
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Talking Turns: BenchmarkingAudio FoundationModels
on Turn-Taking Dynamics

Anonymous authors
Paper under double-blind review

Abstract

The recent wave of audio foundation models (FMs) could provide new capabil-
ities for conversational modeling. However, there have been limited efforts to
evaluate these audio FMs comprehensively on their ability to have natural and in-
teractive conversations. To engage in meaningful conversation with the end user,
we would want the FMs to additionally perform a fluent succession of turns with-
out too much overlapping speech or long stretches of silence. Inspired by this,
we ask whether the recently proposed audio FMs can understand, predict, and
perform turn-taking events? To answer this, we propose a novel evaluation pro-
tocol that can assess spoken dialog system’s turn-taking capabilities using a su-
pervised model as a judge that has been trained to predict turn-taking events in
human-human conversations. Using this protocol, we present the first compre-
hensive user study that evaluates existing spoken dialogue systems on their ability
to perform turn-taking events and reveal many interesting insights, such as they
sometimes do not understand when to speak up, can interrupt too aggressively
and rarely backchannel. We further evaluate multiple open-source and proprietary
audio FMs accessible through APIs on carefully curated test benchmarks from
Switchboard to measure their ability to understand and predict turn-taking events
and identify significant room for improvement. We will open source our evalua-
tion platform to promote the development of advanced conversational AI systems.

1 Introduction

When humans interact with an audio foundation model (FM), it is a two-way communication. Sim-
ilar to human-human conversations, the model listens and speaks, and more importantly, does both
at the same time. Turn management is at the core of real-world conversations. This means that when
the user speaks, the system should know when to listen and when to speak (Gravano & Hirschberg,
2011). The system should additionally provide subtle cues, referred to as backchannels (Fujie et al.,
2005), to indicate that it is “listening” and make relevant follow-up interruptions (Lee & Narayanan,
2010), ensuring that the conversation feels interactive. Furthermore, when the system speaks, it
should formulate its output in a way that conveys to the user whether it wants to keep the conversa-
tion floor (Ekstedt et al., 2023) and also appropriately address user interruptions (Ma et al., 2024).

Commercial voice assistants (Li et al., 2017) use traditional silence duration-based end-of-turn pre-
diction models for turn management. However, this is insufficient for having natural conversations
because silence is often not the main cue for humans to switch turns. In fact, research shows that
silence within the same speaker’s turns (pauses) tends to be longer than silence between different
speaker’s turns (gaps) (Ten Bosch et al., 2005). Hence, this continues to remain a challenging task
for human-machine interaction. As a result, there has been a lot of interest in automatically predict-
ing turn-taking events. Prior research works (Hara et al., 2018; Li et al., 2022; Fujie et al., 2005;
Lee et al., 2008) have explored automatically predicting turn change and backchanneling from text,
audio, and multimodal input. More recently, audio FMs (Xie & Wu, 2024; Défossez et al., 2024)
have been proposed that can automatically take turns while interacting with the end user.

However there have been limited efforts to evaluate these FMs on their conversational capabilities.
Furthermore, this requires more than simply testing on standard speech recognition (ASR), text-to-
speech (TTS), and text-based dialogue benchmarks. To engage in meaningful conversation with the
end user, we would want the FMs to additionally perform a fluent succession of turns without too
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much overlapping speech or long stretches of silence. Finally, the model should be able to engage
in dynamic and fluid conversations where it should use cues to confirm listening and encourage
the speaker, and it should listen for cues to continue or to be interrupted while speaking. To the
best of our knowledge, there has not been any prior effort to empirically evaluate the turn-taking
capabilities of audio FMs. As a result, the community still lacks a fine-grained understanding of the
relative merits and limitations of different audio FMs on their conversational capabilities. Motivated
by this, our work presents the first empirical investigation to evaluate audio FMs on their ability to
understand, predict, and perform turn-taking events. Our key contributions are:

Contibution 1: An evaluation protocol to assess audio FM’s capability to perform turn-taking
events: Prior work (Nguyen et al., 2023) uses corpus level statistics for automatic evaluation. While
these metrics capture how well the distribution of the turn-taking events globally in the generated
dialogue matches with ground truth, they fail to evaluate the exact timing when a turn-taking event
happens within the local context. We propose evaluating the timing of turn-taking events by training
a model on human-human conversations to effectively predict the turn change, backchannel, and
interruption. We use this predictor model as the judge since getting human relevance judgments
for each turn-taking event is expensive and time-consuming. Using the judge model, we propose
automated metrics corresponding to each of the core conversational abilities, thus building a com-
prehensive suite of diverse metrics that can empower a systemic understanding of any audio FM
with conversation capability on its ability to manage turns. Finally, we plan to publicly release our
evaluation platform so that researchers can easily test their own pre-trained audio FMs.

Contibution 2: Interesting insights about existing spoken dialogue systems: We run a user study
with different spoken dialogue systems, namely full-duplex E2E spoken dialogue system Moshi and
VAD-based cascaded dialogue system and evaluate these systems using both corpus level statistics
and our proposed metrics, unveiling many interesting observations: (a) Both dialogue systems some-
times do not speak up even when user wants to yield its turn. (b) Moshi interrupts too aggressively
and its interruptions occur at unlikely instances. (c) Both dialogue systems rarely backchannel. (d)
Both dialogue systems do not give users enough cues about when they want to keep the conversa-
tion floor. (e) Moshi mostly continues speaking even after the user interrupts, whereas a VAD-based
dialogue system is more likely to yield its turn when interrupted.

Contibution 3: Evaluation of audio FMs on understanding and predicting turn-taking events:
We additionally curate a test benchmark using human-human conversation datasets to evaluate audio
FMs on their ability to understand and predict turn-taking events. This benchmark facilitates an
understanding of the relative merits of different FMs, how this trend varies across different turn-
taking events, and quantify the room for improvement.

2 Related Study

Turn-Taking Prediction: There have been many prior works on predicting turn change (Gravano
& Hirschberg, 2012; Hara et al., 2018; Li et al., 2022), backchannel (Fujie et al., 2005) and inter-
ruptions (Lee & Narayanan, 2010; Lee et al., 2008) from audio, text and other multimodal infor-
mation (Morency et al., 2010; Scherer et al., 2012) (detailed related work discussion in Appendix
A.1). The Voice Activity Projection (VAP) models (Ekstedt & Skantze, 2022a; Inoue et al., 2024)
are trained in an unsupervised manner on spoken dialogue data to predict future “speech” activity.
Other recent works (Wang et al., 2024) use pseudo labels to predict turn-taking and backchanneling
locations in spoken dialogue by integrating a neural acoustic model with a large language model
(LLM). Recently, audio FMs like Moshi (Défossez et al., 2024) and GPT-4o 1 have been proposed
that can perform turn-taking to achieve simultaneous real-time 2-channel conversation. However,
these FMs have still not been quantitatively evaluated on their ability to perform turn-taking events.

Benchmarks for Audio FM: Benchmarks like Dynamic SUPERB (Huang et al., 2023) and AIR-
Bench (Yang et al., 2024) have been valuable for evaluating audio FMs on standard speech process-
ing tasks, but they do not specifically assess conversational capabilities. SD-Eval (Ao et al., 2024)
claims to be an evaluation benchmark for spoken dialogue understanding and generation, evaluat-
ing the quality of response generation using automated metrics like BLEU, GPT-4o, or subjective
evaluation. However, in this work, we specifically focus on the turn-taking capabilities of audio

1https://openai.com/index/hello-gpt-4o/
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FMs, particularly their ability to understand, predict, and perform turn-taking events. In addition to
previously proposed corpus-level statistics (Nguyen et al., 2023), we introduce our own metrics that
evaluate the timing of turn-taking events. These metrics help us gain insights into the limitations of
existing systems in engaging in interactive and natural conversations.

3 Turn-Taking Analyses based on Conventional Corpus-level Statistics

In the given task setting, we evaluate the recently proposed dialogue systems with turn-taking capa-
bilities using corpus-level statistics (Nguyen et al., 2023). The authors organize a user study and
compute these statistics from the collected human-AI conversation data.

Dataset and Audio FM details: Participants were hired to engage in conversations with the dialogue
systems to mirror real-world usage of these systems. As a case study, we evaluate on the follow-
ing spoken dialogue systems: (a) Moshi2, which claims to be a fully E2E duplex spoken dialogue
system; (b) Cascaded system3 of open-source models, including Silvero VAD (Team, 2024), Whis-
per tiny (Radford et al., 2022), SmolLM-135M-Instruct (Allal et al., 2024), and Melo TTS (Zhao
et al., 2023c). Our selection of these two systems is driven by the goal of understanding the relative
strengths and weaknesses of a fully duplex E2E system compared to a traditional cascaded pipeline.
We collect roughly 4 hours of human-AI conversation data for each dialogue system, where each
session lasts nearly 5 minutes across 11 different participants. Our analysis confirms that the col-
lected data is sufficient to derive statistically significant insights for all our evaluations (including
Sec. 4). The participants primarily included the authors and their research colleagues. To minimize
potential variations in results arising from different conversation topics and to facilitate smoother
interactions, we provided participants with a predefined list of topics to choose from. More details
about our user study in Sec. A.2.

3.1 Turn-Taking Events

Human-human conversations contain a spontaneous succession of turns where overlap and silences
occur naturally. Let us assume a two speaker conversation. For simplicity, we divide entire con-
versation audio into a sequence of N non-overlapping chunks U = {Ui | i = 1, . . . ,N}. Then
the voice-activity of the first speaker can be represented by Y1 = {y1

i |i = 1, ..N} where y1
i = 1 if

speaker 1 is speaking in chunk i. Similarly, the voice-activity of speaker 2 can also be represented
as Y2. We show the turn-taking events that occur in spontaneous spoken conversations in Fig. 1.
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Figure 1: Overview of turn-taking events in
human-human conversation

(1) Inter-Pausal Unit (IPU) is a continuous stretch
of speech in one speaker’s channel, delimited by a
silence of more than 200ms from both sides, such
that IPUk = {i ∈ [a, b]|yk

i = 1}, where a and b
denote the start and end chunk indexes of IPUk

respectively and k can be 1 or 2.
(2) Silence (S IL) is part of the conversation where
there is no audio from both sides i.e. S IL = {i ∈
[asil, bsil]|y1

i = 0 and y2
i = 0}, where asil and bsil de-

note the start and end chunk indexes.
(3) Pause is the silence that occurs between the
successive IPUs of the same speaker. Succes-
sive IPUs by the same speaker separated by a
pause are grouped to form a turn i.e. TURNk =
{∪ jIPUk

j |[b j−1, a j] ⊂ S IL}, where b j−1 is the end
chunk index of IPUk

j−1 and a j is the start chunk index of IPUk
j.

(4) Gap is the silence that occurs between IPUs of different speakers, i.e., it is the silence preceding
a turn change.
(5) Overlap is defined as the section of the conversation where both speakers are trying to speak
simultaneously i.e. y1

i = 1 and y2
i = 1.

(6) A backchannel is a short utterance such as “um” and “right”, which the listener utters without

2https://us.moshi.chat/
3https://github.com/huggingface/speech-to-speech
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Figure 2: Results of audio foundation models on engaging in conversation with humans based on
corpus-level statistics proposed in prior works (Nguyen et al., 2023).

taking the speaker’s turn to acknowledge the current speaker. The backchannels typically occur dur-
ing the speaker’s turn. In this work, we denote the backchannel label sequence for the listener k as
BCk = {bck

i |i = 1, ..N} where bck
i = 1 if listener k backchannels in chunk i.

(7) An interruption is defined as overlapping speech between two speakers where both speak-
ers are trying to take the turn. We can also define it in terms of both speaker’s IPU such that
IPUk = {i ∈ [ak, bk]} and IPUk′ = {i ∈ [ak′ , bk′ ]}, where ak < ak′ and ak′ < bk such that k′ is the
interrupting speaker. An interruption can further be classified into (i) Floor-taking / Successful
interruption: Where the speaker who starts speaking within the IPU of the first speaker takes over
the conversation i.e. bk′ > bk. (ii) Butting-in / Unsuccessful Interruption: Where the speaker who
starts speaking within the IPU of the first speaker will be forced to wait for a natural break or pause
before speaking, and the first speaker will continue i.e. bk′ < bk.

3.2 Corpus-level Statistics

The conversation is passed through a VAD model using pyannotate (Bredin et al., 2020) library. We
use the VAD output to get voice activity vectors YAI and YHuman and analyze the statistics of IPU,
Pause, Gap and Overlap events, focusing on the number of events per minute and their cumulated
duration as a percentage of the total duration of the conversation. The results are shown in Fig. 2a
and Fig. 2b respectively. For reference, we also include statistics derived from human-human con-
versations in the switchboard dataset (Godfrey et al., 1992), which serve as ground truth. We observe
that 1 Moshi has a small gap (11.8% of the cumulative duration in Fig. 2b) between speaker turns
and some overlapping speech; however, the overlap rate is much lower than that seen in natural
human dialogues. 2 In contrast, the cascaded system shows higher latency, resulting in a larger gap
(32.4% of the cumulative duration) and minimal overlap, making the conversation feel less natural.

While these metrics capture how well the global turn-taking events distribution in the generated
dialogue matches with ground truth, it cannot evaluate the exact timing when a turn-taking event
happens. For instance, Fig. 2 shows that Moshi can generate overlapping speech; however, it remains
unclear whether this overlap is appropriate and supportive of the user’s statements or unexpected and
disruptive to the natural flow of the conversation.

4 Proposed Turn-Taking analyses with Timing-CentricMetrics

Inspired by the limitations of existing corpus-level statistics, we propose to evaluate the timing of
the turn-taking event by training a model that predicts after every 40 ms chunk and is causal, i.e.,
trained to predict what turn-taking event will happen in the next 40 ms. We then use this predictor
model as a proxy of human relevance judgments.

4.1 Judge turn-takingModel

We take inspiration from prior work (Wang et al., 2024) that passes single-channel input speech
through the SSL speech foundation model and predicts the listener’s behavior as turn-taking deci-
sions that an ideal system should make. However, this approach cannot handle overlapping speech.
Hence, we extend their labeling annotation scheme to model both the listener and speaker’s behavior
and instead use single-channel mixed speech as input. We define the corresponding label sequence
for turn-taking events as L = {li|i = 1, ..N} where the label for each chunk li can be one of the fol-

4
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lowing: (1) NA: If no one is talking i.e. i ∈ S IL, (2) BC (“Backchannel”): If listener backchannels
during the speaker’s turn i.e. bck

i = 1 and i ∈ TURN3−k where k can be either 1 or 2, (3) I (“Interrup-
tion”): If both speakers are talking to take the turn and none of the speakers are backchanneling i.e.
y1

i = 1 and y2
i = 1 and bc1

i = 0 and bc2
i = 0 (4) T (“Turn Change”): If there is a turn change. Special

case for interruption: if it follows a floor-taking interruption (see Sec. 3.1), it is also considered a
turn change. (5) C (“Continuation”): Otherwise.

Our model is causal such that it is trained to make future predictions, i.e., what turn-taking event li
will happen in the next chunk by conditioning on only the first i − 1 chunks i.e., U1:i−1. We further
simplify by conditioning only on a prior context window Ûi of size W (See Eq. 7 in Appendix for
more details). The audio in the context window is passed through encoders of the pre-trained speech
foundation model, namely Whisper (Radford et al., 2022), to generate acoustic representation hi.
The acoustic representations are then passed through linear layer (Out(·)) followed by softmax:

f(Ûi, θ) = Softmax(Out(hi)), (1)

where f(Ûi, θ)[li] is the likelihood that the turn-taking event li will happen at chunk
i as predicted by our supervised turn-taking model. More details about the prob-
lem formulation and architecture of our model have been provided in Sec. A.3.

Turn-Taking Label Switchboard (↑) Columbia Games (↑) Fisher (↑)

C (Continuation) 93.3 95.2 95.0
BC (Backchannel) 89.4 94.0 83.3
T (Turn change) 90.8 81.6 91.6
I (Interruption) 91.3 92.6 91.8
NA (Silence) 95.1 94.0 93.5

Overall 92.0 91.5 91.0

Table 1: Performance (ROC-AUC values) of su-
pervised turn-taking prediction model.

Dataset details: We train our turn-taking pre-
diction model on Switchboard dataset. Simi-
lar to prior work (Wang et al., 2024), we split
dataset by conversations into 2000:300:138 for
train, validation, and test respectively. We
evaluated our model on the in-domain switch-
board test set and additionally on 2 out-of-
domain (OOD) datasets: the Columbia Games
Corpus (Gravano & Hirschberg, 2011) and the
Fisher Corpus (Cieri et al., 2004). We report the
model’s performance using the ROC-AUC score (Area Under the Receiver Operating Characteristic
Curve) similar to Wang et al. The context window of the supervised model W is 30 seconds. More
details about the experiment setup and supervised model hyperparameters can be found in Sec. A.4.

Results and Analysis: Table 1 shows that our supervised turn-taking prediction model can effec-
tively handle interruptions and performs similar to prior approaches for other turn-taking events,
such as those in Wang et al., which reports ROC-AUC scores of 90.29, 81.84, and 91.97 on Switch-
board for C (continuation), BC (backchannel), and T (turn change), respectively.4 Further, the
model shows strong OOD generalization, achieving similar performance on the OOD spoken dia-
logue corpora. This suggests that it can be reliably used to evaluate the precise timing of turn-taking
decisions made by AI dialogue systems and serve as a proxy for human relevance judgments.

4.2 Core Conversation Capabilities

To develop metrics that comprehensively evaluate audio FMs’ conversational capabilities, we review
prior literature (Gravano & Hirschberg, 2011; Skantze, 2021; Raux et al., 2006) and identify the key
turn-taking abilities required for a conversational agent to interactively engage with an end user.
We design metrics (Sec. 4.4-4.8) corresponding to each capability to ensure complete coverage of
the skills required for natural human-AI dialogues. These capabilities are categorized depending on
whether they are useful for user input recognition or system output generation, as shown below:

When user speaks : (a) When system should speak up? : This means that when the user speaks, the
system should know when to listen, when to speak, and when to pause, ensuring that the conversation
feels natural and not rushed. If the FM speaks too early without much pause, it makes FM sound too
eager. On the other hand, if the FM leaves too big of gap, it makes the conversation unnatural. (b)
When system should backchannel? : The AI system should also provide subtle cues to the user that
indicate the assistant is “listening” or processing the user’s input. (c) When system should interrupt?
: The AI system could additionally make relevant follow-up interruptions that encourage further
dialogue, making the conversation feel more interactive. However, if it interrupts too aggressively,
it can come across as rude.

4However, our results are not directly comparable since Wang et al. predicts at word boundaries, whereas
we predict at 40ms chunks.
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When system speaks: (d) Convey user when it can speak up? : While generating speech output, it
should ensure that it conveys the end user if it wants to yield its turn or keep the conversation floor.
(e) Handle user’s interruptions : When a user interrupts the AI, it should address the interruption or
gently steer the conversation back on track.
It is important to note that these conversation capabilities are sensitive to the timing, and cannot be
evaluated using the corpus-level statistics in Section 3.2. The following section shows that we can
create the corresponding metrics by using our judge turn-taking model (Section 4.1).

4.3 Evaluation Protocol

In this work, we design automated metrics for each conversation capability using our judge pre-
dictor model (Section 4.1). Consistent with prior works on evaluating turn-taking classification
models (Ekstedt & Skantze, 2022a), we initially propose metrics that perform a pairwise compar-
ison between 2 turn-taking decisions, for instance, when the user pauses, can the audio FM infer
when the user wants to hold the conversation floor or when it is ok for assistant to speak up. It
is important to note that while prior evaluation metrics (Sec. A.1.1) focus on assessing turn-taking
model’s ability to predict upcoming turn-taking events, our evaluation protocol presents the first ef-
fort to assess audio FMs’ ability to perform turn-taking events in human-AI conversations. We also
compute the mean and standard deviation of each metric for each conversation session and show
95% confidence intervals assuming a normal distribution.

Turn-taking decisions in collected user data: The sequence of these conversational exchanges is
denoted as Udialogue. YAI and YHuman can be computed similar to Sec. 3.2. The input speech for
each utterance is passed through an ASR model (Radford et al., 2022) to get the corresponding ASR
transcript. We define filler word set as the most frequent isolated one and two-word phrases such
as “hmm”, “oh”, “okay”, “i see”, etc. We follow Wang et al. and label filler words uttered by the
listener in the other speaker’s turn as backchannel. Using this labeling scheme, we get backchannel
sequence BCAI and BCHuman. Using YAI, YHuman, BCAI, BCHuman, we follow our turn-taking label
annotation scheme (Sec. 4.1) to compute Ldialogue as the turn-taking decisions that were actually
made by the human and AI during the conversation. We can similarly define the turns of the AI
dialogue system and the human user as TURNAI and TURNHuman respectively. Furthermore, we
recognize turn-taking events at chunk i as decisions made by the AI system if i−1 ∈ TURNHuman and
as decisions made by Human if i − 1 ∈ TURNAI. This distinction is motivated by prior work (Wang
et al., 2024) where the listening system’s behavior is considered as turn-taking decisions.

Judging consistency of metrics: To quantify the feasibility of using our trained turn-taking model
(Section 4.1) as a judge, we take inspiration from prior works (Yang et al., 2024; Zheng et al.,
2024) that have experimented with using an LLM as a judge. These studies justify this approach
by showing high consistency between LLM predictions and human relevance judgments. Similarly,
we evaluate the consistency of our judge model with human judgments by examining instances in
a human-human conversation dataset that correspond to each of the proposed metrics. We consider
the decisions made by humans during the conversation as a proxy for human judgments. We tune
the thresholds defined below for all proposed metrics on an in-domain validation set to maximize the
agreement between the judge labels and human judgments (Details in Sec. A.4). Finally, we report
the agreement of judge label with human judgments on the in-domain and OOD test sets in Fig. 3
and show that our proposed metrics mostly have high consistency (>60%) with human decisions.

4.4 Metric (a) When user speaks: when system should speak up?

To compute this metric, we look at those cases when the user is speaking and then pauses, i.e.,
i−1 ∈ TURNHuman and Ldialogue

i−1 = NA. Using f(Ûdialogue
i , θ) (Eq. 1) computed by the judge model, we

hypothesize that i) the turn change likelihood f(Ûdialogue
i , θ)[T] should be high for an ideal AI system

when it decides to speak up, i.e., Ldialogue
i = T and ii) the continuation likelihood f(Ûdialogue

i , θ)[C]
should be high when the system lets user continue i.e. Ldialogue

i = C. The judge Label J1
i is:

J1
i =

T, if f(Ûdialogue
i , θ)[T] − f(Ûdialogue

i , θ)[C] > threshold1

C, otherwise
(2)

where threshold1 is a hyperparameter. To compute human judgment, we look at instances where the
speaker pauses i.e., li−1 =NA and the listener decides whether to speak up i.e., li = (T or C).
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Figure 3: The results show the consistency of the AI dialogue system’s turn-taking decisions with
judge labels across our proposed metrics. The first 3 graphs correspond to when AI system is listener
and the remaining 2 graphs correspond to when AI system is speaker. Additionally, 95% confidence
intervals are provided for AI system with all metrics (also in Appendix Tab. 7). For each graph,
the first two bars represent the consistency of our computed judge labels with human relevance
judgments obtained from both an in-domain and out-of-domain spoken dialogue corpus.

Results and Analysis: Fig. 3a show that 1 Moshi has significantly lower agreement with judge
labels compared to humans when it allows users to continue speaking. This finding contrasts with
Fig. 2, which indicates that Moshi maintains a gap similar to humans when it initiates speaking,
thereby not highlighting any differences in turn-change capabilities. Upon manual inspection, we
observed that Moshi occasionally fails to speak up even when the user is ready to yield its turn,
consistent with our proposed metric. According to Moshi’s architecture (Défossez et al., 2024),
there is no explicit boundary to indicate turn changes, i.e., it is listening and generating audio tokens
at all time, it simply initiates speaking when it predicts the special token EPAD and it stays silent
when it predicts the special token PAD. Increasing the EPAD logit bias when the user pauses—thus
encouraging the selection of the EPAD token—could improve Moshi’s turn-taking capabilities. 2
The cascaded dialogue system performs even worse than Moshi in deciding when to speak up and
when to allow the user to continue. It speaks up 37.1% of the time when the user pauses (Table 2),
much higher than that seen in human-human conversations, aligning with prior research that silence
alone is often not a reliable cue for turn-switching.

4.5 Metric (b) When user speaks: when system should backchannel?

Similarly, we look at when it is the user’s turn, i.e., i − 1 ∈ TURNHuman. We hypothesize that i)
backchannel likelihood f(Ûdialogue

i , θ)[BC] should be high when the system decides to backchannel,
i.e., Ldialogue

i = BC and ii) low when the system does not i.e. Ldialogue
i , BC. Judge Label J2

i is:

J2
i =

= BC, if f(Ûdialogue
i , θ)[BC] > threshold2

, BC, otherwise
(3)

where threshold2 is a hyperparameter. Human judgments are obtained from instances where either
the listener begins backchanneling, i.e., li−1 , BC and li = BC or it does not backchannel.
Results and Analysis: Fig. 3b show that both the dialogue systems do 1 not backchannel at ap-
propriate points, as indicated by low agreement with judge labels. The confidence intervals are
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Dialogue System AI is Listener AI is Speaker
(a) % Turn Change (b) % Backchannel (c) % Interruption (d) % Turn Change % Interruption ((e) % Floor-taking)

Human Ref
(in domain) 15.9 0.30 0.4 15.9 0.4 (63.6)
(OOD) 32.9 0.09 0.4 32.9 0.4 (60.8)

Moshi 32.7 0.01 0.5 46.5 0.2 (17.4)
Cascaded 37.1 0.01 0.2 24.2 0.1 (59.4)

Table 2: The percentage of instances corresponding to each proposed metric where the AI makes a
specific turn-taking decision. The value in brackets in the last column indicates the percentage of
interruptions that are floor-taking.

large, which potentially results from a small sample size as 2 both systems rarely backchannel
(Tab. 2). Moshi’s backchanneling capability probably results from its fine-tuning on speech conver-
sations (Défossez et al., 2024) and we recommend increasing the size of this fine-tuning data.

4.6 Metric (c) When user speaks: when system should interrupt?

Similarly, we hypothesize that i) the interruption likelihood f(Ûdialogue
i , θ)[I] should be high when

the system decides to interrupt, i.e., Ldialogue
i = I and ii) the continuation likelihood f(Ûdialogue

i , θ)[C]
should be high when the system does not i.e. Ldialogue

i = C. Judge Label J3
i is:

J3
i =

I, if f(Ûdialogue
i , θ)[I] − f(Ûdialogue

i , θ)[C] > threshold3

C, otherwise
(4)

where threshold3 is a hyperparameter. To compute human judgments, we examine instances where
only one speaker is active (li−1 =C) and then observe if both the interrupting and active speakers are
talking simultaneously (li =I) or if the same speaker continues speaking alone (li =C).
Results and Analysis: Fig. 3c shows that 1 the agreement with judge labels is much lower when
interruptions are made by Moshi. While corpus-level statistics (Fig.2) show that both humans and
Moshi exhibit overlapping speech, our proposed metric differentiates between them by revealing
that interruptions made by humans are expected and collaborative, whereas interruptions made by
Moshi are surprising and can be rude. 2 The cascaded system rarely interrupts (Table 2) and when
it does, they are not well-timed (Fig. 3c), as they typically result from errors in the VAD output.

4.7 Metric (d) When system speaks: can it convey when user can speak up?

To compute this metric, we look at when the system is speaking and then pauses, i.e., i−1 ∈ TURNAI

and Ldialogue
i−1 = NA. We hypothesize that the i) turn change likelihood f(Ûdialogue

i , θ)[T] should be high
when the user believes that an ideal AI system can speak up, i.e., Ldialogue

i = T and ii) the continuation
likelihood f(Ûdialogue

i , θ)[C] should be high when the system continues i.e. Ldialogue
i = C. Judge label

(J1
i in Eq. 2) and human relevance judgments are calculated similar to Metric (1) (Sec. 4.4).

Results and Analysis: Fig. 3d demonstrates that 1 Moshi does not give users enough cues when it
wants to keep the conversation floor, leading to the lower agreement with judge labels and the user
speaks up more frequently (46.5% in Tab. 2) when Moshi pauses. Similar to Sec. 4.5, fine-tuning
on additional speech conversations could improve its turn willingness capability. 2 The cascaded
dialogue system was slightly better at conveying turn willingness than Moshi.

4.8 Metric (e) When system speaks: handle user interruptions?

Ma et al. has proposed Interactive capability metric to evaluate audio FM’s capability to handle
user’s interruptions, which looks at whether the system yields its turn when the user interrupts. Mo-
tivated by this, we look at instances when the user has already made an interruption, i.e., Ldialogue

i−1 = I.
We hypothesize that i) the turn change likelihood f(Ûdialogue

i , θ)[T] should be high when ideal AI
system lets the user take the conversation floor (Sec. 3.1), i.e., Ldialogue

i = T and ii) the continuation
likelihood f(Ûdialogue

i , θ)[C] should be high when it keeps the floor i.e, Ldialogue
i = C. Judge Label J4

i :

J4
i =

T, if f(Ûdialogue
i , θ)[T] − f(Ûdialogue

i , θ)[C] > threshold4

C, otherwise
(5)
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Figure 4: Confusion Matrix showing the performance of the turn-taking decisions Ldialogue made by
the AI systems using the supervised turn-taking model as judge (i.e. Lgen as the ground truth). The
numbers in the confusion matrix represent percentages.

where threshold4 is a hyperparameter. To compute human relevance judgments, we identify in-
stances where both the interrupting and active speakers are simultaneously speaking (li−1 =I) and
then evaluate the consistency of the judge’s label with speakers decision to allow a turn change.
Results and Analysis: Compared to other metrics, judge labels have lower consistency with human
relevance judgments for this particular metric as shown in Fig. 3e, suggesting that insights derived
using this metric may be less reliable. 1 Tab. 2 shows that only 17.4% of user interruptions led to
a turn change, with Moshi continuing to speak most of the time. Increasing the PAD (See Sec. 4.4)
logit bias when the user interrupts could encourage Moshi to occasionally become silent, which
could help it to avoid ignoring user interruptions entirely. 2 Moshi’s decisions do not differ sig-
nificantly in agreement with judge labels compared to humans. 3 The cascaded dialogue system
yielded its turn more than 50% of the time (Tab. 2) when the user interrupted, even when the user
was not trying to take over the conversation but merely supporting the AI’s thoughts. However,
the number of user interruptions is too few (0.1% as shown in Tab. 2) to draw strong conclusions,
resulting in large confidence intervals in Fig. 3e.

4.9 Single-label evaluation

Additionally, we use our judge model in single answer grading setup (Zheng et al., 2024) where
we directly assign a turn-taking event label to each chunk, thus generating the pseudo ground truth
labels Lgen by tuning operating points (thresholds, see Sec. A.4) for the predicted likelihood on the
validation set.5 Using the generated ground truth labels Lgen, we compute a confusion matrix of
Ldialogue for decisions made by an AI system. Fig. 4a and 4b show the confusion matrices for the
decisions made by Moshi and the cascaded dialogue system, respectively. 1 Moshi has a high rate
of false positives for interruptions (2.09% of total decisions), indicating that it interrupts the user
too aggressively when it should have allowed the user to continue speaking (i.e., C). Decreasing
the EPAD logit bias (Défossez et al., 2024) when the user is actively speaking could reduce the
frequency of these interruptions, making Moshi’s behavior less rude. 2 Moshi is also not effective at
backchanneling, with our judge model predicting few opportunities for it in human-AI interactions.
3 The accuracy of turn changes is low, mainly due to false negatives (2.21% of total decisions),
meaning Moshi often fails to speak up when it should. 4 For the cascaded system, there are too few
possibilities of either an interruption or backchannel showing that the conversation is not interactive.

5 Additional Evaluation on Understanding and Predicting turn-taking events

While most existing open source and proprietary audio FMs cannot perform turn-taking events,
many audio FMs (Chu et al., 2024; 2023) claim multi-turn dialogue capabilities where end-of-turn
is manually specified by the user. Hence, we additionally investigate whether training on multi-turn
audio dialogues can enable these FMs that cannot perform turn-taking events to at least understand
the meaning of turn-taking events and recognize the acoustic and semantic cues that precede their
occurrence. Sec. A.5 in the Appendix contains details about experiment setup and audio FMs.

5Due to the significant class imbalance among turn-taking events, using a simple argmax is not suitable.
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Model Turn Change (↑) Backchannel (↑) Interruption (↑)

Random Baseline 50.0 50.0 50.0

SALMONN 41.4 50.1 51.3
Qwen2-Audio-Instruct 48.8 48.5 50.3
Qwen-Audio-Chat 56.7 52.7 69.5
Whisper+GPT-4o 66.3 49.1 52.9

Table 3: Accuracy of audio foundation models on test bench-
marks evaluating their ability to understand turn-taking events

How Well Audio Foundation
Models Understand Turn-
Taking?: In this task setting,
the audio FM is provided with
the first i chunks of audio and
must predict the turn-taking
event that occurred within the
given audio. We focus on three
specific turn-taking events: turn change T, backchannel BC, and interruption I. We present the
performance of audio FMs in Table 3. Among the open-source audio FMs, Qwen-Audio-Chat
achieves the best performance. A cascade of Whisper and GPT-4o generally outperforms the
open-source models. However, all models perform close to a random-guess baseline when it comes
to understanding backchannels.

Model Turn Change BackChannel Interruption Floor-Taking
(↑) (↑) (↑) Interruption (↑)

Random Baseline 50.0 50.0 50.0 50.0
Supervised Topline (Sec. 4.1) 78.6 75.1 74.9 65.6

SALMONN 49.3 50.0 50.0 50.4
Qwen2-Audio-Instruct 46.5 49.3 51.5 54.4
Qwen-AudioChat 49.9 52.1 52.3 50.8
Whisper+GPT-4o 62.2 48.6 49.3 50.0

Table 4: Accuracy of audio foundation models on test benchmarks
evaluating their ability to predict future turn-taking events.

How Well Audio Founda-
tion Models Predict Turn-
Taking?: In the given task
setting, the audio FM is
provided access to the first
i − 1 chunks of audio, and
it has to predict the turn-
taking event that will hap-
pen next i.e. li. We focus
on predicting four specific
turn-taking events: turn change, backchannel, interruption, and whether the interruption is floor-
taking. To identify areas for improvement, we compare the audio FM’s performance against our
supervised turn-taking model, using J1

i (Eq.2), J2
i (Eq.3), J3

i (Eq.4) and J4
i (Eq.5) to predict turn

change, backchannel, interruption, and floor-taking interruption, respectively. We present our find-
ings in Table 4. The cascade of Whisper and GPT4-o API is very good at predicting turn change,
which is not very surprising since prior works (Ekstedt & Skantze, 2020) have shown that text-based
LM can effectively predict turn shifts. However, it cannot predict backchannel, interruptions, and
whether the interruption will lead to turn change. All the open-source audio FMs perform close
to a random-guess baseline at all tasks. Our findings indicate that there is substantial room for
improvement in the audio FM’s ability to understand and predict turn-taking events.

6 Discussions and Conclusions

Through an extensive survey of prior work, this work identifies the core turn management capabil-
ities required to build an interactive voice assistant. To quantify the performance of existing audio
FMs in these conversational aspects, we propose automated metrics corresponding to each capabil-
ity, representing the first effort to assess the quality of turn-taking decisions made by audio FMs.
Our findings offer valuable insights into the strengths and limitations of existing spoken dialogue
systems. We plan to make our evaluation platform public, hoping that these proposed metrics will
be adopted by future research to develop audio FMs that can engage in more natural and interactive
conversations with users.

Limitations: 1 Scalability and Applicability: Our evaluation protocol needs a supervised dataset to
train the judge model, limiting its scalability and applicability. This model can however be trained
on any spoken conversation dataset containing speaker turns, transcripts, and timestamps, which are
often available even for non-English languages as discussed in Sec. A.7. 2 Modelling BackChan-
nels: Our current approach for identifying backchannels relies on heuristics (Sec. A.4) and may miss
certain backchannels which is limitation of our model. 3 Performance of Turn Taking Model: The
agreement between the judge labels and human judgments is below 80% for many metrics (Fig. 3).
The primary contribution of this work lies in our novel and adaptable evaluation protocol, capable of
integrating any turn-taking prediction model. Future efforts to improve model accuracy would fur-
ther improve the protocol’s reliability. 4 Limitations of User Study: This study currently tests only
a few audio FMs. This is a developing field of research, and we plan to expand our benchmarking
as more audio FMs with turn-taking capabilities emerge. There is the potential for bias in our user
study, as participants were primarily the authors and their research colleagues (see Sec. A.2).
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A Appendix

A.1 Prior works on predicting turn-taking events

There have been a lot of prior efforts in predicting turn change, backchannel, and interruptions from
spoken conversations. Prior works (Gravano & Hirschberg, 2012; 2011) have shown that spoken
conversations consist of Transition-relevant place (TRP), where a turn-shift usually occurs. This
suggests that the listener is likely to speak up at particular places in conversation, i.e., during or
after the speech, with certain acoustic and prosodic properties. Gravano & Hirschberg further,
introduces a detailed annotation scheme to label various turn-taking events naturally occurring in
spoken conversation and releases a Columbia Games corpus, which contains approximately 10 hours
of annotated speech using this scheme.

Predicting turn change: Prior works (Masumura et al., 2018; Ekstedt & Skantze, 2020;
da Silva Morais et al., 2023) have focused on predicting end-of-turn (EOT) events to help voice
assistants determine when to speak. These studies aim to identify, based on the conversation history,
whether the current speaker’s utterance has concluded. Consequently, their primary objective is to
distinguish between gaps and pauses, and most of these models are not designed to handle overlap-
ping speech. Another recent work (Li et al., 2022) focuses on predicting the appropriate timing for
when the assistant should speak up using acoustic and prosodic features.

Another related line of research involves detecting speaker changes in spoken conversations (Zhao
et al., 2023b;a), typically assuming minimal or no overlaps. In this approach, a special speaker
change token is inserted between different speakers’ transcripts to generate training targets. Recent
works (Fujita et al., 2019; Cornell et al., 2023) have extended this formulation by predicting the
exact timestamps when a given speaker is active, a task referred to as speaker diarization. Some
studies (Cornell et al., 2023) have also attempted to model speech recognition and speaker diariza-
tion jointly. However, unlike these approaches, a turn-taking prediction model must operate causally
i.e. predicting whether the speaker should speak up now based solely on the conversation history.

Predicting backchannels and interruptions: Most early works (Fujie et al., 2005) aim to predict
backchannel only from acoustic information. They show that acoustic features and prosody are more
beneficial for knowing when to generate backchannel than the actual content of speech. Building
on these findings, there has similarly been interest in predicting backchannel from multimodal in-
formation (Morency et al., 2010; Morency, 2010; Scherer et al., 2012). Similarly, efforts have been
made to predict interruptions and their types (competitive/cooperative) by manually annotating the
IEMOCAP dataset (Lee & Narayanan, 2010; Lee et al., 2008).

Multi-task prediction of Turn-Taking Events: Recent works often adopt a multi-task learning
approach to jointly predict various turn-taking events. For example, one study (Hara et al., 2018)
uses multitask learning to predict turn changes along with backchannels and fillers. Other stud-
ies (Ishii et al., 2021; 2020) explore joint modeling of turn changes, turn management willingness,
and backchanneling. Turn management willingness is related to the mental states of the speaker
and listener in spontaneous conversations and can be categorized as follows: (1) turn-holding — the
speaker’s willingness to continue speaking, (2) turn-yielding — the speaker’s willingness to listen,
(3) turn-grabbing — the listener’s willingness to start speaking, and (4) listening — the listener’s
willingness to continue listening.

While these works required supervised labeled data, recent works like the Voice Activity Projection
(VAP) models (Ekstedt & Skantze, 2022a; Inoue et al., 2024) are trained in an unsupervised manner
on spoken dialogue data to predict upcoming “speech” activity for each speaker in a future time
window using pre-train speech representations and voice activity detection (VAD) features. The
latest version of VAP (Inoue et al., 2024) no longer requires VAD features and is multilingual.
The outputs from the two channels are fed into a cross-attention Transformer, similar to the Dialog
GSLM model (Nguyen et al., 2023), and the system performs multitask learning on both VAP and
VAD. They then successfully trained turn-taking models on Chinese (Mandarin) and Japanese using
publicly available datasets (Liu et al., 2006; Inaba et al., 2022). Interestingly, multilingual models
trained on English, Chinese, and Japanese perform comparably to monolingual models despite the
diverse turn-taking behaviors of these languages. Ekstedt & Skantze investigate the role of prosody
in turn-taking using the VAP model
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Multimodal FM: Recently multimodal FMs (Défossez et al., 2024; Xie & Wu, 2024) have been
proposed that claim to be able to engage in real-time conversation with a user. Moshi (Défossez et al.,
2024) is a full duplex E2E spoken dialogue framework based on a text language model backbone and
models separately its own speech and that of the user into parallel streams. Further, Moshi does not
explicitly model speaker turns, i.e., it is listening and generating audio tokens at all time, it simply
initiates speaking when it predicts the special token EPAD and it stays silent when it predicts the
special token PAD.

A.1.1 Prior Turn taking evaluationMetrics

Most prior works (Masumura et al., 2018; Wang et al., 2024) evaluate turn-taking models based on
their ability to predict whether a turn-taking event, such as a turn change or backchannel, will occur
in the near future. This involves assessing how well turn-taking model forecasts when specific turn-
taking events will happen in human-human conversations based on contextual cues. VAP (Ekstedt
& Skantze, 2022a) similarly evaluates turn-taking models using four key metrics: (a) SHIFT vs.
HOLD (S/H), assessing how well a model predicts whether the current speaker will hold the turn
or whether the turn will shift to the other speaker during mutual silence; (b) SHIFT prediction,
evaluating the ability to predict an upcoming speaker change, while a speaker is still active; (c)
Backchannel prediction, measuring how well upcoming backchannels are predicted; and (d) SHORT
vs. LONG (S/L), evaluating whether a speaker change is part of a backchannel or a proper turn
change. Additionally, Ekstedt et al. propose an automatic evaluation method based on VAP to
measure turn management behaviors (e.g., hold/yield) for conversational speech synthesis.

Our work distinguishes itself from these prior evaluation metrics as the first effort to evaluate AI
dialogue systems’ ability to perform turn-taking events in spontaneous, interactive conversations
with human users. This involves assessing how well the AI system actively decides to take the con-
versation floor, yield it’s turn, backchannel or interrupt the user during live human-AI interactions,
reflecting its capability to engage in natural dialogue with the end user. Due to this fundamental
difference in application focus, several challenges arise when attempting to apply prior turn-taking
evaluation metrics (Ekstedt & Skantze, 2022a) to our setting:

1 Absence of Ground Truth: In prior turn-taking evaluation methods, human-human turn-taking
decisions serve as ground truth to assess how accurately a model predicts upcoming turn-taking
events. However, in human-AI conversations, there is no inherent ground truth to evaluate the quality
of AI’s turn-taking decisions. Ground truth must be generated through human relevance judgments,
requiring annotators to listen to entire human-AI conversations and determine whether the AI’s
turn-taking decisions were appropriate. For example, Ekstedt & Skantze ’s SHIFT vs. HOLD (S/H)
metric evaluates whether a turn-taking model can predict whether the current speaker will hold or
yield its turn. We adapted this to assess whether an audio FM can correctly decide when to speak
or when to allow the user to continue when the user pauses in interactive human-AI conversation.
Since no predefined ground truth exists to judge these decisions, we introduced a protocol to generate
pseudo ground-truth labels using a judge turn-taking model trained on human-human conversations.
The agreement between the AI’s decisions and these pseudo labels serves as a measure of the quality
of the AI system’s turn-taking behavior.

2 Dual Metrics for Human and AI Turns: Unlike prior works, our evaluation protocol requires
separate modeling of turn-taking decisions for when the AI is the listener (human’s turn) versus
when the AI is the speaker (AI’s turn). For example, in addition to evaluating the AI’s behavior as
a listener, we also assess it based on the turn taking events made by the user when it pauses during
its turn. Specifically, we examine whether the AI provides clear cues to the end user to convey its
willingness to yield the floor or retain it. This distinction is crucial for understanding the AI’s ability
to appropriately formulate it’s output to manage turn-taking effectively.

3 Distinct Metrics for Human and AI Turns: It is important to recognize that the same set
of metrics cannot be applied uniformly to both the AI and human turns. For instance, during the
human’s turn, we evaluate the AI’s decision to interrupt—determining whether its interruptions are
relevant and timely or overly aggressive. Conversely, during the AI’s turn, it is not meaningful to
assess the appropriateness of user interruptions. Instead, we focus on how the AI responds to user
interruptions. Specifically, we evaluate whether the AI ignores interruptions entirely or, conversely,
always becomes silent, even when the user is merely providing supportive feedback rather than
attempting to take over the conversation. To address these nuances of what metrics are appropriate,
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Figure 5: Screenshot of Moshi demo as shown to the participants during user study

we conducted a thorough survey of prior work (see Sec. 4.2) to identify the key turn-taking abilities
required for a conversational agent to engage effectively with end users. Based on these findings, we
designed appropriate metrics for each ability, adapting existing metrics when feasible and creating
new ones where necessary.

4 Introducing New Metrics: Due to the difference in application focus, existing metrics could not
be fully adapted to capture the complete range of conversational capabilities. For example, prior
metrics did not address the handling of interruptions. In this work, we designed a labeling sequence
for our judge model to explicitly differentiate between floor-taking (successful interruption) and
butting-in (unsuccessful interruption) interruptions. This enhancement ensures that our evaluation
protocol comprehensively assesses all key aspects of human-AI turn-taking behavior.

In summary, our protocol builds on prior work by identifying core turn-taking abilities for human-
AI interaction, adapting existing metrics, and introducing new ones for comprehensive evaluation
across all turn-taking abilities.

A.2 User Study

As discussed in Sec. 3, we run a user study where we hire participants to have a conversation
with spoken dialogue systems. For Moshi, we use their publicly available demo webpage https:
//moshi.chat/ for participants to converse with the dialogue systems and collect their conver-
sation recordings. The screenshot of Moshi’s demo is shown in Fig. 5. For the cascaded dia-
logue system, since the publicly available implementation https://github.com/huggingface/
speech-to-speech could only be run on the command line terminal, we built a gradio demo to
facilitate a more user-friendly interface for participants. A screenshot of the demo has been shown
in Fig. 6, and the demo will be made publicly available upon acceptance. We collect exactly 4
hours 5 minutes and 3 hours 35 minutes of spoken conversation data across 11 different speakers
with Moshi and cascaded dialogue system, respectively. The participants primarily included the au-
thors and their research colleagues. Similar lab experiments are common in prior work (Deriu et al.,
2021), enabling focused testing of specific functionalities (eg. prompting participants to interrupt the
AI system) and facilitating deeper insights through discussions about their subjective experiences.
However, we acknowledge that this controlled setup may introduce bias. We hope our evaluation
protocol inspires future studies to conduct larger-scale evaluations with more diverse participants.
The instructions provided to the participants are shown below:

18

https://moshi.chat/
https://moshi.chat/
https://github.com/huggingface/speech-to-speech
https://github.com/huggingface/speech-to-speech


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: Screenshot of Cascaded demo as shown to the participants during user study
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Figure 7: Architecture of our causal turn-taking model predicting at every 40ms chunk

Instruction for User Study: We are interested in studying and evaluating real-time dia-
logue interactions during human-AI (audio FMs) conversations. To this end, we recruit par-
ticipants to converse with the dialogue system and will analyze your conversation record-
ings to gain insights on the dialogue interactions. If you are interested, please follow these
guidelines to have a short conversation session ( 5 minutes) on one of these topics:
(1) Feedback on your pronunciation.
(2) Good places to eat in Manhattan.
(3) Sightseeing in New York.
(4) Ask Moshi for help in learning python.
(5) Ask Moshi for help in preparing to go for a hike.
(6) Any topic of your choice.
Please label the audio with the topic you choose. Please do not discuss anything you are
not comfortable to share.
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Switchboard
Turn-Taking Label ROC-AUC F1

C (Continuation) 93.1 84.1
BC (Backchannel) 89.1 68.6
T (Turn change) 90.3 54.8
I (Interruption) 91.0 70.2
NA 95.2 86.6

Overall 91.7 72.9

Table 5: Validation performance of supervised turn-taking prediction model (Sec. 4.1).

A.3 Architecture of Judge Turn-takingModel

The input to the model is single-channel mixed speech X which can be represented as a T -length
sequence of features X = {xt |t = 1, . . . ,T }. Through the maximum a posteriori (MAP) decision
theory, our turn-taking model estimates the label sequence L by maximizing posterior probability
P(L|X). By product rule, we have P(L|X) =

∏N
i=1 P(li|l1:i−1, X). For simplicity, we divide the entire

conversation audio into a sequence of N non-overlapping chunks U = {Ui | i = 1, . . . ,N} such that
Ui = xBi−1+1:Bi where Bi = i ∗Nblock and Nblock is the size of the chunk. Our model is causal such that
it is trained to make future predictions, i.e., what turn-taking event will happen in the next chunk?
Hence, we condition on only the first i − 1 chunks i.e., U1:i−1:

P(L|X) =
N∏

i=1

P(li|l1:i−1,U1:i−1). (6)

From Sec. 3.1, we have U1:i−1 = x1:Bi−1 . By C.I. assumption of li y l1:i−1 | U1:i−1, we get P(L|X) =∏N
i=1 P(li|x1:Bi−1 ). We can further simplify by conditioning only on a prior context window Ûi of size

W:
Ûi = x(Bi−1−W):Bi−1 . (7)

Using Ûi and CI assumption, we simplify Eq. 6 to:

P(L|X) =
N∏

i=1

P(li|Ûi). (8)

Fig. 7 shows the architecture of our causal turn-taking model. The input speech is first passed
through encoders (Encoder(·)) of the pre-trained speech foundation model, namely Whisper (Rad-
ford et al., 2022). We perform a weighted sum of the encoder’s hidden states (Yang et al., 2021) and
then use the encoder output of the last audio frame as acoustic representation hi = Encoder(Ûi). The
acoustic representations are then passed through linear layer (Out(·)) followed by softmax:

f(Ûi, θ) = Softmax(Out(hi)), (9)

where f(Ûi, θ)[li] is the likelihood that the turn-taking event li will happen at chunk i as predicted
by our supervised turn-taking model. The entire model is then trained using cross entropy loss.
It is important to note that while some prior approaches (Ekstedt & Skantze, 2022a) can model
interruptions, they require separate channels for each speaker, which might not always be available.
Our approach, however, can effectively model both speakers’ turn-taking behavior using single-
channel mixed speech, thereby overcoming this limitation.

A.4 Experiment Setup of Supervised Turn-TakingModel

The size of the chunk, i.e., Nblock is 40msec. We use the Whisper medium encoder to generate
acoustic representations. The context window of the supervised turn-taking model W is 30 seconds.
To get backchannel annotations, we follow Wang et al. and use the most common isolated one and
two-word phrases as backchannels 6. Following (Wang et al., 2024), we downsample chunks with

6https://github.com/ErikEkstedt/VoiceActivityProjection/blob/main/dataset_swb/
backchannels.csv
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Switchboard
Turn-Taking Metric Agreement Margin of Error

When to speak up?
When listener decides to speak up 81.2 ±6.43
When listener lets speaker continue 75.5 ±7.46

When to backchannel?
When listener backchannels 71.6 ±5.75
When listener does not backchannels 74.8 ±3.49

When to interrupt?
When listener interrupt 76.6 ±5.13
When listener does not interrupt 72.8 ±1.80

Handle user interruptions?
When interrupting speaker takes the floor 61.3 ±5.90
When interrupting speaker does not take the floor 57.0 ±5.30

Table 6: Results presenting alignment of judge label with human decisions in in-domain validation
set. We also show the Margin of Error (ME) (Tanur, 2011) for 95% confidence intervals to quantify
uncertainty in agreement between judge labels and human relevance judgments due to sensitivity to
threshold values as discussed in Sec. A.8.

Turn-Taking Metric Moshi Cascaded

(a) When to speak up?
When listener decides to speak up [88.7, 94.2] [84.2, 88.9]
When listener lets speaker continue [48.9, 56.5] [38.4, 48.3]

(b) When to backchannel?
When listener backchannels [22.9, 63.4] [ 0.0, 59.5]
When listener does not backchannels [85.7, 87.8] [90.7, 92.5]

(c) When to interrupt?
When listener interrupt [31.1, 42.0] [11.8, 32.6]
When listener does not interrupt [77.3, 80.6] [83.9, 85.5]

(a) Convey user to speak up?
When listener decides to speak up [79.0, 84.9] [77.3, 86.2]
When listener lets speaker continue [24.9, 36.2] [36.9, 44.1]

(e) Handle user interruptions?
When interrupting speaker takes the floor [26.2, 84.0] [ 0.0, 35.3]
When interrupting speaker does not take the floor [37.2, 65.2] [89.2, 100.0]

Table 7: Confidence intervals for the consistency of the AI dialogue system’s turn-taking decisions
with judge labels across our proposed metrics.
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label class C, NA, BC and I from training set such that there are roughly similar numbers of samples
for each label class. The validation performance is shown in Table 5.

We evaluated our model’s OOD generalization on two out-of-domain (OOD) datasets: (1) the
Columbia Games Corpus (Gravano & Hirschberg, 2011), a 10-hour task-oriented spoken dialog
corpus, and (2) the Fisher Corpus (Cieri et al., 2004), a non-task-oriented spoken dialog corpus.
The Fisher dataset’s transcriptions were created using the Quick Transcription specification, which
introduced inaccuracies and left significant portions untranscribed. To address this, we developed
heuristics to identify and exclude audio segments with large untranscribed content from the test set.
We created a random test split of 138 conversations, comprising 23 hours of audio, which we will
make publicly available. Further manual analysis revealed errors in the ground truth timestamps. We
corrected these timestamps using speaker diarization outputs from Pyannote. All data preparation
code and our turn-taking model will also be made publicly available.

For our proposed metrics (Sec. 4.4-4.8), we get the following values for threshold i.e. threshold1 =
0, threshold2 = 0.1, threshold3 = -0.45, threshold4 = -0.1. The agreement between the judge labels
and human judgment on the in-domain validation set is shown in Table 6. We discuss the impact of
threshold tuning on our judge model’s agreement with human judgment in Sec. A.8.

For single-label evaluations (Sec. 4.9), operating points or thresholds for the predicted likelihood of
label C = 0.2, NA = 0.45, I = 0.4, BC = 0.4, T = 0.4. The validation F1 using these thresholds is
shown in Tab. 5.

A.5 Dataset and Audio FM details for Additional Evaluation

Understand Turn-Taking Events: To evaluate this, we create a test bed where positive samples are
those where ∃i : li =l and negative samples are those where ∀i : li ,l where l is either T, BC or I.
The audio FM is then prompted to answer a simple Yes/No question. We create a test benchmark
from 1500 samples from Switchboard’s test set, such that there are 750 positive and 750 negative
samples. Each audio sample has a maximum length of 10 seconds. We evaluate both open-source
Audio FMs, such as Qwen-Audio-Chat (Chu et al., 2023) (7B), Qwen2-Audio-Instruct (Chu et al.,
2024) (7B), and SALMONN (Tang et al., 2024) (13B), as well as a cascade system combining
Whisper and GPT-4o using the OpenAI API. We manually construct five prompts to query these
FMs and present the results using the most effective prompt. The best prompt for each audio FM is
detailed in Tab. 9.

Predict Turn-Taking Events: The samples in this evaluation benchmark for predicting turn change,
backchannel, interruption, and floor-taking interruption are obtained from instances used to compute
human relevance judgments for Metrics (1), (2), (3), and (5), respectively. Similar to Setting 1, the
audio FM is again prompted to answer a simple Yes/No question. Similar to before, each evaluation
benchmark consist of 1500 samples7 with equal positive and negative instances. Each audio sample
has a maximum length of W = 30 seconds, matching the context window of the supervised topline
model. We evaluate the same audio FMs as before. We again manually construct five prompts to
query these FMs and the best prompt for each audio FM is detailed in Tab. 10 and 11.

A.6 Natural Dialogue Event Statistics

The input speech for each utterance is passed through an ASR model (Radford et al., 2022) to get
the corresponding ASR transcript. We use the generated transcript to get the speaking rate (i.e.
number of words/minute). We compute backchannel sequence BCAI and BCHuman (See Sec. 4.3)
and report the backchannel word rate (i.e. number of backchannel words/minute) Tab. 8 shows that
1 both dialogue systems speak faster than the average human, with Moshi, in particular, speaking
at a significantly higher rate, and 2 both dialogue systems do not produce a similar number of
backchannels as humans.

A.7 Scalability and Applicability to non English and low reseource Languages

As noted in Appendix A.1, prior work (Inoue et al., 2024) successfully trained turn-taking models on
Chinese (Mandarin) and Japanese using publicly available datasets. Interestingly, multilingual mod-

7Except benchmark of floor-taking interruptions, which only has 250 samples since interruptions are rare.
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Dialogue System Speaking Rate Backchannel rate

Switchboard 204.5 4.00

Moshi 223.7 0.25
Cascaded 206.5 0.13

Table 8: Performance of audio foundation models on engaging in conversation with humans based
on Natural Dialogue Event Statistics i.e. Speaking rate and Backchannel rate.

els trained on English, Chinese, and Japanese perform comparably to monolingual models despite
the diverse turn-taking behaviors of these languages.

To address scenarios without supervised datasets, we propose a low-cost solution: collecting a small
spoken dataset for the target language and generating annotations through human efforts or using
tools like PyAnnote (speaker diarization) and Whisper (ASR). We can then train multilingual turn-
taking models that leverage high-resource language data to improve performance on low-resource
languages. This approach is still far more cost-effective than collecting human relevance judgments
for every turn-taking event.

A.8 Impact of tuning thresholds for judge labels

The number of turn taking events are extremely unbalanced with continuation (C) and silence (NA)
making up the label set for more than 95% of instances. As a result, it is a common practice in
prior literature (Ekstedt & Skantze, 2022a) to tune the threshold for each label on the validation set.
We further surveyed prior literature to better quantify the impact of threshold tuning on our judge
model’s performance and identified two main approaches:

1 Sensitivity Analysis (Novello et al., 2022; Razavi et al., 2021; Sadeghi & Matwin, 2024): Prior
works have experimented with varying key hyperparameters systematically over a range and ana-
lyzed validation performance as a function of hyperparameters. Inspired by this, we vary thresholds
from -0.5 to 0.5 for metrics where judge labels are computed using the difference of 2 likelihoods
(all metrics (Sec. 4.4- 4.8) except metric (B) (see Eq. 3)) and from 0 to 1 for others (i.e., for metric B
in Sec. 4.5). The thresholds are incremented in steps of 0.01. We then calculated the Margin of Er-
ror (ME) (Tanur, 2011) for 95% Confidence Intervals to quantify uncertainty in agreement between
judge labels and human relevance judgments due to sensitivity to threshold values. Margin of error
(ME) is calculated as:

ME = z ·
σ
√

n
(10)

Where (z = 1.96): Z-score for a 95% confidence level, (σ): Standard deviation and (n): Sample size
(i.e. Size of threshold range over which performance is computed =100 for our experiments)
The observed margin of errors, along with the agreement of the judge label with human decisions
on the in-domain validation set, are shown in Tab. 6. Generally, a margin of error of below 5% is
considered excellent for high-accuracy needs, and less than 10% is acceptable for most studies. Our
analysis shows that the agreement with human judgements does not undergo huge fluctuations with
changes in threshold (i.e., margin of error is always less than 10%), and hence, our approach does
not require extensive hyperparameter tuning.

2 Validation on Multiple Datasets (van Rijn & Hutter, 2018): Prior works have argued the reli-
ability of their model by showing consistent performance across datasets, demonstrating that the
model generalizes well without dataset-specific tuning. In Figure 3, our judge labels achieve good
agreement with human judgment even on the OOD spoken dialog dataset, i.e., Columbia Games
Corpus, without a threshold being specifically tuned for this dataset. This result shows that our
model achieves consistent performance without dataset-specific tuning.
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Turn-taking event Model Prompts Example Output

Turn Change

SALMONN No, the given audio
does not have a turn
change.

Qwen2-
Audio-
Instruct

Does the given audio has a
turn change anywhere?
Briefly explain your answer.
You must reply with (a) Yes
or (b) No.

No, there is no turn
change in the speech
as the pitch and
tone remain consis-
tent throughout the
recording.

Qwen-Audio-
Chat

Yes, there is a turn
change in the given
audio. The male
speaker starts speak-
ing and then the fe-
male speaker starts
speaking.

Whisper+GPT-
4o

Does the given audio has
a turn change anywhere?
Briefly explain your answer.
You must reply with (a) Yes
or (b) No.

(b) No

Backchannel

SALMONN Backchannels are brief
words or sounds (like ’um,’
’right,’ or ’okay’) that a
listener makes to show
they’re paying attention. Do
the 2 speakers backchannel
anywhere in the provided
audio? Briefly explain your
answer. You must reply
with (a) Yes or (b) No.

No, the speakers do
not backchannel in
the provided audio.

Qwen2-
Audio-
Instruct

No, there are no
backchannels in this
audio.

Qwen-Audio-
Chat

Yes, the two speakers
backchannel briefly
in the provided au-
dio.

Whisper+GPT-
4o

Do the 2 speakers backchan-
nel anywhere in the pro-
vided audio? Briefly explain
your answer. You must reply
with (a) Yes or (b) No.

(b) No

Interruption

SALMONN Do the 2 speakers interrupt
each other anywhere in the
provided audio? Briefly
explain your answer. You
must reply with (a) Yes or
(b) No.

No, the 2 speakers
do not interrupt each
other in the provided
audio.

Qwen2-
Audio-
Instruct

No, the speakers do
not interrupt each
other. They speak at
different times and
their overlapping is
minimal.

Qwen-Audio-
Chat

Yes, the two speakers
interrupt each other.

Whisper+GPT-
4o

Do the 2 speakers interrupt
each other anywhere in the
provided audio? Briefly ex-
plain your answer. You must
reply with (a) Yes or (b) No.

(b) No

Table 9: Prompts for audio foundation models on test benchmarks evaluating their ability to under-
stand turn-taking events. All open source FMs have same best prompt.
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Turn-taking event Model Prompts Example Output

Turn Change

SALMONN You are provided the audio of a 2 speaker
conversation. The current speaker takes pause at
the end of current audio. Given the provided
audio, do you think that after the pause, the
current speaker will (A) continue talking or (B)
the second speaker will speak up. Output only A
or B, nothing else. Among A or B, the answer is

(B) The second speaker will speak up.
Qwen2-
Audio-
Instruct

The current speaker will continue talking.

Qwen-Audio-
Chat

B

Whisper+GPT-
4o

You are provided the audio of a 2 speaker conver-
sation. The current speaker takes pause at the end
of current audio. Given the provided audio, do
you think that after the pause, the current speaker
will (a) continue talking or (b) the second speaker
will speak up. Briefly explain your answer. You
must reply with one of 2 options.

(b) the second speaker will speak up. The current
speaker has asked a direct question, which typi-
cally prompts a response from the second speaker.

Backchannel

SALMONN You are given the audio of a two-speaker
conversation. Based on the provided audio, do
you predict that either speaker will produce a
backchannel (e.g., a short acknowledgment or
response) immediately after the end of the audio?
Please explain your reasoning briefly. You must
answer (a) Yes or (b) No.

No, I do not predict that either speaker will pro-
duce a backchannel immediately after the end of
the audio.

Qwen2-
Audio-
Instruct

Yes

Qwen-Audio-
Chat

Based on the provided audio, it is likely that ei-
ther speaker will produce a backchannel response
immediately after the end of the audio. This is be-
cause the conversation is between two people who
are discussing a topic and exchanging ideas, and it
is common for people to respond or acknowledge
each other after a pause or when the conversation
is wrapping up.

Whisper+GPT-
4o

You are provided the audio of a 2 speaker conver-
sation. Given the provided audio, do you think
any of the 2 speaker will backchannel exactly af-
ter the end of the audio. Answer as (a) yes or (b)
no. Briefly explain your answer.

(b) no. Explanation: The provided text does
not indicate any clear cues or signals that would
prompt an immediate backchannel response from
the other speaker. The speaker is expressing per-
sonal thoughts and opinions, and there is no ev-
ident pause or question that would naturally lead
to a backchannel response right at the end of the
audio.

Interruption

SALMONN During spontaneous human conversation,
interruptions occur frequently and often
correspond to breaks in the information flow
between conversation partners. You are analyzing
a brief audio clip from a two-person conversation.
The clip ends abruptly while the current speaker
is still in the middle of a sentence. Based ONLY
on the provided audio, is it more likely that: (a)
The other speaker will interrupt BEFORE the
current speaker finishes their sentence? (b) The
other speaker will let the current speaker to
continue speaker? Justify your choice,
considering the factors that might lead to an
interruption or encourage someone to wait their
turn.

(a) The other speaker will interrupt BEFORE the
current speaker finishes their sentence.

Qwen2-
Audio-
Instruct

It is not possible to determine with certainty
whether the other speaker will interrupt before
the current speaker finishes their sentence based
solely on the provided audio.

Qwen-Audio-
Chat

(a) The other speaker will interrupt BEFORE the
current speaker finishes their sentence. The con-
versation ends abruptly, and the other speaker is
still speaking, suggesting that they were inter-
rupted. Additionally, the other speaker mentions
”that wouldn’t be fair” and ”what they would have
to do,” indicating that they may be about to make
an argument or disagreement, which could lead to
an interruption.

Whisper+GPT-
4o

During spontaneous human conversation, inter-
ruptions occur frequently and often correspond to
breaks in the information flow between conversa-
tion partners. Interruptions can happen due to a
variety of reasons like urgency, disagreement, etc.
Interruptions can be broadly classified into two
categories: competitive and cooperative interrup-
tions. Occurrences of competitive interruptions
are usually disrupting to the flow of conversation
between speakers while cooperative interruptions
are more supportive to the flow. You are analyzing
a brief audio clip from a two-person conversation.
The clip ends abruptly while the current speaker is
still in the middle of a sentence. It is unclear from
the provided audio whether the speaker is about to
pause, is struggling to find the right word, or will
continue speaking uninterrupted. Based ONLY
on the provided audio, is it more likely that: (a)
The other speaker will interrupt BEFORE the cur-
rent speaker finishes their sentence? (b) The other
speaker will let the current speaker to continue
speaker? Justify your choice, considering the fac-
tors that might lead to an interruption or encourage
someone to wait their turn.

Based on the provided audio, it is more likely that:
(b) The other speaker will let the current speaker
continue speaking. Justification: 1. **Flow of
Conversation**: The current speaker is narrating
a story with a clear sequence of events. The nar-
rative seems to be reaching a conclusion, as indi-
cated by the speaker’s expression of satisfaction (Ï
just had the biggest grin on my face)̈. 2. **Lis-
tener’s Engagement**: The other speaker has al-
ready shown engagement and support by interject-
ing with Ï’ll bet you did,ẅhich is a cooperative in-
terruption. This indicates that the listener is fol-
lowing the story and is likely to allow the speaker
to finish their thought. 3. **Lack of Urgency or
Disagreement**: There are no signs of urgency
or disagreement in the provided audio. The tone
of the conversation is casual and friendly, which
reduces the likelihood of a competitive interrup-
tion. 4. **Narrative Completion**: The current
speaker is in the middle of a sentence that seems
to be wrapping up the story. Interrupting at this
point would disrupt the natural conclusion of the
narrative. Given these factors, it is more reason-
able to expect that the other speaker will wait for
the current speaker to finish their sentence before
responding.

Table 10: Prompts for audio foundation models on test benchmarks evaluating their ability to predict
turn-taking events. All open source FMs have same best prompt.
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Turn-taking event Model Prompts Example Output

Successful SALMONN You are examining a short audio clip from a
conversation between two people. The audio ends
suddenly RIGHT as the second speaker begins to
talk, overlapping with the first speaker. It’s
impossible to tell from this brief excerpt if the
first speaker was about to pause, was having
trouble finding a word, or would have continued
speaking. Based ONLY on the provided audio, is
it more likely that: (A) The second speaker’s
overlap is a successful interruption, and they will
take over the conversation? (B) The second
speaker’s overlap is a mistimed attempt to start
their turn, and the first speaker will continue,
forcing the second speaker to wait for a natural
break or pause before speaking? Output only A
or B, nothing else. Among A or B, the answer is

(B) The second speaker’s overlap is a mistimed
attempt to start their turn, and the first speaker will
continue, forcing the second speaker to wait for a
natural break or pause before speaking

Qwen2-
Audio-
Instruct

B

Interruption Qwen-Audio-
Chat

Based solely on the provided audio, it is more
likely that the second speaker’s overlap is a suc-
cessful interruption, and they will take over the
conversation. This is because the audio ends
abruptly as the second speaker begins to speak,
suggesting that the first speaker was interrupted.
Additionally, the second speaker’s tone sounds
confident and assertive, which is characteristic of
someone who is trying to take over a conversation.
On the other hand, the first speaker’s response is
short and does not indicate that they are about to
pause or continue speaking.

Whisper+GPT-
4o

During spontaneous human conversation, inter-
ruptions occur frequently and often correspond to
breaks in the information flow between conver-
sation partners. Interruptions can happen due to
a variety of reasons like urgency, disagreement,
etc. Interruptions can be broadly classified into
two categories: competitive and cooperative in-
terruptions. Occurrences of competitive interrup-
tions are usually disrupting to the flow of con-
versation between speakers while cooperative in-
terruptions are more supportive to the flow. You
are examining a short audio clip from a conver-
sation between two people. The audio ends sud-
denly RIGHT as the second speaker begins to talk,
overlapping with the first speaker. It’s impossible
to tell from this brief excerpt if the first speaker
was about to pause, was having trouble finding a
word, or would have continued speaking. Based
ONLY on the provided audio, is it more likely
that: (a) The second speaker’s overlap is a suc-
cessful interruption, and they will take over the
conversation? (b) The second speaker’s overlap is
a mistimed attempt to start their turn, and the first
speaker will continue, forcing the second speaker
to wait for a natural break or pause before speak-
ing? Justify your choice, considering the fac-
tors that might lead to a successful interruption
or encourage someone to wait their turn, but fo-
cus on how the SPECIFIC TIMING of this over-
lap makes one outcome more likely than the other.

Based on the provided audio excerpt, it is more
likely that: (b) The second speaker’s overlap is a
mistimed attempt to start their turn, and the first
speaker will continue, forcing the second speaker
to wait for a natural break or pause before speak-
ing. Justification: 1. **Context and Flow**: The
first speaker is in the middle of a detailed expla-
nation about weather patterns and their impact on
snowfall. They have not yet reached a clear con-
clusion or natural pause in their narrative. The
sentence B̈ut I have playeds̈uggests that the first
speaker is about to continue with a related point
or anecdote. 2. **Timing of Overlap**: The over-
lap occurs just as the first speaker is transitioning
to a new but related point (B̈ut I have played)̈.
This timing suggests that the first speaker is not
finished and is likely to continue speaking. The
second speaker’s attempt to interject at this mo-
ment is mistimed because it interrupts the flow of
the first speaker’s ongoing thought. 3. **Con-
versational Dynamics**: In spontaneous conver-
sation, speakers often signal the end of their turn
with a clear pause or a concluding statement. The
first speaker has not provided such a signal, mak-
ing it more likely that they will continue speak-
ing despite the second speaker’s attempt to inter-
ject. Given these factors, the specific timing of the
overlap makes it more likely that the first speaker
will continue, and the second speaker will need to
wait for a more appropriate moment to take their
turn.

Table 11: Prompts for audio foundation models on test benchmarks evaluating their ability to predict
turn-taking events. All open source FMs have same best prompt.
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