.9 8.6+£0.3 12.3+0.4
IR@5 11.5+04 11.3£04 11.1+0.5 | 16.0+1.6 253£0.2  33.6+0.3
200 07 % IR@10 | 18.4+0.5 183+£0.7 17.74£0.4 | 255+£2.6 36.6+0.3  45.8+0.2
TR@1 5.7+0.5 47+04 53407 | 10.2+£0.8 14.5+0.5 17.4+0.5
TR@5 | 15.8+40.5 154+04 152409 | 28.7£1.0 38.7+0.5 41.7+0.5
TR@10 | 239+1.3 229+1.0 232404 | 41.9+1.9 53.4+05 55.8+0.5
IR@1 6.9+04  6.8£04  6.9+0.2 6.6+0.3  10.0+£0.2 14.7+0.3
IR@5 | 21.0+04 20.84+0.5 22.1+£04 | 20.2+1.2 28.94+0.7 38.4+04
500 1.7 % IR@10 | 31.2+0.6 30.9+0.6 32.240.6 | 30.0£2.1 41.6+0.6 51.4+0.3
TR@1 | 10.0£0.6 9.3£0.6 10.6£0.7 | 13.3£0.6 15.5+0.7 19.940.6
TR@5 | 28.0+0.8 26.4+£0.5 29.54+0.7 | 32.8£1.8 39.840.4  46.7+0.9
TR@10 | 38.7+£0.9 36.8£0.7 40.6+0.3 | 46.840.8 53.7£0.3  59.5+0.7

Table 15: Performance comparison on COCO. The performance trained by full dataset is IR@1=25.1,
IR@5=53.9, IR@10=67.5, TR@1=33.0, TR@5=62.8, TR@10=75.0.

Pairs Ratio  Metrics Coreset Sf:lection Distillation \

Random  Herding K-Center | MTT-VL LoRS CovMatch
IR@1 0.7£0.1  0.7£0.1  0.7%0.1 1.3+£0.1 1.8+0.1 2.8+0.1

IR@5 2.8+0.1 29+0.1  32+0.1 | 54+03 7.1+£02  10.5+0.2

100 0.1% IR@10 | 5.1+03 53£02 6.0£0.2 | 9.5£0.5 12.24+0.2 17.7+0.3
) TR@1 1.0+0.1 1.1+0.1  0.9£0.1 | 2.5+03  3.3£0.2 3.84+0.1

TR@5 | 4.0+02 4.1£0.2 42402 | 10.0+£0.5 12.2+03 13.1£0.3

TR@10 | 6.9+03 6.8+02 7.6£03 | 15.7£04 19.6+0.3 21.1+0.2
IR@1 1.1£0.1 1.2+0.1 1.2+0.1 1.7£0.1  2.440.1 3.8+0.1

IR@5 46+03 47£0.1 5.1+£02 | 6.5+£04 93+02 13.4+0.1

200 02% IR@10 | 83+0.6 85+02 89+0.2 | 12.3+0.8 155+0.2 21.8£0.2
TR@1 1.740.2  1.6£0.2  1.9+0.1 3.3+0.2  4.340.1 5.3£0.2

TR@5 | 6.5+05 6.6£02 6.7+0.2 | 11.9+£0.6 14.2+03 17.3£0.2

TR@10 | 11.1£0.6 11.2+04 11.6+0.3 | 19.4+1.2 22.6+0.2 27.0+0.2
IR@1 22402 2340.1 24+0.2 | 2.5+05  2.840.2 5.4+0.1

IR@5 88+0.6 8.8+£0.1 9.0£03 | 89£0.7 9.9+05  18.0+0.1

500 04 % IR@10 | 14.94+0.8 14.8£0.2 154+04 | 15.8+1.5 16.5+0.7 28.2+0.1
TR@1 | 3.5+04 29+02  3.6+0.2 | 50+04 53405 8.1+0.3

TR@5 | 11.9£0.7 11.2+04 124403 | 17.2+1.3 183£1.5 23.5+£0.3

TR@10 | 19.24£0.5 18.9+£0.3 20.0+0.5 | 26.0£1.9 27.9+1.4 34.6+0.6

28



Table 16: Cross-architecture evaluation results on Flickr30k with N = 100 synthetic pairs.

Method | Text Encoder | Image Encoder | IR@1 IR@5 IR@10 TR@1 TR@5 TR@I10

NFNet 21 74 122 3.6 9.6 15.6
BERT NF-ResNet 22 80 134 3.0 10.1 16.4
NF-RegNet 22 76 124 26 9.7 15.3
ViT 28 93 15.1 42 133 19.8
Random
NFNet 24 86 144 32 11.1 16.4
. NF-ResNet 26 96 153 3.6 11.4 18.4
DistIBERT | \E RegNet 2.3 8.0 13.4 2.9 10.0 15.4
ViT 29 106 174 4.1 13.1 20.6
NFNet 47 157 246 99 283  39.1
BERT NF-ResNet 18 70 119 2.9 10.5 16.4
NF-RegNet 15 60 106 2.9 9.2 15.0
MTTVL ViT 2.1 7.8 13.1 3.9 12.2 18.6
NFNet 42 144 225 102 290  40.8
. NF-ResNet 12 50 9.0 32 10.1 16.7
DisilBERT | \pRegNet | 08 37 71 31 102 170
ViT 17 64 110 32 10.9 17.7
NFNet 74 228 340 142 379 522
BERT NF-ResNet 16 70 121 2.9 11.1 18.0
NF-RegNet 1.6 64 112 2.5 110 177
LoRS ViT 20 713 12.7 32 11.7 19.0
NFNet 52 173 272 125 340 450
. NF-ResNet 17 63 10.8 4.0 11.9 18.8
DisilBERT | \pReeNet | 13 52 89 36 120 186
ViT 14 58 9.9 32 127 204
NFNet 101 289 410 136 369 506
BERT NF-ResNet 47 154 234 55 173 266
NF-RegNet 39 138 217 56 168 260
CovMatch ViT 37 135 217 52 186 280
NFNet 85 251 367 126 334 462
. NF-ResNet 53 162 251 6.2 176 264
DistlBERT | \p RegNet 38 134 219 53 17.7 25.6
ViT 30 119 195 5.0 163 246
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