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ABSTRACT

Despite the huge success of Large Language Models (LLMs) in coding assistants
like GitHub Copilot, these models struggle to understand the context present in
the repository (e.g., imports, parent classes, files with similar names, etc.), thereby
producing inaccurate code completions. This effect is more pronounced when using
these assistants for repositories that the model has not seen during training, such as
proprietary software or work-in-progress code projects. Recent work (Shrivastava
et al., 2022; Zhang et al., 2023) has shown the promise of using context from
the repository during inference. In this work, we extend this idea and propose
RepoFusion, a framework to train models to incorporate relevant repository context.
Experiments on single-line code completion show that our models trained with
repository context significantly outperform much larger code models as CodeGen-
16B-multi (∼ 73× larger) and closely match the performance of the ∼ 70× larger
StarCoderBase model that was trained with the Fill-in-the-Middle objective. We
find these results to be a novel and compelling demonstration of the gains that
training with repository context can bring. We carry out extensive ablation studies
to investigate the impact of design choices such as context type, number of contexts,
context length, and initialization within our framework. Lastly, we release a dataset
with three types of repository contexts to facilitate further research in this domain.

1 INTRODUCTION

Large Language Models (LLMs) of code (Svyatkovskiy et al., 2020; Chen et al., 2021; Fried et al.,
2022; Wang et al., 2021; Nijkamp et al., 2023; Li et al., 2022; Allal et al., 2023) have gained
significant popularity. The demand for these models has further increased with their integration into
code assistants like GitHub Copilot1 and TabNine2, and their popularity is anticipated to grow further
as more developer-assistance products are developed around them.

Despite their remarkable capabilities, LLMs of code often struggle to generalize effectively in
unforeseen or unpredictable situations, resulting in undesirable predictions. Instances of such
scenarios include code that uses private APIs or proprietary software, work-in-progress code, and any
other context that the model has not seen while training. To address these limitations, one possible
approach is to enhance the predictions of these models by incorporating the wider context available
in the repository. Leveraging the structure and context of the repository can take into consideration
dependencies between files, such as imports and parent classes, and provide valuable insights into
coding patterns that may be specific to the organization or user. Recent works (Shrivastava et al.,
2022; Zhang et al., 2023; Ding et al., 2022) have shown promising results in utilizing repository-level
context in conjugation with LLMs of code. It was also shown in Shrivastava et al. (2022) that without
specialized training, it is challenging to integrate multiple relevant contexts from the repository.
Building upon these findings we propose RepoFusion, a training framework for learning to combine
multiple relevant contexts from the repository in order to generate more accurate and context-aware
code completions.

In this work, we focus on the task of single-line code completion (Hellendoorn & Devanbu, 2017;
Shrivastava et al., 2020) which simulates real-world scenarios where users are editing existing files in

1https://github.com/features/copilot/
2https://www.tabnine.com/
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Figure 1: Given multiple relevant contexts from the repository (Repo Contexts), RepoFusion appends
the Surrounding Context (highlighted in gray) to each repo context, encodes them separately, and
combines them to produce a prediction of the target hole.

an IDE. With reference to Figure 1, this means that we have to predict the missing section, referred to
as the target hole (highlighted in green), starting from the cursor’s position until the end of the line.
We see that the completion of this target hole will benefit from context not just in the current file (the
variable name token), but also from other files in the repository. Specifically, the context from the
imported file Account.java provides insight into the usage of the getTier method, while the sibling
file Subscription.java offers guidance on the usage of Auth.user("bearer", with the definition
of Auth found in the imported file Auth.java. Given these relevant code snippets from across the
repository which we call Repo Contexts (RCs), RepoFusion uses the Fusion-in-Decoder (Izacard &
Grave, 2021) architecture to combine these. Specifically, each repo context is appended with the
surrounding context i.e., a window around the target hole excluding the target hole (highlighted in
gray) and encoded separately. A decoder jointly attends to the concatenated encoded representations
to produce a prediction for the target hole (highlighted in red). The key contributions of our paper
can be listed as follows:

• We propose RepoFusion, a framework that helps code models to make better predictions by learning
to combine relevant contextual cues from the repository.

• Through extensive experiments we establish that RepoFusion, a 220M parameter model, signifi-
cantly outperforms several larger models trained on the next-token prediction objective such as
CodeGen-16B (Nijkamp et al., 2023). Furthermore, despite being approximately 70 times smaller
in size, our model closely matches the performance of StarCoderBase (Li et al., 2023), a 15.5B
parameter LLM trained with the Fill-in-the-Middle (Bavarian et al., 2022) objective.

• We conduct thorough ablation studies to gain insights into the key factors influencing RepoFusion,
such as the nature of repository contexts, their lengths, the number of repository contexts, and other
training configurations. One of the crucial findings is that leveraging information from diverse
sources within a repository is the key to RepoFusion’s effectiveness.

• We create and release Stack-Repo 3, a dataset of 200 Java repositories with permissive licenses and
near-deduplicated files that are augmented with three types of repository contexts.

2 TRAINING WITH REPOSITORY CONTEXT

In this section, we briefly describe Fusion-in-Decoder (Izacard & Grave, 2021), the repository
contexts we used, and the details of our RepoFusion framework.

3https://huggingface.co/datasets/anonymousTheStackRepo/the-stack-repo
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2.1 FUSION-IN DECODER

Fusion-in-Decoder (Izacard & Grave, 2021) (FiD) is a method to train a language model to combine
information coming from multiple sources. In the original work, FiD was used for open-domain
question answering. In the FiD approach to question answering, a sequence-to-sequence model takes
support passages concatenated with the question as inputs and produces an answer as the output.
Each support passage is appended to the question and encoded independently by the encoder. The
encoded representations are then concatenated and fed to the decoder which jointly attends to them to
produce the answer. In this work, we adapt FiD for the setting of code completion.

2.2 REPOSITORY CONTEXTS

Motivated by the syntax and semantics of programming languages as well as the common coding
patterns, Shrivastava et al. (2022) proposed a set of repo-level prompt proposals that leverage the
structure and the relevant context in files across the repository. A prompt proposal (PP) is a function
that takes in the target hole’s location and the associated repository as input and returns a string called
Prompt Proposal Context (PPC) as output. The prompt proposal context is created by extracting
a particular type of context (prompt context type) from a particular category of related source files
(prompt source). Examples of prompt sources are the current file, files that are imported into the
current file, files that have a similar name as the current file, etc. Examples of prompt context types are
lines following the target hole, method names and bodies, identifiers, string literals, etc. Combining
these prompt sources and prompt context types gives us a total of 63 prompt proposals (see Appendix
B.4 of Shrivastava et al. (2022) for details). It should be noted that the context from the beginning of
the current file up to the position of the hole, as well as the context following the target hole within
the current file are also types of prompt proposal contexts. We will refer to these as the prior PPC
(or just prior) and the post PPC (or just post), respectively in the remainder of the paper. Note that
depending on the target hole, some prompt proposal contexts might be empty (e.g. if the target hole
is towards the very beginning of the file, there might not be any import statements from the current
file to get context from).

Repo-level prompt proposals can be thought of as a deterministic retrieval mechanism that returns
the relevant code snippets from the repository. To understand the role of the retrieved repo contexts,
apart from prompt proposals, we also consider two other mechanisms for retrieving repository-level
context (see Appendix for implementation details): (a) BM25: The context from each file in the
repository is scored using BM25-based (Jones et al., 2000) similarity with the surrounding context,
and (b) RandomNN (also used in Shrivastava et al. (2022)): From a list of randomly selected chunks
from the repository, we select the top-k based on the similarity of the embedded chunks with the
embedded surrounding context in the representation space.

2.3 REPOFUSION

The core idea of RepoFusion is to train a code model to be aware of the context in the repository
such that it helps in generating an accurate prediction of the target hole. Given a set of retrieved repo
contexts, RepoFusion learns to combine the relevant parts of these contexts using the FiD approach
as described in Section 2.1. The surrounding context is concatenated with each repo context and
then encoded independently (see Figure 1, bottom). Note that for our purpose, since we want the
code model to complete the target hole, we append the surrounding context toward the end of the
repo context. This is different from the original work (Izacard & Grave, 2021), where the question
(analogous to the surrounding context in our setting) is appended at the beginning of each passage
(analogous to the repo context in our setting). RepoFusion uses N repo contexts of length l tokens
each. We experimented with the following four strategies for producing and ordering the repo contexts
based on the prompt proposal contexts (see Figure 2).

1. Truncated-Ranked (T-Rank): In this setting, one prompt proposal context yields one repo
context. We truncate each prompt proposal context (i.e., take only the first l tokens) to form
the respective repo context and discard the rest. The repo contexts are ordered based on
the ranking of the prompt proposals 4 on the validation split of the Google Code archives

4https://github.com/shrivastavadisha/repo_level_prompt_generation/blob/main/get_info_from_hole_predictions.py
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Figure 2: Different strategies employed for producing repo contexts (RCs) from prompt proposal
contexts (PPCs): (a) T-rank: we truncate the i-th ranked PPC to yield the i-th RC. (b) T-rand:
we position the truncated i-th PPC at a random position j in RepoFusion’s sequences of RCs. (c)
NT-Rank: each PPC yields as many RCs as necessary to exhaust all of its tokens without truncation.
(d) NT-Prior-Last: we reserve the last r RCs for the Prior PPC and fill the rest RCs as in NT-Rank.

dataset of (Shrivastava et al., 2022). Given that our work and Shrivastava et al. (2022) both
target Java, it seemed reasonable to us to directly use this ordering.

2. Truncated-Random (T-Rand): Same as T-rank except that the repo contexts are ordered
randomly. This helps us understand the role of the specific ranking of PPs from (Shrivastava
et al., 2022).

3. Not Truncated-Ranked (NT-Rank): The prompt proposals are ranked based on the same
order as in T-Rank. Unlike T-rank, here we avoid the truncation of prompt proposal contexts.
Instead, we construct as many repo contexts from each prompt proposal context as necessary,
namely a PPC of length L will contribute k = ⌈(L/l)⌉ RCs. We then proceed to the next
in order prompt proposal and continue so until we have selected N repo contexts. Unlike
T-rank, this setting allows RepoFusion to see the entirety of top-ranked prompt proposals at
the cost of potentially ignoring the lower-ranked ones.

4. Not Truncated-Prior-Last (NT-Prior-Last): Same as NT-Rank except that the prior
PPC is always ordered at the end. Since the decoder attends to the concatenated encoded
representations of the repo contexts in the same order as it is presented as inputs, this strategy
helps us understand the role of continuing code generation from the encoded representation
of the prior PPC as the most recently attended representation in the decoder. Note that
depending on the value of N , it may be necessary to remove certain chunks of top-ranked
PPCs in order to accommodate the prior PPC at the end.

Similar to Izacard & Grave (2021), we format each repo context with special tokens to mark the
beginning of the surrounding context and the repo context, as well as for the name of the repo context
(which is the same as the name of the prompt proposal). Please see the Appendix for details on these
tokens and other architectural details of RepoFusion.

3 EXPERIMENTS AND RESULTS

In this section, we describe the process of creation of our dataset Stack-Repo and the details of
experiments. We then present the results of evaluating RepoFusion and other models on the test set.
This is followed by presenting the findings of extensive ablation studies carried out on the validation
set to gain deeper insights into the individual contributions of each component in our framework.
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3.1 DATASET CREATION

In this work, we build upon a modified version of The Stack V1.1 (Kocetkov et al., 2022). The
modified version 5 consists of near-deduplicated code repositories with permissive licenses from
GitHub. For our experiments, we take only the Java subset (files with .java extension) of this dataset.

Creation of Target Holes: For creating target holes needed for training and evaluating RepoFusion,
we choose a set of repositories randomly from the Java subset of the Stack and divide them into
training, validation, and test splits in the ratios 2:1:1 respectively. We only consider repositories that
contain at least 20 near-deduplicated files. For each repository, we choose target holes from every
code line (excluding comments in natural language and blanks) in all the files. In order to tokenize
a code line, we used common Java code delimiter tokens 6. We chose a random token within the
line and the rest of the line starting from that position till the end constitutes the target hole. By not
selecting target holes based on the tokenizer of a specific code model, we can ensure that the tokenizer
remains unbiased and does not implicitly favor any particular code model in our experiments. To
avoid bias from large repositories while training, we cap the maximum contribution of target holes
from a repository to 10000, i.e. if the total number of holes in the repository exceeds 10000, we select
10000 holes randomly from the total holes. Please see Table 1 for the statistics of Stack-Repo.

Table 1: Statistics of Stack-Repo

Feature Train Val Test
# Repositories 100 50 50
# Files 20310 11172 13202
# Holes 435890 220615 159822

Creation of Repo Contexts: For each target hole, we use the implementation 7 from (Shrivastava
et al., 2022) to extract prompt proposal contexts. We take two lines above and two lines below
the target hole excluding the target hole as the surrounding context. For obtaining the embeddings
for RandomNN repo contexts, we use pre-trained CodeBERT (Feng et al., 2020). For constructing
the BM25 repo contexts, we use the implementation from the Rank-BM25 package 8. To improve
efficiency, we store the repo contexts for each target hole in advance. Note that even though our
target hole and repo context creation strategies have been inspired from Shrivastava et al. (2022), our
dataset, Stack-Repo is significantly bigger in size. Apart from code completion, Stack-Repo can serve
as a benchmark for various other code-related tasks involving repository context, such as bug repair
and pull request resolution. We plan to release it under the same license as The Stack (Kocetkov
et al., 2022) to support future research in these areas.

3.2 EXPERIMENTAL DETAILS

Training of RepoFusion: We use the 220M parameter CodeT5-base (Wang et al., 2021) encoder-
decoder model as our base code model for RepoFusion. We found that the pre-trained CodeT5
model was not good at completing Java code (see Appendix for initial results). Therefore, to obtain
a base model for RepoFusion training we finetuned CodeT5-base with an input context length of
512 using the next-token prediction objective on Java repositories from the dataset described in
Section 3.1. Specifically, we used the repositories that were not included in Stack-Repo. For each
file, we randomly sample ten pivot points with the code context prior to the pivot location in the file
serving as the input to the encoder of CodeT5. The finetuned CodeT5-base model was then used to
initialize the training of RepoFusion. Based on the validation set performance, we found that for
RepoFusion, NT-Prior-Last with N = 32 and l = 768 works the best. We provide complete details
of training RepoFusion and finetuning CodeT5 in Appendix.

Baselines: To benchmark the performance of RepoFusion, we conducted experiments with several
methods, with each model utilizing the recommended tokenizers specific to the method and employing

5https://huggingface.co/datasets/bigcode/the-stack-dedup
6[.,(,),[,], ,{,},,,:,",;]
7https://github.com/shrivastavadisha/repo_level_prompt_generation
8https://pypi.org/project/rank-bm25/
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a maximum token generation limit of 128 per completion. To ensure a thorough analysis, we have
incorporated encoder-decoder models as well as decoder-only models of different sizes, with varying
context lengths and two different input context types. We present the details of the methods below:

1. CodeT5 (FT): In addition to the previously described fine-tuned (FT) version of CodeT5-
base, we also finetuned CodeT5-large (770M) with a context length of 512. Next, we
assessed the performance of these models using input context lengths of 2048 and 4096.
The input context was constructed by either considering the prior PPC (prior) alone or by
concatenating equal lengths of the post PPC (post) and prior.

2. BigCode models: We experimented with two models released by BigCode 9. The first
model is SantaCoder (Allal et al., 2023), which is a 1.1B parameter model which supports a
maximum context length of 2048 tokens and the second is the recently released StarCoder-
Base (Li et al., 2023) model which is a 15.5B parameter model that can support up to 8192
tokens. Both of these models are trained with Fill-in-the-Middle (Bavarian et al., 2022)
(FiM) objective on versions 1.1 and 1.2 of The Stack (Kocetkov et al., 2022), respectively.
These models were evaluated with both the prior and post+prior contexts as inputs. For
experiments with post+prior, we used the FiM special tokens that were used while training
these models. Since these models have been trained specifically to see the post PPC as suffix,
they help us understand the role of training with multiple repo contexts in the way proposed
by RepoFusion.

3. CodeGen (Nijkamp et al., 2023): CodeGen is a decoder-only transformer-based autore-
gressive model trained with the next-token prediction objective. It supports a maximum
context length of 2048 tokens. We experimented with three pre-trained variants of CodeGen,
namely CodeGen-2B-multi, CodeGen-6B-multi, and CodeGen-16B-multi. As before, we
tried the scenarios where the input context consists of the post + prior as well as when the
input context consists of just the prior. These models help us understand the performance of
large pre-trained models that are not trained with repo context.

It is important to note that when compared to our RepoFusion model, with the exception of CodeT5-
base (FT), all other models are many times larger in size and have been trained on a significantly
larger number of tokens. The rationale behind selecting these baselines is to compare the performance
of training smaller models with additional repository context against training much larger models
without incorporating repository context.

Evaluation Metric: We conduct an exact string match between the predicted hole and the target hole,
where the predicted hole is the string up to the occurrence of the first newline in the completion. If an
exact match is found, it is considered a success; otherwise, it is deemed a failure. We measure the
fraction of exact matches over the dataset and call it Success Rate.

3.3 RESULTS

Table 2 presents the hole completion success rate (along with standard error) in percentage for
different methods on our test set, where the standard error is an estimate of the variability in the
sample mean of the distribution of exact match. The top two sections of the table display the
evaluation results of the finetuned encoder-decoder {CodeT5-base(FT), CodeT5-large(FT)} models
and decoder-only {SantaCoder, CodeGen-2B, CodeGen-6B, CodeGen-16B} models, respectively
when provided with prior context as input. The table’s next two sections present the results of
evaluating these models when given with post+prior context as input. In the final section of the table,
we showcase the evaluation results of RepoFusion using different effective input context lengths
obtained by varying the values of N and l.

Baseline Performance Improves with Model Size and the Addition of Context: The performance
of CodeT5 (FT) models improves as the model becomes bigger (CodeT5-large vs CodeT5-base)
and as the input context length increases (2048 vs 4096). We observe a comparable pattern with
decoder-only models, where there is a general enhancement in performance as the models grow larger
(with a slight indication of saturation) while maintaining a fixed context length. Additionally, we note
a substantial improvement in both categories of models when provided with post + prior context as

9https://www.bigcode-project.org/
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Table 2: Completion success rate on the test set for different methods.

Model Size
(#params)

Effective
context length

Context
type

Success Rate
(%)

CodeT5-base (FT) 0.22B 2048 prior 41.82 ± 0.12
CodeT5-base (FT) 0.22B 4096 prior 46.45 ± 0.12
CodeT5-large (FT) 0.77B 2048 prior 44.73 ± 0.12
CodeT5-large (FT) 0.77B 4096 prior 48.92 ± 0.12

SantaCoder 1.1B 2048 prior 39.51 ± 0.12
CodeGen 2B 2048 prior 49.45 ± 0.12
CodeGen 6B 2048 prior 49.19 ± 0.12
CodeGen 16B 2048 prior 50.20 ± 0.12

CodeT5-base (FT) 0.22B 2048 post+prior 48.89 ± 0.12
CodeT5-base (FT) 0.22B 4096 post+prior 49.97 ± 0.12
CodeT5-large (FT) 0.77B 2048 post+prior 51.72 ± 0.12
CodeT5-large (FT) 0.77B 4096 post+prior 52.43 ± 0.12

SantaCoder 1.1B 2048 post+prior 56.78 ± 0.12
CodeGen 2B 2048 post+prior 53.18 ± 0.12
CodeGen 6B 2048 post+prior 54.03 ± 0.12
CodeGen 16B 2048 post+prior 54.09 ± 0.12

RepoFusion (N = 4, l = 512) 0.22B 2048 NT-Prior-Last 65.96 ± 0.12
RepoFusion (N = 8, l = 512) 0.22B 4096 NT-Prior-Last 70.38 ± 0.11
RepoFusion (N = 32, l = 768) 0.22B 24576 NT-Prior-Last 77.32 ± 0.10

Table 3: Comparison with StarCoderBase on a test set subset.

Model Size
(#params)

Effective
context length

Context
type

Success Rate
(%)

StarCoderBase 15.5B 8192 prior 52.97 ± 0.45

StarCoderBase 15.5B 8192 post+prior 79.79 ± 0.36

RepoFusion (N = 16, l = 512) 0.22B 8192 NT-Prior-Last 73.67 ± 0.43
RepoFusion (N = 32, l = 2500) 0.22B 80000 NT-Prior-Last 78.33 ± 0.37

input, compared to their respective performances with only the prior context. The SantaCoder model,
specifically trained for the FiM task, exhibits the most significant improvement.

RepoFusion is Effective: RepoFusion not only exhibits a substantial improvement over its base
model (CodeT5-base (FT)) but also surpasses other bigger models, even when utilizing the same
effective context length. Furthermore, RepoFusion achieves superior performance compared to the
significantly larger CodeGen-16B model, even when constrained to utilize fewer repository contexts
to match the effective context length of CodeGen-16B. Furthermore, when provided with additional
repo contexts, RepoFusion demonstrates further enhancements in performance.

We also compare RepoFusion with the recently released StarCoderBase (Li et al., 2023) model.
StarCoderBase is a 15.5B parameter model which is trained with about one trillion tokens using a
FiM objective employing a large input context length of 8192 tokens. The results of this comparison
using a random subset of 12500 holes from our test set are depicted in Table 3. Learning to
read additional repository context allows RepoFusion to achieve success rate just 1.3% below the
performance of the 70 times bigger state-of-the-art StarCoderBase model.

Prompt Proposals Matter: The right side of Figure 3 illustrates the success rate of RepoFusion using
Random-NN, BM25, and PPC (refer to Section 2.2 for details) when employing T-Rank and NT-Rank.
Note that when evaluating Random-NN and BM25, we employed corresponding RepoFusion models
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specifically trained to accept Random-NN and BM25 contexts as inputs. The results show that using
the repo context from PP (Shrivastava et al., 2022) performs the best.

The NT-Prior-Last Strategy is Most Effective: Next, we compare performances of the four different
repo context production and ordering strategies that we introduced in Section 2.3. The left side of
Figure 3 illustrates the success rate for the four strategies in two distinct settings: N = 32, l = 768
and N = 63, l = 512. We see that the ordered repo contexts, specifically NT-Prior-Last, NT-Rank,
and T-Rank perform better than random ordering of repo contexts (T-Rand). Also, the improved
performance of NT-versions when compared to the T-versions, highlights the value of presenting
complete context from top prompt proposals, as opposed to displaying truncated contexts from more
prompt proposals.

Figure 3: Completion success rate with different approaches to producing repository contexts (RCs).
(Left) Impact of RC production and ordering strategies; (Right) Impact of different RC retrieval
methods.

Longer Repo Contexts are Better: In the left side of Figure 4, we plot the variation of success rate
with different values of the repo context length l. For this experiment, we used our best-performing
model that was trained using NT-Prior-Last. The results indicate an improvement in the performance
with the size of each repo context. However, in both cases (N = 32, N = 63), the performance
reaches a saturation point as the value of l increases.

Figure 4: Completion success rate as a function of (Left) the length of the individual repo context l;
(Middle) the number of repo contexts N ; (Right) the number of prompt proposal contexts that were
used to produce the N repo contexts.

Using More Repo Contexts is Better: To understand the role of multiple repo contexts, we evaluated
our best-performing model with different values of N . We see from the middle part of Figure 4 that
the performance of RepoFusion increases upto N = 63 when l = 512 and up to N = 32 with a
longer length of repo context l = 768. After this, increasing the value of N doesn’t lead to further
improvements.

RepoFusion Benefits from Diverse Prompt Proposals: We additionally look at the success rate as
a function of the average number of different prompt proposal contexts that produced the considered
repo contexts for each number of repo contexts N . Note that the number of PPCs is less than N
because often one PPC yields multiple RCs. One can see from the right part of Figure 4 that using
many diverse PPCs was essential for getting better performance with RepoFusion.

Finetuning the Base Model for Next Token Prediction is Important: Table 4 shows the results
of evaluating RepoFusion when the corresponding model is trained by initializing with a pretrained
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CodeT5-base model versus initializing with a finetuned version. We observe that while training with
repo contexts enhances the performance of the base pretrained CodeT5 model (see Appendix for the
performance with pretrained CodeT5), we see that in all cases, there are clear benefits of initializing
the training with a model that is finetuned for code completion.

Table 4: Completion success rate when initialized from a pretrained vs finetuned model.

Pretrained Finetuned
T-Rand 54.67±0.50 66.53±0.47
T-Rank 59.57±0.49 72.78±0.45
NT-Rank 60.88±0.49 73.60±0.44
NT-Prior-Last 61.91±0.49 74.82±0.43

4 RELATED WORK

Information from Outside the Current File: In the context of source code, harnessing information
beyond the current file has been found to be useful. Hellendoorn & Devanbu (2017) utilizes a nested
n-gram model with a locality-based cache encompassing all directories in the repository. To capture
the structure of the repository, Pashakhanloo et al. (2022b;a) convert it into a relational database
and propose a graph-walk mechanism whereas, Lyu et al. (2021) incorporates the API-dependency
graph in its LSTM-based code model. While training the kNN-LM (Khandelwal et al., 2020), Xu
et al. (2022) incorporates three types of binary variables corresponding to the presence or absence
of similar local and global hierarchy. Zhang et al. (2021) leverages the parent class to generate
comments for the child class.

Repository-level Context for Inference in LLMs: Shrivastava et al. (2022) proposes RLPG, a
classifier that selects a prompt proposal based on the target hole and utilizes the context from
the chosen prompt proposal and prior context to prompt Codex (Chen et al., 2021). Similarly,
RepoCoder (Zhang et al., 2023) iteratively refines the prediction of the target hole by injecting the
previous predictions from the LLM in addition to the retrieved context and prior context in the input
prompt. In this work, we build upon the insights gained by Shrivastava et al. (2022) regarding the
utilization of repository-level information during inference. We extend their findings to various
configurations involving different code language models (LLMs), considering a range of context
lengths and sizes. Additionally, our framework is trained with context from the repository and learns
to effectively leverage multiple relevant contexts sourced from the repository.

Retrieval-augmented Code Models: In recent studies (Zhou et al., 2023; Parvez et al., 2021; Lu
et al., 2022; Zan et al., 2022; Ding et al., 2022; Borgeaud et al., 2022), attempts have been made to
enhance code LLMs by augmenting them with a sparse or dense retrieval mechanism that returns API
documentation or relevant code snippets from the repository. The prompt proposals (Shrivastava et al.,
2022) used in our work along with BM25 and Random-NN share similarities with these retrieval
mechanisms. Note that RepoFusion is independent from the specific retrieval mechanisms employed
and thus can seamlessly learn to integrate multiple retrieved contexts, even from different retrieval
mechanisms.

5 CONCLUSIONS

We propose RepoFusion, a framework that allows training code models with multiple relevant
contexts from the repository. By employing RepoFusion in experiments focused on single-line
code autocompletion, we highlight the notable enhancements in performance attained through
training smaller models with repository context, surpassing the results of training larger models
without such context. Deploying RepoFusion, similar to any other code LLMs, requires careful
consideration (Chen et al., 2021). The generated code can often be challenging to understand or
debug, resulting in developers spending significant time editing and revising the code (Vaithilingam
et al., 2022; Mozannar et al., 2022; Barke et al., 2023; Bird et al., 2022). RepoFusion, in combination
with the Stack-Repo dataset, opens up exciting avenues for future research in the field of smaller
retrieval-augmented LLMs for code. We believe our method can also extend to other code-related
tasks such as bug repair, the merging of pull requests, and software documentation/tutorial writing.
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