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ABSTRACT

We consider the problem of efficient blackbox optimization over a large hybrid
search space, consisting of a mixture of a high dimensional continuous space
and a complex combinatorial space. Such examples arise commonly in evo-
lutionary computation, but also more recently, neuroevolution and architecture
search for Reinforcement Learning (RL) policies. Unfortunately however, previ-
ous mutation-based approaches suffer in high dimensional continuous spaces both
theoretically and practically. We thus instead propose ES-ENAS, a simple joint
optimization procedure by combining Evolutionary Strategies (ES) and combi-
natorial optimization techniques in a highly scalable and intuitive way, inspired
by the one-shot or supernet paradigm introduced in Efficient Neural Architecture
Search (ENAS). Through this relatively simple marriage between two different
lines of research, we are able to gain the best of both worlds, and empirically
demonstrate our approach by optimizing BBOB functions over hybrid spaces as
well as combinatorial neural network architectures via edge pruning and quanti-
zation on popular RL benchmarks. Due to the modularity of the algorithm, we
also are able incorporate a wide variety of popular techniques ranging from use
of different continuous and combinatorial optimizers, as well as constrained opti-
mization.

1 INTRODUCTION AND RELATED WORK

We consider the problem of optimizing an expensive function f : (M, Rd) → R, where M is
a combinatorial search space consisting of potentially multiple layers of categorical and discrete
variables, and Rd is a high dimensional continuous search space, consisting of potentially hundreds
to thousands of parameters. Such scenarios exist in reinforcement learning (RL), where m ∈ M
represents an architecture specification and θ ∈ Rd represents neural network weights, together to
form a policy πm,θ : S → A in which the goal is to maximize total reward in a given environment.
Other examples include flight optimization (Ahmad & Thomas, 2013), protein and chemical design
(Elton et al., 2019; Zhou et al., 2017; Yang et al., 2019), and program synthesis (Summers, 1977).

There have been a flurry of previous methods for approaching complex, combinatorial search spaces,
especially in the evolutionary algorithm domain, including the well-known NEAT (Stanley & Mi-
ikkulainen, 2002). Coincidentally, the neural architecture search (NAS) community has also adopted
a multitude of blackbox optimization methods for dealing with NAS search spaces, including pol-
icy gradients via Pointer Networks (Vinyals et al., 2015) and more recently Regularized Evolution
(Real et al., 2018). Such methods have been successfully applied to applications ranging from im-
age classification (Zoph & Le, 2017) to language modeling (So et al., 2019), and even algorithm
search/genetic programming (Real et al., 2020; Co-Reyes et al., 2021). Combinatorial algorithms
allow huge flexibility in the search space definition, which allows optimization over generic spaces
such as graphs, but many techniques rely on the notion of zeroth-order mutation, which can be
inappropriate in high dimensional continuous space due to large sample complexity (Nesterov &
Spokoiny, 2017).

On the other hand, there are also a completely separate set of algorithms for attacking high di-
mensional continuous spaces Rd. These include global optimization techniques including the
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Cross-Entropy method (de Boer et al., 2005) and metaheuristic methods such as swarm algorithms
(Mavrovouniotis et al., 2017). More local-search based techniques include the class of methods
based on Evolution Strategies (ES) (Salimans et al., 2017), such as CMA-ES (Hansen et al., 2003;
Krause et al., 2016; Varelas et al., 2018) and Augmented Random Search (ARS) (Mania et al.,
2018b). ES has been shown to perform well for reinforcement learning policy optimization, es-
pecially in continuous control (Salimans et al., 2017) and robotics (Gao et al., 2020; Song et al.,
2020a). Even though such methods are also zeroth-order, they have been shown to scale better than
previously believed (Conti et al., 2018; Liu et al., 2019a; Rowland et al., 2018) on even millions of
parameters (Such et al., 2017) due to advancements in heuristics (Choromanski et al., 2019a) and
Monte Carlo gradient estimation techniques (Choromanski et al., 2019b; Yu et al., 2016). Unfortu-
nately, these analytical techniques are limited only to continuous spaces and at best, basic categorical
spaces via softmax reparameterization.

One may thus wonder whether it is possible to combine the two paradigms in an efficient manner.
For example, in NAS applications, it would be extremely wasteful to run an end-to-end ES-based
training loop for every architecture proposed by the combinatorial algorithm. At the same time, two
practical design choices we must strive towards are also simplicity and modularity, in which a user
may easily setup our method and arbitrarily swap in continuous algorithms like CMA-ES (Hansen
et al., 2003) or combinatorial algorithms like Policy Gradients (Vinyals et al., 2015) and Regularized
Evolution (Real et al., 2018), for specific scenarios. Generality is also an important aspect as well,
in which our method should be applicable to generic hybrid spaces. For instance, HyperNEAT
(Stanley et al., 2009) addresses the issue of high dimensional neural network weights by applying
NEAT to evolve a smaller hypernetwork (Ha et al., 2017) for weight generation, but such a solution
is domain specific and is not a general blackbox optimizer. Similarly restrictive, Weight Agnostic
Neural Networks (Gaier & Ha, 2019) do not train any continuous parameters and apply NEAT to
only the combinatorial spaces of network structures. Other works address blackbox hybrid spaces
via Bayesian Optimization (Deshwal et al., 2021) or Population Based Training (Parker-Holder et al.,
2021), but only in hyperparameter tuning settings whose search spaces are significantly smaller.
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Figure 1: Figure representing our aggregator-worker
pipeline when using a NAS controller with the vanilla
ES method, where the aggregator proposes models mi

in addition to a perturbed input θ+σgi, and the worker
the computes the objective f(mi, θ + σgi), which is
sent back to the aggregator. Both the training of the
weights θ and of the model-proposing controller pφ rely
on the number of worker samples to improve perfor-
mance.

We are thus inspired by the joint optimization
method from Efficient NAS (ENAS) (Pham
et al., 2018), which introduces the notion of
weight sharing to build a maximal supernet
containing all possible weights θs where each
child model m only utilizes certain subcompo-
nents and their corresponding weights from this
supernet. Child models m are sampled from a
controller pφ, parameterized by some state φ.
The core idea is to perform separate updates
to θs and φ in order to respectively, improve
both neural network weights and architecture
selection at the same time. However, ENAS
was originally proposed in the setting of using
a GPU worker with autodifferentiation over θs
in mind for efficient NAS training.

In order to adopt ENAS’s joint optimiza-
tion into the fully blackbox (and potentially
non-differentiable) scenario involving hun-
dreds/thousands of CPU-only workers, our key
observation is that algorithms for combinatorial
and continuous spaces commonly use very sim-
ilar distributed workflows, involving usually a central aggregator and multiple parallel workers for
function evaluations. Thus we may modify the aggregator to suggest a joint tuple (m, θ), with
function evaluations f(m, θ) used by both the combinatorial and continuous algorithms for im-
provement. A visual representation of our algorithm can be found in Fig. 1.

We thus introduce the ES-ENAS algorithm, which is theoretically grounded, requires no extra com-
putational resources, and is empirically effective on large hybrid search spaces ranging from cate-
gorized BBOB functions and neural network topologies.

2



Under review as a conference paper at ICLR 2022

2 ES-ENAS METHOD

2.1 PRELIMINARIES

We first define notation. LetM be a combinatorial search space in whichm are drawn from, and θ ∈
Rd to be the continuous parameter. For scenarios such as NAS, one may defineM’s representation
to be the superset of all possible child models m. Let φ represent the state of our combinatorial
algorithm. Assuming this algorithm allows randomization, let pφ be the current distribution over
M, where φ is to be optimized, and thus we may also sample m ∼ pφ. We interchangeably refer to
pφ as also a “controller” and θ as “weights” using NAS terminology.

2.2 ALGORITHM

Algorithm 1: Default ES-ENAS Algorithm,
with the few additional modifications to allow
ENAS from ES shown in blue.
Data: Initial weights θ, weight step size ηw,

precision parameter σ, number of
perturbations n, controller pφ.

while not done do
Sample i.i.d. vectors
g1, . . . ,gn ∼ N (0, I);

foreach gi do
Sample m+

i ,m
−
i ∼ pφ

v+
i ← f(m+

i , θ + σgi)
v−i ← f(m−i , θ − σgi)
vi ← 1

2 (v+
i − v

−
i )

pφ ← {(m+
i , v

+
i ), (m−i , v

−
i )}

end
Update weights
θ ← θ + ηw

1
σn

∑n
i=1 vigi

Update controller pφ
end

We concisely summarize our ES-ENAS method
in Algorithm 1. For the sake of clarity, we use
vanilla ES as the continuous optimizer and its
derivation, but this can readily be changed to
e.g. CMA-ES via replacing I with a learn-
able covariance matrix C for the perturbation
g ∼ N (0, I) in Eq. 1, along with the update
rule. Other ES variants (Wierstra et al., 2014;
Heidrich-Meisner & Igel, 2009; Krause, 2019)
can be swapped in similarly, although vanilla
ES suffices for common problems such as con-
tinuous control. Below, we provide ES-ENAS’s
derivation and conceptual simplicity of com-
bining the updates for φ and θ into a joint opti-
mization procedure.

The optimization problem we are interested in
is maxm∈M,θ∈Rd f(m, θ). In order to make
this problem tractable, consider instead, opti-
mization on the smoothed objective:

f̃σ(φ, θ) = Em∼pφ,g∼N (0,I) [f(m, θ + σg)]
(1)

The core trick is to use samples fromm ∼ pφ,g ∼ N (0, I) for updating both algorithm components
in an unbiased manner.

2.2.1 UPDATING THE WEIGHTS

The goal is to improve f̃σ(φ, θ) with respect to θ via one step of the gradient:

∇θf̃σ(φ, θ) =
1

2σ
Em∼pφ,g∼N (0,I) [(f(m, θ + σg)− f(m, θ − σg))g] (2)

Note that by linearity, we may move the expectation Em∼pφ inside into the two terms f(m, θ+ σg)
and f(m, θ − σg), which implies that the gradient expression can be estimated with averaging
singleton samples of the form:

1

2σ
(f(m+, θ + σg)− f(m−, θ − σg))g (3)

where m+,m− are i.i.d. samples from pφ, and g from N (0, I).

Thus we may sample multiple i.i.d. child models m+
1 ,m

−
1 ...,m

+
n ,m

−
n ∼ pφ and also multiple

perturbations g1, ...,gn ∼ N (0, I) and update weights θ with an approximate gradient update:

θ ← θ + ηw

(
1

n

n∑
i=1

f(m+
i , θ + σgi)− f(m−i , θ − σgi)

2σ
gi

)
(4)

This update forms the “ES” portion of ES-ENAS. As a sanity check, we can see that using a constant
fixed m = m+

1 = m−1 = ... = m+
n = m−n reduces Eq. 4 to standard ES/ARS optimization.
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2.2.2 UPDATING THE CONTROLLER

For the “ENAS” portion of ES-ENAS (i.e. for optimizing the m ∈ M component), we update pφ
by simply reusing the objectives f(m, θ+σg) already computed for the weight updates, as they can
be viewed as unbiased estimations of Eg∼N (0,I)[f(m, θ + σg)] for a given m. Many methods can
be classified within the following approaches:

Policy Gradient Methods: The φ are differentiable parameters of a distribution pφ (usu-
ally a RNN-based controller), with the goal of optimizing the smoothed objective J(φ) =
Em∼pφ,g∼N (0,I)[f(m; θ + g)], whose policy gradient ∇φJ(φ) can be estimated by:

∇̂φJ(φ) =
1

n

n∑
i=1

f(mi, θ + gi)∇φ log pφ(mi) (5)

where log pφ(m) is the log-probability of the controller for selecting m, and thus φ ← φ +

ηpg∇̂φJ(φ) is updated with the use of the REINFORCE algorithm (Williams, 1992), or other vari-
ants such as PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015). When combined with
ES, a “simultaneous gradient”∇φ,θf̃σ(φ, θ) is thus effectively being estimated in ES-ENAS.

Evolutionary Algorithms: In this setting, φ represents the algorithm state, which usually consists
of a population of inputs Q = {(m1, θ1), ..., (mn, θn)} with corresponding evaluations (slightly
abusing notation) f(Q) = {f(m1, θ1), ..., f(mn, θn)}. The algorithm performs a selection pro-
cedure (usually argmax) which selects an individual (mi, θi) or potentially multiple individuals
T ⊆ Q, in order to perform respectively, mutation or crossover to “reproduce” and form a new
child instance (mnew, θnew). Some prominent examples include Regularized Evolution (Real et al.,
2018), NEAT (Stanley & Miikkulainen, 2002), and Hill-Climbing (Golovin et al., 2020; Song et al.,
2020c).

2.3 CONVERGENCE AND EXTENSIONS

Convergence: This mechanism shows that updates to the controller pφ and updates to the weights
θ both rely on the samples f(m, θ + σg). The number of workers n, now serves the two purposes:
reducing the sample complexity of the controller pφ, as well as the variance of the estimated ES
gradient∇θf̃σ . ES usually uses many more workers (on the order of 102) than what is normal in SL
(on the order of 100 to 101 of workers) which can be important for the controller pφ’s performance,
as we will demonstrate in Subsection 3.3.2. However, in high dimensional continuous spaces,
ES/ARS enjoys significantly better convergence over argmax/mutation-based updates (native
to many combinatorial evolutionary algorithms), which supports why simply applying only a
single mutation-based algorithm over the entire space (M,Rd) is highly suboptimal and the need
for ES-ENAS. We experimentally verify this issue in Subsection 3.1 over a wide variety of combi-
natorial evolutionary algorithms. To also understand this issue theoretically, below is an instructive
theorem showing that the performance ratio between ES and hill-climbing (a simple example of
mutation + argmax selection) scales O(d), while compensating by increasing number of workers
requires B = O(2d), equivalent to brute forcing the entire search space (full proof in Appendix E):
Theorem 1. Let f(θ) be a α-strongly concave, β-smooth function over Rd, and let ∆ES(θ) be the

expected improvement of an ES update, while ∆MUT (θ) be the expected improvement of a batched
hill-climbing update, with both starting at θ and using B ≤ O(2d) parallel evaluations / workers

for fairness. Then assuming optimal hyperparameter tuning, ∆ES(θ)
∆MUT (θ) ≥ O

(
1
κ

(
√
d−
√

log(B))2

log(B)

)
where κ = β/α is the condition number.

Constrained Optimization: One extension is that the combinatorial/controller algorithm pφ’s ob-
jective can be defined differently from the weights θ’s objective. This is already subtly the case in
NAS, where the controller’s objective is the nondifferentiable validation accuracy of the model,
while the model weights are explicitly optimizing against the differentiable cross-entropy training
loss of the model. More significant differences between the two objectives involve cases such as
efficiency and runtime of the network, which have led to work in EfficientNets (Tan & Le, 2019)
via constrained optimization. We show this scenario can also be applied for the ES-ENAS setting in
Subsection 3.3.4.
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3 EXPERIMENTS

3.1 CURSE OF CONTINUOUS DIMENSIONALITY

We begin our experimental section by demonstrating the degradation of vanilla combinatorial evo-
lutionary algorithms over 19 different Black-Box Optimization Benchmarking (BBOB) functions
(Hansen et al., 2009), when the continuous space grows in size. We define our hybrid search space
as (M,Rdcon), whereM consists of equally spaced gridpoints in Rdcat , which are then considered
unordered categories. Thus m ∈M ⊂ Rdcat , which means an input (m, θ) can be used for a native
continuous function f originally operating on the input space Rdcat+dcon . For practical purposes,
we bound all parameters inside an interval [−L,L], and set the optimum value of f to be 0, with the
argmax argument also located when all parameters are zero valued.

For baselines, our combinatorial evolutionary algorithms include Regularized Evolution (Real et al.,
2018), NEAT (Stanley & Miikkulainen, 2002), Random Search, and Gradientless Descent/Batch
Hill-Climbing (Golovin et al., 2020; Song et al., 2020c). We also include PPO (Schulman et al.,
2017) as a policy gradient baseline, but only for categorical parameters as Pointer Networks do
not support continuous parameters and ES can already be considered a policy gradient/smoothed
gradient approach. To remain fair and consistent across all evolutionary algorithms (including ES),
we use the same mutation for continuous parameters θ ∈ Rdcon , which consists of applying a
random Gaussian perturbation θ + σmutg with a reasonable and tuned scaling σmut, as well as
applying a uniformly random chosen categorical parameter from the dcat parameters to resample.
All algorithms start at the same randomly sampled initial point. More hyperparameters can be found
in Appendix A.3 along with continuous optimizer comparisons (e.g. CMA-ES) in Appendix B.
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Figure 2: Plot of average normalized optimality gap across all BBOB functions (3 seeds each), when ranging
dcat and dcon. As dcon increases, over all combinatorial algorithms (different colors), each ES-ENAS
variant (solid line) begins to outperform its corresponding vanilla combinatorial algorithm (dashed line).
Note that if dcat = 0, all ES-ENAS variants are equivalent to Vanilla ES (single black solid line, 1st row).

3.2 NEURAL NETWORK POLICIES

In order to benchmark our method over more nested combinatorial structures, we apply our method
to two combinatorial problems, Sparsification and Quantization, on standard Mujoco (Todorov
et al., 2012) environments from OpenAI Gym, which are well aligned with the use of ES. One ben-
efit specifically with ES when reducing parameter count is naturally improving sample complexity,
as speed of optimization is inversely related to the input dimension (Jamieson et al., 2012; Storn &
Price, 1997; Agarwal et al., 2011).
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(a)

T =

w1,5 w1,6 w1,7 w1,8 w1,9 w1,10

w2,5 w2,6 w2,7 w2,8 w2,9 w2,10

w3,5 w3,6 w3,7 w3,8 w3,9 w3,10

w4,5 w4,6 w4,7 w4,8 w4,9 w4,10




θs = w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9)

( )
(b)

Figure 3: (a) Example of sparsifying a neural network setup, where solid edges are those learned by the
algorithm. (b) Example of quantization using a Toeplitz pattern (Choromanski et al., 2018), for the first layer
in Fig. 3a. Entries in each of the diagonals are colored the same, thus sharing the same weight value. The
trainable weights θs =

(
w(1), ..., w(9)

)
are denoted at the very bottom in the vectorized form with 9 entries,

which effectively encodes the larger T with 24 entries.

Such problems also have a long history, with sparisification methods such as (Rumelhart, 1987;
Chauvin, 1989; Mozer & Smolensky, 1989) from the 1980’s, Optimal Brain Damage (Cun et al.,
1990), regularization (Louizos et al., 2018), magnitude-based weight pruning methods (Han et al.,
2015; See et al., 2016; Narang et al., 2017), sparse network learning (Gomez et al., 2019; Lenc et al.,
2019), and the recent Lottery Ticket Hypothesis (Frankle & Carbin, 2019). Meanwhile, quantization
has been explored with Huffman coding (Han et al., 2016), randomized quantization (Chen et al.,
2015), and hashing mechanisms (Eban et al., 2020).

3.2.1 RESULTS

Env. Arch. Reward # weights compression # bits

Striker Quantization -247 23 95% 8198
Edge Pruning -130 64 93% 3072

Masked -967 25 95% 8262
Toeplitz -129 110 88% 4832
Circulant -120 82 90% 3936

Unstructured -117 1230 0% 40672

HalfCheetah Quantization 4894 17 94% 6571
Edge Pruning 4016 64 98% 3072

Masked 4806 40 92% 8250
Toeplitz 2525 103 85% 4608
Circulant 1728 82 88% 3936

Unstructured 3614 943 0% 31488

Hopper Quantization 3220 11 92% 3960
Edge Pruning 3349 64 84% 3072

Masked 2196 17 91% 4726
Toeplitz 2749 94 78% 4320
Circulant 2680 82 80% 3936

Unstructured 2691 574 0% 19680

Walker2d Quantization 2026 17 94% 6571
Edge Pruning 3813 64 90% 3072

Masked 1781 19 94% 6635
Toeplitz 1 103 85% 4608
Circulant 3 82 88% 3936

Unstructured 2230 943 0% 31488

Table 1: Comparison of the best policies from six dis-
tinct classes of RL networks: Quantization (ours), Edge
Pruning (ours), Masked, Toeplitz, Circulant, and Un-
structured networks trained with standard ES algorithm
(Salimans et al., 2017). All results are for feedforward
nets with one hidden layer. Best two metrics for each
environment are in bold, while significantly low re-
wards are in red.

We can view a feedforward neural network as
a standard directed acyclic graph (DAG), with
a set of vertices containing values {v1, ..., vk},
and a set of edges {(i, j) | 1 ≤ i ≤ j ≤ k}
where each edge (i, j) contains a weight wi,j ,
as shown in Figures 3a and 3b. The goal
of sparsification is to reduce the number of
edges while maintaining high environment re-
ward, while the goal of quantization is to par-
tition the edges via colorings, which allows
same-colored edges to use the same weight.
These scenarios possess very large combinato-
rial policy search spaces (calculated as |M| >
1068, comparable to 1049 from NASBench-101
(Ying et al., 2019)) that will stress test our ES-
ENAS algorithm and are also relevant to mo-
bile robotics (Gage, 2002). Given the results in
Subsection 3.1 and since this is a NAS-based
problem, for ES-ENAS we use the two most
domain-specific controllers, Regularized Evo-
lution and PPO (Policy Gradient) and take the
best result in each scenario. Specific details and
search space size calculations can be found in
Appendix A.4.

As we have already demonstrated comparisons to blackbox optimization baselines in Subsection
3.1, we instead focus our comparison to domain-specific baselines for the neural network. These
include a DARTS-like (Liu et al., 2019b) softmax masking method (Lenc et al., 2019), where a
trainable boolean matrix mask is applied over the weights for edge pruning. We also include fixed
quantization patterns such as Toeplitz and Circulant (particular class of Toeplitz) matrices, which are
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strong mathematically grounded baselines from (Choromanski et al., 2018). In all cases we use the
same hyper-parameters, and train until convergence for three random seeds. For masking, we report
the best achieved reward with > 90% of the network pruned, making the final policy comparable
in size to the quantization and edge-pruning networks. Specific details can be found in Appendices
C.1 and A.4.

For each class of policies, we compare various metrics, such as the number of weight parameters
used, total parameter count compression with respect to unstructured networks, and total number of
bits for encoding float values (since quantization and masking methods require extra bits to encode
the partitioning via dictionaries).

As we can see in Table 1, both sparsification and quantization can be learned from scratch via op-
timization using ES-ENAS, which achieves competitive or better rewards against other baselines.
This is especially true against hand-designed (Toeplitz/Circulant) patterns which significantly fail
at Walker2d, as well as other optimization-based reparameterizations, such as softmax masking,
which underperforms on the majority of environments.

The full set of numerical results over all of the mentioned methods can be found in Appendix C,
which includes quantization (Appendix C.2), edge pruning and nonlinearity search (Appendix C.3),
as well as plots for baseline methods (Fig. 9).

3.3 NEURAL NETWORK POLICY ABLATIONS

In the rest of the experimental section, we provide ablations studies on the properties and extensions
of our ES-ENAS method. Because of the nested combinatorial structure of the neural network space
(rather than the flat space of BBOB functions), many desired behaviors for the algorithm are no
longer obvious nor visualizable at first sight. These behaviors include as raised questions, which
also highlight certain similarities and differences from regular NAS in supervised learning:

1. How do controllers compare in performance?
2. How does the number of workers affect the quality of optimization?
3. Does the algorithm converge properly to a fixed architecture m?
4. Does constrained optimization also work in ES-ENAS?

3.3.1 CONTROLLER COMPARISONS

As shown in Subsection 3.1, Regularized Evolution (Reg-Evo) was the highest performing controller
when used in ES-ENAS. However, this is not always the case, as mutation-based optimization may
be prone to being stuck in local optima whereas policy gradient methods (PG) such as PPO can
allow better exploration.

Figure 4: Comparisons across different environments when using different controllers, on the edge pruning
and quantization tasks, when using a linear layer (L) or hidden layer of size 32 (H32).
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We thus compare different ES-ENAS variants, when using Reg-Evo, PG (PPO), and random search
(for sanity checking), on the edge pruning task in Fig. 4. As shown, while Reg-Evo consistently con-
verges faster than PG at first, PG eventually may outperform Reg-Evo in asymptotic performance.
Previously on NASBENCH-like benchmarks, Reg-Evo consistently outperforms PG in both sample
complexity and asymptotic performance (Real et al., 2018), and thus our results on ES-ENAS are
surprising, potentially due to the hybrid optimization of ES-ENAS.

Random search has been shown in supervised learning to be a surprisingly strong baseline (Li &
Talwalkar, 2019), with the ability to produce even ≥ 80-90 % accuracy (Pham et al., 2018; Real
et al., 2018), showing that NAS-based optimization produces most gains ultimately be at the tail
end; e.g. at the 95% accuracies. In the ES-ENAS setting, this is shown to occur for easier RL
environments such as Striker (Fig. 4) and Reacher (shown in Appendices C.2, C.3). However, for
the majority of RL environments, a random search controller is unable to train at all, which also
makes this regime different from supervised learning.

3.3.2 CONTROLLER SAMPLE COMPLEXITY

We further investigate the effect of the number of objective values per batch on the controller by
randomly selecting only a subset of the objectives f(m, θ) for the controller pφ to use, but maintain
the original number of workers for updating θs via ES to maintain weight estimation quality to
prevent confounding results. We found that this sample reduction can reduce the performance of
both controllers for various tasks, especially the PG controller. Thus, we find the use of the already
present ES workers highly crucial for the controller’s quality of architecture search in this setting.

Figure 5: Regular ES-ENAS experiments with 150 full controller objective value usage plotted in darker colors.
Experiments with lower controller sample usage (10 random samples, similar to the number of simultaneously
training models in (Tan et al., 2018b)) plotted in corresponding lighter colors.

3.3.3 VISUALIZING AND VERIFYING CONVERGENCE

Figure 6: Edge pruning convergence over time, with samples aggregated over 3 seeds from PG runs on Swim-
mer. Each edge is colored according to a spectrum, with its color value equal to 2|p − 1

2
| where p is the

edge frequency. We see that initially, each edge has uniform (p = 1
2
) probability of being selected, but as the

controller trains, the samples converge toward a single pruning.

We also graphically plot aggregate statistics over the controller samples to confirm ES-ENAS’s con-
vergence. We choose the smallest environment, Swimmer, which conveniently works particularly
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well with linear policies (Mania et al., 2018b), to reduce visual complexity and avoid permuta-
tion invariances. We also use a boolean mask space over all possible edges (search space size
|M| = 2|S|×|A| = 28×2). We remarkably observe that for all 3 independently seeded runs, PG
converges toward a specific “local maximum” architecture, demonstrated in Fig. 6 with the final
architecture presented in Appendix D, which also depicts a similar case for Reg-Evo. This suggests
that there may be a few “natural architectures” optimal to the state representation.

3.3.4 CONSTRAINED OPTIMIZATION

(Tan & Le, 2019; Tan et al., 2018b) introduce the powerful notion of constrained optimization,
where the controller may optimize multiple objectives (ex: efficiency) towards a Pareto optimal
solution (Deb, 2005). We apply (Tan et al., 2018b) and modify the controller’s objective to be a

hybrid combination f(m, θ)
(
|Em|
|ET |

)ω
of both the total reward f(m, θ) and the compression ratio

|Em|
|ET | where |Em| is the number of edges in model m and |ET | is a target number, with the search
space expressed as boolean mask mappings (i, j) → {0, 1} over all possible edges. For simplicity,
we use the naive setting in (Tan et al., 2018b) and set ω = −1 if |Em||ET | > 1, while ω = 0 otherwise,
which strongly penalizes the controller if it proposes a model m whose edge number |Em| breaks
the threshold |ET |.

Figure 7: Environment reward plotted alongside the average number of edges used for proposed models.
Black horizontal line corresponds to the target |ET | = 64.

In Fig. 7, we see that the controller eventually reduces the number of edges below the target thresh-
old set at |ET | = 64, while still maintaining competitive training reward, demonstrating that ES-
ENAS is also capable of constrained optimization techniques, potentially useful for explicitly de-
signing efficient CPU-constrained robot policies (Unitree, 2017; Gao et al., 2020; Tan et al., 2018a).

4 CONCLUSION & FUTURE WORK

We presented a scalable and flexible algorithm, ES-ENAS, for performing combinatorial optimiza-
tion over hybrid spaces and efficient architecture search for ES-trained neural networks such as
reinforcement learning policies. ES-ENAS is efficient, simple, modular, and general-purpose, and
can utilize many techniques from both the continuous and combinatorial evolutionary literature.
We believe that this work can be useful for several downstream applications, such as designing
new architectures for mobile robotics, including compact cells for vision-based RL policies to im-
prove generalization (Cobbe et al., 2020; 2019; Song et al., 2020b) and RNNs for meta-learning and
memory (Bakker, 2001; Najarro & Risi, 2020). Outside of architectures, our method contributes
to general blackbox optimization over large and complex spaces, useful for a variety of scenarios
involving evolutionary search, such as genetic programming (Co-Reyes et al., 2021), circuit design
(Ali et al., 2004), and compiler optimization (Cooper et al., 1999).
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5 STATEMENTS

Ethics Statement: The only relevant potential concerns in our work occur normally with general
NAS methods, which can sacrifice model interpretability in order to achieve higher objectives. For
the field of RL specifically, this may warrant more attention in AI safety when used for real world
robotic pipelines. However, for our specific work, due to the smaller overall size of the policy
networks, our results might actually be more interpretable - for instance, edge pruning may lead to
discovery and disuse of MDP state values which do not contribute to obtaining high rewards, thereby
improving a practitioner’s understanding of the problem. Furthermore, as with any NAS research,
the initial phase of discovery and experimentation may contribute to carbon emissions due to the
computational costs of extensive tuning. However, this is usually a means to an end, such as an
efficient search algorithm, which this paper proposes with no extra hardware costs.

Reproducibility Statement: In Appendix A, we have discussed the explicit API used, algorithm
hyperparameters, benchmarks used, as well as other baseline details. Both ES/ARS and different
combinatorial optimizers are readily available across the internet (e.g. Github), as they are very
popular baselines. Similarly, BBOB functions and Mujoco tasks are also readily available, and
thus we have only used publicly available benchmarks. Since our algorithm is relatively simple to
assemble given preexisting pipelines, we believe that our approach should require minimal effort to
reproduce.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 API

We use the standardized NAS API PyGlove (Peng et al., 2020), where search spaces are usually con-
structed via combinations of primitives such as “pyglove.oneof” and “pyglove.manyof”
operations, which respectively choose one item, or a combination of multiple objects from a con-
tainer. These primitives can be combined in a nested conditional structure via “pyglove.List” or
“pyglove.Dict”. The search space can then be sent to an algorithm, which proposes child model
instances m programmically represented via Python dictionaries and strings. These are sent over a
distributed communication channel to a worker alongside the perturbation θ+σg, and then material-
ized later by the worker into an actual object such as a neural network. Although the controller needs
to output hundreds of model suggestions, it can be parallelized to run quickly by multithreading (for
Reg-Evo) or by simply using a GPU (for policy gradient).

A.2 ALGORITHMS

A.2.1 COMBINATORIAL ALGORITHMS

The mutator used for all evolutionary algorithms (Regularized Evolution, NEAT, Gradientless De-
scent/Batch Hill-Climbing) consists of a “Uniform” mutator for the neural network setting, where a
parameter in a (potentially nested) search space is chosen uniformly at random, with its new value
also mutated uniformly over all possible choices. For continuous settings, see Appendix A.3 below.

Regularized Evolution: We set the tournament size to be
√
n where n is the number of work-

ers/population size, as this works best as a guideline (Real et al., 2018).

NEAT: We use the original algorithm specification of NEAT (Stanley & Miikkulainen, 2002) with-
out additional modifications. The compatibility distance function was implemented appropriately
for DNAs (i.e. “genomes”) in PyGlove, and a gridsweep was used to find the best coefficients.

Gradientless Descent/Batch Hill-Climbing: We use the same mutator throughout the optimiza-
tion process, similar to (Song et al., 2020c) to reduce algorithm complexity, as the step size annealing
schedule found in (Golovin et al., 2020) is specific to convex objectives only.

Policy Gradient: We use a gradient update batch size of 64 to the Pointer Network, while using
PPO as the policy gradient algorithm, with its default (recommended) hyperparameters from (Peng
et al., 2020). These include a softmax temperature of 1.0, 100 hidden state size with 1 layer for the
RNN, importance weight clipping of 0.2, and 10 update steps per weight update, with more values
found in (Vinyals et al., 2015). We grid searched PPO’s learning rate across {1×10−4, 5×10−4, 1×
10−3, 5× 10−3} and found 5× 10−4 was the best.

A.2.2 CONTINUOUS ALGORITHMS

ARS/ES: We always use reward normalization and state normalization (for RL benchmarks) from
(Mania et al., 2018a). For BBOB functions, we use ηw = 0.5 while σ = 0.5, along with 64
Gaussian directions per batch in an ES iteration, with 8 used for evaluation. For RL benchmarks, we
use ηw = 0.01 and σ = 0.1, along with 75 Gaussian directions, with 50 more used for evaluation.

CMA-ES: For BBOB functions, we use σ = 0.5 and ηw = 0.5, similar to ARS/ES.

A.3 BBOB BENCHMARKS

Our BBOB functions consisted of the 19 classical functions from (Hansen et al., 2009):
{Sphere, Rastrigin, BuecheRastrigin, LinearSlope, AttractiveSector, StepEllipsoidal, Rosenbrock-
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Rotated, Discus, BentCigar, SharpRidge, DifferentPowers, Weierstrass, SchaffersF7, Schaf-
fersF7IllConditioned, GriewankRosenbrock, Schwefel, Katsuura, Lunacek, Gallagher101}.
The each parameter in the raw continuous input space is bounded within [−L,L] where L = 5. For
discretization + categorization into a grid, we use a granularity of 1 between consecutive points, i.e.
a categorical a parameter is allowed to select within {−L,−L + 1, ..., 0, ..., L − 1, L}. Note that
each BBOB function is set to have its global optimum at the zero-point, and thus our hybrid spaces
contain the global optimum.

Because each BBOB function may have a completely different scaling (e.g. for a fixed dimension,
the average output for Sphere may be within the order of 102 but the average output for BentCigar
may be within 1010), we thus normalize the output of each function when reporting results. The
normalized valuation of a BBOB function f is calculated by dividing the raw value by the maximum
absolute value obtained by random search.

Since for the ES component we use a step size of ηw = 0.5 and precision parameter of σ = 0.5, we
thus use for evolutionary mutations, a Gaussian perturbation scaling σmut of 0.07, which equalizes
the average norms between the update directions on θ, which are: ηw∇θf̃σ and σmutg.

A.4 RL + NEURAL NETWORK SETTING

In order to allow combinatorial flexibility, our neural network consists of vertices/values V =
{v1, ..., vk}, where the initial block of |S| values {v1, ..., v|S|} corresponds to the environment state,
and the last block of |A| values {vk−|A|+1, ..., vk} corresponds to the action output values. Directed
edges E ⊆ Emax = {ei,j = (i, j) | 1 ≤ i < j ≤ k, |S| < j} are constructed with corresponding
weights W = {wi,j | (i, j) ∈ E}, and nonlinearities G = {σ|S|+1, ..., σk} for the non-state ver-
tices. Thus a forward propagation consists of for-looping in order j ∈ {|S|+1, ..., k} and computing
output values vj = σj

(∑
(i,j)∈E viwi,j

)
.

By default, unless specified, we use Tanh non-linearities with 32 units for each hidden layer.

Edge pruning: We group all possible edges (i, j) into a set in the neural network, and select a fixed
number of edges from this set. We can also further search across potentially different nonlinearities,
e.g. fi ∈ {tanh, sigmoid, sin, ...} similarly to Weight Agnostic Neural Networks (Gaier & Ha, 2019).
In terms of API, this search space can be described as pyglove.manyof(Emax,|E|) along with
pyglove.oneof(σi,G). The search space is of size

(|Emax|
|E|

)
or 2|Emax| when using a fixed or

variable size |E| respectively.

We collect all possible edges from a normal neural network into a poolEmax and set |E| = 64 as the
number of distinct choices, passed to the pyglove.manyof. Similar to quantization, this choice
is based on the value max(|S|, H) or max(|A|, H), where H = 32 is the number of hidden units,
which is linear in proportion to respectively, the maximum number of weights |S| · H or |A| · H .
Since a hidden layer neural network has two weight matrices due to the hidden layer connecting to
both the state and actions, we thus have ideally a maximum of 32 + 32 = 64 edges.

For nonlinearity search, we use the same functions found in (Gaier & Ha, 2019). These are: {Tanh,
ReLU, Exp, Identity, Sin, Sigmoid, Absolute Value, Cosine, Square, Reciprocal, Step Function.}

Quantization: We assign to each edge (i, j) one color of many colors c ∈ C = {1, ..., |C|},
denoting the partition group the edge is assigned to, which defines the value wi,j ← w(c). This
is shown pictorially in Figs. 3a and 3b. This can also programmically be done by concatenating
primitives pyglove.oneof(ei,j,C) over all edges ei,j ∈ Emax. The search space is of size
|C||E|.
The number of partitions (or “colors”) is set to max(|S|, |A|). This is both in order to ensure a
linear number of trainable parameters compared to the quadratic number for unstructured networks,
as well as allow sufficient parameterization to deal with the entire state/action values.
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A.4.1 ENVIRONMENT

For all environments, we set the horizon T = 1000. We also use the reward without alive bonuses
for weight training as commonly used (Mania et al., 2018b) to avoid local maximum behaviors (such
as an agent simply standing still to collect a total of 1000 reward), but report the final score as the
real reward with the alive bonus.

A.4.2 BASELINE DETAILS

We consider Unstructured, Toeplitz, Circulant and a masking mechanism (Choromanski et al., 2018;
Lenc et al., 2019). We introduce their details below. Notice that all baseline networks share the same
general (1-hidden layer, Tanh nonlinearity) architecture from A.4. This impplies that we only have
two weight matrices W1 ∈ R|S|×h,W2 ∈ Rh×|A| and two bias vectors b1 ∈ Rh, b2 ∈ R|A|, where
|S|, |A| are dimensions of state/action spaces. These networks differ in how they parameterize the
weight matrices. We have:

Unstructured: A fully-connected layer with unstructured weight matrix W ∈ Ra×b has a total of
ab independent parameters.

Toeplitz: A toeplitz weight matrixW ∈ Ra×b has a total of a+b−1 independent parameters. This
architecture has been shown to be effective in generating good performance on benchmark tasks yet
compressing parameters (Choromanski et al., 2018).

Circulant: A circulant weight matrix W ∈ Ra×b is defined for square matrices a = b. We
generalize this definition by considering a square matrix of size n × n where n = max{a, b} and
then do a proper truncation. This produces n independent parameters.

Masking: One additional technique for reducing the number of independent parameters in a
weight matrix is to mask out redundant parameters (Lenc et al., 2019). This slightly differs from the
other aforementioned architectures since these other architectures allow for parameter sharing while
the masking mechanism carries out pruning. To be concrete, we consider a fully-connected matrix
W ∈ Ra×b with ab independent parameters. We also setup another mask weight Γ ∈ Ra×b. Then
the mask is generated via

Γ′ = softmax(Γ/α)

where softmax is applied elementwise and α is a constant. We set α = 0.01 so that the softmax
is effectively a thresolding function wich outputs near binary masks. We then treat the entire con-
catenated parameter θ = [W,Γ] as trainable parameters and optimize both using ES methods. Note
that this softmax method can also be seen as an instance of the continuous relaxation method from
DARTS (Liu et al., 2019b). At convergence, the effective number of parameter is ab·λwhere λ is the
proportion of Γ′ components that are non-zero. During optimization, we implement a simple heuris-
tics that encourage sparse network: while maximizing the true environment return f(θ) =

∑T
t=1 rt,

we also maximize the ratio 1 − λ of mask entries that are zero. The ultimate ES objective is:
f ′(θ) = β · f(θ) + (1− β) · (1− λ), where β ∈ [0, 1] is a combination coefficient which we anneal
as training progresses. We also properly normalize f(θ) and (1 − λ) before the linear combination
to ensure that the procedure is not sensitive to reward scaling.
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B EXTENDED BBOB EXPERIMENTAL RESULTS

B.1 CMA-ES COMPARISON
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Figure 8: Comparison when regular ES/ARS is used as the continuous algorithm in ES-ENAS, vs when CMA-
ES is used as the continuous algorithm (which we name “CMA-ENAS”). We use the exact same setting as
Figure 2 in the main body of the paper. We use Regularized Evolution (Reg-Evo) as the default combinatorial
algorithm due its strong performance found from Figure 2. We find that ES-ENAS usually converges faster
initially, while CMA-ENAS achieves a better asymptotic performance. This is aligned with the results (in the
first row) when comparing vanilla ES with vanilla CMA-ES. For generally faster convergence to a sufficient
threshold however, ES/ES-ENAS usually suffices.
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C EXTENDED NEURAL NETWORK EXPERIMENTAL RESULTS

As standard in RL, we take the mean and standard deviation of the final rewards across 3 seeds for
every setting. “L”, “H” and “H, H” stand for: linear policy, policy with one hidden layer, and policy
with two such hidden layers respectively.

C.1 BASELINE METHOD COMPARISONS

In terms of the masking baseline, while (Lenc et al., 2019) fixes the sparsity of the mask, we instead
initialize the sparsity at 50% and increasingly reward smaller networks (measured by the size of
the mask |m|) during optimization to show the effect of pruning. Using this approach on several
Open AI Gym tasks, we demonstrate that masking mechanism is capable of producing compact
effective policies up to a high level of pruning. At the same time, we show significant decrease of
performance at the 80-90% compression level, quantifying accurately its limits for RL tasks (see:
Fig. 9).

Figure 9: The results from training both a mask m and weights θ of a neural network with two hidden layers.
‘Usage’ stands for number of edges used after filtering defined by the mask. At the beginning, the mask is
initialized such that |m| is equal to 50% of the total number of parameters in the network.

C.2 QUANTIZATION

Env. Dim. Arch. Partitions Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) L 8 366± 0 296± 31 5± 1
Reacher (11,2) L 11 −10± 4 −157± 62 −135± 10
Hopper (11,3) L 11 2097± 788 1650± 320 16± 0
HalfCheetah (17,6) L 17 2958± 73 3477± 964 129± 183
Walker2d (17,6) L 17 326± 86 2079± 1085 8± 0
Pusher (23,7) L 23 −68± 2 −198± 76 −503± 4
Striker (23,7) L 23 −247± 11 −376± 149 −590± 18)
Thrower (23,7) L 23 −819± 8 −1555± 427 −12490± 708)

Env. Dim. Arch. Partitions Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) H 8 361± 4 362± 1 15± 0
Reacher (11,2) H 11 −6± 0 −23± 11 −157± 2
Hopper (11,3) H 11 3288± 119 2834± 75 95± 2
HalfCheetah (17,6) H 17 4258± 1034 4894± 110 −41± 5
Walker2d (17,6) H 17 1684± 1008 2026± 46 −5± 1
Pusher (23,7) H 23 −225± 131 −350± 236 −1049± 40
Striker (23,7) H 23 −992± 2 −466± 238 −1009± 1
Thrower (23,7) H 23 −1873± 690 −818± 363 −12847± 172

Table 2: Results via quantization across PG, Reg-Evo, and random search controllers. The number of partitions
is always set to be max(|S|, |A|).
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C.3 EDGE PRUNING AND NONLINEARITY SEARCH

C.3.1 EDGE PRUNING

Env. Dim. Arch. Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) H 105± 116 343± 2 21± 1
Reacher (11,2) H −16± 5 −52± 5 −160± 2
Hopper (11,3) H 3349± 206 2589± 106 66± 0
HalfCheetah (17,6) H 2372± 820 4016± 726 −156± 22
Walker2d (17,6) H 3813± 128 1847± 710 0± 2
Pusher (23,7) H −133± 31 −156± 17 −503± 15
Striker (23,7) H −178± 54 −130± 16 −464± 13
Thrower (23,7) H −532± 29 −1107± 158 −7797± 112

Table 3: Results via quantization across PG, Reg-Evo, and random search controllers. The number of edges is
always set to be 64 in total, or (32, 32) across the two weight matrices when using a single hidden layer.

C.3.2 NONLINEARITY SEARCH

Intriguingly, we found that appending the extra nonlinearity selection into the edge-pruning search
space improved performance across HalfCheetah and Swimmer, but not across all environments (Fig
). However, lack of total improvement is consistent with the results found with WANNs (Gaier & Ha,
2019), which also showed that trained WANNs’ performances matched with vanilla policies. From
these two observations, we hypothesize that perhaps nonlinearity choice for simple MLP policies
trained via ES are not quite so important to performance as other components, but more ablation
studies must be conducted. Furthermore, for quantization policies, we see that hidden layer policies
near-universally outperform linear policies, even when using the same number of distinct weights.

Env. Dim. Arch. Policy Gradient Regularized Evolution Random Search

Swimmer (8,2) H 247± 110 359± 5 11± 3
Hopper (11,3) H 2270± 1464 2834± 120 57± 7
HalfCheetah (17,6) H 3028± 469 5436± 978 −268± 29
Walker2d (17,6) H 1057± 413 2006± 248 0± 1

Table 4: Results using the same setup as Table 3, but allowing nonlinearity search.

Env. Dim. (PG, Reg-Evo) Reward Method

HalfCheetah (17,6) (2958, 3477)→ (4258, 4894) Quantization (L→ H)
Hopper (11,3) (2097, 1650)→ (3288, 2834) Quantization (L→ H)
HalfCheetah (17,6) (2372, 4016)→ (3028, 5436) Edge Pruning (H)→ (+ Nonlinearity Search)
Swimmer (8,2) (105, 343)→ (247, 359) Edge Pruning (H)→ (+ Nonlinearity Search)

Table 5: Rewards for selected environments and methods, each result averaged over 3 seeds. Arrow denotes
modification or addition (+).
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D NETWORK VISUALIZATIONS

D.1 QUANTIZATION

Figure 10: (a): Partitioning of edges into distinct weight classes obtained for the linear policy for HalfCheetah
environment from OpenAI Gym. (b): Partitioning of edges for a policy with one hidden layer encoded by two
matrices. State and action dimensionalities are: s = 17 and a = 6 respectively and hidden layer for the
architecture from (b) is of size 41. Thus the size of the matrices are: 17× 6 for the linear policy from (a) and:
17× 41, 41× 6 for the nonlinear one from (b).

D.2 EDGE PRUNING

Figure 11: (Left): Final architectures that PG and Reg-Evo converged to on Swimmer with a linear (L) policy,
as specified in Subsection 3.3.3. Note that the controller does not select all edges even if it is allowed in the
boolean search space, but also ignores some state values. (Right): Convergence result for Reg-Evo, similar to
Fig. 6 in Subsection 3.3.3.

E THEORY

In this section, for convenience we use the variable x, which may be assigned x = θ in the main
section of the paper. We present the ES/ARS and Mutation-based updates, which are respectively
(assuming equal batch size B of parallel workers):

x+ = x+ η∇̂f̃σ(x) where ∇̂f̃σ(x) =

B/2∑
i=1

f(x+ σgi)− f(x− σgi)
2σ

gi (6)

x+ = arg max{f(x), f(x+ σmutg1), ..., f(x+ σmutgB)} (7)

We assume that f is α-strongly concave and β-smooth for α, β ≥ 0 if for all x, y:

〈∇f(x), y − x〉 − β

2
‖y − x‖22 ≤ f(y)− f(x) ≤ 〈∇f(x), y − x〉 − α

2
‖y − x‖22 (8)

E.1 ES/ARS GUARANTEES

We note that the β-smoothness also carries from the original function f(x) into the smoothed func-
tion f̃σ(x) = Eg∼N (0,I)[f(x + σg)], and thus by simply combining the β-smoothness from Eq. 8
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with the definition of x+ from Eq. 6, we have

η〈∇f̃σ(x), ∇̂f̃σ(x)〉 − βη2

2
‖∇̂f̃σ(x)‖22 ≤ f̃σ(x+)− f̃σ(x) (9)

Taking the expectation with respect to the sampling of g1, ...,gB/2 and noting that ∇̂f̃σ(x) is an
unbiased estimation of∇f̃σ(x):

η‖∇f̃σ(x)‖22 −
βη2

2

(
‖∇f̃σ(x)‖22 + MSE(∇̂f̃σ(x))

)
≤ ∆σ,ES(x) (10)

where ∆σ,ES(x) = Eg1,...,gB/2∼N (0,I)[f̃σ(x+)] − f̃σ(x) is the expected one-step improvement on

the smoothed function f̃σ .

Using (Nesterov & Spokoiny, 2017), Theorem 4 leads to estimator variance MSE(∇̂f̃σ(x)) =

O(β2d3σ2/B) while Theorem 1 leads to |f(x) − f̃σ(x)| ≤ O(σ2βd), and finally Lemma 4 leads
to ‖∇f̃σ(x)‖22 − ‖∇f(x)‖22 ≤ O(β2d2σ2). Note that all of these terms are negligible compared to
‖∇f(x)‖22 as σ is small and B can be e.g. O(d), and thus we may substitute these terms with single
variables for the reader’s convenience. Thus, this leads to:

G0 + η(‖∇f(x)‖22 +G1)− βη2

2
(‖∇f(x)‖22 +G2) ≤ ∆ES(x) (11)

where the negligible terms are: G0 = −O(σ2βd), G1 = O(β2d2σ2), G2 = O(β2d2σ2 +
β2d3σ2/B) and ∆ES(x) = Eg1,...,gB/2∼N (0,I)[f(x+)] − f(x) is the expected one-step improve-
ment on the original f .

We may set η = 1
β
‖∇f(x)‖2+G1

‖∇f(x)‖2+G2
≈ 1

β to maximize the quadratic (in terms of η) in the LHS, which
leads to

O

(
‖∇f(x)‖22

β

)
= G0 +

1

2β

(‖∇f(x)‖22 +G1)2

(‖∇f(x)‖22 +G2)
≤ ∆ES(x) (12)

E.2 MUTATION GUARANTEES

We have from plugging in y = x+ in Eq. 7 and 8 along with taking the expectation from sampling
g1, ...,gB and taking the argmax gmax (which can potentially also be zero if there is no improve-
ment),

∆MUT (x) ≤

max
(

0,Eg1,...,gB∼N (0,I) [〈∇f(x), σmutgmax〉]− Eg1,...,gB∼N (0,I)

[α
2
‖σmutgmax‖22

]) (13)

where ∆MUT (x) = Eg1,...,gB∼N (0,I)[f(x+)]−f(x) is the expected improvement for the mutation.

We focus on upper bounding the non-zero term in the maximum in the RHS. Note that choosing
gmax ∈ {g1, ...,gB} from the argmax process only optimizes f(x + σmutg) and not any other
objective, and thus:

Eg1,...,gB∼N (0,I)[〈∇f(x), σmutgmax〉]

≤ σmutEg1,...,gB∼N (0,I)

[
max
gi
〈∇f(x),gi〉

]
≤ σmut‖∇f(x)‖2

√
2 log(B)

(14)
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where the bottom inequality is a well known fact about sums of Gaussians. For the other term, we
have:

Eg1,...,gB∼N (0,I)

[α
2
‖σmutgmax‖22

]
≥ ασ2

mut

2
Eg1,...,gB∼N (0,I)

[
min
gi
‖gi‖22

]
(15)

To bound the RHS’s right side, we may use a well-known concentration inequality for Lipschitz
functions with respect to Gaussian sampling, i.e. Prg∼N (0,I) [|M(g)− µ| > λ] ≤ 2e−λ

2/2 where
M(·) is any Lipschitz function and µ = Eg′∼N (0,I) [M(g′)]. We may define M(g) = ‖g‖2 which
leads to µ =

√
d, and then use a union bound over B IID samples to obtain:

Prg1,...,gB∼N (0,I)

[
‖gi‖2 ≥

√
d− λ, ∀gi

]
≥ Prg1,...,gB∼N (0,I)

[
|‖gi‖2 −

√
d| ≤ λ, ∀gi

]
≥ (1−B · 2e−λ

2/2)
(16)

This finally implies that from Eq. 15,

Eg1,...,gB∼N (0,I)

[
min
gi
‖gi‖22

]
≥ max

(
0,
√
d− λ

)2

· Prg1,...,gB∼N (0,I)

[
‖g‖2 ≥

√
d− λ, ∀gi

]
≥ max

(
0,
√
d− λ

)2

· (1−B · 2e−λ
2/2)

(17)

To set the probability-like term (1 − 2Be−λ
2/2) in the RHS to a constant C, we let λ =√

2 log( 2B
1−C ) = O

(√
log(B)

)
, which finally leads to

Eg1,...,gB∼N (0,I)

[
min
gi
‖gi‖22

]
≥ max

(
0, O

(√
d−

√
log(B)

))2

(18)

Thus replacing the two terms in Eq. 13,

∆MUT (x) ≤ max

(
0, σmut‖∇f(x)‖2

√
2 log(B)− ασ2

mut max
(

0, O
(√

d−
√

log(B)
))2

)
(19)

If B = Ω(2d), then there is no quadratic in terms of σmut, and thus σmut can be arbitrarily large (or
maximized at the search space’s bounds) to essentially brute force the entire search space.

Otherwise, hyperparameter tuning for σmut leads to maximizing the quadratic in the RHS, which

leads to setting σmut =
‖∇f(x)‖2

√
2 log(B)

α·O
(√

d−
√

log(B)
)2 , leading to

∆MUT (x) ≤ ‖∇f(x)‖22 log(B)

α ·O
(√

d−
√

log(B)
)2 (20)

E.3 PUTTING THINGS TOGETHER

Putting the expected improvements together, we see that:
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∆MUT (x) ≤ ‖∇f(x)‖22 log(B)

α ·O
(√

d−
√

log(B)
)2 (21)

∆ES(x) ≥ O
(
‖∇f(x)‖22

β

)
(22)

and thus there is a expected improvement ratio bound when B ≤ O(2d):

∆ES(x)

∆MUT (x)
≥ O

 1

κ

(√
d−

√
log(B)

)2

log(B)

 (23)

where κ = β/α is the condition number.
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