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Abstract

Theory-of-Mind (ToM) enables humans to infer
mental states—such as beliefs, desires, and in-
tentions—forming the foundation of social cogni-
tion. Existing computational ToM methods rely
on structured workflows with ToM-specific pri-
ors or deep model fine-tuning but struggle with
scalability in multimodal environments. They
remain trapped within the gravitational pull of
multi-step planning complexity, failing to general-
ize as task demands increase. To overcome these
limitations, we propose a scalable Bayesian ToM
planner. It breaks down ToM complexity into
stepwise Bayesian updates. Meanwhile, weak-to-
strong control specializes smaller LMs to refine
ToM-specific likelihood estimation, transferring
their ToM reasoning behavior to larger LMs (7B
to 405B) for social and world knowledge integra-
tion. This synergistic approach enables scalabil-
ity, aligning large-model inference human mental
states with Bayesian principles. Extensive experi-
ments demonstrate a 4.6% improvement in accu-
racy over state-of-the-art methods on multimodal
ToM benchmarks, including unseen scenarios, es-
tablishing a new standard for modeling human
mental states in complex environments.

1. Introduction
Theory-of-Mind (ToM) is a cornerstone of human social
cognition, enabling individuals to attribute and infer men-
tal states in themselves and others. This capacity under-
pins the recognition that others may have perspectives dis-
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Figure 1. Comparison of models on planning tasks in VirtualHome
(a simulator used in multimodal ToM). As planning steps increase,
smaller models (e.g., Llama3.1-8B, 70B) and inference-time scal-
ing (e.g., o1-mini, CoT) fail to sustain accuracy. Only larger
models (e.g., Llama3.1-405B) maintain performance, demonstrat-
ing that sustaining accuracy requires model scaling.

tinct from one’s own (Dennett, 1988; Gopnik & Wellman,
2012). Similarly, ToM tasks in AI involve perceiving ob-
servable cues—such as an agent’s actions and surrounding
context—to predict their goals and beliefs. Equipping AI
systems with ToM capabilities could unlock their potential
for human-like social understanding and interactions (Lake
et al., 2017; Wu et al., 2021; Ma et al., 2023).

Existing approaches to ToM reasoning follow two main
strategies: (i) structured planning workflows with ToM-
specific priors (Baker et al., 2017; Jara-Ettinger, 2019; Shu
et al., 2021), and (ii) integrating these priors into language
models (LMs) via specialized training (Rabinowitz et al.,
2018; Shu et al., 2021; Sclar et al., 2022; Jin et al., 2024).
The challenges extends beyond method designs—ToM envi-
ronments demand multimodal reasoning, integrating visual,
textual, and contextual inputs into coherent mental state
inferences. Understanding and predicting the goal of agent
planning behaviors require models to reason across multiple
steps while integrating multimodal cues.

However, these challenges introduce generalization barri-
ers, making it unclear whether standard approaches can
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scale effectively. To examine these challenges, Fig.1 com-
pares the performance of various models in planning tasks
with the physical simulator used by multimodal ToM bench-
marks. While inference-time scaling methods—such as CoT
reasoning, o1 systems, and fine-tuning experts—provide in-
cremental improvements, they fail to maintain accuracy
as task complexity increases. Only larger models, such
as Llama3.1 405B, sustain performance over increasing
planning steps, while smaller LMs exhibit rapid accuracy
degradation. These scalability challenges stem from two
fundamental factors: First, a reasoning boundary exists,
limiting the number of effective reasoning steps regardless
of the method used. Prior studies (Chen et al., 2024; Zhang
et al., 2024; Ye et al., 2025; Gao et al., 2025) show that CoT
reasoning and o1/r1-like scaling methods plateau in effec-
tiveness as task complexity grows, leading to diminishing
returns. Second, multimodal ToM reasoning relies heav-
ily on integrating broader social and world knowledge,
which correlates strongly with model scale. Unlike closed-
form logic tasks, ToM reasoning in complex environments
requires grounding in extensive, diverse contexts. As shown
in Zhang et al. (2024); Yu et al. (2024); Sun et al. (2024);
Gao et al. (2024); Yuan et al. (2025); Diao et al. (2025b);
Zhang et al. (2025b), smaller LMs struggle to generalize ef-
fectively due to their limited pretraining capacity to encode
and utilize world knowledge. These findings emphasize
that simple fine-tuning or inference-time scaling alone is
insufficient to improve ToM reasoning at scale. Instead,
sustained performance requires both structured frameworks
and models with expansive generalization capabilities, as
demonstrated by Fig.1, deviating from the existing methods.

Motivated by these scalability challenges, we introduce a
more scalable Bayesian ToM solution that directly addresses
inference-time reasoning complexity through Bayesian In-
verse Planning (BIP) (Baker et al., 2007; 2009; 2017; Shum
et al., 2019; Jin et al., 2024) and overcomes world knowl-
edge dependency by scaling LMs up to 405B for ToM-
specific generalization. First, BIP mitigates the reasoning
boundary by decomposing multimodal ToM reasoning into
modular, stepwise Bayesian updates—such as state transi-
tions, belief updates, and action likelihoods. This structured
framework refines beliefs and hypotheses iteratively, en-
suring tractability even in complex environments. Second,
overcoming the reliance on broad social and world knowl-
edge requires scaling to larger LMs, as illustrated in Fig.1.
Prior approaches (Jin et al., 2024) relied on smaller LMs for
likelihood estimation, but their limited capacity hindered
generalization in rich ToM settings. Our weak-to-strong
control mechanism enables smaller, post-trained LMs to
specialize in ToM-specific tasks and transfer these learned
behaviors to larger LMs (up to 405B) during inference. This
innovation allows the larger LM to serve as the primary
policy model, leveraging its extensive world knowledge

while maintaining Bayesian consistency for stable and in-
terpretable reasoning. The theoretical foundation of our
approach is established by Theorem 1, which formalizes its
effectiveness through KL divergence analysis. Empirical
results demonstrate that our scalable solution enhances the
generalizability of Bayesian inference and achieves a 4.6%
accuracy improvement over state-of-the-art methods on mul-
timodal ToM tasks, including unseen scenarios, setting a
new standard for modeling ToM in complex environments.

2. Preliminaries
Behaviour modelling: a Markov decision process formu-
lation The behaviour of an agent can be formulated as a
forward generative model based on a Partially Observable
Markov Decision Process (POMDP), defined by the tuple
⟨S,A, T , G,R,Ω, O, γ⟩ (Kaelbling et al., 1998; Jin et al.,
2024). Here, st ∈ S and at ∈ A represent the state and
action at time t, respectively. T (st|s, a) denotes the state
transition probabilities. The goal g ∈ G determines the
reward rt = R(st, at, g). The agent’s observation ot ∈ Ω is
obtained via the observation function ot = O(st). The dis-
count factor is γ ∈ (0, 1]. Crucially, the agent’s belief, b(s),
is a probability distribution over the state. This belief is dy-
namically updated during belief evolution P (bτ | bτ−1, sτ ),
where b(s) is factorized into probabilities over the possible
locations of individual objects.

In our practice, b0 is initialized as all possible object lo-
cations at the start. At each step τ , if an object is ob-
served inside a container, bτ is updated to include the con-
tainer; otherwise, unobserved locations are removed from
bτ . P (bτ |bτ−1, sτ ) can be approximated using likelihoods
from an LM.

Inverse inference: from observed behaviours to men-
tal states Bayesian inverse planning (BIP) infers an
agent’s goals and beliefs by inverting the forward POMDP
model (Baker et al., 2017). Given observed states s1:t and
actions a1:t−1, the posterior probability of a goal g and
belief bt is expressed as:

P (g, bt|s1:t, a1:t−1) ∝
t∏

τ=1

π(aτ |g, bτ )

P (bτ |bτ−1, sτ )P (b0)P (g), (1)

where π(aτ |g, bτ ) represents the agent’s policy—the proba-
bility of taking action aτ given its goal g and belief bτ . This
process combines the likelihood of actions and belief up-
dates with prior probabilities, refining beliefs incrementally
as new evidence is observed. To compare hypotheses about
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an agent’s goals, we evaluate their relative log-likelihoods:

log
P (g1, b

t
1|s1:t, a1:t)

P (g2, bt2|s1:t, a1:t)
=

t−1∑
τ=1

log
π(aτ |g1, b̂τ )
π(aτ |g2, b̂τ )︸ ︷︷ ︸

Prior steps comparison

+ log
π(at|g1, bt1)
π(at|g2, bt2)

+ log
P (bt1|b̂t−1, st)

P (bt2|b̂t−1, st)︸ ︷︷ ︸
Current step comparison

. (2)

The first term compares cumulative likelihoods across prior
steps, while the second term evaluates how well each hypoth-
esis aligns with the agent’s latest action and belief update.

In practice, the hypothesis with the highest accumulated
likelihood is selected, and π(aτ |g, bτ ) can be approximated
using likelihoods generated by a language model.

3. Bayesian ToM Planner at Scale

Our scaled Bayesian planner infers an agent’s mental state
based on the unified representations about a scene, a per-
son’s actions, and the mental state hypotheses from multi-
modal inputs, and then post-train an LM to conduct contex-
tual inverse symbolic planning, based on unified symbolic
representations (Jin et al., 2024). Then, as shown in Fig.2,
the LM used in our scaled Bayesian planner is from 7B up
to 405B parameters at test-time compute. This approach
harnesses the world knowledge and reasoning capabilities
of large LM, avoiding additional post-training.

Weak-to-strong controlled large policy model When
augmenting likelihood estimation with the guided large
LM’s broad capabilities, we scale up the LM used only for
inference-time computing and avoid the direct post-training
on large LM. The true policy π(aτ | g, bτ ) is estimated
through a LM (π)-estimated probability π̃(at | st, g, b̂t):

π(aτ | g, bτ ) = π̃(at | st, g, b̂t) + ε, (3)

where ε represents the inherent approximation error. When
applied to the Bayesian inverse planning (1), the posterior
probability is expressed as:

P (g, bt | s1:t, a1:t−1) ∝
t∏

τ=1

[
π̃(aτ | sτ , g, b̂τ ) + ε

]
·

P (bτ | bτ−1, sτ ) · P (b0)P (g). (4)

It integrates the approximation into Bayesian planner, con-
sidering si, bi, gi, ai updates over time.

Post-training stage: ToM optimization To specialize the
LM’s behaviors to estimate likelihoods and reduce approx-
imation error ε in Eq 3, the post-training stage consists of

two phases: In instruction tuning phase, a scenario-specific
policy πE0 is refined using an action-policy experience pool
D = {(si, bi, gi, ai)}Ni=1, where s, b, g, and a represent
states, beliefs, goals, and actions. The tuning objective
maximizes the likelihood of observed actions:

LIT(π
E0) = −

N∑
i=1

log πE0(ai | si, bi, gi). (5)

This step builds a mapping from multimodal environments
to goal-directed actions. Then in preference optimization
phase, LM is further aligned by distinguishing between
effective (a+) and ineffective (a−) actions. a+ corresponds
to concise, successful outputs, while a− represents long
descriptions or failed actions. The preference loss, modified
from DPO (Rafailov et al., 2023), is defined as:

LPO = −E(x,a+,a−)∼D
[
log σ

(
β ·∆ log πE)]

+λ · Ex,a∼πE0

[
log

πE0(a | s, b, g)
πE(a | s, b, g)

]
,

(6)

where ∆ log πE = log πE(a+ | s, b, g) − log πE(a− |
s, b, g) represents the log-odds. Here, β controls the sharp-
ness of preference learning, while λ regularizes deviations
from the initial policy πE0 , ensuring stable training.

Inference stage: large policy model with behavioral guid-
ance. During inference, we leverage the behaviour acquired
by the ToM preference-optimized smaller LM to guide the
reasoning of a larger, more capable LM. This approach dy-
namically adjusts the output of the large LM based on the
shift observed between a post-trained small LM πE and a
naive small LM πN . At each inference step t, the policy
distribution for the redirected large LM is given by:

π̄(at | st, g, b̂t) = 1

Z̄
πL(at | st, g, b̂t) π

E(at | st, g, b̂t)
πN (at | st, g, b̂t)

,

(7)
where πL(at | st, g, b̂t) represents the policy distribution
from the naive large LM. The post-training effect to policy
function is approximated through the ratio πE(at|st,g,b̂t)

πN (at|st,g,b̂t)
,

offering an on-the-fly redirecting mechanism. The nor-
malization factor is calculated by Z̄ =

∑
at πL(at |

st, g, b̂t) πE(at|st,g,b̂t)
πN (at|st,g,b̂t)

. It ensures the resulting probabilities
being aligned, reflecting both the post-training adjustments
and the base likelihood from the larger LM. Our overall
method facilitates ToM behaviour transfer from the post-
trained small LM (πE ) to the larger LM (πL), scaling the
large policy model’s capabilities in BIP at inference time.

Below Eq 8 shows this behavior control relies on the learned
∆s to approximate the scaled gradient −η∇sLCE(sπL , y)
with higher-order terms contributing to the residual error.
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Figure 2. (left) The large LM operates as a scaled policy model (e.g., 405B) to estimate the likelihood of an agent’s actions in dynamic
environments, based on multimodal symbolic inputs (video and description). (right) The latent reasoning of the large LM is guided by
the ToM behaviours from post-trained small LMs, which acts as a weak-to-strong scaling control. Overall, Bayesian inverse planning
compares hypotheses about the agent’s goal and belief, using the large LM as a policy model to infer ToM.

Theorem 1. Let π∗ be the directly post-trained base
model. Suppose the output adjustment ∆s(Xt|x<t) =
sπE (Xt|x<t)− sπN (Xt|x<t) approximates the scaled
negative gradient of the CE loss for outputs, i.e., ∆s ≈
−η∇sLCE(sπL , y), where η is the learning rate. Then,
the model π̃, defined by sπ̃(Xt|x<t) = sπL(Xt|x<t) +
∆s(Xt|x<t), approximates π∗. The KL divergence be-
tween their output distributions is:

DKL(Pπ∗∥Pπ̃) ≤
η2

2
λmax∥∇sLCE(sπL , y)∥22 +O(η3),

(8)
where λmax is the maximum eigenvalue of the Hessian
of the cross-entropy loss for the outputs.

πE does not need to strictly approximate the exact loss
gradient of πL. Instead, πL can use its intrinsic capacity to
adapt to ToM scenarios, based only on the approximated
∆s learned by the small LM. See App C for the proof.

4. Experiments
Fig.1 first shows the scaling benefits in physical simulated
scenarios. To dive into our BIP method in multimodal ToM,
for the strong component, we scale up the large LMs to 70B
and 405B parameters. In contrast, for the weak component,
we reduce the size of the small LMs from 8B to 4B parame-
ters. First, the results reveal a positive correlation between
model size and ToM capabilities, especially when the larger
models are guided by the post-trained behaviours of the
smaller models. Interestingly, these post-trained behaviours
are also effectively captured by smaller LMs. We also illus-
trate how the large LMs are progressively redirected to the
answer space during the Bayesian process.

4.1. Setup

Datasets (i) For post-training, we use MMToM sam-
pled from an apartment environment simulator, Virtual
Home (Puig et al., 2018), using the procedural methods

described by Jin et al. (2024). The dataset comprises 1,000
procedurally synthesized videos within a realistic household
simulator, each annotated with states, goals, beliefs, and
actions. (ii) For evaluation, we use the MMToM-QA (Jin
et al., 2024), an evaluation benchmark aimed at evaluating
ToM reasoning over multimodal situations. The dataset
consists of 134 videos, each showing a person searching
for household objects, with an average of 1,462 frames per
video representing approximately 36 human actions. These
videos are accompanied by 600 questions (detailed in App.
§D.1), evenly divided between the categories of belief in-
ference (with 1.1, 1.2, and 1.3 subtasks) and goal inference
(with 2.1, 2.2, 2.3, and 2.4 subtasks). The questions assess
the ability of models to infer goals and beliefs jointly.

Baselines We include three types of baselines.For text-
only evaluation, we compare performance in the text-only
subset of MMToM-QA using various LMs, including GPT-
4 (OpenAI, 2023a), GPT-3.5, Llama2-7B (Touvron et al.,
2023), OpenAI-o3-mini, DeepSeek-R1-671B (Guo et al.,
2025). Advanced prompting methods, such as SimToM
(Wilf et al., 2024) and SymbolicToM (Sclar et al., 2023),
which enhance GPT-4’s reasoning capabilities, provide ad-
ditional baselines (e.g., SimToM with GPT-4 and Symbolic-
ToM with GPT-4). For multimodal evaluation, we include
GPT-4V (OpenAI, 2023a), Video-Llama2 (Zhang et al.,
2023), and LLaVA (Liu et al., 2023), BIPALM (Jin et al.,
2024). For human, 180 participants answer 120 randomly
sampled questions, covering all question types, as reported
by Jin et al. (2024).

Post-training We post-train Llama (Touvron et al., 2023;
Dubey et al., 2024) as a policy model with LoRA (Hu et al.,
2022), as outlined in Tab.7. Following the setup recom-
mended by Jin et al. (2024), we use a learning rate of 1e-3
over 3 epochs. LoRA is configured with a rank of 16 and an
alpha value of 32 for the 7B and 8B LMs. For 70B, we use
a lower rank of 8 and an alpha of 16.
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4.2. Main results

Tab.1 uses human performance as the gold standard, with
humans achieving a clear lead of 93.0% accuracy on tasks
with multimodal input. Among the models, our solution
with multimodal input achieves the highest performance,
highlighting the critical role of integrating both visual and
textual modalities. Comparisons between LMs alone and
those augmented with ToM workflows (e.g., SimToM, Sym-
bolicToM, or BIP) further demonstrate the benefits of the
ToM workflow. Specifically, the ToM workflow improves
performance by decomposing the complexity of multi-
modal ToM reasoning into modular steps. In belief infer-
ence, which is strongly linked to world knowledge, models
like GPT-4 and GPT-3.5 perform exceptionally well, par-
ticularly on task 1.1, where GPT-4 achieves an accuracy of
94%. This result underscores the importance of large-scale
models in capturing and applying vast amounts of pretrained
world knowledge. However, despite their impressive perfor-
mance in belief inference, these models do not perform as
effectively on goal inference, where adaptation to specific
ToM contexts and dynamic environments is crucial. This
highlights the need for models to be better aligned with
the specific requirements of ToM scenarios. Models with
smaller scales, such as those with 6B, 7B, and 13B parame-
ters, face inherent capability limitations, which restrict their
performance on belief inference tasks, particularly when
compared to larger models like GPT-4 on task 1.1. However,
these smaller models, such as BIPALM w/ GPT-J-6B and
Llama2-7B, benefit from post-training specifically designed
for ToM scenarios. This allows them to perform better on
goal inference tasks, where understanding and adapting to
scenario-specific environmental dynamics is essential. De-
spite their size constraints, these models demonstrate
the value of targeted post-training in compensating for
the lack of large-scale pretrained knowledge. Our ap-
proach goes beyond seesaw effects in prior methods and has
both strengths: while its strong component leverages the
extensive world knowledge embedded in large pretrained
models, also its weak component incorporates post-training
to the ToM contexts and environmental dynamics required.
This dual advantage allows a balanced performance across
both task types (belief & goal inference), with an over-
all 81.3% accuracy on multimodal tasks and exhibits a
4.6% improvement over the existing best baseline.

4.3. Stronger Large LMs enhance likelihood estimation

In the Bayesian framework, we explore the role of LMs
in likelihood estimation and examine how their scale and
post-training affect performance across various ToM tasks.
According to Tab.2, (i) our results demonstrate a positive
correlation between LM size and ToM task performance.
For instance, in the zero-shot setting of Llama3.1, the 405B
model achieves an accuracy of 69.43%, outperforming both

the 8B model (65.19%) and the 70B model (66.62%). No-
tably, the performance of the 405B model approaches that of
the post-trained Llama2-7B. Furthermore, the improvement
from 70B to 405B suggests that the benefits of scaling have
not yet reached saturation, indicating potential for further
gains with larger models. (ii) Post-training significantly
enhances LMs’ performance on ToM tasks, even when
larger LMs already perform well in zero-shot scenarios.
This effect is consistent across model sizes, from smaller
models such as 7B/8B to larger models up to 70B, regardless
of the specific version (Llama2, Llama3, or Llama3.1). For
belief inference tasks, which are closely tied to world knowl-
edge, post-training helps align the large models’ knowledge
more precisely with the input questions. For goal inference
tasks, which are linked to environmental dynamics, post-
training refines the models’ atomic-level reasoning (i.e.,
predicting a based on s, b, g), resulting in greater improve-
ments compared to belief inference. This suggests that
post-training provides a more substantial benefit for tasks
that require dynamic reasoning. (iii) Our weak-to-strong
control approach approximates the benefits of direct post-
training in Bayesian inference. When comparing models
such as Llama2, Llama3, and Llama3.1, we find that direct
post-training on the 70B model, even with adjusted hyperpa-
rameters from the 8B model (e.g., reducing the alpha value
from 32 to 16), does not produce results as stable as our
method. We attribute this to the difficulty of finding opti-
mal hyperparameters for larger models, which require more
extensive tuning. In contrast, our weak-to-strong control,
which uses a well-trained smaller LM to guide the larger
LMs, allows for more consistent improvements without the
need for extensive hyperparameter trials.

4.4. Scaling-down small LMs are effective controllers

In the Bayesian planner, prior experiments show that post-
trained behaviours from small LMs can effectively guide
the pretrained capabilities of larger LMs during test time.
To further study the role of post-training to weak-to-strong
control, Tab.3 investigates whether post-trained behaviours
can be learned effectively with reduced computational re-
sources, while the pretrained capabilities of larger LMs are
still available. Specifically, we examine whether downsized
smaller LMs can effectively capture these post-trained be-
haviours and guide the pre-trained capabilities of larger LMs
without compromising performance. We use 8B LMs as
baselines in normal size, and we also downsize them to two
4B variants: Llama3.1-Minitron-4B-Width, which reduces
the hidden size of each layer; and Llama3.1-Minitron-4B-
Depth, which cuts the model depth (Sreenivas et al., 2024).
Despite their smaller size, they maintained comparable ac-
curacy in weak-to-strong control. While the 4B-Width LM
underperformed the 4B-Depth LM in zero-shot scenarios,
its post-training results surpass the 4B-Depth, especially
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Table 1. Comparisons between humans and models across task types from 1.1 to 2.4 are provided. The best results for each modal setting
are highlighted in bold. The second best results in multimodality are underlined. Rows of ours are highlighted in color.

method belief inference goal inference all1.1 1.2 1.3 avg. 2.1 2.2 2.3 2.4 avg.
te

xt
on

ly
Human 96.0 95.8 81.3 91.0 85.8 76.7 65.0 68.3 74.0 82.5
GPT-4 97.0 12.0 77.0 62.0 48.0 42.7 2.7 42.7 34.0 48.0
SimToM w/ GPT-4 96.0 15.0 82.0 64.3 61.3 44.0 2.7 54.7 40.7 52.5
SymbolicToM w/ GPT-4 100 61.0 74.0 78.3 73.3 66.7 0.0 50.7 47.7 63.0
BIPALM w/ GPT-J-6B 88.0 69.0 88.0 81.7 77.3 68.0 30.7 70.7 61.7 71.7
DeepSeek-R1-671B 92.0 50.2 72.4 71.5 68.3 44.0 45.0 48.2 51.4 61.5
OpenAI-o3-mini 83.1 47.6 62.3 64.3 64.0 38.6 38.7 46.0 46.8 55.6
Ours (w/ Llama3.1-405B) 90.1 70.5 87.4 82.7 68.8 75.5 75.3 71.8 72.9 77.8

vi
de

o
on

ly

Human 69.1 64.3 86.4 73.3 58.5 60.0 76.7 63.3 64.6 68.9
Video-Llama2-13B 24.0 32.0 67.0 41.0 50.7 45.3 56.0 52.0 51.0 46.0
LLaVA-7B 33.0 15.0 69.0 39.0 44.0 24.0 56.0 57.3 45.3 42.2
GPT-4V 64.0 34.0 39.0 45.7 54.7 26.7 48.0 56.0 46.3 46.0
BIPALM w/ GPT-J-6B 63.0 57.0 72.0 64.0 45.3 62.7 50.7 62.7 55.3 59.7
BIPALM w/ Llama2-7B 69.0 63.0 60.0 64.0 62.7 54.7 53.3 62.7 58.3 61.2

m
ul

tim
od

al

Human 95.8 96.7 100 97.5 90.0 91.7 83.3 88.9 88.5 93.0
Video-Llama2-13B 36.0 38.0 52.0 42.0 36.0 41.3 30.7 45.3 38.3 40.2
LLaVA-7B 46.0 14.0 69.0 43.0 65.3 22.7 40.0 48.0 44.0 43.5
GPT-4V 94.0 13.0 59.0 55.3 56.0 26.7 4.0 52.0 34.7 44.0
BIPALM w/ GPT-J-6B 90.0 69.0 86.0 81.7 68.0 78.7 56.0 73.3 69.0 75.3
BIPALM w/ Llama2-7B 88.0 68.0 85.0 80.3 62.7 77.3 72.0 80.0 73.3 76.7
Ours (w/ Llama3.1-405B) 92.1 76.0 93.0 87.1 73.4 80.0 75.5 78.7 76.9 81.3

when controlling the 70B large LM, demonstrating its supe-
rior transferability. These results highlight two key points:
(i) downsizing the weak component can still effectively
guide larger LMs without a significant loss in accuracy,
and (ii) reducing model width, rather than depth, tends
to be more generalizable, as deeper models demonstrate
better transferability—aligning with learning principles of
the width-depth trade-offs in small-scale studies (Telgarsky,
2016; Lu et al., 2017; Raghu et al., 2017).

4.5. Transferability of scaled Bayesian planner

Although the small LMs are post-trained on the apartment,
our overall framework is expected to be stable and generaliz-
able across various unseen scenarios. To evaluate the trans-
ferability, Tab.4 compares our method with baseline models
in five previously unseen scenarios: Andersen fairy tales, an-
cient Egyptian, outer space, wild west, and medieval castle.
These diverse settings assess the generalisability of our ap-
proach beyond the post-training scenario. When scaling the
strong component (i.e., the large controlled LMs) from 70B
to 405B across these new scenarios, there are continuous im-
provements in ToM understanding. This demonstrates that
the increased capacity of our scaled solution enhances
the transferability of ToM reasoning across multiple
dynamic and unseen environments. Furthermore, when
the weak controller component is reduced from 8B to 4B,
performance remains stable, ranging between 78.0% and
79.15%. This result is comparable to the 79.05% accuracy

achieved in the original apartment scenario and also remains
close to the performance of the 8B LMs. This consistency
suggests that downsizing the weak component does not sig-
nificantly affect performance, even in new and diverse test
environments. These results indicate that our approach
has strong potential for continually downsizing smaller
LMs as controllers since they also are capable of captur-
ing the post-trained behaviours. It allows saved resources
to be potentially allocated to stronger controlled LMs, while
still keeping stable to scenarios unseen previously.

4.6. Weak-to-strong control redirects large LM

To quantify the influence of the weak controller in Bayesian
planner, we analyze the estimated likelihood changes before
and after applying weak-to-strong control at each step. Fig.3
samples ten test cases from five datasets and averages the
results. It illustrates the progressively increasing magnitude
of likelihood changes as Bayesian inference progresses:

(i) At the beginning, when the large LM is close to a general
initial state, the likelihood changes are minimal. This is be-
cause the general state aligns closely with pretrained world
knowledge, requiring little correction from ToM-specific
behaviours; (ii) As the model approaches a more specialized
final hypothesis, the likelihood estimates are increasingly
redirected. This occurs because the specialized scenarios
demand ToM-specific behaviours, which the post-trained
small LMs are fine-tuned to capture. The post-trained small
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Table 2. Scaling-up performance on strong component (large LMs) in weak-to-strong control.

L
M config belief inference goal inference all1.1 1.2 1.3 avg. 2.1 2.2 2.3 2.4 avg.

L
la

m
a2

7B-zero-shot 44.00 37.00 84.00 55.00 64.00 65.33 62.67 64.00 64.00 60.14
7B-post-trained 80.00 60.00 89.00 76.33 74.67 60.00 78.67 66.67 70.00 72.71
70B-zero-shot 64.00 47.00 93.00 68.00 56.00 72.00 25.33 70.67 56.00 61.14
70B-post-trained 90.00 70.00 87.00 82.33 78.67 76.00 61.33 72.00 72.00 76.43
70B-ours 89.00 70.00 90.00 83.00 73.33 74.67 76.00 73.33 74.33 78.05

L
la

m
a3

8B-zero-shot 88.00 72.00 91.00 83.67 65.33 57.33 13.33 53.33 47.33 62.90
8B-post-trained 92.00 72.00 83.00 82.33 77.33 73.33 72.00 70.67 73.33 77.19
70B-zero-shot 69.00 67.00 95.00 77.00 42.67 70.67 16.00 52.00 45.33 58.90
70B-post-trained 91.00 70.00 89.00 83.33 73.33 74.67 44.00 69.33 65.33 73.05
70B-ours 91.00 75.00 92.00 86.00 68.00 72.00 74.67 78.67 73.33 78.76

L
la

m
a3

.1

8B-zero-shot 88.00 72.00 91.00 83.67 65.33 62.67 22.67 54.67 51.33 65.19
8B-post-trained 90.00 71.00 93.00 84.67 69.33 72.00 62.67 72.00 69.00 75.71
70B-zero-shot 85.00 63.00 93.00 80.33 72.00 76.00 16.00 61.33 56.33 66.62
70B-post-trained 91.00 69.00 95.00 85.00 69.33 80.00 29.33 69.33 62.00 71.86
405B-zero-shot 86.00 70.00 90.00 82.00 73.33 78.67 21.33 66.67 60.00 69.43
70B-ours 90.00 74.00 93.00 85.67 74.67 77.33 70.67 76.00 74.67 79.38
405B-ours 92.10 76.00 93.00 87.10 73.40 80.00 76.50 78.67 77.14 81.29

3.
3 70B-post-trained 91.20 71.21 94.10 85.50 74.50 79.43 66.50 79.00 74.86 80.18

70B-ours 92.33 72.00 94.00 86.11 75.20 81.10 75.00 77.85 77.79 81.95

Table 3. Scaling-down effect on weak part (small LMs) in scaled Bayesian planning. All models are based on Llama3.1.

L
M config belief inference goal inference all1.1 1.2 1.3 avg. 2.1 2.2 2.3 2.4 avg.

8B

zero-shot 88.00 72.00 91.00 83.67 65.33 62.67 22.67 54.67 51.33 65.19
post-trained 90.00 71.00 93.00 84.67 69.33 72.00 62.67 72.00 69.00 75.71
8B ↬ 70B 90.00 74.00 93.00 85.67 74.67 77.33 70.67 76.00 74.67 79.38

4B 1w
id

. zero-shot 79.00 69.00 89.00 79.00 60.00 69.33 24.00 52.00 51.33 63.19
post-trained 90.00 72.00 87.00 83.00 70.67 72.00 68.00 78.67 72.33 76.90
4B-width ↬ 70B 90.00 71.00 90.00 83.67 74.67 74.67 76.00 73.33 74.67 78.52

4B 1d
ep

. zero-shot 91.00 74.00 88.00 84.33 69.33 77.33 20.00 66.67 58.33 69.48
post-trained 91.00 71.00 90.00 84.00 65.33 65.33 76.00 69.33 69.00 75.43
4B-depth ↬ 70B 91.00 72.00 91.00 84.67 72.00 74.67 84.00 64.00 73.67 78.38

LMs are specifically fine-tuned to the ToM context, enabling
them to model human actions, goals, beliefs, and environ-
mental states across unseen scenarios. Overall, this anal-
ysis finds that the weak component progressively redi-
rects the output of larger models, guiding them toward
more accurate ToM predictions among unseen scenarios
throughout the Bayesian inference.

4.7. Post-training aligns large LM’s likelihood
estimation at the concept level

Previous experiments demonstrated that post-training on
small LMs can progressively guide the behaviour of large
LMs throughout Bayesian inference. Now, we further fo-
cus on how post-trained small LMs influence large LMs’

likelihood estimation at the concept level. Fig.4 shows
the execution of ten inference trials with a temperature of
0.7. The scenario involves the agent James interacting with
objects in an apartment, aiming to retrieve a bottle of wine.
The initial state si is pear in the basket, no wine, the belief
bi is wine in the cabinet, the goal gi is obtain a bottle of
wine, and the action ai is open basket, walk to cabinet. The
baseline small LM assigns lower likelihoods to fine-grained
item-level concepts (e.g., wine, wine glass). After post-
training, the small LM significantly shifts its focus toward
item-level concepts, aligning its predictions more closely
with the action space. This adjustment increases the like-
lihood assigned to critical items like wine and wine glass,
which are necessary for accurately predicting the agent’s

7



Overcoming Multi-step Complexity in Multimodal Theory-of-Mind Reasoning

Table 4. Transfer performance of the Bayesian method with different scaling settings (zero-shot, direct post-training, and our weak-to-
strong control) from the apartment scenario to various unseen environments. All models are based on Llama3.1. Results are average
accuracy of belief inference/goal inference/overall for each scenario. Detailed unseen scenarios and results are in §E.6&E.7.

solution apartment (seen) Andersen tales ancient Egyptian outer space wild west medieval castle

R
aw 70B-zero-shot 80.3/56.3/66.6 83.6/60.6/70.2 83.6/60.6/69.3 84.0/58.0/69.1 82.6/57.6/68.3 82.6/57.6/68.3

70B-post-trained 85.0/62.0/71.8 84.6/66.3/74.1 84.6/66.3/75.3 83.0/66.0/73.2 81.0/65.0/71.8 81.0/65.0/71.8

O
ur

s

4B-wide ↬ 70B 83.6/74.6/78.5 84.0/75.3/79.0 83.0/75.3/79.1 82.6/75.3/78.4 84.0/74.6/78.6 84.6/73.0/78.0
4B-depth ↬ 70B 84.6/73.6/78.3 85.0/71.3/77.1 85.3/71.3/77.9 81.6/71.0/75.5 83.3/71.3/76.4 83.3/64.0/72.2
8B ↬ 70B 85.6/74.6/79.3 82.6/76.0/78.8 83.6/76.0/77.7 84.0/75.0/78.8 83.3/74.0/78.0 83.6/75.0/78.7
8B ↬ 405B 87.0/77.0/81.3 85.8/76.0/80.2 86.0/76.3/80.4 87.2/75.5/80.5 85.3/76.0/79.9 85.6/75.2/79.7
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Figure 3. Likelihood change during Bayesian inference under
weak-to-strong control. Results are averaged over ten sampled
cases across five different unseen scenarios.
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Figure 4. Likelihood estimation across different levels of concept
granularity (rooms, furniture, and items) for base small LM, post-
trained small LM, and base large LM. The Bayesian framework
uses an LM as the policy model to infer actions conditioned on
states, beliefs, and goals, where actions often refer to fine-grained
item-level concepts (e.g., wine, wine glass). It highlights the trend
of how each model allocates likelihood across these concept levels.
The ToM scenario of this case is detailed at §E.5.

Table 5. Directly adding a small LM (8B) to a large LM by naive
logit combination, without weak-to-strong control, is suboptimal.

LM Method Belief Avg. Goal Avg. All Avg.

Llama3.1 70B Naive Logit Add 82.50 66.40 74.45
Llama3.1 405B Naive Logit Add 83.67 65.67 74.67

goal. Consequently, post-training enables the small LM to
better capture fine-grained details of the agent’s behaviour,
improving ToM predictions. In contrast, the large LM dis-
tributes its likelihood more evenly across all levels, from
rooms to items, reflecting a broad understanding of the en-
vironment. While this approach captures general spatial
awareness—identifying key areas like the kitchen and furni-
ture like the cabinet—it lacks the sharp focus on fine-grained
details, such as wine and wine glass, which are crucial for
this task. As a result, the large LM may struggle with tasks
that require precise, item-level predictions.

Overall, post-training helps small LMs focus on item-level
concepts, making it more effective for this task. While the
large LM captures a broader understanding of the physical
environments, it benefits from post-trained behaviours that
redirect its likelihood estimation toward fine-grained, item-
level predictions. This finding reflects the role of post-
trained small LMs in guiding large LMs’ concepts in
ToM reasoning.

Is Simply Adding a Small LM Effective? We also ex-
amine whether naı̈vely combining a small LM with a large
LM—by directly adding their logits, without structured
W2S adjustment—can close the gap. As shown in Tab.5,
this approach yields lower performance than our method.
The results demonstrate that naı̈vely incorporating a small
LM is suboptimal; explicit weak-to-strong control is essen-
tial to effectively abstract the specialized ToM behaviors of
the small LM and fuse them with the large LM’s pretrained
world knowledge. These ablation studies conclusively val-
idate that our weak-to-strong control mechanism is both
critical and independently responsible for the strong gener-
alization and ToM grounding observed in our method.
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5. Related Work
5.1. Modelling human mental states

There are many studies on understanding human behaviour
by classifying and predicting physical motion patterns (Ag-
garwal & Ryoo, 2011; Caba Heilbron et al., 2015; Choi
& Savarese, 2013; Shu et al., 2015). Beyond physical be-
haviour, some studies focus specifically on modeling hu-
man mental states, i.e. ToM. ToM models have followed
two broad approaches: Bayesian methods and end-to-end
deep learning. Bayesian ToM models (Baker et al., 2017;
Jara-Ettinger, 2019; Shu et al., 2021) rely on structured
probabilistic frameworks to infer mental states from sparse
observations of human behaviour. On the other hand, end-
to-end models such as ToMnet (Rabinowitz et al., 2018;
Shu et al., 2021; Sclar et al., 2022) have been trained di-
rectly on ToM tasks, learning relationships between data
patterns without explicit causal models of mental states (Sap
et al., 2022; Zhi-Xuan et al., 2022; Ullman, 2023). More
recently, neurosymbolic reasoning systems use the neural
models for feature extraction, while also incorporating prob-
abilistic models for structured reasoning (Wong et al., 2023;
Ying et al., 2024; 2023). They face challenges in dynamic
and multimodal environments, where both physical and
mental state reasoning are required. Different from prior
studies, our work operates in more complex and dynamic
multimodal ToM environments, where physical actions and
mental state reasoning are intertwined.

5.2. Post-training LMs for downstream tasks

Post-training can project the LMs’ pre-trained capabilities
into downstream tasks such as dialogue generation (Ouyang
et al., 2022), multilingual understanding (Yang et al.,
2025b;a), prosocial alignment (Bai et al., 2022; Liu et al.,
2024b), calibration (Fu et al., 2025), and multimodal
tasks (OpenAI, 2023b; Liu et al., 2023; Jian et al., 2023; Liu
et al., 2025a; Jian et al., 2024; Diao et al., 2024; Zhang et al.,
2025a; Diao et al., 2025b;a; Liu et al., 2025b). Previous ap-
proaches also use activation engineering/vector steering to
adjust the output predictions of fine-tuned LMs, interpolat-
ing the effects of fine-tuning with pre-trained knowledge for
diverse downstream tasks (Liu et al., 2021; Mitchell et al.,
2024; Liu et al., 2024a; Tan et al., 2024; Cao et al., 2024).
Recently, LLMs are post-trained as action/policy models for
decision-making in embodied agents, allowing them to in-
teract with and explore environments (Kim et al., 2024; Szot
et al., 2024; Li et al., 2024). Our study differs by framing
LMs as policy models in the context of Bayesian inverse
inference, specifically to model human mental states. We
address the limitations of existing ToM methods by scaling
large policy models at test time using a likelihood redirec-
tion strategy, reasoning more accurately in complex ToM
scenarios. See App.A.1 for additional discussions.

6. Discussion and Conclusion
This study investigates scalable Bayesian inference in com-
plex and dynamic ToM environments. Existing methods
based on normal-sized LMs often fail to provide sufficient
reasoning capabilities and world knowledge, particularly
when used as likelihood estimators in diverse challenging
ToM scenarios. Therefore, to overcome these limitations,
our solution abstracts and transfers the post-trained behav-
ioral patterns of smaller LMs. This approach allows the
extensive world knowledge of large LMs to be progressively
redirected towards ToM reasoning at inference time. Con-
sequently, we avoid additional post-training resources for
large models, yet allow effective inference-time scaling of
Bayesian ToM reasoning even in dynamic and complex
physical scenarios.

Impact Statement
This study advances Bayesian ToM inference at scale and
contributes new datasets representing diverse cultural con-
texts. These datasets are based on ancient or fictional cul-
tures, mitigating potential sensitivities related to contempo-
rary societal issues. To ensure ethical integrity, the datasets
have been carefully reviewed to minimize concerns regard-
ing discrimination, bias, and fairness. They do not contain
real individuals, eliminating risks to privacy or security.

We are committed to responsible research practices and
encourage ongoing scrutiny of potential biases or unin-
tended consequences. Our methods are designed to be
fully reproducible, with detailed descriptions of datasets,
experimental settings, and methodologies provided in
this paper and our repository: https://github.com/
chunhuizng/scale-bayesian-planner.
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A. Comparison of Methodologies for ToM
Inference

Table 6. Attributes of each method for ToM task.
method scalability structured reasoning world knowledge multimodality

Bayesian ToM models ✗ ✓ ✗ ✗
end-to-end ToM models ✗ ✗ ✓ ✓
ours ✓ ✓ ✓ ✓

Tab.6 provides a comparative analysis of various method-
ologies for ToM inference, supplementing the discussion in
the introduction (§1). Our proposed approach differs signifi-
cantly from the underlying philosophies of Bayesian ToM
models and end-to-end models. While Bayesian models
emphasize structured reasoning guided by principles from
cognitive science, they often lack scalability and struggle to
handle multimodal inputs. In contrast, end-to-end models in-
corporate extensive world knowledge but lack the structured
reasoning capabilities essential for accurate ToM inference.

Our method integrates these attributes: scalability (e.g.,
up to 405B), structured reasoning, world knowledge, and
the ability to process multimodal inputs. Furthermore, our
method demonstrates superior scalability, leveraging the
stronger reasoning capabilities of large LMs at test time
without the need for extensive post-training on large models.
This allows our approach to efficiently handle complex and
dynamic ToM scenarios.

A.1. Our Theoretical Rationales in Scaled ToM
Inference and Related Work

Our approach is based on a high-level principle derived
from Theorem 1 and its proof, which implies that smaller
models can approximate the scaled gradient of the loss func-
tion for larger models. This mechanism bypasses direct
parameter updates in the larger model, capturing the pri-
mary adjustments needed for fine-tuning while exploiting
the innate generalisation capacity of the larger model. By re-
lying on the approximate knowledge provided by the smaller
model, our framework reduces computational overhead and
improves scalability.

This principle is related with previous studies that have
explored reweighting mechanisms for various applications
(where not necessarily the same as our perspective of scal-
ing or embodied policy model), including avoiding toxicity
in text generation (Liu et al., 2021), mitigating harmful out-
puts in aligned models (Zhou et al., 2024), adjusting code
generation (Mitchell et al., 2024), controlling sentiment in
text (Han et al., 2024), and reducing hallucination or degen-
eration in neural text (Chuang et al., 2024; Su et al., 2022).
These works demonstrate how reweighting can approxi-
mate the behaviour of large language models, mimicking
direct fine-tuning in specific contexts. In contrast, our scaled
ToM inference extends this principle beyond text generation

tasks into the domain of social cognitive reasoning. Our
framework uses language models to approximate policy
behaviours for probability estimation in embodied simula-
tors, based on the cognitive science-inspired Bayesian ToM
framework. Unlike previous work focusing on text-based
tasks such as sentiment or factuality control, our method
addresses the unique challenges of ToM tasks, which require
complex reasoning and the integration of world knowledge.
These tasks involve multimodal scenarios that require un-
derstanding of agents’ beliefs, goals and actions - a domain
distinct from the text generation problems addressed in pre-
vious studies.

B. Data Flow and Processing in Scalable
Bayesian ToM Inference

B.1. Overall Data Flow

For a detailed depiction of the data flow in our method,
refer to Fig.5. The symbolic representation tools first con-
vert video and textual descriptions into structured symbolic
inputs, which are then processed by the Bayesian infer-
ence framework. This framework leverages a large LM as a
scaled policy model, dynamically controlled by task-specific
priors provided by a post-trained small LM, enabling accu-
rate estimation of action likelihoods in dynamic scenarios.

B.2. Data Preprocessing: Unified Symbolic
Representations

To enable Bayesian ToM inference at scale, following es-
tablished methods mentioned in MMToM (Jin et al., 2024;
Blukis et al., 2022), multimodal data (video and textual
descriptions) are transformed into structured symbolic rep-
resentations. This process involves three key components:
visual perception, text parsing, and information fusion.
Together, these components provide a unified representation
of states, actions, and hypotheses required for ToM tasks.

Visual Perception. The visual perception module is de-
signed to process video frames and extract symbolic rep-
resentations of the environment. For each frame, a scene
graph is generated to capture the spatial and relational prop-
erties of objects and agents with the scene graph gener-
ator(Blukis et al., 2022). Following established methods
in MMToM (Jin et al., 2024), voxel maps and 3D bound-
ing boxes are utilized to infer object positions, contain-
ment relationships, and human poses. For instance, objects
such as pear and basket are represented by predicates like
In(pear, basket). These predicates effectively sum-
marize the physical state of the environment, serving as
critical inputs for subsequent reasoning steps.
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Figure 5. The data flow in our scalable Bayesian ToM inference framework. Video scenes and their corresponding descriptions are first
processed by multimodal symbolic representation tools (Jin et al., 2024), generating structured symbolic inputs (states, beliefs, goals).
These symbolic representations are then integrated into the Bayesian inference process, where a large language model (LM) operates as a
scaled policy model to estimate the likelihood of an agent’s actions in dynamic environments. The right panel demonstrates the latent
behavioral changes introduced by the post-trained small LM, which provides task-specific priors to guide the larger LM via a control
mechanism.

Text Parsing. To extract symbolic representations from
textual descriptions, one LLM (e.g., GPT-4) processes the
text into three distinct components: (i) the initial state of
the environment, (ii) human actions, and (iii) the question.
Each component is translated into symbolic predicates. For
example:

• The state is represented as predicates like In(pear,
basket).

• The action is represented as commands such as walk
towards kitchen.

• The question is decomposed into two hypotheses,
each comprising a goal (e.g., pear) and a belief (e.g.,
In(pear, basket) or its negation, ¬In(pear,
basket)).

This symbolic parsing ensures compatibility with the struc-
tured reasoning framework.

Fusion. The fusion module integrates symbolic informa-
tion from video and text into a unified representation. First,
predicates extracted from video inputs (e.g., spatial relation-
ships) are aligned with those parsed from text to form the
initial state. Next, human actions detected from the video
are matched with text-based actions, and the video sequence
is segmented into discrete time steps corresponding to these
actions. Starting from the initial state, the symbolic repre-
sentation of the environment is updated at each time step
based on newly detected predicates. This process results in
a sequence of symbolic states and actions, which serve as
the input for Bayesian inference. Additionally, the parsed

question provides two hypotheses—goal and belief—that
guide the reasoning task.

C. Theoretical Rationale
Theorem 1. Let πL be a pretrained base model, πE and
πN be smaller tunable models where πE is fine-tuned
on the target task, and π∗ be the directly tuned base
model. Suppose the output adjustment ∆s(Xt|x<t) =
sπE (Xt|x<t)− sπN (Xt|x<t) approximates the scaled neg-
ative gradient of the cross-entropy loss for outputs, i.e.,
∆s ≈ −η∇sLCE(sπL , y), where η is the learning rate.
Then, the proxy-tuned model π̃, defined by sπ̃(Xt|x<t) =
sπL(Xt|x<t) + ∆s(Xt|x<t), approximates the directly
tuned base model π∗. The KL divergence between their
output distributions has this relation:

DKL(Pπ∗∥Pπ̃) ≤
η2

2
λmax∥∇sLCE(sπL , y)∥22 +O(η3),

(9)
where λmax is the maximum eigenvalue of the Hessian of
the cross-entropy loss for the outputs.

Proof. When the learning rate η is small, and the cross-
entropy loss LCE is smooth and twice differentiable with
respect to the outputs s, then the output adjustment ∆s
approximates the scaled negative gradient of the loss as:

∆s ≈ −η∇sLCE(sπL , y). (10)

The outputs of the directly tuned base model π∗ after fine-
tuning are updated using gradient descent:

sπ∗ = sπL−η∇sLCE(sπL , y)+
η2

2
Hs(∇sLCE(sπL , y))+O(η3),

(11)

15



Overcoming Multi-step Complexity in Multimodal Theory-of-Mind Reasoning

where Hs is the Hessian of LCE with respect to the outputs.
The outputs of the proxy-tuned model π̃ are:

sπ̃ = sπL +∆s. (12)

When ∆s ≈ −η∇sLCE(sπL , y), we have:

sπ̃ ≈ sπL − η∇sLCE(sπL , y). (13)

The difference in outputs between the directly tuned model
and the proxy-tuned model is:

ϵs = sπ∗ − sπ̃. (14)

Then we consider their expressions:

ϵs ≈
η2

2
Hs(∇sLCE(sπL , y)) +O(η3). (15)

The KL divergence between the output distributions of π∗

and π̃ is constrained using the properties of the softmax
function and the Lipschitz continuity of the KL divergence:

DKL(Pπ∗∥Pπ̃) ≤
1

2
∥ϵs∥22. (16)

Using the norm of ϵs:

∥ϵs∥22 ≈ η4

4
∥Hs(∇sLCE(sπL , y))∥22. (17)

The Hessian’s norm is constrained by its maximum eigen-
value:

∥Hs(∇sLCE)∥2 ≤ λmax∥∇sLCE(sπL , y)∥2, (18)

which gives:

∥ϵs∥22 ≤ η4

4
λ2
max∥∇sLCE(sπL , y)∥22. (19)

Finally, the KL divergence is:

DKL(Pπ∗∥Pπ̃) ≤
η2

2
λmax∥∇sLCE(sπL , y)∥22 +O(η3).

(20)

For theoretical implications for practical applicability, this
analysis demonstrates that the weak-to-strong control mech-
anism relies on the learned ∆s to approximate the scaled
gradient −η∇sLCE(sπL , y) with higher-order terms con-
tributing to the residual error. Importantly, our method does
not require the small LM (πE ) to strictly approximate the
exact gradient of the cross-entropy loss for the large model.
Instead, the large model (πL) leverages its intrinsic capacity
for generalization and adaptation, based only on the approx-
imate adjustment ∆s learned by the small LM.

This inherent flexibility allows the large model to harness
its pre-trained potential, activated by the weak-to-strong
control mechanism, to effectively adapt to the current ToM
task. Consequently, our method achieves stable advanced
performance even in novel scenarios where the small LM
provides only a coarse approximation of the gradient. This
significantly reduces the reliance on strict fine-tuning and
maximizes computational efficiency, ensuring the approach
is both scalable and practical for the physical VirtualHome
environment.

D. Experimental Details
D.1. Belief and Goal Inference Types and Their

Characteristics to LMs

MMToM apartment scenario questions are split into seven
types, assessing ToM reasoning (Jin et al., 2024): Belief
Inference includes 50% of questions on True Belief (Type
1.1), False Belief (Type 1.2), and Long-Term Belief Tracking
(Type 1.3). Goal Inference covers the remaining 50% on
True Belief (Type 2.1), False Belief (Type 2.2), Updated
Belief (Type 2.3), and Future Actions (Type 2.4).

Short-term Belief Inference relies heavily on world knowl-
edge, making it more responsive to enhancements from
large LMs’ pretrained capabilities. In contrast, long-term
reasoning—both for Belief and Goal Inference—focuses on
the dynamic nature of the environment and benefits from
post-training specifically aligned to ToM scenarios.

D.2. Post-training configurations

Tab.7 summarizes the LoRA post-training configurations
applied to Llama2, Llama3, and Llama3.1 models during
policy model training. We carefully adjust α, rank, and other
hyperparameters to optimize performance across different
model sizes. Notably, following prior engineering studies,
a higher α and rank are used for smaller models (7B and
8B), while reduced values are employed for the larger 70B
model to ensure efficient adaptation without overfitting.

D.2.1. FINE-TUNING PROCESS AND RESOURCES

The fine-tuning process for smaller models (e.g., Llama3.1-
8B) was conducted using a single NVIDIA H100 GPU,
leveraging BF16 mode to optimize memory usage and main-
tain GPU memory consumption under 60GB. This config-
uration enabled efficient training of policy models tailored
for Theory of Mind (ToM) tasks. The fine-tuning process
was executed with the following parameters:

• Batch size: 16 (achieved via a per-device batch size of
4 and gradient accumulation steps of 4),

• Learning rate: 5× 10−5,
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• Number of epochs: 3.

Under this setup, the fine-tuning process required approxi-
mately 8 hours to converge.

D.2.2. DATASET SIZE

The training pool size N for post-training was set to 20,000
data points, sourced from the MMToM dataset’s training
split and our released data sampled from an embodied simu-
lator. For tasks involving transfer to new themes, the training
dataset size remained consistent at 20,000 data points, en-
suring a fair and uniform setup across different experiments.

E. Additional Experiments
E.1. Comparison of Fine-Tuning Methods on MMToM

Tasks

To evaluate the relative performance of full fine-tuning
(FFT) and LoRA fine-tuning, we conducted experiments
on two smaller models, GPT2-large (Radford et al., 2019)
(774M parameters) and Gemma-2B (2B parameters) (Team
et al., 2024). Each model was fine-tuned using datasets of
20,000 and 8,000 datapoints, over two epochs, on 8 NVIDIA
A100 80GB GPUs. The results are summarised in Tab.8.

The results show several important trends. First, when suf-
ficient training data is available (e.g., 20,000 data points),
full fine-tuning consistently outperforms LoRA, with accu-
racy gains of 0.9-1.2 percentage points. This suggests that
full training is better at exploiting richer data, especially
for smaller models. Second, the performance gap between
FFT and LoRA narrows for larger models. For example,
Gemma-2B shows minimal differences between FFT and
LoRA (0.3 percentage points on 20,000 data points), sug-
gesting that larger models are stable to LoRA’s parameter
efficiency constraints. Finally, the influence of dataset size
is evident: while FFT shows greater improvements over
LoRA on smaller datasets, LoRA maintains competitive
performance in resource-constrained scenarios, especially
for larger models. Tab.9 further demonstrates the stable
performance of weak-to-strong control when transferring
ToM-specific fine-tuning knowledge from a smaller model
(Minitron-4B-Width) to a larger model (Llama3.1-70B).
The difference in accuracy between FFT and LoRA is only
0.15 percentage points when weak-to-strong control is ap-
plied, indicating that the mechanism is highly effective at
bridging the gap between fine-tuning methods. Importantly,
this highlights the ability of the proposed method to scale
ToM-specific behaviors efficiently, leveraging both compu-
tationally intensive FFT and parameter-efficient LoRA.

Overall, these experiments highlight a trade-off between
computational efficiency and performance gains. Full fine-
tuning achieves modest but consistent improvements, partic-

ularly for smaller models and larger datasets. However, for
larger models, LoRA provides an effective alternative with
near-parity in performance and significantly reduced compu-
tational overhead. Furthermore, our weak-to-strong control
mechanism demonstrates stability to fine-tuning methods,
enabling scalable ToM-specific behavior elicitation with
high accuracy in larger models.

E.2. Impact of Pre-Training Quality on MMToM Tasks

The differences in performance between the Llama2,
Llama3 and Llama3.1 models provide insight into the role of
pre-training quality, especially at large model scales. Based
on the experimental results in Tab.2 and Tab.3, the influence
of pre-training quality diminishes primarily due to a ceiling
effect, but this is only observed when comparing models
within the same scale, such as the 70B parameter range.
However, when comparing smaller models to larger ones,
the effect of pre-training is more pronounced. For example,
moving from Llama2 7B to Llama2 70B after ToM-specific
post-training leads to a 6% improvement in belief inference
accuracy (from 76.33% to 82.33%) and a 2% improvement
in goal inference accuracy (from 70% to 72%), highlighting
the role of scaling in encoding richer representations.

When examining why pre-training becomes less effective at
larger scales, such as comparing Llama2-70B (pre-trained
with 2.2 trillion tokens) to Llama3.1-70B (pre-trained with
15 trillion tokens), the results suggest that larger pre-training
corpora improve performance primarily for tasks that rely
heavily on world knowledge: Tasks involving belief infer-
ence, which rely on short-term reasoning and general world
knowledge, show significant improvements due to improved
representations learned during pre-training. For example,
Llama3.1 achieves a 3.67% improvement in belief inference
accuracy over Llama2 (from 83.00% to 85.67%). These
tasks benefit from richer pre-training datasets that refine the
model’s understanding of common human behaviours and
object interactions.

In contrast, goal inference tasks that rely on long-term rea-
soning, including integrating temporal observations and
dynamically updating beliefs, show smaller gains from
larger pre-training corpora. For example, Llama3.1 im-
proves goal inference accuracy by only 1.67% over Llama2
(from 72.33% to 74.00%). Such tasks are more dependent
on the fine-tuning stage and the use of task-specific rea-
soning frameworks, such as weak-to-strong control. These
results suggest that for complex reasoning tasks, the primary
performance bottleneck shifts from pre-training quality to
the reasoning strategies employed during fine-tuning.

In summary, pre-training quality has a significant impact
on smaller models and tasks that rely heavily on world
knowledge, such as belief inference. However, as models
scale up to 70B parameters, the influence of pre-training
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diminishes due to ceiling effects, and logical reasoning tasks
such as goal inference rely more on task-specific adaptations
during fine-tuning.

E.3. How Consistent is Theory of Mind Across Different
Phrasings?

As shown in Tab.4, the “All” column across different themes
(e.g. Apartment, Andersen Fairy Tales, etc.), there is no-
ticeable performance variance even within models of the
same scale. To quantify this, we measured the range of
variance for three configurations: 70B-zero-shot, 70B-post-
trained and 8B ↬ 70B: (1) For 70B-zero-shot, performance
ranged from 66.62 to 70.52 across themes, yielding a vari-
ance range of 3.90; (2) For 70B-post-trained, the variance
range of post-trained LMs is 3.47, with performance ranging
from 71. 86% and 75.33%; (3) For our solution 8B ↬ 70B,
the weak-to-strong control mechanism further stabilised the
performance, reaching only the smallest variance range of
1.62, with scores between 77.76% and 79.38%.

These results suggest that specific topics have different ef-
fects on ToM skills, but our solution demonstrates relative
stability to distributional changes caused by topic shifts. For
example, 70B-zero-shot achieves its highest performance
up to 70.52% and its lowest up to 66.62%, highlighting
the model’s pronounced sensitivity to thematic variations in
reasoning trajectories without adaptation. In contrast, our
proposed solution, 8B ↬ 70B, significantly reduces this gap,
demonstrating the effectiveness of the weak-to-strong con-
trol mechanism in adjusting the ToM behaviour of the larger
model while preserving the framework’s general reasoning
capacity across diverse and scenario-agnostic contexts.

E.4. On the Role of the Weak-to-Strong Framework

The weak-to-strong framework presented in this paper fo-
cuses on aligning the larger model’s distribution with ToM-
specific beliefs and task structures while preserving its gen-
eral reasoning capabilities, rather than primarily relying on
the smaller model’s reasoning abilities. This design enables
efficient transfer of ToM-specific task structures without
compromising the broader capabilities of the larger model.

The smaller model (e.g., 4B or 8B parameters) undergoes
ToM-specific post-training to encode task-relevant priors,
such as belief states and potential goals, without requiring
advanced independent reasoning capabilities. During infer-
ence, the smaller model functions as an assistive scaffold,
conditioning the larger model’s likelihood estimation in a
Bayesian framework. This role is formalized through the
adjustment ratio: πE

πN , where πE is the post-trained smaller
model’s task-specific policy, and πN is the naive pre-trained
smaller model’s policy.

The larger model (e.g., 70B parameters) integrates this ad-

justment ratio to refine its likelihood estimation dynamically.
The overall policy distribution is computed as πL πE

πN , where
πL is the policy from the larger model. This mechanism
allows the larger model to retain its broad reasoning and
world knowledge, ensuring its capacity for generalization
while aligning with ToM-specific task structures.

To validate this framework, we compared the performance
of the 8B ↬ 70B model to the 70B-post-trained model
across five unseen themes, including Andersen Fairy Tales,
Ancient Egyptian, and Outer Space. As shown in Tab.10,
the weak-to-strong mechanism achieved consistent improve-
ments across all ToM tasks, demonstrating its ability to
preserve and transfer the larger model’s general reasoning
capabilities while aligning with ToM-specific requirements.
These results, combined with theoretical insights from Sec-
tion C, demonstrate that the weak-to-strong framework ef-
fectively utilizes the smaller model as a task-specific lens
to guide the larger model’s predictions. This collaborative
dynamic ensures alignment with ToM-specific task require-
ments while preserving general reasoning capabilities.

E.5. Theory-of-Mind Case Study: Agent James in
Apartment Interaction

Fig.6 provides a detailed visual and language-based descrip-
tion of the test case described in experiment §4.7 of the
experiment, where the likelihood estimation behaviour of
different LMs is discussed across varying concept levels.

E.6. ToM Transfer Effect on unseen scenarios

Tab.11 supplements the results in experiment §4.5, provid-
ing a detailed comparison between the baselines and our
scalable solution across belief inference and goal inference
subtasks in various unseen ToM scenarios. Our experi-
mental observations are consistent with those outlined in
§4.5: (i) The increased capacity of our scalable solution
significantly improves the transferability of ToM reasoning
across dynamic and previously unseen environments. (ii)
Our approach demonstrates strong potential for downsiz-
ing small LMs as controllers, as they successfully capture
the post-trained behaviours and exhibit stable performance
in guiding larger models. (iii) Notably, our method can
approximate—and in some cases outperform—the results
achieved by directly post-training large-scale LMs (such as
the 70B model). These findings underscore the flexibility
and scalability of our approach for handling practical ToM
tasks in diverse, complex environments.

E.7. Thematic Scenario Data for ToM Task Transfer

As described in §E.6, five new thematic scenarios are used
for evaluation: Andersen Fairy Tales, Ancient Egyptian,
Wild West, Outer Space, and Medieval Castle. These en-
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vironments are not seen during the post-training phase of
our method and are different from the original apartment
setting.

The transfer to these scenarios demonstrates the general-
isability of our solution to dynamically adapt to different
domains, with each thematic environment presenting unique
challenges and contextual shifts from the apartment scenario.
Fig.7 provides a visual summary of these key differences,
statistically extracted and mapped to illustrate the transfor-
mation of concept and environment across these themes.
These distinctions are used to evaluate ToM task transfer
across different dynamic environments.

E.8. Generalization to Diverse Real-world Social
Interactions

In Tab.12, we expand our evaluation using MuMA-ToM (Shi
et al., 2025), a benchmark explicitly designed for nuanced
social interaction, including: (1) Belief inference: Under-
standing environmental dynamics. (2) Social Goal infer-
ence: Interpreting subtle social objectives. (3) Belief-of-
Goal inference: Attributing complex mental states. Results
in Table A show that our method performs competitively
with the state-of-the-art GPT-4o-based LIMP (Shi et al.,
2025) and outperforms all the other baselines. Note that
this is achieved by using open-source models, avoiding
the expensive GPT-4o API cost required by LIMP (Shi
et al., 2025). Our weak-to-strong control leverages large
pretrained LMs, effectively adapting to real-world social
reasoning without compromising generalization.

E.9. Comparison with Parameter-Efficient Fine-Tuning

The proposed weak-to-strong control is fully orthogonal
and complementary to PEFT techniques, i.e., we can com-
bine our method with any PEFT technique. In fact, our
small LMs are trained by LoRA, as described in L191-right.
Tab.13 further confirms the consistent effectiveness of our
method, regardless of the PEFT choice for small LM.

Directly applying PEFT to large pretrained LMs performs
worse than our method. As discussed above, our method
avoids fine-tuning large LMs and thus preserves their
pretrained mental/world knowledge (Kotha et al., 2024;
Mitchell et al., 2025; Zheng et al., 2025), essential for gen-
eralization in multimodal ToM tasks.

E.10. The Necessity of Weak-to-Strong Control

To elucidate the contribution of our Weak-to-Strong mecha-
nism, we conduct two ablation studies: (1) replacing W2S
with naı̈ve post-training, and (2) simply adding a small LM
(8B) to a large LM without structured control.

Tab.14 presents a comparative ablation between our Weak-

to-Strong controlled models and their naı̈vely post-trained
counterparts. Across all model scales and architectures, the
absence of Weak-to-Strong guidance results in consistent
and often substantial drops in generalization performance.
These results underscore that Weak-to-Strong control is
critical for maximizing the large LM’s ability to leverage
its pretrained world and mental-state knowledge, enabling
stronger ToM reasoning.

F. Practicality under Real-Time and Resource
Constraints

A key concern in deploying advanced ToM reasoning sys-
tems is their feasibility under stringent computational and
latency requirements. Our approach addresses this by lever-
aging a small, post-trained LM (e.g., 4B or 8B) to provide
dynamic, parallel guidance to a large, pretrained LM (e.g.,
70B or 405B) during inference.

Both LMs can be deployed simultaneously on standard
NVIDIA H100 GPUs (80GB, BF16 precision), with the
small LM introducing negligible computational overhead.
For instance, in the 8B+70B configuration, inference over
600 tasks requires approximately 14–15.5 minutes (1.4–1.55
seconds per question), matching the runtime of an unguided
70B model. This efficiency is attributed to the lightweight
nature of the small LM’s computations relative to the dom-
inant cost of the large LM, and to efficient parallelization
with minimal synchronization (passing only compact likeli-
hood tensors).

Moreover, both the small and large LMs only perform like-
lihood estimation (i.e., prefilling, typically up to 1024 to-
kens), which is well supported by contemporary accelera-
tion frameworks such as NVIDIA Dynamo, vLLM (Kwon
et al., 2023). These optimizations make our Bayesian ToM
planner well-suited to real-time and resource-constrained
environments.

Finally, our method circumvents the prohibitive costs of
fine-tuning very large LMs. Directly fine-tuning a 405B
model would typically require upwards of 50–64 H100
GPUs, which is beyond the reach of most institutions. In
contrast, our approach enables effective adaptation by fine-
tuning only a small LM (e.g., 8B), reducing hardware re-
quirements to a single H100 GPU, while still achieving
superior performance through guided inference. This de-
sign makes our approach both scalable and accessible for
practical deployment.
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Table 7. LoRA configuration settings for Llama2, Llama3, and Llama3.1 during post-training for policy models.
configs 7B 8B 70B

bias none none none
fan-in fan-out false false false
inference mode true true true
LoRA initialization true true true
α 32 32 16
dropout 0.05 0.05 0.05
rank 16 16 8
target modules [q-proj, v-proj]
task type causal-lm

Table 8. Comparison of full fine-tuning (FFT) and LoRA fine-tuning for GPT2-large and Gemma-2B across different MMToM data sizes.
Fine-tuning Method Data Size Model Size Accuracy (%)

GPT2-large FFT 20,000 774M 63.4
GPT2-large LoRA 20,000 774M 62.4
GPT2-large FFT 8,000 774M 62.8
GPT2-large LoRA 8,000 774M 62.1
Gemma-2B FFT 20,000 2B 68.8
Gemma-2B LoRA 20,000 2B 68.5
Gemma-2B FFT 8,000 2B 67.5
Gemma-2B LoRA 8,000 2B 67.3

Table 9. Comparison of weak-to-strong control for Llama3.1-Minitron-4B-Width and Llama3.1-70B using different fine-tuning methods
on the smaller model.

Fine-tuning Method Data Size Model Size Accuracy (%)

Llama3.1-Minitron-4B-Width FFT 20,000 4B 77.00
Llama3.1-Minitron-4B-Width LoRA 20,000 4B 76.90
Weak-to-strong control results:

4B-Width ↬ Llama3.1-70B FFT-trained 4B 20,000 70B 78.67
4B-Width ↬ Llama3.1-70B LoRA-trained 4B 20,000 70B 78.52

Table 10. Performance of the 8B ↬ 70B LMs on unseen themes compared to 70B-post-trained/-zero-shot LMs across all ToM tasks.
Unseen Theme Scale 1.1 1.2 1.3 Avg. 2.1 2.2 2.3 2.4 Avg. All

Andersen Fairy Tales 70B-zero-shot 88.00 73.00 90.00 83.67 70.67 80.00 25.33 66.67 60.67 70.52
70B-post-train 90.00 71.00 93.00 84.67 73.33 61.33 61.33 69.33 66.33 74.19
8B ↬ 70B 92.00 71.00 85.00 82.67 82.67 76.00 68.00 77.33 76.00 78.86

Ancient Egyptian 70B-zero-shot 89.00 71.00 91.00 83.67 74.67 74.67 25.33 60.00 58.67 69.38
70B-post-train 89.00 69.00 96.00 84.67 72.00 76.00 61.33 64.00 68.33 75.33
8B ↬ 70B 90.00 73.00 88.00 83.67 69.33 76.00 73.33 74.67 73.33 77.76

Outer Space 70B-zero-shot 88.00 72.00 92.00 84.00 72.00 64.00 25.33 70.67 58.00 69.38
70B-post-train 91.00 68.00 90.00 83.00 69.33 65.33 61.33 68.00 66.00 75.33
8B ↬ 70B 90.00 70.00 92.00 84.00 73.33 81.33 66.67 78.67 75.00 77.76
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What’s inside the apartment:
The apartment consists of a bedroom, a bathroom, a living room, and a kitchen. In the bedroom, there is a coffee table 
with a plate on it. The bathroom houses a cabinet, which is currently empty. The living room is furnished with a cabinet, a 
coffee table, a sofa, and a desk. The cabinet is filled with two apples, a condiment bottle, three wine glasses, two water 
glasses, a cupcake, two bags of chips, a remote control, and a bottle of wine. Both a water glass and a wine glass are 
placed on the coffee table. The kitchen is equipped with a fridge, an oven, a kitchen table, and a microwave. Inside the 
fridge, there are two apples. The oven contains a salmon. Meanwhile, the microwave houses a salmon and two cupcakes.
Actions taken by James:
James is in the kitchen. He strides towards the stove, opens it, and then shuts it. He then opens the fridge, closes it, 
opens the microwave, and closes it as well. Finally, he walks towards the living room and approaches the cabinet.

State Modelling:
(a) James has been trying to get a bottle of wine. ✅
(b) James has been trying to get an apple. ❌

𝑠!: apples in fridge, no wine

𝑏!: wine in the cabinet

𝑔!: obtain a bottle of wine

𝑎!: open fridge, walk to cabinet

ToM exemplar

Scene: … Inside the bridge, you’ll find a bottle 
of wine…
Actions: … Finally, she moves towards the 
fridge, preparing to open it.

Question: If Elizabeth has been trying to get a 
bottle of wine, which one of the following 
statements is more likely to be true?
(a)Elizabeth thinks that there is a bottle of 

wine inside the fridge.
(b)Elizabeth thinks that there isn’t any bottle of 

wine inside the fridge.

Type 1.1: True belief, short-term Type 1.2: False belief, short-term

Scene: … The living room features a cabinet… The cabinet is 
filled with a bag of chips, a remote controller, a bottle of wine, 
and a water glass. 
Actions: Jennifer is situated in the living room. She heads 
towards the cabinet and is about to open it.

Question: If Jennifer has been trying to get a cupcake, which 
one of the following statements is more likely to be true?
(a)Jennifer thinks that there isn’t a cupcake inside the cabinet.
(b)Jennifer thinks that there is a cupcake inside the 

cabinet.

Type 1.3: Belief tracking, long-term

Scene: … The kitchen is equipped with a fridge, sofa, dishwasher, eight 
cabinets, a stove, a microwave, and a kitchen table…
Actions: … He walks to the seventh kitchen cabinet, opens and closes 
it. He repeats the same action with the sixth kitchen cabinet. 
Subsequently, he moves towards the dishwasher.

Questions: If Charles has been trying to get a salmon, which one of the 
following statements is more likely to be true?
(a)Charles thinks that there is a salmon inside the fridge.
(b)Charles thinks that there isn’t any salmon inside the fridge.B
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Type 2.2: Goal given false belief Type 2.3: Goal given updated belief

Scene: … There is a water glass inside the 
seventh cabinet… The fridge stores two 
cupcakes…
Actions: Mark… advances towards the 
seventh kitchen cabinet.

Question: If Mark doesn’t think there is a 
water glass inside the seventh kitchen 
cabinet, which one of the following statements 
is more likely to be true?
(a)Mark has been trying to get a water glass.
(b)Mark has been trying to get a cupcake.

Scene: … The first cabinet, from left to right, 
contains a bag of chips. 
Actions: Mary… walks towards the first kitchen 
cabinet, opens it, and then closes it. 

Question: Which one of the following 
statements is more likely to be true?
(a)Mary has been trying to get a bag of chips.
(b)Mark has been trying to get a condiment 

bottle.

Type 2.4: Goal given future actions

Scene: … The dishwasher holds a dish bowl… 
The first cabinet from the left holds a bag of chips 
and a wine glass… The fifth cabinet has an 
apple…
Actions: Williams… advances towards the first 
kitchen cabinet, opens it, and then shuts it. He 
then moves towards the fifth kitchen cabinet.

Question: Which one of the following statements 
is more likely to be true?
(a)William has been trying to get a wine glass.
(b)William has been trying to get a dish bowl.

Type 2.1: Goal given true belief

Scene: … The living room is furnished with a 
cabinet, … The cabinet is filled with two 
apples, …, and a bottle of wine. … Inside the 
fridge, there are two apples.
Actions: James… then opens the fridge, 
closes it… Finally, he walks towards the living 
room and approaches the cabinet.

Question: Which one of the following 
statements is more likely to be true?
(a)James has been trying to get a bottle of 

wine.
(b)James has been trying to get an apple.

Figure 6. Theory-of-Mind scenario used in the main experiments §4.7, involving an agent (James) interacting with objects in an apartment.

Table 11. Detailed transfer performance of the Bayesian method with different scaling strategies (zero-shot, direct post-training, and our
weak-to-strong control) from the original apartment scenario to various unseen environments. All models are based on Llama3.1.

Theme Scale Belief Inference Goal Inference
1.1 1.2 1.3 Avg. 2.1 2.2 2.3 2.4 Avg. All

Andersen fairy tales

70B-zeroshot 88.00 73.00 90.00 83.67 70.67 80.00 25.33 66.67 60.67 70.52
70B-post-train 90.00 71.00 93.00 84.67 73.33 61.33 61.33 69.33 66.33 74.19
8B ↬ 70B 92.00 71.00 85.00 82.67 82.67 76.00 68.00 77.33 76.00 78.86
4B-width ↬ 70B 90.00 73.00 89.00 84.00 80.00 81.33 76.00 64.00 75.33 79.05
4B-depth ↬ 70B 91.00 74.00 90.00 85.00 74.67 73.33 64.00 73.33 71.33 77.19

ancient Egyptian

70B-zeroshot 89.00 71.00 91.00 83.67 74.67 74.67 25.33 60.00 58.67 69.38
70B-post-train 89.00 69.00 96.00 84.67 72.00 76.00 61.33 64.00 68.33 75.33
8B ↬ 70B 90.00 73.00 88.00 83.67 69.33 76.00 73.33 74.67 73.33 77.76
4B-width ↬ 70B 90.00 69.00 90.00 83.00 70.67 80.00 85.33 69.33 76.33 79.19
4B-depth ↬ 70B 91.00 69.00 96.00 85.33 76.00 68.00 69.33 76.00 72.33 77.90

outer space

70B-zeroshot 88.00 72.00 92.00 84.00 72.00 64.00 25.33 70.67 58.00 69.38
70B-post-train 91.00 68.00 90.00 83.00 69.33 65.33 61.33 68.00 66.00 75.33
8B ↬ 70B 90.00 70.00 92.00 84.00 73.33 81.33 66.67 78.67 75.00 77.76
4B-width ↬ 70B 90.00 70.00 88.00 82.67 73.33 76.00 80.00 72.00 75.33 79.19
4B-depth ↬ 70B 90.00 69.00 86.00 81.67 70.67 73.33 68.00 72.00 71.00 77.90

wild west

70B-zeroshot 88.00 72.00 92.00 84.00 72.00 64.00 25.33 70.67 58.00 69.14
70B-post-train 91.00 68.00 90.00 83.00 69.33 65.33 61.33 68.00 66.00 73.29
8B ↬ 70B 90.00 70.00 92.00 84.00 73.33 81.33 66.67 78.67 75.00 78.86
4B-width ↬ 70B 90.00 70.00 88.00 82.67 73.33 76.00 80.00 72.00 75.33 78.48
4B-depth ↬ 70B 90.00 69.00 86.00 81.67 70.67 73.33 68.00 72.00 71.00 75.57

medieval castle

70B-zeroshot 88.00 71.00 89.00 82.67 62.67 74.67 20.00 73.33 57.67 68.38
70B-post-train 85.00 69.00 89.00 81.00 65.33 69.33 57.33 68.00 65.00 71.86
8B ↬ 70B 90.00 72.00 89.00 83.67 72.00 76.00 68.00 84.00 75.00 78.71
4B-width ↬ 70B 92.00 71.00 91.00 84.67 77.33 77.33 69.33 68.00 73.00 78.00
4B-depth ↬ 70B 90.00 70.00 90.00 83.33 58.67 72.00 53.33 72.00 64.00 72.29

21



Overcoming Multi-step Complexity in Multimodal Theory-of-Mind Reasoning

Andersen_fairy_tales_mappings = {
"apartment": "cottage",
"bedroom": "chamber",
"bathroom": "washroom",
"living room": "great hall",
"kitchen": "hearth",
"coffeetable": "wooden table",
"desk": "writing desk",
"kitchentable": "feasting table",
"sofa": "wooden bench",
"kitchencabinet": "pantry",
"cabinet": "cupboard",
"bathroomcabinet": "washstand",
"dishwasher": "washing basin",
"fridge": "cooling box",
"microwave": "heating stone",
"stove": "fireplace",
"apple": "apple",
"book": "tome",
"chips": "dried berries",
"condimentbottle": "spice jar",
"cupcake": "honey cake",
"dishbowl": "clay bowl",
"plate": "wooden plate",
"remotecontrol": "magic wand",
"salmon": "smoked fish",
"waterglass": "goblet",
"wine": "mead",
"wineglass": "goblet",
"kitchencabinet": "pantry shelf"}

ancient_Egyptian_mappings = {
"apartment": "palace",
"bedroom": "sleeping chamber",
"bathroom": "bathing room",
"living room": "audience hall",
"kitchen": "kitchen",
"coffeetable": "stone table",
"desk": "writing table",
"kitchentable": "dining table",
"sofa": "cushioned bench",
"kitchencabinet": "storage chest",
"cabinet": "treasure chest",
"bathroomcabinet": "washstand",
"dishwasher": "servant",
"fridge": "cool room",
"microwave": "heating pot",
"stove": "fire pit",
"apple": "fruit",
"book": "papyrus scroll",
"chips": "flatbread",
"condimentbottle": "spice jar",
"cupcake": "honey pastry",
"dishbowl": "clay bowl",
"plate": "ceramic plate",
"remotecontrol": "scepter",
"salmon": "dried fish",
"waterglass": "chalice",
"wine": "wine",
"wineglass": "goblet"}

wild_west_mappings = {
"apartment": "saloon",
"bedroom": "bunk room",
"bathroom": "outhouse",
"living room": "bar area",
"kitchen": "cooking area",
"coffeetable": "wooden table",
"desk": "writing desk",
"kitchentable": "dining table",
"sofa": "wooden bench",
"kitchencabinet": "storage shelf",
"cabinet": "supply cabinet",
"bathroomcabinet": "washstand",
"dishwasher": "wash basin",
"fridge": "icebox",
"microwave": "stove",
"stove": "wood stove",
"apple": "fresh apple",
"book": "ledger",
"chips": "corn chips",
"condimentbottle": "sauce bottle",
"cupcake": "pastry",
"dishbowl": "ceramic bowl",
"plate": "ceramic plate",
"remotecontrol": "telegraph key",
"salmon": "salted fish",
"waterglass": "glass",
"wine": "whiskey",
"wineglass": "shot glass"}

outer_space_mappings = {
"apartment": "quarters",
"bedroom": "sleeping quarters",
"bathroom": "sanitation room",
"living room": "recreation area",
"kitchen": "replicator station",
"coffeetable": "control console",
"desk": "command station",
"kitchentable": "mess table",
"sofa": "lounger",
"kitchencabinet": "storage unit",
"cabinet": "storage unit",
"bathroomcabinet": "hygiene compartment",
"dishwasher": "sterilizer unit",
"fridge": "cold storage",
"microwave": "food synthesizer",
"stove": "heating unit",
"apple": "synthesized apple",
"book": "data pad",
"chips": "nutrition chips",
"condimentbottle": "flavor vial",
"cupcake": "synthesized pastry",
"dishbowl": "serving bowl",
"plate": "serving plate",
"remotecontrol": "control pad",
"salmon": "replicated fish",
"waterglass": "hydration vessel",
"wine": "synthesized wine",
"wineglass": "drinking vessel",
"kitchencabinet": "storage unit"}

medieval_castle_mappings = {
"apartment": "saloon",
"bedroom": "bunk room",
"bathroom": "outhouse",
"living room": "bar area",
"kitchen": "cooking area",
"coffeetable": "wooden table",
"desk": "writing desk",
"kitchentable": "dining table",
"sofa": "wooden bench",
"kitchencabinet": "storage shelf",
"cabinet": "supply cabinet",
"bathroomcabinet": "washstand",
"dishwasher": "wash basin",
"fridge": "icebox",
"microwave": "stove",
"stove": "wood stove",
"apple": "fresh apple",
"book": "ledger",
"chips": "corn chips",
"condimentbottle": "sauce bottle",
"cupcake": "pastry",
"dishbowl": "ceramic bowl",
"plate": "ceramic plate",
"remotecontrol": "telegraph key",
"salmon": "salted fish",
"waterglass": "glass",
"wine": "whiskey",
"wineglass": "shot glass"}

Figure 7. Primary changes from the VirtualHome simulator between the original apartment scenario and the five transferred thematic
environments used in our ToM experiments.
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Table 12. Performance on social interaction MuMA-ToM bench-
mark.

Method Belief Social Goal Belief of Goal All

Human 98.9 94.4 87.1 93.5
Gemini 1.5 Flash 53.9 33.0 41.4 42.7
Gemini 1.5 Pro 78.9 43.9 46.9 56.4
Llava 1.6 13B 70.2 43.2 17.9 43.7
Llava 1.6 34B 93.6 37.2 27.5 52.8
GPT-4o 67.9 39.6 44.4 50.6
InternVL 2 26B 59.3 44.9 35.5 46.6
VideoLlama 2 7B 70.1 45.6 37.7 51.1
BIPALM llama2-7B 41.2 34.1 30.6 33.9
LIMP (GPT-4o) 93.4 67.7 68.7 76.6
Ours (8B+405B) 94.0 64.5 67.5 75.3

Table 13. Performance comparison: Our weak-to-strong method
vs. fully fine-tuned and PEFT baselines.

Model Fine-tuning Data LM Acc.
Method Size Size (%)

Llama3.1-Minitron-4B-Width
FFT 20,000 4B 77.00
LoRA 20,000 4B 76.90
4bit-QLoRA 20,000 4B 76.33

Weak-to-Strong Control:

4B-Width → Llama3.1-70B
FFT-trained 4B 20k 70B 78.67
LoRA-trained 4B 20k 70B 78.52
4bit-QLoRA-trained 4B 20k 70B 78.10

PEFT on Large LM:

Llama3.1-70B
FFT 20,000 70B 71.45
LoRA 20,000 70B 71.86
4bit-QLoRA 20,000 70B 75.66

Table 14. Ablation study on the contribution of Weak-to-Strong
(W2S) Control (with 8B as weak small LM).

LM Config Belief Avg. Goal Avg. All Avg.

Llama2 70B Post-trained (No W2S) 82.33 72.00 76.43
Llama2 70B Weak-to-Strong 83.00 74.33 78.05
Llama3 70B Post-trained (No W2S) 83.33 65.33 73.05
Llama3 70B Weak-to-Strong 86.00 73.33 78.76
Llama3.1 70B Post-trained (No W2S) 85.00 62.00 71.86
Llama3.1 70B Weak-to-Strong 85.67 74.67 79.38
Llama3.1 405B Weak-to-Strong 87.10 77.14 81.29
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