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Abstract

This paper investigates metric learning in a Repro-
ducing Kernel Hilbert Space (RKHS) based on a
set of random triplet comparisons in the form of
“Do you think item h is more similar to item i or
item j?" indicating similarity and differences be-
tween various items. The goal is to learn a metric
in the RKHS that reflects the comparisons. Nonlin-
ear metric learning using kernel methods and neu-
ral networks has shown great empirical promise.
While previous works have addressed certain as-
pects of this problem, there is little or no theoretical
understanding of such methods. The exception is
the special (linear) case in which the RKHS is the
standard d-dimensional Euclidean space; there is
a comprehensive theory for metric learning in the
d-dimensional Euclidean space. This paper devel-
ops a general RKHS framework for metric learn-
ing and provides novel generalization guarantees
and sample complexity bounds. We validate our
findings through a set of simulations and experi-
ments on real datasets. Our code is publicly avail-
able at https://github.com/RamyaLab/
metric-learning-RKHS.

1 INTRODUCTION
Understanding how human perceive objects is essential in
many areas from machine learning [Hu et al., 2015, Hsieh
et al., 2017] to psychology [Cao et al., 2013, Roads and
Mozer, 2019] and policy learning [Liu et al., 2021b]. Learn-
ing representations over objects that reflects similarities and
dissimilarities on human perception is key to this under-
standing. Metric learning is the study of learning such a
distance function that represents similarities and dissimi-
larities among objects. This is particularly useful in com-
puter vision applications such as image retrieval [Hoi et al.,
2010, Yao et al., 2020] and face recognition [Guillaumin

et al., 2009, Cao et al., 2013], and recommendation systems
[Zhang et al., 2019, Wu et al., 2020], where the notion of
similarity plays a central role on the performance. Com-
parative judgments over objects has been widely used as
a powerful tool in those applications and many others to
understand similarities and dissimilarities. In this paper, we
provide a theoretical foundation to the task of metric learn-
ing from triplet comparisons in the form of “is item h more
similar to item i or to item j?” (see Figure 1 for an example
triplet comparison query for Food-100 dataset Wilber et al.
[2014]). We aim to learn a metric that predicts triplet com-
parisons as well as possible by learning a distance function.
Let x ∈ Rd be the representation of objects. We are given a
random set of triplet comparisons in the form of

sign(dist2(xh,xi)− dist2(xh,xj)),

which compare relative distances between a head item xh to
two alternates xi,xj . As an example, items may be images
of products sold in an online marketplace and the features
xi could either be constructed from metadata about each
product or extracted automatically from the image via a
neural network. As human judgments are complex and in-
volve higher order interactions of features, we seek a suffi-
ciently expressive family of distance metrics to model these
judgments. Hence we consider learning a nonlinear metric
represented with a kernelized setting.

In the special case of a linear kernel, it corresponds to
learning the Mahalanobis metric represented by a positive
semidefinite matrix M. As M is positive semidefinite, we
can write M = LTL using the Cholesky decomposition.
Thus, learning the positive semidefinite matrix M can be
also cast as learning the linear transformation L such that
the distances are interpreted as Euclidean distances between
points transformed by the matrix L. Our work extends this
to the kernelized scenario. We focus on learning a linear
metric on a reproducing kernel Hilbert space (RKHS) in this
work.

We assume that we have access to a feature map ϕ that maps
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Figure 1: Metric Learning from triplet comparisons (example triplets from Food-100 dataset [Wilber et al., 2014]). S is the
set of triplets and yt is the label collected from human for each triplet t.

from Rd to a real reproducing kernel Hilbert space (RKHS)
H such that ⟨ϕ(xi), ϕ(xj)⟩ = k(xi,xj) and ∥ϕ(x)∥H =√
k(x,x) for a known kernel function k : Rd × Rd →

R1. Therefore, k(·, ·) satisfies the reproducing property that
⟨f, k(·,x)⟩ = f(x) for any f ∈ H and x ∈ Rd. Then for
any bounded linear operator L : H → H, we define an
associated nonlinear Mahalanobis metric, dL, as

d2L(xi,xj) = ∥Lϕ(xi)− Lϕ(xj)∥2H
= ⟨Lϕ(xi)− Lϕ(xj), Lϕ(xi)− Lϕ(xj)⟩H.

For simplicity, we use ϕi for ϕ(xi) for the rest of the pa-
per. With the kernelized metric setting, we can write triplet
queries as

sign
(
∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H

)
.

This paper advances the understanding of the empirically
powerful tasks of nonlinear metric learning via two core
theoretical contributions:

• We establish the first generalization error and sample
complexity guarantees for kernelized metric learning
from triplet comparisons.

• We provide insights into how regularization affects
the sample complexity and generalization bounds for
kernelized metric learning from triplet comparisons.

As a byproduct, our analysis extends the results of the linear
metric learning setting of Mason et al. [2017], overcoming
its limited applicability, which required the number of items
n to be larger than the dimensionality d.

1.1 RELATED WORK

Metric learning (also known as distance learning) has gained
significant interest due to its power of effectively learning
similarities and dissimilarities among objects. Here, we sum-
marize most relevant contributions from the rich literature
on metric learning. Kulis et al. [2013], Bellet et al. [2015]
provide comprehensive summaries of the literature on clas-
sical techniques. In this paper, our focus is a specific type
of query known as triplet comparisons. There exist methods
and efficient algorithms for a variety of feedback such as
class labels [Weinberger and Saul, 2009, Davis et al., 2007],
triplet comparisons [Schultz and Joachims, 2003, Mason

et al., 2017], perceptual adjustment queries [Xu et al., 2024]
and nearest neighbor queries [Nadagouda et al., 2023]. A re-
cent study [Tatli and Vinayak, 2024] uses triplet comparison
queries to perform metric clustering, enabling the discovery
of latent subgroups within the population before proceeding
to metric learning from triplet comparisons.

Verma and Branson [2015] provide sample complexity of
Mahalanobis distance learning from class labels, which
is also known as linear metric learning, where the metric
is parametrized by a positive semidefinite matrix. Mason
et al. [2017], Ye et al. [2019] present tight generalization
error bounds for Mahalanobis distance metric learning from
triplet comparisons. Recently, there has been increased in-
terest in nonlinear metric learning to better fit complex, real-
world data sources. Kernelized approaches to the metric
learning, similar to the setting considered in this work, are
proposed by Martinel et al. [2015], Liu et al. [2021a], Wang
et al. [2011], Chatpatanasiri et al. [2010], Kleindessner and
von Luxburg [2017] and many others. More generally, the
nonlinear variant has received attention through the study
of deep Siamese networks [Guo et al., 2017].

Recent interest in using deep learning to extract useful rep-
resentations from data is followed by triplet network mod-
els and its variations [Hoffer and Ailon, 2015]. Kaya and
Bilge [2019] provide a comprehensive survey on deep met-
ric learning. Despite the empirical success and popularity
of deep metric learning techniques on metric learning, theo-
retical advancements in this area remain sparse. Zhou et al.
[2024] provides a generalization analysis with deep ReLU
networks for metric learning using the hinge loss. Other
studies provide generalization guarantees for deep metric
learning using neural tangent kernel [Liu et al., 2021a] and
using Rademacher complexity based analysis [Huai et al.,
2019].

Another line of work focuses on metric learning from pair-
wise comparisons. Pairwise comparisons can be viewed
as a variation of triplet comparisons when it is assumed
that there is a reference point u (responder) substituting for
leading item xh. How to infer preferences from pairwise
comparisons is a well studied problem in a diverse set of
areas including machine learning, social choice theory, psy-
chology, social sciences and political science (see the work



of Fürnkranz and Hüllermeier [2010] for a comprehensive
summary). Xu and Davenport [2020] uses a passive algo-
rithm to learn a linear metric and preferences. This can be
seen as simultaneously performing metric and preference
learning. Later, Canal et al. [2022] extend the results to
learning multiple preference points with a shared metric
and provide theoretical guarantees for this task. Wang et al.
[2024] analyzes linear metric learning problem with limited
pairwise comparisons per user. Chen et al. [2024] proposes
leveraging preference structure to reduce sample complexity
of pairwise comparisons.

2 PROBLEM SETTING
Let objects be represented by the points x1,x2, . . ., where
each xi is drawn from the distribution D′. In the noiseless
setting, we are given a set of triplet comparisons in the form
of

sign(dist2(xh,xi)− dist2(xh,xj)).

We are interested in providing a theoretical understanding on
the problem of learning kernelized Mahalanobis metric from
triplet comparison queries. Our work extends the learning
theoretic results of Mason et al. [2017] for linear metric
learning to more general nonlinear metrics.

Let S denote the set of triplets generated from random
triples t = {xh,xi,xj}, where each triple is independent
and randomly chosen from the distribution D, i.e., given
that xi ∼ D′, each triple t{h,i,j} ∈ S is randomly sam-
pled from the stacked distribution D. Therefore, the total
number of objects is 3|S| for |S| triplets in the general
case. For each random triplet t{h,i,j}, we observe a pos-
sibly noisy answer yt ∈ {±1}, which is an indication of
sign

(
∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H

)
. Specifically, we

assume that there exists an unknown kernelized metric that
is consistent with the data and classifies any triplet t cor-
rectly with a probability greater than 1/2 where this prob-
ability is taken with respect to any randomness in yt and
may depend on the specific triplet t. This is a common
practical assumption when working with human judgment
that some queries are inherently more noisy than others
[Coombs, 1964, Rau et al., 2016]. We further assume that
the y′ts are statistically independent. Our goal is to learn a
metric parameterized by a linear map L that predicts triplets
well on average. Namely, we seek an L that minimizes the
misclassification probability:

Pr
(
yt ̸= sign

(
∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H

))
. (1)

Note that (1) is equal to the expected 0/1 loss. In practice,
minimizing 0/1-loss is intractable and the above objective is
relaxed to minimizing the true risk, which is defined below:

R(L) := (2)
Et∼D,yt∈{±1}[l(yt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H))],

for an arbitrary convex and α-Lipschitz loss ℓ : R → R≥0,
where the expectation is over random triplet coming from a
distribution D and binary random label yt conditioned on t,
where t = {xh,xi,xj} and {xh,xi,xj} ∼ D. If ℓ is cho-
sen to upper bound the 0/1-loss (e.g., the hinge loss ℓ(z) =
max(1− z, 0) or the logistic loss ℓ(z) = log(1 + exp−z)),
then R(L) upper bounds the misclassification probability.

Unfortunately, we cannot minimize R(L) directly as the
joint distribution of (t, yt) is unknown. Instead, given a set
of triplets S and their labels yt, we wish to learn a kernelized
metric parameterized by a bounded linear map L : H → H
that predicts triplets as well as possible on the observed
data.

R̂S(L) := (3)
1

|S|
∑

(t,yt)∈S

l(yt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H)).

We refer to R̂S(L) as the empirical risk as it is an unbiased
estimator of the true risk R(L). For any given ℓ, we wish to
answer three questions:

1. Regularizing a norm on L controls the flexibility of
the metric and hence the model’s predictions. What is
the appropriate way to regularize to balance the bias-
variance tradeoff of metric learning?

2. What can we guarantee about the generalization perfor-
mance of the solution to (3) and how does this depend
on the norm we choose to regularize on L?

3. As written, (3) is a potentially infinite dimensional,
nonconvex optimization problem. How can it be made
computationally tractable?

We refer to Section 3.1 for the first and second questions,
and Section 4 for the last question.

3 KERNELIZED METRIC LEARNING
Traditional Mahalanobis distance metric learning is equiv-
alent to learning a linear mapping of the data such that
Euclidean distance in the mapped space agrees with a set of
labels, such as class labels or triplet comparisons. Often, we
are interested in a richer set of mappings than linear ones.
Indeed, this is the idea that underlies deep learning and ker-
nel learning. In this section, we provide the first theoretical
study of nonlinear metric learning in an RKHS from triplet
data, extending the linear results of Mason et al. [2017].

3.1 THEORETICAL GUARANTEES FOR
KERNELIZED METRIC LEARNING

Frequently in optimization and learning theory, we wish to
characterize model classes of functions– classes of met-
rics on H in this case. This is important to define op-
timal performance within a class for theoretical results



and has tight connections to regularization in optimiza-
tion which is used to prevent overfitting the data and en-
sure good generalization performance. We define model
classes of kernelized Mahalanobis metrics by bounding the
Schatten−p norm of their map L (e.g., all kernelized met-
rics with a map L such that ∥L∥Sp

≤ λ). For a compact,
bounded linear operator T , its Schatten p−norm is defined

to be ∥T∥Sp
:=
(∑

i≥1 si (T )
p
)1/p

where si(T ) is the

ith singular value of T and may be equivalently written as√
λi(T †T ) where † denotes the conjugate transpose and

λi(T
†T ) is the ith eigenvalue of the Hermitian operator.

We focus on two particular Schatten norms. First we con-
sider the Schatten 2-norm which is a Hilbert-Schmidt norm.
Specifically, we restrict solutions L to (3) to additionally sat-
isfy ∥L†L∥S2 ≤ λF for a given λF > 0. Furthermore, we
consider the Schatten 1-norm, also referred to as the trace or
nuclear norm. In this setting, we assume that ∥L†L∥S1

≤ λ∗
and again restrict solutions to satisfy this constraint.

We define the optimal (possibly) infinite dimensional opera-
tor L∗ as the minimizer of following optimization:

min
L

R(L)

s.t. ∥L†L∥S2 ≤ λF .
(P1)

Similarly we define L̂ as the solution to the optimization
problem (P2) given below, i.e., the empirical risk minimizer:

min
L

R̂S(L)

s.t. ∥L†L∥S2
≤ λF .

(P2)

Suppose that SX ⊂ H represents the subspace spanned
by the set {ϕ(x1), ϕ(x2), . . . ϕ(xn)} corresponding to the
features of random observations. Furthermore, let the po-
tentially infinite dimensional linear operator L̂0 denote the
solution to (P3), obtained from random observations and
the associated kernel features, where the norm constraint is
imposed solely on the component of L whose domain lies
within the span of features, i.e., denoted by SX :

min
L

R̂S(L)

s.t. ∥P†
SX
L†LPSX ∥S2

≤ λF ,
(P3)

where PSX denotes the projection onto SX .
Remark 1. Assume L̂0 denotes the solution of (P3) whose
domain is restricted to the span of features, i.e., SX . This
is a reasonable assumption, because L0PSX also optimally
solves (P3) for any solution L0. Therefore, optimizing (P3)
can be interpreted as seeking such an L̂0.
Lemma 1. Recall that for a compact, bounded linear oper-
ator T , its Schatten p-norm is denoted as ∥T∥Sp . We have,
for p ≥ 1,

∥P†
SX
L†LPSX ∥Sp

≤ ∥L†L∥Sp
.

Note that Schatten 2−norm is the Hilbert-Schmidt norm.

Lemma 1 allows us to establish a relation between solu-
tions of (P2) and (P3), explained in Proposition 1. Note that
optimization settings (P2) and (P3) have the same objec-
tive function. The distinction lies in the the norm constraint
∥ · ∥S2

imposed on L. In (P3), the constraint applies only to
the component of L whose domain is restricted to the span
of features, denoted by SX . Consequently, solving (P3) for
an operator L̂0, as in Remark 1, corresponds to minimizing
the empirical risk in (P2) under the additional constraint that
the search is restricted to the span SX .
Proposition 1. We observe that L̂0 is in the solution set of
(P2). More precisely, any L within the feasible set of (P2) is
an optimal solution, provided that LPSX = L̂0. As a result,
(P2) and (P3) have the same optimal value, i.e.,

R̂S(L̂) = R̂S(L̂0).

Therefore, optimizing the empirical risk in (P2) with a
search restricted to SX suffices to assign optimal value
for (P2).

Recall that we wish to learn a kernelized metric
parametrized by a bounded linear map L : H → H that pre-
dicts triplets effectively based on random observations. We
establish a bound on the generalization error of L̂0, which
is a solution to the empirical risk minimization. Note that
L̂0 solves both (P3) and (P2). We compare it to the optimal
infinite dimensional operator L∗, which minimizes the true
risk.

The following theorem demonstrates that, with a sufficiently
large set of triplets S, the performance of L̂0 is nearly as
good as that of L∗.
Theorem 1. Fix δ, λF > 0 and let ℓ be α-Lipschitz. Assume
∥ϕ(x)∥H ≤ B for any x. Then, with probability at least
1− δ,

R(L̂0)−R(L∗) ≤ 4αB2λF

√
6

|S|
+ 12αB2λF

√
2 ln 2/δ

|S|

For any loss ℓ(·) which upper bounds the 0/1−loss, such
as the logistic or hinge losses, the left hand side is an upper
bound on the expected prediction accuracy for predicting
triplets. Hence, the above result also provides a generaliza-
tion error guarantee for prediction accuracy.

To further interpret the result of Theorem 1, consider the
case of a linear kernel where the points used to generate
triplets live in the unit ball in Rd. In this case, one can di-
rectly learn LTL = M ∈ Rd×d. Setting λF = O(d), which
is sufficient to ensure that the average entry of M is dimen-
sionless, Theorem 1 shows that sampling O(d2 log(1/δ))
triplets is sufficient to ensure good generalization. As the
number of degrees of freedom for a d × d matrix is d2,
this matches intuition that the sample complexity should
scale with degrees of freedom. In general, ∥L†L∥S2 be-
haves like a notion of the effective dimensionality deff of



L [Zhang, 2005]. Indeed, if fewer eigenvalues of L†L are
large, then λF is smaller and the space is nearly low dimen-
sional. Hence, we may interpret Theorem 1 as suggesting a
sample complexity of O(d2eff log(1/δ)).

Next, we bound the excess risk under the constraint
∥L†L∥S1 ≤ λ∗. Specifically, consider the optimization
problems (P1), (P2) and (P3), now with Schatten 1-norm
constraints of the form ∥ · ∥S1

≤ λ∗. Let L∗
n, L̂n and L̂n0

denote the solutions to the modified versions of problems
(P1), (P2) and (P3), respectively, where the Schatten 1-norm
constraints replace the Schatten 2-norm constraints.

The following theorem establishes a bound on the general-
ization error of L̂n0

by comparing it to the true risk mini-
mizer L∗

n.
Theorem 2. Fix δ, λ∗ > 0 and let ℓ be α-Lipschitz. Assume
∥ϕ(x)∥H ≤ B for any x. Then, with probability at least
1− δ,

R(L̂n0
)−R(L∗

n) ≤ 4αλ∗

(
B2

√
12

log 3|S|
|S|

+
2 log 3|S|

|S|

)

+12αB2λ∗

√
2 ln 2/δ

|S|
,

where S is the set of triplets chosen and |S| represents
the size of this set. Note that restricting the Schatten-1
norm encourages solution L (and correspondingly oper-
ationalized version M (see Section 4.2)) to have low rank.
This corresponds to learning a low-dimensional metric over
data. This is reasonable in settings where though the ambi-
ent dimension of data is large, one expects that the triplet
comparisons are well explained by a projection of the data
points onto a low dimensional space So. As an example,
consider ϕ corresponding to a polynomial kernel of de-
gree 2: ϕ(x) = [x2

1,x1 · x2, . . . ,x
2
2,x2 · x3, . . . ,x

2
d]

T for
x = [x1, . . . ,xd]

T . Suppose the data is generated accord-
ing to a true map L∗ which is a projection onto So, the
span of a sparse subset of k ≪ d2 monomials. Then, taking
λ∗ = ∥L†L∥S1 = k, Theorem 2 guarantees that sampling
O(k2 log(k/δ)) triplets is sufficient. By contrast, if L was
the identity map on degree 2 polynomials, the same re-
sult would suggest a sample complexity of O(d4 log(d/δ))
which is much larger. Hence, this result is especially power-
ful for low or approximately low dimensional metrics.

4 PRACTICAL IMPLEMENTATION
In Section 3, we show that solving (P2) with a search re-
stricted to SX , i.e., solving for L̂0 in (P3), presents a solution
for both (P2) and (P3). We bound the generalization error
based on L̂0 (see Theorems 1 and 2). Our goal in this part is
to solve (P3) to learn L̂0, which is a nonlinear Mahalanobis
metric. Note that in addition to being possibly infinite di-
mensional, the optimization (P3) is also nonconvex.

In this section, we carefully demonstrate how to learn L̂0

from a random set of independent triplets S with associ-
ated labels yt via convex optimization. We show that solv-
ing (P3) is equivalent to solving a finite dimensional con-
vex optimization problem. We use a representer theorem
(see Proposition 2) to reduce finding L̂0 to an optimization
over finite dimensional vectors. We use the idea of Kernel-
ized Principle Component Analysis (KPCA) to compute all
distances using KPCA vectors φ1, φ2, . . . , φn ∈ Rn and
reduce the problem to learning an n−dimensional metric
parameterized by a semidefinite matrix denoted M:

R̂S(M) :=
1

|S|
∑

(t,yt)∈S

l(yt(∥φh − φi∥2M − ∥φh − φj∥2M))

(4)
where n = 3|S| and φi ∈ Rn denotes the KPCA
representation of feature ϕi ∈ H for the random set
ϕ(x1), ϕ(x2), . . . ϕ(xn). We refer to the quantity R̂S(M)
as the (finite dimensional) empirical risk of M. We can ex-
press L̂0 using the solution of (finite dimensional) empirical
risk minimization with corresponding constraints. In Section
4.1 we use known results to explain how to perform KPCA,
how to calculate distances with finite dimensional vectors in
KPCA and how to relate norm constraints over L with finite
dimensional metric M. Then, in Section 4.2, we provide the
finite dimensional optimization with all constraints that is
equivalent to (P3) and express L̂0 from its solution.

4.1 KERNELIZED PRINCIPLE COMPONENT
ANALYSIS (KPCA)

In this part, we explain how to perform kernelized PCA in a
reproducing kernel Hilbert space (RKHS). Consider the set
of items x1,x2,x3 . . .xn ∈ Rd and corresponding features
ϕ1, ϕ2, . . . ϕn. We assume that ϕi’s are linearly independent.
Recall that SX ⊂ H represents the subspace spanned by
{ϕ(x1), ϕ(x2), . . . ϕ(xn)}. Let ψ1, ψ2, . . . ψn be the n prin-
cipal component directions in this space. We show how to
efficiently compute projections onto this subspace using the
idea of Kernelized Principle Component Analysis (KPCA).
This is important as the principal components live in the
possibly infinite dimensional space H making traditional
optimization either intractable or impossible. The follow-
ing procedure, which we summarize for completeness from
Chatpatanasiri et al. [2010] can be used to compute the pro-
jection of any point x ∈ Rd onto the principal component
directions in time that is polynomial in n = 3|S|:

1. Form the Gram matrix: K ∈ Rn×n such that Ki,j =
k(xi,xj).

2. Center the Gram matrix: K = K − 1
n1n×nK −

1
nK1n×n + 1

n21n×nK1n×n, where 1n×n is the n by
n matrix of all ones.

3. Compute all n eigenvectors of K, α1, . . . , αn and form
matrix A = [α1, . . . , αn].



4. For any x ∈ Rd and any principal component ψj

with eigenvector αj , we have that ⟨ϕ(x), ψj⟩H =∑n
i=1 αi,jk(x,xi).

5. Therefore, for any x ∈ Rd we may represent ϕ(x) in
terms of its projection onto ψ1, . . . , ψn as

φ(x) = AT [k(x,x1), . . . , k(x,xn)]
T

For the remainder, we will let φi ∈ Rn denote the KPCA
representation of random feature ϕi ∈ H for the set
ϕ(x1), ϕ(x2), . . . ϕ(xn). The following representer theo-
rem demonstrates that we may instead use finite dimen-
sional vectors φ1, . . . , φn for the optimization without loss
in performance for a given set ϕ(x1), ϕ(x2), . . . ϕ(xn).
Proposition 2. (Theorem 1 of Chatpatanasiri et al.
[2010]) Let {ψi}ni=1 be any set of points in H such that
Span

(
{ψi}ni=1

)
= SX and let H′ be a Hilbert space such

that H and H′ are separable. For any objective function f,
the optimization

min
L
f
(
{⟨Lϕi, Lϕj⟩H′}i,j∈[n]

)
such that L : H → H′ is a bounded linear map, has the
same optimal value as

min
L′∈Rn×n

f
(
{ψ(xi)

TL′TL′ψ(xj)}i,j∈[n]

)
where ψ(x) = [⟨ϕ(x), ψ1⟩, . . . , ⟨ϕ(x), ψn⟩]T ∈ Rn.

Calculating Kernelized Mahalanobis Distances using
KPCA: Proposition 2 provides that one can learn L̂0 us-
ing the KPCA representations of x1,x2 . . .xn. To be pre-
cise, given a linear map L : H → H, we may expand
the distance ∥Lϕi −Lϕj∥2 = ⟨Lϕi, Lϕi⟩ − 2⟨Lϕi, Lϕj⟩+
⟨Lϕj , Lϕj⟩. Let A be as defined in kernelized PCA and
Φ := [ϕ1, ϕ2, . . . ϕn], the matrix whose columns are ϕi’s.
As the ϕi’s are linearly independent, Φ is full rank1. For
any ϕk within the set {ϕ1, ϕ2, . . . ϕn}, we have Lϕk =
UATΦTϕk for a linear map U from Rn to H. Addition-
ally, by definition of the kernel function k(·, ·), ΦTϕ(xk) =
[k(xk,x1), . . . , k(xk,xn)]

T . Hence,

∥Lϕi − Lϕj∥2H = ⟨Uφi,Uφi⟩ − 2⟨Uφi,Uφj⟩
+ ⟨Uφj ,Uφj⟩
= ∥Uφi −Uφj∥2

= ∥φi − φj∥2M

for φi ∈ Rn defined by kernelized PCA on ϕ1, ϕ2, . . . ϕn,
and M = UTU ∈ Rn×n. Therefore, we may use kernel-
ized PCA to efficiently compute distances in Rn as opposed
to in H for a given set ϕ1, ϕ2, . . . ϕn.

1In the case where the ϕi’s are not linearly independent and Φ
is no longer full rank, KPCA can be modified by projecting onto
the k < n eigenvectors corresponding to the nonzero eigenvalues.

Relating norms in H and Rn: Above lines demonstrate
how, for a given L, we may find a specific M that defines a
metric on Rn which computes distances between points in
SX ⊂ H equally to L using the KPCA basis for SX .

We consider Schatten norm constraints on L to rigorously
define model classes for L in (P1), (P2) and (P3). Hence, it
is necessary to relate the Schatten norms of L to Schatten
norms of M so that constraints placed on L in (P3) are
comparable to those placed on M in Rn. Following Lemma
relate these norms.
Lemma 2. Let ϕ1, . . . , ϕn be a set of features correspond-
ing to a random set of triplets and SX is the span of
feature points. For any ϕx ∈ SX and L : H → H,
there exists a semidefinite matrix M ∈ Rn×n such that
∥Lϕx∥H = ∥φx∥M and ∥P†

SX
L†LPSX ∥Sp

= ∥M∥p ∀p.

Now, we can set up the finite dimensional optimization
problem to learn a finite dimensional metric M that will
enable us to find L̂0.

4.2 LEARNING KERNELIZED METRICS IN
PRACTICE

We define following finite dimensional constrained convex
program to learn a kernelized Mahalanobis metric from a
random set of triplets S:

min
M⪰0

R̂S(M)

s.t. ∥M∥F ≤ λF

(P4)

where M ⪰ 0 denotes that M is positive semidefinite and
the condition on the norm prevents overfitting as in (P1),
(P2) and (P3). Let M̂ denote an optimal solution to (P4)
referred as the empirical risk minimizer. Likewise, if we in-
stead consider ∥P†

SX
L†LPSX ∥S2 ≤ λ∗, this is correspond-

ing to ∥M∥∗ ≤ λ∗ where ∥ · ∥∗ denotes the nuclear norm.
In this setting, we may likewise solve for M̂ satisfying this
constraint instead. Below, Proposition 3 presents the relation
between (P3) and (P4). Then, we show how to obtain L̂0

from the finite dimensional solution.
Proposition 3. Optimization problems (P4) and (P3) are
equivalent. Solving (P4) is equal to learning L̂0. Likewise,
L̂0 can be considered as the Hilbert space counterpart
of finite dimensional space operator M̂. Furthermore, let
Ψ1, . . . ,Ψn ∈ H be KPCA directions for the span SX . We
can write L̂0 as

L̂0 : L̂0ϕx =

n∑
i=1

n∑
j=1

wi,jΨi ⊗ΨjPSXϕx (5)

where Ψi ⊗ Ψjϕx = ⟨Ψj , ϕx⟩HΨi and W = Chol(M̂)

such that WWT = M̂, i.e., W is from Cholesky decompo-
sition of M̂.



Kernel Formula Parameter

Linear k(x, y) = x⊤y N/A

Gaussian k(x, y) = e
−∥x−y∥22

2σ2 σ
Sigmoid k(x, y) = tanh (c+ αx⊤y) c, α
Polynomial k(x, y) = (c+ x⊤y)p c, p
Laplacian k(x, y) = eα∥x−y∥1 α

Table 1: List of kernel functions and parameters used in our
simulations and experiments.

Proposition 3 allows us to operationalize (P3) with a finite
dimensional convex optimization problem and express L̂0

from its solution.

5 EXPERIMENTAL RESULTS
In this part, we present simulations and experiments on real
datasets to validate our theoretical results. Table 1 presents
the kernel functions and the kernel parameters that we used
in simulations and experiments. In all of our simulations and
experiments, we use CVXPY [Diamond and Boyd, 2016,
Agrawal et al., 2018] and MOSEK [ApS, 2024] to solve the
convex program (P4). We use the nuclear norm constraint
for M in (P4).

To apply these kernel functions efficiently, especially on
large datasets, we consider the computational complexity of
the Kernelized Principal Component Analysis (KPCA) oper-
ation, which is O(n3), where n is the number of items used
in queries. To mitigate this cost, one can adapt low-rank
approximations of the Gram matrix (Nyström method [Rein-
hardt, 2012, Williams, 1998]) by randomly sampling m≪
n items from n. The Nyström KPCA method [Williams
and Seeger, 2000] has a complexity of O(nm2). Another
approach, the randomly pivoted Cholesky algorithm [Chen
et al., 2025], requires only O(k2n) kernel evaluations for
a rank-k approximation. In our work, we leverage the Nys-
tröm KPCA [Williams and Seeger, 2000] with m = 500 to
efficiently approximate the Gram matrix.

5.1 SIMULATIONS

Generating Noisy Labels for a Known Distance Func-
tion: We assume an explicit link function f(·), where
f(·) generates noisy labels for each triplet following that
yt = −1 with probability pt as a noisy indication of
sign(d2L(xh,xi)− d2L(xi,xj)), where

pt = f
(
d2L(xh,xi)− d2L(xh,xj)

)
.

We use f(x) = 1/(1 + eρx) as the link function, where
the parameter ρ controls the noise level. We first consider a
spiral shape in 2D.

Spiral with Geodesic Distance: We generate triplets uni-
formly along the spiral. We assume the true distance func-

Figure 2: A 2D spiral. We sample triplets uniformly along
this curve. The geodesic distance between point A and B
is the length of the green curve, whereas the Euclidean
distance between the two points is the length of the red line.

tion is the geodesic distance (see Figure 2) along the 2D
curve. We provide train and test accuracy for different ker-
nel functions with varying number of triplets. Figure 3 il-
lustrates the performance of various kernels. We observe
that polynomial, Gaussian, and Laplacian kernels outper-
form linear and sigmoid kernels. We defer the details of the
simulation setting to the Appendix.

Figure 3: Performance of various kernels in the 2D spiral
setting. For the Gaussian kernel, we use σ = 2; sigmoid
kernel, c = 1, α = 1; polynomial kernel, c = 1, p = 2,
Laplacian kernel, α = 1. For the link function f , we use
ρ = 30 to set the noise level around 0.01. We repeat each
run 50 times.

Next, we assume we have access to a feature map ϕ such
that ⟨ϕ(xi), ϕ(xj)⟩ = k(xi,xj) with a Gaussian kernel
function k : Rd × Rd → R1, where σ = 1.

Gaussian Kernel Map: We assume there exists a linear
functional L∗ : H → H that lies on an r−dimensional
manifold. In Figure 4, we provide our results with a Gaus-
sian kernel for r = 2 (see the Appendix for details of data
generation and more extensive results). We also defer the
details of the simulation setting to the Appendix.



Figure 4: Train and test accuracy of Gaussian kernel. Here,
we use σ = 1. For the link function f , we use ρ = 1000 to
set the noise level around 0.05. We repeat each run 50 times.

The test accuracy increases as we have more triplets for
training in Figure 4. We also observe that, as the number
of triplets increases, the train and test accuracy gets close,
consistent with our analysis in Theorems 1 and 2. Recall
that excess risk decreases with more triplets according to
Theorems 1 and 2.

5.2 EMPIRICAL EVALUATION: FOOD-100
DATASET

The Food-100 dataset [Wilber et al., 2014] consists of 100
food items and approximately 190,000 triplets based on hu-
man responses (See Figure 1 for example images from the
dataset). We divide this dataset by items to ensure that the
model does not encounter some items in the test and valida-
tion sets during the training phase. See Appendix for more
information on how we split the dataset. We obtain embed-
dings for each item in Food-100 dataset using the embed-
ding from the antepenultimate layer of AlexNet [Krizhevsky
et al., 2012], pretrained on ImageNet [Deng et al., 2009].
We, then, project them to a 2D space using PaCMAP [Wang
et al., 2021]. Figure 5 shows the performance of different
kernels, among which the Gaussian kernel performs the
best.

Theorems 1 and 2 provide bounds for excess risk. There-
fore, our analysis allows us to bound the difference between
the true risk and the empirical risk for any kernel choice.
Experiments with different kernels demonstrate that train
and test accuracies are close, indicating that the empirical
risk approximates the true risk well. Choice of kernel has an
effect on the true risk and therefore affects the risk achiev-
able by the learned metric. This is reflected in the difference
in test accuracies across different kernels. Since there is no
way of knowing what the true risk is, cross-validation is an
appropriate method for selecting the optimal kernel for the
dataset at hand.

Figure 5: Performance of various kernels under the Food-
100 dataset. For the Gaussian kernel, we use σ = 2; sigmoid
kernel, c = 1, α = 0.01; polynomial kernel, c = 1, p = 2,
Laplacian kernel, α = 1. We repeat the validation 20 times.

6 DISCUSSION
When undertaking the task of developing a theoretical under-
standing of triplet based nonlinear metric learning methods,
the first natural setting to consider is kernelized metric learn-
ing. To the best of our knowledge, there are no generaliza-
tion results analyzing the sample complexity for kernelized
metric learning via triplet comparisons in the literature prior
to our work. The theoretical foundations for metric learning
via triplet queries are currently limited to linear settings, e.g.,
Mason et al. [2017], which provide generalization results
for the linear setting when the set of items being queried is
fixed and the number of items n≫ d (See Appendix C for
further explanation). Therefore, our work fills an important
gap in the literature.

We provide a theoretical analysis for the kernelized met-
ric learning problem. We provide novel generalization and
sample complexity bounds. Developing an understanding
of other nonlinear metric learning approaches, especially
neural networks based approaches would be interesting for
future research directions. That said, kernelized approaches
are preferred in areas where interpretability and explainabil-
ity are crucial, especially when they also perform nearly as
well as other methods [Radhakrishnan et al., 2023]. There-
fore, understanding kernelized settings is also of value be-
yond theoretical pursuit towards understanding a broader
set of nonlinear approaches.
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A LIMITATIONS AND BROADER IMPACTS
The results of this paper are primarily theoretical and ideally a suggestion towards what practical guarantees can and cannot
be inferred from the output of metric learning algorithms. When attempting to apply guarantees to real world settings,
special care must be taken to ensure that the assumptions of the theory match the practical situation to which they are
being applied. Indeed, any assumptions taken in this work may be reasonably considered a limitation depending on the
practitioner’s desired application, though we hope that this work serves more as a guide for research and that its assumptions
can be altered and its results can be reshown in new settings of practical interest.

Finally, we remark on the broader impacts of this work. While this paper is primarily theoretical, it is worth considering
the impacts of the problems to which we are providing theory. Metric learning has recently been adopted as a model for
facial recognition which may lead to negative sociopolitical externalities. Preference learning allows for algorithms to more
adeptly specialize to users’ preferences in recommendation and this may cause adverse effects owing to what content is
shown to users.

B PROOFS

B.1 PROOF OF LEMMA 1

We first note that orthogonal projections are bounded linear operators. Therefore, PSX ’s are bounded and linear. One can
easily show that compositions of bounded linear operators are also bounded and linear. Therefore, LPSX is bounded and
linear for any orthogonal projection PSX . Then, for p ≥ 1, we have

∥P†
SX
L†LPSX ∥Sp

a
≤ ∥P†

SX
∥S∞∥L†LPSX ∥Sp

b
≤ ∥P†

SX
∥S∞∥L†L∥Sp

∥PSX ∥S∞

= ∥L†L∥Sp
,

where (a) and (b) follow from Hölder’s inequality. Note that ∥PSX ∥S∞ is the standard operator norm on H, i.e., ∥PSX ∥S∞ =

max∥x∥≤1 ∥PSX x∥. Since PSX is an orthogonal projection, we have ∥PSX ∥S∞ = ∥P†
SX

∥S∞ = 1.

B.2 PROOF OF PROPOSITION 1

We rewrite L̂ and L̂0 together with (P2) and (P3) below for the ease of readability.

L̂ := argmin
L

R̂S(L) s.t. ∥L†L∥S2 ≤ λF (P2)

L̂0 := argmin
L

R̂S(L) s.t. ∥P†
SX
L†LPSX ∥S2

≤ λF (P3)
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We have ∥L̂†L̂∥S2 ≤ λF by definition. From Lemma 1, we also have

∥P†
SX
L̂†L̂PSX ∥S2

≤ ∥L̂†L̂∥S2
.

Thus, it holds that ∥P†
SX
L̂†L̂PSX ∥S2

≤ λF . Therefore, L̂ belongs to the feasible set of optimization problem (P3) and we
can conclude that R̂S(L̂) is at least as small as R̂S(L̂0), i.e.,

R̂S(L̂0) ≤ R̂S(L̂). (6)

For the reverse inequality, note that L̂0 = L̂0PSX . Therefore, ∥P†
SX
L̂†
0L̂0PSX ∥S2 = ∥L̂†

0L̂0∥S2 and L̂0 belongs to the
feasible set of (P2). Hence,

R̂S(L̂) ≤ R̂S(L̂0). (7)

Based on (6) and (7), we find that

R̂S(L̂) = R̂S(L̂0). (8)

Furthermore, note that any L within the feasible set of (P2) also belongs to the feasible set of (P3). Provided that LPSX = L̂0,
we also conclude that L is an optimal solution for (P2), since R̂S(LPSX ) = R̂S(L̂0) = R̂S(L̂).

B.3 PROOF OF THEOREM 1

From Proposition 1, we have

R̂S(L̂0) = R̂S(L̂). (9)

Then, using standard Rademacher complexity bounding techniques, we can write following

R(L̂0)−R(L∗) = R(L̂0)− R̂S(L̂0) + R̂S(L̂0)− R̂S(L
∗) + R̂S(L

∗)−R(L∗)
a
= R(L̂0)− R̂S(L̂0) + R̂S(L̂)− R̂S(L

∗) + R̂S(L
∗)−R(L∗)

≤ 2 sup
L

|R̂S(L)−R(L)|

≤ 2ES∼D[sup
L

|R̂S(L)−R(L)|] + β

√
2 ln 2/δ

|S|
(10)

where β := sup |ℓ(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H)− ℓ(∥Lϕ′h − Lϕ′i∥2H − ∥Lϕ′h − Lϕ′j∥2H)| and (a) is from (9). Note
that β ≤ 12αλFB

2, since the difference of triplets is bounded by 6λFB
2 (see Lemma 3) and the loss is α−Lipschitz.

Now, using standard symmetrization and contraction lemmas, we may introduce ϵt ∈ {−1, 1}’s, that are Rademacher
random variables corresponding to each triplet t. Then, we have

ES∼D[sup
L

|R̂S(L)−R(L)|] ≤ ES∼D,ϵ∼{±1}|S|
2α

|S|

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H))

]

The expression inside the expectation on the right hand side can be considered as a function of random triplets in S. We
focus on the expectation on the right hand side:

ES∼D,ϵ∼{±1}|S|

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H))

]
. (11)

Note that (11) is finite, since the difference of triplets is bounded. Therefore, we can apply Fubini’s Theorem, and write it as

ES

[
Eϵ|S

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H))

]]
(12)

where Eϵ|S is the conditional expectation given S. In (11), we have a set of random triplets with corresponding random
features ϕ1, . . . , ϕn inside the expectation, where randomness is based on the triplet set S. However, the conditional



expectation Eϵ|S in (12) is conditioned on S . Note that the size of the Rademacher random vector ϵ is |S|. We first focus on
the conditional expectation:

Eϵ|S

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H))

]
. (13)

Consider the span of features ϕ1, . . . , ϕn and call it SX . Using Riesz’s Representation Theorem, we can write Lϕ for any ϕ
as follows:

Lϕ =

∞∑
k=1

⟨ϕ, τk⟩Hek

For the conditional expectation in (13), we can write each τk as the summation of τ ′k and τ⊥k , where τ ′k represents the part
lies in SX and τ⊥k is orthogonal to SX .

τk = τ ′k + τ⊥k .

We can represent each τ ′k as
∑n

j=1 vk,jψj , where {ψ1, . . . , ψn} is an orthonormal basis for the set {ϕ1, . . . , ϕn} and
vk,j ∈ R,∀k, j. Therefore, for any ϕi, ϕj ∈ SX ,

⟨Lϕi, Lϕj⟩H =

∞∑
k=1

⟨ϕi, τk⟩H⟨ϕj , τk⟩H

=

n∑
a=1

n∑
b=1

( ∞∑
k=1

vk,avk,b

)
⟨ϕi, ψa⟩H⟨ϕj , ψb⟩H

= φT
i M

SXφj (14)

where φi = [⟨ϕi, ψ1⟩, ⟨ϕi, ψ2⟩, . . . ⟨ϕi, ψn⟩]T and MSX
i,j =

∑∞
k=1 vk,jvk,i. Note that MSX and {φ1, . . . , φn} are functions

of S. Based on (14), for ϕi, ϕj ∈ S, we have

∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H
= (φj − φi)

TMSX (2φh − φi − φj)

=
1

2

(
(φj − φi)

TMSX (2φh − φi − φj) + (2φh − φi − φj)
TMSX (φj − φi)

)
=

1

2
Tr
(
MSX (2φh − φi − φj)(φj − φi)

T +MSX (φj − φi)(2φh − φi − φj)
T
)

= Tr
(
MSX (φhφ

T
j + φjφ

T
h − φhφ

T
i − φiφ

T
h + φiφ

T
i − φjφ

T
j )
)

Suppose Kt = φhφ
T
j + φjφ

T
h − φhφ

T
i − φiφ

T
h + φiφ

T
i − φjφ

T
j . Then, we have

ES

[
Eϵ|S

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H)

]]

= ES

[
Eϵ|S

[
sup
L

Tr

(
MSX

∑
t∈S

ϵtKt

)]]
. (15)

For the expression inside the expectations in (15), we have

sup
L

Tr

(
MSX

∑
t∈S

ϵtKt

)
a
≤ sup

L

r∑
i=1

σi(M
SX )σi

(∑
t∈S

ϵtKt

)
b
≤ sup

L

[
∥MSX ∥F∥

∑
t∈S

ϵtKt∥F

]
c
≤ λF ∥

∑
t∈S

ϵtKt∥F

= λF

√
∥
∑
t∈S

ϵtKt∥2F. (16)



Here, (a) is from Von Neumann’s trace inequality, (b) is the result of Cauchy–Schwarz Inequality and we recall that
∥MSX ∥F ≤ λF . Inserting (16) into (15), we can write

ES

[
Eϵ|S

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H)

]]
≤ λFES

Eϵ|S

√∥
∑
t∈S

ϵtKt∥2F

 .
Then, we have

ES

Eϵ|S

√∥
∑
t∈S

ϵtKt∥2F

 a
≤ ES

√√√√Eϵ|S

[
∥
∑
t∈S

ϵtKt∥2F

]
= ES

√√√√Eϵ|S

[
⟨
∑
t∈S

ϵtKt,
∑
t∈S

ϵtKt⟩

]
= ES

√√√√Eϵ|S

[∑
t∈S

∑
t′∈S

ϵtϵt′⟨Kt,Kt′⟩

]
b
= ES

√√√√Eϵ|S

[∑
t∈S

ϵ2t ⟨Kt,Kt⟩

]
= ES

√∑
t∈S

∥Kt∥2F


≤ B2

√
|S|6 (17)

where (a) is from Jensen’s inequality where the expectation is over the randomness in ϵt and (b) is due the fact that
E(ϵt1ϵt2) = 0 when t1 ̸= t2. For the last step, recall that Kt = φhφ

T
j + φjφ

T
h − φhφ

T
i − φiφ

T
h + φiφ

T
i − φjφ

T
j . Then,

we have

∥Kt∥2F
a
≤ 6max

i,j
∥φiφ

T
j ∥2F

b
≤ 6B4, (18)

where (a) is by triangle inequality and (b) follows from that fact that ∥φ∥2 = ∥ϕi∥H ≤ B. Note that ∥φ∥2 = ∥ϕi∥H is by
definition, where φi is defined via change of basis on the span SX . Finally, from (10) and (17), we have

R(L̂0)−R(L∗) ≤ 4αB2λF

√
6

|S|
+ 2ℓ

√
2γ2 ln 2/δ

|S|
,

which completes the proof of Theorem 1.
Lemma 3. Let ϕ(x) be a feature map from Rd to H with ∥ϕ(x)∥H ≤ B for ∀x, and L be a linear functional such that
L : H → H and ∥L†L∥S2 ≤ λF . Then, for any xh,xi,xj ∈ Rd, we have

∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H ≤ 6B2λF

Proof of Lemma 3 First, note that

⟨Lϕh, Lϕj⟩H = ⟨ϕh, L†Lϕj⟩H
a
≤ ∥ϕh∥H∥L†Lϕj∥H
b
≤ ∥ϕh∥H∥L†L∥S∞∥ϕj∥H
≤ ∥ϕh∥H∥L†L∥S2

∥ϕj∥H
≤ B2λF ,



where (a) is from Cauchy-Schwarz Inequality and (b) is by definition of operator norm (∥ · ∥S∞ ). Then, we have

∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H = 2⟨Lϕh, Lϕj⟩H − 2⟨Lϕh, Lϕi⟩H + ⟨Lϕi, Lϕi⟩H − ⟨Lϕj , Lϕj⟩H
≤ 6B2λF .

B.4 PROOF OF THEOREM 2

Recall that the only difference between the setting in Theorem 1 and the setting in Theorem 2 is the constraint set. We replace
the constraints ∥P†

SX
L†LPSX ∥S2 ≤ λF and ∥M∥F ≤ λF with ∥P†

SX
L†LPSX ∥S1 ≤ λ∗ and ∥M∥∗ ≤ λ∗ respectively. We

update definitions accordingly. Then, the proof follows the same steps with the proof of Theorem 1 until (15), where we have

R(L̂n0
)−R(L∗

n) ≤ 4α

|S|
ES

[
Eϵ|S

[
sup
L

Tr

(
MSX

∑
t∈S

ϵtKt

)]]
+ β

√
2 ln 2/δ

|S|
(19)

We focus on the expression inside the expectations and we can write

sup
L

Tr

(
MSX

∑
t∈S

ϵtKt

)
a
≤ sup

L
∥MSX ∥

∥∥∥∥∥∑
t∈S

ϵtKt

∥∥∥∥∥
≤ sup

L
∥MSX ∥∗

∥∥∥∥∥∑
t∈S

ϵtKt

∥∥∥∥∥
b
≤ λ∗∥

∑
t∈S

ϵtKt∥ (20)

Here, (a) is from Hölder’s Ineqaulity for Schatten norms and we recall that ∥MSX ∥∗ ≤ λ∗ for (b). Inserting (20) into the
expectations in (19), we can write

ES

[
Eϵ|S

[
sup
L

∑
t∈S

ϵt(∥Lϕh − Lϕi∥2H − ∥Lϕh − Lϕj∥2H)

]]
≤ λ∗ES

[
Eϵ|S

[∥∥∥∥∥∑
t∈S

ϵtKt

∥∥∥∥∥
]]

.

Then, we have

λ∗ES

[
Eϵ|S

[∥∥∥∥∥∑
t∈S

ϵtKt

∥∥∥∥∥
]]

c
≤ λ∗ES


√√√√√2

∥∥∥∥∥∥
|S|∑
t=1

Eϵ [K2
t ]

∥∥∥∥∥∥ log 3|S|+ 2 log 3|S|


d
≤ λ∗ES

[√
12B4|S| log 3|S|+ 2 log 3|S|

]
= λ∗

(√
12B4|S| log 3|S|+ 2 log 3|S|

)
(21)

where we apply a matrix Bernstein bound to get (c) (see Theorem 6.6.1 in Tropp et al. [2015]) and (d) follows from (18).
Lastly, from (19) and (21), we have

R(L̂n0)−R(L∗
n) ≤ 4αλ∗

(
B2

√
12

log 3|S|
|S|

+
2 log 3|S|

|S|

)
+ 12αB2λ∗

√
2 ln 2/δ

|S|
,

which completes the proof of Theorem 2.

B.5 PROOF OF LEMMA 2

Let ψ1, . . . , ψn ∈ H denote the KPCA directions which span SX such that ⟨ψi, ϕj⟩ = (φj)i ∈ R, where (v)i denotes the
ith entry of vector v. Furthermore, let Bi, denote the ith row of a matrix B. For any L : H → H and ϕx ∈ H we may write
LPSXϕx =

∑n
i=1

∑n
j=1 wi,jΨi ⊗Ψjϕx, where Ψi ⊗Ψjϕx = ⟨Ψj , ϕx⟩HΨi. Let W be the matrix of wij weights. Lastly,



let aT b denote the standard Euclidean inner product for a, b ∈ Rn. Then, for ϕx, ϕy ∈ H,

∥LPSXϕx − LPSXϕy∥2H = ⟨LPSXϕx − LPSXϕy, LPSXϕx − LPSXϕy⟩ (22)

=

〈
n∑

i=1

n∑
j=1

wi,jΨi ⊗Ψj(ϕx − ϕy),

n∑
i=1

n∑
j=1

wi,jΨi ⊗Ψj(ϕx − ϕy)

〉
H

=

〈
n∑

i=1

n∑
j=1

wi,j⟨Ψj , ϕx − ϕy⟩HΨi,

n∑
i=1

n∑
j=1

wi,j⟨Ψj , ϕx − ϕy⟩HΨi

〉
H

=

〈
n∑

i=1

n∑
j=1

wi,j ((φx)j − (φy)j)Ψi,

n∑
i=1

n∑
j=1

wi,j ((φx)j − (φy)j)Ψi

〉
H

=

〈
n∑

i=1

WT
i (φx − φy)Ψi,

n∑
i=1

WT
i (φx − φy)Ψi

〉
H

=

n∑
i=1

WT
i (φx − φy)

〈
Ψi,

n∑
j=1

WT
j (φc − φy)Ψj

〉
H

=

n∑
i=1

(
WT

i (φx − φy)
)2 ⟨Ψi,Ψi⟩H

=

n∑
i=1

(φx − φy)
TWiW

T
i (φx − φy)

= (φx − φy)
TWWT (φx − φy)

= ∥φx − φy∥2M (23)

where in the final step we have defined M := WWT . Then the eigenvalues of M are equal to the square of the singular
values of W. In general we note that the eigenvalues of (LPSX )

†LPSX are equal to the eigenvalues of M where L†

denote the adjoint of L. Note that ∥Lϕx − Lϕy∥2H = ∥LPSXϕx − LPSXϕy∥2H for ϕx, ϕy ∈ SX . Hence, we have
∥Lϕx∥H = ∥φx∥M for any ϕx ∈ SX from (23).

B.6 PROOF OF PROPOSITION 3

From Lemma 2, we have ∥P†
SX
L†LPSX ∥Sp = ∥M∥p ∀p. Similarly, from the fact that ∥Lϕx∥H = ∥φx∥M (see Lemma 2),

we have |∥Lϕh − Lϕi∥2 − ∥Lϕh − Lϕj∥2| = |∥φh − φi∥2M − ∥φh − φj∥2M| within SX . Then, from Proposition 2, we
conclude that (P3) and (P4) have the same optimal value. Therefore, we have that

min
L

R̂S(L)

s.t. ∥P†
SX
L†LPSX ∥S2 ≤ λF

(P3)

is equal to
min
M

R̂S(M)

s.t. ∥M∥F ≤ λF

M ⪰ 0,

(P4)

By definition, L̂0 is an optimal solution for (P3) and M̂ is the optimal solution for (P4). Recall that there exists a psd matrix
M for each pair of L and SX from Lemma 2.

For the construction of L̂0 from M̂, we follow similar lines with the proof of Lemma 2. L̂0 is defined reversing equalities
in Section B.5 for M = M̂, from (22) to (23). Therefore, we observe that M̂ is the corresponding psd matrix for the pair
(L̂0,SX ). This is actually true for any L provided that LPSX = L̂0.

C DISCUSSION
Our results extend the linear metric setting of Mason et al. [2017] in two key ways: First, our main results provide
generalization error and sample complexity bounds for the kernelized metric learning from triplet comparisons. Second, the



linear metric learning analysis of Mason et al. [2017] requires that the number of items, n, be larger than the dimensionality, d,
which limits its applicability. In contrast, our analysis, which also considers linear kernels, offers a more general framework,
even for linear metric learning from triplet comparisons.

Mason et al. [2017] consider a fixed set of items in Rd and derive generalization bounds based on selecting triplets uniformly
from those that can be generated from the fixed item set. Their analysis exploits the fact that the item set is fixed and requires
that the number of items n is larger than the dimensionality d, which limits its applicability. Also note that, the true risk of
Mason et al. [2017] is defined with respect to a discrete uniform distribution over n

(
n−1
2

)
triplets possible from the fixed set

of n items.

Our setting differs significantly from Mason et al. [2017] in the following aspects: We do not assume a fixed set of items,
which would otherwise restrict generalization only to the triplets drawn from this fixed set. Instead, in our setting, each triplet
query involves items drawn iid from an unknown distribution D. Our true risk is defined over this unknown distribution and
the generalization bounds hold for triplets chosen from this distribution. Thus, our analysis also extends the generalization
results even for the linear kernel case in high dimensions (large d) apart from generalizing to infinite-dimensional RKHS.

Given the difference in settings, the proof technique we use differs from Mason et al. [2017]). To derive our sample
complexity results, we turn our attention to the metric and exploit the fact that the true metric L∗ has a bounded Schatten−p
norm, which constrains how L interacts with any random data. We use this constraint in conjunction with the Riesz
Representation Theorem to further refine our analysis.

D ADDITIONAL SIMULATIONS AND EXPERIMENTAL DETAILS
In the practical implementation of kernelized metric learning problem, our target is to solve convex program (P4). Solving
(P4), we learn a finite metric M̂.

Unseen Triplets: To evaluate the performance of M̂ for unseen triplets, we, first find φn+1 =
AT [k(xn+1,x1), . . . , k(xn+1,xn)]

T for each new point xn+1 seen in the test set using kernel function k(x, y),
where A is from KPCA procedure (see Section 4.1). This corresponds to finding the projections of new points to the span of
ϕ1 . . . ϕn. Then, we can estimate the label for an unseen triplet using new (finite) representations φn+1’s and M̂.

Computing Infrastructure: Our code is designed to run on a personal laptop. The experiment and simulations reported in
this paper were conducted on a MacBook Pro with M3 Max CPU with 48GB of RAM.

We will open-source our code for reproducibility upon acceptance of this work.

D.1 SPIRAL WITH GEODESIC DISTANCE:

We present the performance of different kernels in Figure 2 for the task of metric learning on a 2D spiral, where the true
distance is the geodesic distance. Table 1 shows parameters of the kernel functions used for this task, which are as follows:
σ = 1, c = 1, α = 1, p = 2.

D.2 GAUSSIAN KERNEL MAP

Preliminary: We want to generate a linear functional L∗ : H → H that lies on an r−dimensional manifold. First, note that
Riesz’s Representation Theorem allows us to represent the linear functional L∗ as follows:

L∗ϕ =

∞∑
k=1

⟨ϕ, τk⟩Hek.

Given that L∗ lies on an r−dimensional manifold, each τk can be written as
∑r

j=1 vk,jψj , where {ψ1, . . . , ψr} is a set of
features that span an r−dimensional manifold. Therefore, for any ϕi, ϕj ,

⟨Lϕi, Lϕj⟩H =

∞∑
k=1

⟨ϕi, τk⟩H⟨ϕj , τk⟩H

=

r∑
a=1

r∑
b=1

( ∞∑
k=1

vk,avk,b

)
⟨ϕi, ψa⟩H⟨ϕj , ψb⟩H, (24)



where Ga,b = (
∑∞

k=1 vk,avk,b). Each entry of G is an inner product in ℓ2, so G is a positive semidefinite matrix. Our target
is to sample a set of features in H that spans an r0−dimensional manifold, where r0 = max (r) and generate a random psd
matrix G to define L∗. Inspiring from the simulation setup of Mason et al. [2017] for linear metric learning problem, we
define G as G = r0√

r
UUT to make average magnitude of entries constant independent from r and r0, where U ∈ Rr0×r is

a random orthogonal matrix. This procedure provides a linear functional L∗ lying on an r−dimensional manifold.

Linear Functional L∗: We sample a set {z1 . . . zr}, where each zi ∼ N (0d, 1dId). Then, consider a kernel map ϕ(·)
such that ⟨ϕ(zi), ϕ(zj)⟩ = k(zi, zj). We generate corresponding features using this kernel map, where the set of features
{ϕ(z1) . . . ϕ(zr)} span an r−dimensional manifold in H and call ψi = ϕ(zi). We also generate a random psd matrix Gr×r.
Finally, we have an explicit formula for L∗ based on (24). Now, we can express inner product ⟨Lϕi, Lϕj⟩H in terms of
known parameters:

⟨Lϕi, Lϕj⟩H = [k(xi, z1), . . . , k(xi, zr)]G[k(xj , z1), . . . , k(xj , zr)]
T , (25)

where ⟨ϕi, ψa⟩H = k(xi, za) and ϕi = ϕ(xi). We can easily find the difference of distances for triplet comparisons based
on (25), since we have

∥Lϕ(xh)− Lϕ(xi)∥2H = ⟨Lϕh, Lϕh⟩H − 2⟨Lϕh, Lϕi⟩H + ⟨Lϕi, Lϕi⟩H.

Triplet Generation: We randomly sample triples {xh,xi,xj} where xi ∼ N (0d, 1dId). Then, we can numerically find the
difference of distances using (25) and generate noisy answers for triplets with a link function as mentioned in Section 5.1.

Accuracy: We generate another set of random triplets. We can numerically find the true label corresponding to each triplet
using L∗. Finally, we compare true labels with estimated labels to find accuracy.

Below, we provide more extensive simulations with a Gaussian kernel, where σ = 1.

Figure 6: Train and test accuracy for noiseless setting with 50 repetitions for each run. We fix the number of triplets to 5000.

From Figure 6, we observe that given a set number of triplets, the accuracy one can obtain decreases as the rank r increases,
as captured by our analysis, where L∗ lies on an r−dimensional manifold. The task of learning a kernelized metric becomes
more complex as r increases.



Figure 7: Train and test accuracy for noiseless setting with 50 repetitions varying number of triplets (100, 500, 1000, 2500,
5000, 10000), where r = 2 (left) and r = 10 (right).

Figure 7 shows that test accuracy increases when the triplet set gets larger. As a result, the learned metric generalizes better.
For example, we observe that, to obtain the same accuracy of 70%, ∼ 1000 triplets are sufficient when rank is 2, whereas
the triplets needed when rank is 10 is ∼ 5000.

Next, we provide simulation results with noisy responses. From Figure 8, we observe that accuracy is lower for larger r
values even with a significant amount of noise on responses. Finally, Figure 9 shows accuracy for varying numbers of triplets
at different noise levels of 5% and 10%.

Figure 8: Train and test accuracy for noisy setting with 50 repetitions for each run. We fix number of triplets to 10000 and
the ratio of noisy responses is approximately 5%.

D.3 EMPIRICAL EVALUATION: FOOD-100 DATASET

We provide a brief description for the Food-100 dataset (More details can be found in the work of Wilber et al. [2014]). The
Food-100 dataset consists of carefully selected 100 food items, where each image has only one food. Answers to 190,376
triplets are collected from Amazon Mechanical Turk workers. Let T be the set of all triplets.

For each iteration, we randomly select 20 items and call them Xunseen. Then, we define a triplet set Tunseen from Xunseen as
follows:

Tunseen := {{xh, xi, xj} : xh ∈ Xunseen or xi ∈ Xunseen or xj ∈ Xunseen}.

Next, we uniformly sample triplets for the training set Ttrain from the set T \ Tunseen to guarantee that there exist unseen
items in Ttrain. Finally, we uniformly sample triplets for the test set Ttest from the set of all triplets T . We apply the same



Figure 9: Train and test accuracy for noisy setting and r = 10 with 20 repetitions varying number of triplets, where the ratio
of noisy responses is approximately 5% (left) and 10% (right).

splitting strategy on the Ttrain set to further split it to different training and validation part 20 times. We report the mean and
standard deviation of the validation accuracies on these 20 validation parts.

Choice of Parameters for Kernel Function: We conducted a parameter search on the validation set in the following range:

• σ : 0.01, 0.1, 1, 10

• α : 0.01, 0.1, 1

• p : 2, 5, 7, 10

Our results show the best test accuracy values based on this search.


	INTRODUCTION
	Related Work

	PROBLEM SETTING
	KERNELIZED METRIC LEARNING
	Theoretical Guarantees for Kernelized Metric Learning

	PRACTICAL IMPLEMENTATION
	Kernelized Principle Component Analysis (KPCA)
	Learning Kernelized Metrics in Practice

	EXPERIMENTAL RESULTS
	Simulations
	Empirical Evaluation: Food-100 Dataset

	DISCUSSION
	Acknowledgements
	LIMITATIONS and BROADER IMPACTS
	PROOFS
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Proposition 3

	DISCUSSION
	Additional Simulations and Experimental Details
	Spiral with Geodesic Distance:
	Gaussian Kernel Map
	Empirical Evaluation: Food-100 Dataset


