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Abstract

Large language models (LLMs) are very perfor-
mant connectionist systems, but do they exhibit
more compositionality? More importantly, is that
part of why they perform so well? We present
empirical analyses across four LLM families (12
models) and three task categories, including a
novel task introduced below. Our findings reveal a
nuanced relationship in learning of compositional
strategies by LLMs — while scaling enhances com-
positional abilities, instruction tuning often has a
reverse effect. Such disparity brings forth some
open issues regarding the development and im-
provement of large language models in alignment
with human cognitive capacities.

1. Introduction

Compositionality is a widely studied aspect of human cogni-
tion. Fodor & Pylyshyn (1988) claimed that non — symbolic
connectionist representations were inadequate for composi-
tional understanding. The question turns on whether compo-
sitionality is acquired (Smolensky, 1987; Chalmers, 1993),
or whether compositionality is merely a functional property
(Van Gelder, 1990). Symons & Calvo (2014), building on
the arguments against connectionism in (Fodor & Pylyshyn,
1988), argue that even if connectionist systems can stum-
ble across an implementation of compositionality, this does
not explain systematicity in their behaviour nor does it ren-
der them suitable cognitive architectures (see Appendix A
for related work and Appendix B for further details). To
serve as models of cognition or “cognitive architectures”,
connectionist systems should ideally:

i) be compositional, i.e., have compositional representa-
tions and behaviour.

ii) be compositional in a way that explains their behavior
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and performance, i.e., they should learn compositional
strategies as a way to improve performance.
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Figure 1. Model Accuracy trends for two setups (combined) with
the ANTAILS Dataset.

LLMs are now increasingly seen as possible models of hu-
man language (Mahowald et al., 2024; Hu et al., 2024) or
cognition (Kauf et al., 2023; Hardy et al., 2023; Marjich
et al., 2023; Lamprinidis, 2023; Aw et al., 2023), and it is
therefore crucial to review the Fodor & Pylyshyn (1988)
challenge from the perspective of LLMs. While there is
work on measuring compositional abilities of LLMs (Dziri
et al., 2024; Li et al., 2024; Zhang et al., 2024; Wang et al.,
2024), our focus is not to benchmark models for composi-
tionality, but to examine its explanatory value in predicting
performance and validating models as cognitive architec-
tures.

Scaling and instruction tuning are widely assumed to im-
prove model alignment and generalization performance
across a multitude of tasks ranging from natural language in-
ference and textual entailment (Wei et al., 2022) to MMLU
and BigBench (Longpre et al., 2023) — but are these im-
proved performances a result of improved compositional-
ity? Focusing on the domain of adjective — noun (Adj — N)
composition, we propose three task types that can evaluate
different aspects of compositional behaviour in LLMs and
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consider the impact of model size and instruction tuning on
the compositional behaviour of such models. Finally, we
discuss the importance of compositionality as a theoretical
construct in validating connectionist cognitive architectures.

2. Measuring Compositionality

Over the years, several benchmarks have been developed
to test compositionality of neural network models — SCAN
(Lake & Baroni, 2018), Lookup Table Composition (Liska
et al., 2018), COGS (Kim & Linzen, 2020), and PCFG Set
(Hupkes et al., 2020). However, we face a few issues when
trying to leverage such datasets for testing today’s LLMs-
models pretrained on large amounts of text:

a) They are based on a train — test paradigm that is not
easily applicable pretrained LLMs.

b) LLMs are trained on very large quantities of texts and
may, as a consequence, have seen the test set expres-
sions before.

c¢) There is no congruence on what aspects of composi-
tionality (Sun et al., 2023b) we test with these methods.

Some work considers compositional multi-hop reasoning
(Lu et al., 2024; Xu et al., 2024; Dziri et al., 2024; Shao
et al., 2022), but we focus on meaning construction from
constituent representations.
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Figure 2. Heatmap for three model types and four model families
on the ANTAILS dataset.

We take inspiration from Hupkes et al. (2020)’s tripartite dis-
tinction between aspects of compositionality, and introduce
a test for each such aspect:

Substitutivity: This involves the ability to understand the
relatedness of words such that substituting a synonym in a
complex expression should not be taken to alter the meaning
of the complex expression. We test this with the ANTAILS
Dataset, largely based on the AddOne Dataset (Pavlick &
Callison-Burch, 2016). For a given sentence with a noun
(N) like The runner set a record, we substitute N with an
adjective — noun combination like The runner set a new
record and test the model to see whether it can understand
the entailment pattern. The model here has to maintain it’s
understanding of entailment patterns with adjective substi-
tution.

Systematicity & Globalism: This involves the ability to
recombine known parts and rules and being able to produc-
tively use the parts in new contexts where constituents can
have different behaviours (Carnap, 1988). We test this with
the PLANE Dataset proposed by Bertolini et al. (2022)
that tests adjective — noun entailment in a situation where
the entailment pattern for an AN — N and AN — H (where
AN is the adjective-noun combination, N is the noun and
H is a hypernym of N) combination is already given and
the model is tested on entailment of AN — AH combination.
This requires the model to employ systematicity (since the
AN entailment pattern needs to be recombined in the AN
— AH statement) and also globalism ( since the entailment
pattern of the AN — AH combination needs to be inferred
differently from the AN — N and AN — H combinations).

Over-generalization: This involves the ability to distin-
guish between compositional and non — compositional phe-
nomena by measuring the distance of adjective — noun com-
binations vs exocentric compounds. We test this with a
new task type using a handcrafted toy dataset- the COM-
PCOMB Dataset — which is a novel contribution of this
work. Each data point consists of a triple — a noun, an adjec-
tive that goes with the noun, and an exocentric compound
which contains the noun. For example, (coat, trenchcoat
and turncoat)- when we take the word “coat”, we know
that “trenchcoat” ( a special type of coat) is closely related
to it but the exocentric compound “furncoat” (a betrayer) is
not since it is semantically different. This tests over — gen-
eralization since the model needs to be able to distinguish
between genuine compounds and combinations by avoiding
generalization on the basis of surface forms.

3. Evaluating Models

Our aim is to determine whether models’ compositional
abilities can indicate their trends of performance. There are
two types of changes that have been shown to consistently
impact the performance of models:

Scaling Parameters: Research on LLM scaling laws — Ka-
plan et al. (2020) and Hoffmann et al. (2022) — show that
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Table 1. ANTAILS Experiment in Setup 1

MODEL FAMILY BASE MODEL IFT MODEL LARGER MODEL
FALCON 0.5040.01 0.4640.01 0.5440.03
LLAMA 2 0.50£0.01 0.54+0.04 0.6040.01
CODELLAMA 0.5040.01 0.5040.01 0.5540.02
MISTRAL 0.5040.01 0.3040.04 0.514+0.02

Table 2. ANTAILS Experiment in Setup 2

MODEL FAMILY BASE MODEL IFT MODEL LARGER MODEL
FALCON 0.4940.01 0.4440.02 0.5240.02
LLAMA 2 0.47£0.03 0.45£0.05 0.5540.05
CODELLAMA 0.5040.01 0.5040.01 0.5540.02
MISTRAL 0.50£0.03 0.50£0.20 0.534+0.07

model performance for large language models get better
with size i.e an increase in the number of parameters.

Instruction Tuning: Several works (Wei et al., 2022;
Ouyang et al., 2022; Chung et al., 2024) have shown the
advantage of instruction finetuning (IFT) as a method to
improve general performance of LLMs, especially for gen-
eralization to unseen tasks and alignment with human be-
haviour.

Can these changes in performance of LLMs be explained
by their compositional behaviour? To investigate this, we
conduct analysis and evaluation across 4 families of models
— Falcon (Almazrouei et al., 2023), LLama (Touvron et al.,
2023), Codellama (Roziere et al., 2023), and Mistral (Jiang
etal., 2023).

3.1. ANTAILS Dataset

For this dataset, we test 3 models for each model family —
the base model of 7B (Base), an instruction tuned version
of the same (IFT), and a larger model — with two different
kinds of setups: one involving a two — choice question sce-
nario where we determine accuracy by fixed rank precision
(P@Xk) to evaluate the model output (Setup 1) and another
in which we use the log probabilities of the model for two
completions (entails vs does not entail) as an indication of
the model’s judgement (Setup 2). Furthermore, for both
setups we include two prompt variations for the evaluation
and the result table shows the average accuracy for each
model across the prompt variations.

Results: We observe that for all families of models, the
Larger Model always performs better than the Base Model
(Figure 1& 2). However, the impact of instruction tuning
is inconsistent with performance decreasing for the two
models, remaining the same for Codellama, and increasing
for Llama.
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Figure 3. Model accuracy trends for PLANE dataset.

3.2. PLANE Dataset

For this dataset, we also have a setup that is exactly similar
to the previous one. Since the dataset is divided by types
of adjectives, we also present the results classified by the
different adjectival categories.

Results: Similar to the ANTAILS dataset, we observe in
Figure 3 that the overall model performance, within a model
family, across two setups improves with size and worsens
with instruction tuning (Tables 3 and 4). However, in the
case of within — family comparison in the Codellama family
of models, the larger model (13B) is worse than the base
(7B) indicating that training a general LM with code and
scaling it might not always have positive impacts on com-
positional reasoning. Similar trends were also observed by
MA et al. (2024), where introduction of code at pretraining
stage gives worse performance in logical reasoning tasks.

Figure 4 shows the comparative analysis of results across
different adjective classes — I ( Intersective), N (Subsective),
and O ( Intensional). Most models perform worse for sub-
sective adjectives. Interestingly, Redolfi & Melloni (2024)
notes that children also acquire subsectives the slowest dur-
ing the period of language acquisition.

3.3. COMPCOMB Dataset

For each datapoint this dataset, we evaluate the accuracy of
model in terms of comparative cosine distance analysis of
the embeddings/hidden states of models. If the dist(N, AN)
i dist (N,H) we consider the model accurate since it is able
to capture the semantic similarity of N — AN as compared
to N —H. We do this for two types of embedding for each
model — for Setup 1, we use the initial embeddings from the
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Figure 4. Average accuracies of models across 3 classes of adjec-
tives.

Table 3. PLANE Experiments in Setup 1

MODELS ACCURACIES
I N (o]

FALCON-7B 0.954+0.01 0.07+0.07 0.69+0.13
FALCON-7B-INSTRUCT 0.70£0.16  0.03+0.02  0.85+0.05
FALCON-40B 0.80+0.16  0.14+0.1  0.98+0.02
LLAMA-2-7B-HF 0.03+0.03  0.98+0.02 0.01£0.01
LLAMA-2-7B-CHAT-HF 0.254+0.05 0.53+0.50 0.12+0.12
LLAMA-2-13B-HF 0.04£0.03  0.954+0.05 0.14+0.07
CODELLAMA-7B-HF 0.784+0.02  0.25+0.04 0.81£0.01
CODELLAMA-7B-INSTRUCT-HF ~ 0.5540.08 0.35£0.05 0.60+0.15
CODELLAMA-13B-HF 0.184+0.01 0.90+0.01 0.03+0.01
MISTRAL-7B-v0.1 0.05+£0.01  0.80£0.15 0.6040.02
MISTRAL-7B-INSTRUCT-VO. 1 0.644+0.01 0 0.504+0.05
MIXTRAL-8X7B-v0.1 0.98+0.03  0.04+£0.02 0.984+0.02

embedding layer (EL) while in Setup 2, we access the last
hidden state of the model (LHS).

Results: The accuracy of models across all families in-
creases with size (Table 5). In Figure 5, we notice that
while the embedding layer still shows over — generalization
for larger models, the last hidden state representation has
much better performance. For instruction tuned models, the
performance of the embedding layer varies.

Refer to appendices C, D & E for additional details on
models, datasets and task setups.

4. Conclusion

Cognitive architectures should arguably be performant and
exhibit compositionality, and the induction of composi-
tional strategies should be explanatory of their performance.
LLMs, as candidate cognitive architectures, are clearly per-

Table 4. PLANE Experiments in Setup 2

MODELS ACCURACIES
I N (]
FALCON-7B 0.91£0.05 0.07+0.03  0.90£0.09
FALCON-7B-INSTRUCT 0.9740.02  0.06+0.01  0.80£0.12
FALCON-40B 0.87£0.06 0.17+0.10 0.91£0.05
LLAMA-2-7B-HF 0.454+0.06 0.51+0.14  0.88+0.01
LLAMA-2-7B-CHAT-HF 0.55£0.07 0.45+0.11 0.32£0.02
LLAMA-2-13B-HF 0.89£0.01  0.15+0.02 0.91£0.05
CODELLAMA-7B-HF 0.88+£0.02 0.20+0.01 0.86+0.11
CODELLAMA-7B-INSTRUCT-HF ~ 0.65£0.07  0.39+£0.06  0.89+£0.10
CODELLAMA-13B-HF 0.47£0.08 0.65+0.05 0.82+0.05
MISTRAL-7B-v0.1 0.77£0.21  0.274+0.21  0.98£0.02
MISTRAL-7B-INSTRUCT-VO0.1 0.48+£0.02  0.50+0.09 0.92+0.02
MIXTRAL-8X7B-V0.1 0.58£0.10  0.49+0.15 0.85£0.15
Mistral 8x-78
Mistral 7B IFT
Mistral 7B 4
Codellama 13B
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Figure 5. Model Accuracy trends for two setups with the COMP-
COMB Dataset

formant, behave compositionally (as seen by their perfor-
mance on the ANTAILS and PLANE datasets), and their
representations appear compositional (as seen by their per-
formance on the COMPCOMB dataset). However, when it
comes to how explanatory the induction of compositional
strategies are of performance improvements, we observe
different patterns for different LLMs:

1) Scaling models improves their generalization capabil-
ities (Hendrycks et al., 2020; Desai & Durrett, 2020)
and overall performance (Kaplan et al., 2020; Hofft-
mann et al., 2022). Compositional behaviour also im-
proves with scaling across model families. This could
indicate that the induction of compositional strategies
is explanatory of improvements with scaling.

2) Instructing finetuning has been shown to improve align-
ment and result in performance gains across several
task types (Wei et al., 2022; Ouyang et al., 2022). How-
ever, we see that compositional performance does not
always improve with instruction tuning. Performance
gains from instruction tuning do not correlate with
improved compositional behaviour.
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Table 5. COMPCOMB Experiments for two setups

MODELS ACCURACY (EL) ACCURAcCY (LHS)
FALCON-7B 0.61 0.53
FALCON-7B-INSTRUCT 0.59 0.59
FALCON-40B 0.71 1
LLAMA-2-7B-HF 0.63 0.63
LLAMA-2-7B-CHAT-HF 0.67 0.71
LLAMA-2-13B-HF 0.81 1
CODELLAMA-7B-HF 0.41 0.43
CODELLAMA-7B-INSTRUCT-HF 0.49 0.51
CODELLAMA-13B-HF 0.67 1
MISTRAL-7B-v0.1 0.57 0.56
MISTRAL-7B-INSTRUCT-V0.1 0.51 0.61
MIXTRAL-8X7B-v0.1 0.53 0.95

In sum, while scaling often leads to more compositional
models, instruction tuning does not show similar trends.
Recent work (Ghosh et al., 2024) has shown that instruc-
tion tuning sometimes degrades performance. Our results
indicate that one source of error may be reduced composi-
tionality. Performance is multi — faceted, and composition-
ality may be explanatory of some performance gains, not
others. If we think cognitive architectures should learn com-
positional strategies (Fodor & Pylyshyn, 1988; Symons &
Calvo, 2014), and that LLMs could potentially be cognitive
architectures (Lamprinidis, 2023; Sumers et al., 2023; Zhao
et al., 2023), we must evaluate if the compositionality of
LLMs is explanatory of their performance and be precise
about what (relevant) performance is at play. This work is,
to the best of our knowledge, the first step in that direction.

Limitations

The focus on adjective-noun combinations in tasks might
provide a limited view of the models’ overall compositional
abilities. Broader investigation across various domains is
necessary to understand models’ capabilities, limitations,
and behavior trends in scaled versus instruction — tuned
models. Additionally, incorporating error analysis and inter-
pretability techniques will uncover underlying mechanisms
and biases in model outputs, guiding improvements and
ensuring more transparent interpretations and application
of results. We plan on incorporating such changes in future
iterations of this work.

Impact Statement

This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Related Work

Most of the earlier work on testing compositionality in con-
nectionist systems was centered around two main types:

1. Testing compositional abilities: Most works (Lake & Ba-
roni, 2018; Liska et al., 2018; Kim & Linzen, 2020; Hupkes
et al., 2020) have a training and testing paradigm where
models were considered to be performing compositional
generalization if they were able to successfully handle un-
seen test sequences.

2. Enhancing compositional abilities: This area of research
was focused on what enhancements to connectionist models
— architectures, training methods, or data — could provide
improved compositionality. Some like Socher et al. (2010)
involved combining syntactic parse trees with connection-
ist architectures to learn compositional functions, allowing
models to be ‘compositional by design’ while other work
like Lake & Baroni (2023) proposed a novel method for
training neural networks via a series of compositional tasks
that endows them with systematic generalization capabili-
ties.

Recent work has shifted the focus to testing compositional
generalization in pretrained models via tasks that require
no further training. There is some research that focuses on
prompting to enable better results in compositional tasks
(Drozdov et al., 2023; Chen et al., 2024).

However, much of recent work (Li et al., 2024; Alabdu-
lakreem et al., 2024; SHAO et al., 2023; Zhang et al., 2024)
interprets compositionality to be multi — hop reasoning
which is not “true” compositionality which was originally
discussed as a feature of human language and cognition
(Frege, 1892; Fodor & Pylyshyn, 1988).

B. The Compositionality Debate- Symbolism
vs Connectionism

The concept of compositionality has a long history in lin-
guistic and cognitive science — it was perhaps first discussed
in detail by Frege (1892) in the context of how natural lan-
guage expressions were assigned meanings. Partee et al.
(1995) formulated the so-called principle of compositional-

iy:

The meaning of a complex expression is deter-
mined by the meanings of its constituent parts
and the rules used to combine them.

Compositionality has long been considered a cornerstone of
human cognitive capabilities and was notably discussed in
Fodor & Pylyshyn (1988) as the reason for the systematicity
of human thought — how the ability to think a thought is
linked to the ability to also have related thoughts. Non —

symbolic connectionist representations were, in the view
of Fodor and Pylyshyn, inadequate and unviable. Instead,
they claimed that: (i) only classical or symbolic representa-
tions can give rise to compositional and, in turn, systematic
behaviour; and (ii) neural networks do not have classical
representations and thus they cannot exhibit compositional
understanding or behaviour.

A central tenet of Fodor & Pylyshyn (1988) was also not how
connectionist systems could not behave compositionally but
why they could not serve as viable cognitive architectures.
The then highly debated topic of acquisition of English past
tense is discussed to point out that even though Plunkett &
Juola (1999) finds a way to show that connectionist systems
can simulate this pattern, (Pinker & Prince, 1988) is correct
in asserting that it does not in any way explain the actual
cognitive process. Symons & Calvo (2014) further elucidate
the point claiming that even if connectionist systems can
stumble across an implementation of compositionality, this
does not explain systematicity in their behaviour nor does it
render them suitable cognitive architectures.

Smolensky (1987) and Chalmers (1993) were instrumental
in challenging the prevailing skepticism towards connec-
tionist networks by asserting that these networks have the
capacity to embody classical representations through their
intricate connection weights and activation patterns, thereby
exhibiting compositional behavior. This assertion stems di-
rectly from the inherent expressivity of connectionist mod-
els, which allow them to capture complex relationships and
hierarchies within data.

Van Gelder (1990) suggested that neural networks displayed
functional compositionality instead of the traditional ‘con-
catenative’ compositionality discussed by Fodor. According
to Van Gelder, neural networks demonstrate a form of com-
positionality where the functions computed by individual
neurons or layers combine in a compositional manner to
produce complex behaviors, without necessarily relying on
explicit concatenation of discrete symbols.

Cummins (1996) argued against the dichotomy between
classical and non-classical representations, contending that
the distinction fails to hold ground since classical represen-
tations themselves can exhibit non — compositional charac-
teristics. This perspective underscores the complexity and
fluidity inherent in the nature of representations, suggesting
that compositionality is not necessarily tied to a specific type
of representation but rather emerges from the interactions
and transformations within a system.

C. Models

The models used here are all based on the transformer ar-
chitecture but are decoder — only models. For each model
family, we use 3 variants:
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Substitutivity Systematicity & Overgeneralization
Globalism
ANTAILS COMPCOMB
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Figure 6. Testing Compositionality: Experimental Setup for LLMs

Table 6. Models used and corresponding Huggingface Hub Links

MODEL NAME MODEL LINK

FALCON-7B HTTPS://HUGGINGFACE.CO/TITUAE/FALCON-TB
FALCON-7B-INSTRUCT HTTPS://HUGG
FALCON-40B

LLAMA-2-7B-HF
LLAMA-2-7B-CHAT-HF
LLAMA-2-13B-HF
CODELLAMA-7B-HF
CODELLAMA-7B-INSTRUCT-HF
CODELLAMA-13B-HF
MISTRAL-7B-V0.1
MISTRAL-7B-INSTRUCT-V0.1
MIXTRAL-8X7B-V0.1

HTTPS://HU
HTTPS://HUGG

LLAMA/COD
/CODELLAME
ua/CODELLAM
ALAT/MISTRAL-TB-v0.1
AT/MISTRAL-7B-INSTRUCT-V0.1
GINGFACE.CO/MISTRALATI/MIXTRAL-8X7B-v0.1

STRUCT—H
13B-HF

1. Falcon Family: falcon-7B, falcon-7B-instruct, falcon-40B

2. Llama 2 Family: Llama-2-7B-hf, Llama-2-7B-chat-hf,
Llama-2-13B-hf

3. Codellama Family : Codellama-7B-hf, Codellama-7B-
Instruct-hf, Codellama-13B-hf

4. Mistral Family: Mistral-7B-v0.1, Mistral-7B-Instruct-
v0.1, Mixtral-8x7B-v0.1

We provide a summary of models used and their Hugging-
face Hub links in Table 6 to enable easy reproduction and
use.

D. Datasets

We measure different aspects of compositionality with 3
task types/ datasets:

1. ANTAILS: It is the adjective noun entailment dataset. The
dataset is influenced by Pavlick & Callison-Burch (2016) but
we found certain discrepancies in the dataset due to which
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Premise

Hypothesis Entailment

Sheila loved her self Sheila loved her own self True

Sheila loved her self Sheila loved her ugly self False

Most people die in the same class to which the... Most people die in the same social class to wh... True

Most people die in the same class to which the... Most people die in the same upper class to whi... False

Figure 7. ANTAILS Dataset

Unnamed: @ sequence orig_label  noun adjective hypernym adj_type

Adead path is a path path dead  course |

Adead path is a course path dead course

Adead path s a dead course path dead  course

|

1

Aciinical path is a path path ciinical  course N
N

Aclinical path is a course path clinical course

1495 Aexpected capacity is a capability capacity  expected capability

1496 A expected capacity is a expected capability capacity  expected capability

1497 A predicted capacity is a capacity capacity  predicted  capability

1498 A predicted capacity is a capability capacity  predicted  capability

1499 A predicted capacity is a predicted capability

capacity predicted _capability

Figure 8. PLANE Dataset

we slightly modify and build our own dataset as shown in
Figure 7.

2. PLANE: It adjective — noun hypernym inference pattern
testing introduced in Bertolini et al. (2022) and we use the
same dataset as shown in Figure 8.

3. COMPCOMB: This is a task (as shown in Figure 9) that
centers around measuring the distance of compounds vs
adjective — noun combinations in the embedding space of
models. It is a novel contribution of this work.

E. Task Setup

To investigate the trends of learning compositional strate-
gies, we investigate two types of models — base models and
instruction models — and use similar prompts for all models.
Some motivations for our prompting choice setup are the
following:

1. For all models, we do a zero — shot prompt setting to
attempt an unbiased comparison of general vs instruction
tuned models. Works on instruction tuning (Wei et al., 2022;

Word Composition

Compound

Bowl Fruitbowl Eurobowl

Gun Handgun Blowgun

Ball Football Sleazeball

Blade Switchblade Shoulderblade

Hole Keyhole Hellhole

Figure 9. COMPCOMB Dataset
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Sanh et al., 2021) indicate that such models have good zero
— shot task performance and thus we chose this prompting
mode for all models to try and avoid undue bias.

2. We wanted to use a similar prompt structure across
models in our work to maintain uniformity of evaluation.
Since using instruction format prompts would disadvantage
a non instruction tuned model and research indicates instruc-
tion tuning improves general reasoning and performance,
we chose to avoid specific prompting methods involving
advanced instructions. Non — instruction prompts can effec-
tively serve as robust evaluation tools, helping to assess the
model’s true understanding and generalization ability be-
yond the training data (Peng et al., 2023; Sun et al., 2023a).

For the ANTAILS and PLANE datasets, we use two task
setups:

1. Two — Choice QA: The first setup gives models state-
ments indicating entailment and non entailment as two op-
tions and the model choice of option is considered. We
avoid using the yes-no setup to prevent possible yes — bias
outputs.

2. Logprob Calculation: The second setup involves pass-
ing in the prompt with dataset samples and calculating the
log probabilities of the model for a statement indicating en-
tailment and one indicating non — entailment. The statement
assigned higher completion log probability is considered to
be the model output.

For both setups, we use two prompts and average the outputs
to calculate our results. We observe similar trends across
different prompt choices.

For the COMPCOMB dataset, the above task settings do
not apply since we directly compare representations of the
model from the embedding layer and the last hidden layer.
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