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ABSTRACT

Generalized Category Discovery (GCD) is a challenging task in which, given a par-
tially labelled dataset, models must categorize all unlabelled instances, regardless
of whether they come from labelled categories or from new ones. In this paper,
we challenge a remaining assumption in this task: that all images share the same
domain. Specifically, we introduce a new task and method to handle GCD when
the unlabelled data also contains images from different domains to the labelled set.
Our proposed ‘HiLo’ networks extract High-level semantic and Low-level domain
features, before minimizing the mutual information between the representations.
Our intuition is that the clusterings based on domain information and semantic
information should be independent. We further extend our method with a spe-
cialized domain augmentation tailored for the GCD task, as well as a curriculum
learning approach. Finally, we construct a benchmark from corrupted fine-grained
datasets as well as a large-scale evaluation on DomainNet with real-world domain
shifts, reimplementing a number of GCD baselines in this setting. We demonstrate
that HiLo outperforms SoTA category discovery models by a large margin on all
evaluations.

1 INTRODUCTION

The task of category discovery Han et al. (2019) has recently gained substantial interest in the
computer vision community Han et al. (2020; 2021); Fini et al. (2021); Wen et al. (2023); Jia et al.
(2021); Zhao & Han (2021). The task is to leverage knowledge from a number of labelled images,
in order to discover and cluster images from novel classes in unlabelled data. Such a task naturally
occurs in many practical settings; from products in a supermarket, to animals in the wild, to street
objects for an autonomous vehicle. Specifically, Generalized Category Discovery (GCD) Vaze et al.
(2022) has recently emerged as a challenging variant of the problem in which the unlabelled data can
contain both instances from ‘seen’ and ‘unseen’ classes. As such, the problem is succinctly phrased
as: “given a dataset, some of which is labelled, categorise all unlabelled instances (whether or not
they come from labelled classes)”.

In this paper, we challenge a key, but often ignored, assumption in this setting: GCD methods still
assume that all instances in the unlabelled set come from the same domain as the labelled data. In
practise, unlabelled images may not only contain novel categories, but also exhibit low-level covariate
shift Sun et al. (2022); Yan et al. (2019). It has long been established that the performance of image
classifiers degrades substantially in the presence of such shifts Ganin et al. (2016); Tzeng et al.
(2014); Zhang et al. (2019) and, indeed, we find that existing GCD models perform poorly in such a
setting. Compared to related literature in, for instance, domain adaptation Du et al. (2021); Chen et al.
(2022b); Zhu et al. (2023) or domain generalization Shi et al. (2022); Harary et al. (2022) the task
proposed here presents a dual challenge: models must be robust to the low-level covariate shift while
remaining sensitive to semantic novelty.

Concretely, we tackle a task in which a model is given access to labelled data from a source domain.
It is further given access to a pool of unlabelled data, in which images may come from either the
source domain or new domains, and whose categories may come from the labelled classes or from
new ones (see Figure 1). Such a setting may commonly occur if, for example, images are taken with
different cameras or under different weather conditions. Moreover, such a setting is often observed
on the web, in which images come from many different domains and with innumerable concepts. We
suggest that the ability to cluster novel concepts while accounting for such covariate shift will be an
important factor in fully leveraging web-scale data.

To tackle these problems, we introduce the ‘HiLo’ architecture and learning framework.
The HiLo architecture extracts both ‘low-level’ (early layer) and ‘high-level’ (late layer)
features from a vision transformer Dosovitskiy et al. (2020). While extracting features
at multiple stages of the network has been performed in domain adaptation Bousmalis
et al. (2016); Peng et al. (2019b); Liu et al. (2020), we further introduce an explicit
loss term to minimise mutual information between the two sets of features (Section 3.2.1).
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Figure 1: We present a new task where a model must categorize
unlabelled instances from both seen and unseen categories, as
well as seen and novel domains. In the example above, models
are given labels only for the images in green boxes. The models
are tasked with categorizing all unlabelled images, including
those from different domains (top two rows) and novel categories
(rightmost three columns on an orange background).

The intuition is that the covariate and se-
mantic information in the data is (by def-
inition) independent, and that the induc-
tive bias of deep architectures is likely
to represent low-level covariate informa-
tion in early layers, and abstract seman-
tic information in later ones Olah et al.
(2017); Zhou et al. (2021). Next, we
take inspiration from a strong method
from the domain adaptation field, Patch-
Mix Zhu et al. (2023), which works by
performing mixup augmentation in the
embedding space of a pretrained trans-
former. While naive application of this
method does not account for semantic
novelty in unlabelled data, we extend
the PatchMix objective to allow training
with both a self-supervised contrastive
objective (Section 3.2.2), and a seman-
tic clustering loss (Section 3.2.2). With
these changes, the PatchMix style aug-
mentation is tailored to leverage both
the labelled and unlabelled data avail-
able in the GCD setting. Our ‘HiLo’
feature design in our framework enables
the model to disentangle domain and
semantic features, while patch mixing
allows the model to bridge the domain gap among images and focus more on determining the semantic
shifts. Therefore, we introduce the patch mixing idea into our ‘HiLo’ framework, equipping it with
a strong capability to discover novel categories from unlabelled images in the presence of domain
shifts.

Finally, we find that curriculum learning Bengio et al. (2015); Zhou et al. (2020); Wu & Vorobeychik
(2022) is particularly applicable to the setting introduced in this work (Section 3.2.3). Specifically,
the quality of the learning signal differs substantially across different partitions of the data: from a
clean supervised signal on the labelled set; to unsupervised signals from unlabelled data which may
or may not come from the same domain and categories. It is non-trivial to train a GCD model to
discover novel categories in the presence of both domain shifts and semantic shifts in the unlabelled
data. To address this challenge, we introduce a curriculum learning approach which gradually
increases the sampling probability weight of samples predicted as from unknown domains, as training
proceeds. Our sequential learning process prioritizes the discovery of semantic categories initially
and progressively enhances the model’s ability to handle covariate shifts, which cannot be achieved
by simply adopting existing domain adaptation methods.

To evaluate out models, we construct the ‘SSB-C’ benchmark suite – based on the recent Semantic
Shift Benchmark (SSB) Vaze et al. (2021) – with domain shifts introduced by synthetic corruptions
following ImageNet-C Hendrycks & Dietterich (2019). On this benchmark, as well as on a large-scale
DomainNet evaluation with real data Peng et al. (2019a), we also reimplement a range of performant
baselines from the category discovery literature. We find that, on both benchmarks, our method
substantially outperforms all existing category discovery models Vaze et al. (2022); Wen et al. (2023);
Han et al. (2019); Fini et al. (2021).

In summary, we make the following key contributions: (i) We formalize a challenging open-world
task for category discovery in the presence of domain shifts; (ii) We develop a new method, HiLo,
which disentangles covariate and semantic features to tackle the problem, extending state-of-the-art
methods from the domain adaptation literature; (iii) We reimplement a range of category discovery
models on a benchmark suite containing both fine-grained and coarse-grained datasets, with real and
synthetic corruptions. (iv) We demonstrate that, on all datasets, our method substantially outperforms
current state-of-the-art category discovery methods with finetuned hyperparamters.

2 RELATED WORK

Category discovery was firstly studied as novel category discovery (NCD) Han et al. (2019) and
recently extended to generalized category discovery (GCD) Vaze et al. (2022). GCD extends NCD by
including unlabelled images from both labelled and novel categories. Many successful NCD methods
have been proposed (e.g., DTC Han et al. (2019), RankStats Han et al. (2020; 2021), WTA Jia
et al. (2021), DualRank Zhao & Han (2021), OpenMix Zhong et al. (2021b), NCL Zhong et al.
(2021a), UNO Fini et al. (2021), knowledge distillation framework Gu et al. (2023)), they do not
address domain shifts. Recent work Zang et al. (2023) considers domain shifts in NCD with labelled
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⌦b, we partition their representations into semantic information (i.e., categories) and173 173

domain information (i.e., styles). Thus, the image representation of x1 can be denoted174 174

as z(1) = (z
(1)
s , z

(1)
d ), similarly for x2, we have z(2) = (z

(2)
s , z

(2)
d ). Referring to Fig. 1,175 175

semantic representations z
(1)
s and z

(2)
s encapsulate category information (e.g., cats or176 176

dogs), while exclusive representations z
(1)
d and z

(2)
d pertain to style (e.g., real or sketch).177 177

As high-level features carry more abstraction than shallow feature [45,63], we utilize zm178 178

and z1 to represent semantic information z
(1)
s 2 Rs and domain information z

(1)
d 2 Rd,179 179

respectively. As such, we consider minimizing the mutual information between zs and180 180

zd as:181 181

I(zs, zd) ⇡ I(zm, z1) =

Z

Rs

Z

Rd

p(zm, z1) log

✓
p(zm, z1)

p(zm)p(z1)

◆
dzmdz1. (2)182 182

However, it is intractable to estimate the density ratio between p(zm, z1) and p(zm)p(z1)183 183

from finite high-dimensional samples without parametric assumptions [42, 60]. There-184 184

fore, we utilize variational f -divergence estimation approach [33, 34] by considering185 185

lower bounds on f -divergence, and subsequently to mutual information estimation rather186 186

than estimating its exact value. Here we use the mutual information estimator Deep187 187

InfoMax [24] which is based on the Jensen-Shannon divergence instead. So the mutual188 188

information I(zm, z1) can be estimated using samples from p(zm, z1):189 189

Lm = Î�(zm, z1) =Ep(zm,z1)

h
� log

⇣
1 + e��(zm,z1)

⌘i

� Ep(zm)p(z1)

h
log
⇣
1 + e�(zm,z1)

⌘i
,

(3)190 190

where � is an MLP projection head with a single linear layer parameterized by a weight191 191

matrix whose output size is 1.192 192

3.2 PatchMix Contrastive Learning193 193

Mixup [56] is a powerful data augmentation technique that involves blending pairs of194 194

samples and their corresponding labels to create new synthetic training examples. As195 195

Mixup is more beneficial in learning in-between and even rare features [66], we can196 196

obtain rich zm, z1 to estimate zs, zd more precisely.197 197

PMTrans in UDA. PMTrans [65] introduces a linear interpolation, called PatchMix, to198 198

perform mixup augmentation among the embedding features z0. We denote PatchMix as199 199

' for features from labelled zl
0 and unlabelled data zu

0 to perform patch-wise augmen-200 200

tation: z̄0 = '(zl
0, z

u
0 ;�) = �k � zl

0 + (1 � �k) � zu
0 , where �k 2 [0, 1] represents201 201

the random mixing proportion for the k-th patch, sampled from Beta distribution. The202 202

element-wise multiplication operation is denoted by �. PMTrans aligns the source and203 203

target samples with the intermediate sample constructed by PatchMix respectively in204 204

both feature and label spaces. However, new categories in Du cannot be well matched in205 205

PatchMix. Thus, we consider combining PatchMix with end-to-end GCD baseline.206 206

As Lr is dependent on the similarity matrix computed between samples in each207 207

batch, the presence of mixed samples with varying proportions of seen semantics can208 208
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When incorporating the PatchMix into our problem setting, the unlabelled sample251 251

x0 in Equation (6) may have both domain and semantic shifts. With the new PatchMix252 252

augmented embedding layer '̄ and the two projection heads of H̄, we can obtain253 253

[z̄d, z̄s] = H̄(F('̄(x))). We separately consider the learning of domain and semantic254 254

features. For semantic features, we introduce a255 255

As Lrep is dependent on the similarity matrix computed between samples in each256 256

batch, the presence of mixed samples with varying proportions of seen semantics can257 257

influence the actual semantic distance. Therefore, self-supervised/supervised contrastive258 258

learning should be modified as:259 259

Lrep
s (x) = � 1

|P(x)|
X

z̄+
s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧⇤). (7)260 260

Specifically, the confidence factor ↵ is calculated based on the global proportion of261 261

known semantics occupied in the mixed samples: ↵ = �·sl

�·sl+(1��)·su , where we aggre-262 262

gate � for all patches to get the instance-level importance and attention scores s are263 263

involved to eliminate false responses when combining null semantic components [7, 72].264 264

For supervised classification, q in Equation (2) is replaced by ȳ = ↵ · y + 1�↵
C · 1,265 265

where the all-one vector 1 smoothes for all categories, given that the ground-truth for266 266

unlabelled data is unknown. For the unsupervised classification, q is a pseudo-label from267 267

a sharpened prediction of the mixup from another view. The overall loss for PatchMix268 268

representation learning is:269 269

Ls(x) = Lrep
s (x) + Lcls

s (x). (8)270 270

271 271

Then, we proceed to assign cluster labels for each data point based on low-level272 272

features (i.e., zd). Since covariate and semantic information in the data is independent273 273

by definition, we can reformulate Lsim using domain label v, with new weight matrix274 274

W ⇤ for domain axis in Equation (2):275 275

Ld(x) = Lrep
d (x) + Lcls

d (x). (9)276 276

Note that q in Equation (2) is v̄ = ↵ · v + 1�↵
|⌦| · 1 for supervised classification. As for277 277

unsupervised classification, we peform SS-kmeans [53] for pseudo-labelling, which has278 278

been shown to be reliable and efficient especially when the class number is small.279 279

To prevent a trivial solution where all instances are assigned to one class, we add a280 280

regularization term�d for domain classification. As shown in Equation (3), we also apply281 281

mean-entropy maximization regularization to the domain axis. Putting all perspectives282 282

together, we can give the overall loss function as follows:283 283

L = Lm + Ls + Ld + ✏�, (10)284 284

where ✏ is the balance factor for the regularizer �, which is the summation of �s and285 285

�d.286 286
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D be an open-world dataset consisting of a labelled set Dl = {(xi, yi)}Nl
i=1 ⇢ X l ⇥ Y l160 160

and an unlabelled set Du = {xi}Nu
i=1 ⇢ Xu. The label space for labelled samples is161 161

Y l = C1 and for unlabelled samples is Yu = C = C1 [C2, where C, C1, and C2 represent162 162

the label sets for ‘All’, ‘Old’, and ‘New’ categories, respectively. It is important to note163 163

that Y l ⇢ Yu. The objective of GCD is to classify all unlabelled images in Du (from164 164

either ⌦a or ⌦b) using only the labels in Dl. This is different from the setting of NCD165 165

with domain shift and GCD, which assumes Y l \ Yu = ; for the former and ⌦a = ⌦b166 166

with singleton cardinalities for the latter. For notation simplicity, hereafter we omit the167 167

subscript i for each image xi.168 168

3.1 Background: SimGCD169 169

SimGCD [59] is a representative end-to-end baseline for GCD, which integrates two pri-170 170

mary losses for representation learning and parametric classification: (1) a contrastive loss171 171

Lrep based on InfoNCE [39] is applied for the representation learning of the feature back-172 172

bone; and (2) a cross-entropy loss Lcls for training a cosine classification head [19], uti-173 173

lizing different image views as pseudo-labels for one another. Following [54], SimGCD174 174

employs the ViT model as the backbone containing m Transformer layers. Let F be the175 175

feature extractor consisting of these m layers and H be a projection head. For an input176 176

image x, a `2-normalised feature can be obtained by z = H(F('(x))), where ' is a177 177

standard embedding layer before the multi-head attention layers in the ViT model. The178 178

representation loss is179 179

Lrep(x) = � 1

|P(x)|
X

z+2P(x)

log �(z · z+; ⌧), (1)180 180

where �(·; ⌧) is the softmax operation with a temperature ⌧ for scaling and P(x) denotes181 181

the positive feature set for each x. Suppose we sample a batch B, B contains both labelled182 182

and unlabelled images, denoted as Bl, Bu, respectively. If x 2 Bu, P(x) is features of183 183

another view from the same image, while if x 2 Bl, P(x) is features from the same184 184

class. Likewise, the classification loss can be written as185 185

Lcls(x) = �
X

w2W

q log �(ẑ · w; ⌧), (2)186 186

where each vector w in W represents a `2-normalised learnable class prototype. q is the187 187

one-hot ground-truth label if x 2 Bl, and is a pseudo-label from a sharpened prediction188 188

of another view of the image if x 2 Bu. Let Lr,c be the summation of Lrep and Lcls for189 189

simplification, the overall loss can then be written as:190 190

Lsim = �
X

x2B
Lr,c(x) + (1 � �)

X

x2Bl

Lr,c(x) + ✏�, (3)191 191

where Bl denotes the subset of labelled samples in the current mini-batch, and � is an192 192

entropy maximization term to prevent pseudo-label collapse [1]. Finally, � and ✏ are193 193

hyperparameters, and we refer to the original work for further details [59].194 194

Despite achieving strong performance on the standard single-domain GCD task,195 195

SimGCD struggles in the more realistic scenario in which the unlabelled data exhibits196 196
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Figure 2: Overview of HiLo framework. Samples are drawn through our proposed curriculum sampling
approach, considering the difficulty of each sample. Labelled and unlabelled samples are paired and augmented
through PatchMix which we subtly adapt in the embedding space for contrastive learning for GCD. The mixed-up
embeddings are then processed by our network with a high-level (for semantic) and low-level (for domain) feature
design, allowing for the domain-semantic disentangled feature learning via mutual information minimization.

target domain images. We focus on GCD without any labelled instances from new domains, where
unlabelled images may come from multiple novel domains. For GCD, Vaze et al. (2022) fine-tunes a
ViT model using DINO Caron et al. (2021) and semi-supervised k-means clustering. ORCA Cao
et al. (2021) enhances intra-class separability with adaptive margin loss. CiPR Hao et al. (2023) uses
hierarchical clustering and positive samples for representation learning. SimGCD Wen et al. (2023)
employs entropy regularization for improved performance. Other methods include Pu et al. (2023);
Zhang et al. (2023); Vaze et al. (2023); Zhao et al. (2023); Rastegar et al. (2024); Wang et al. (2024a).
DCCL Pu et al. (2023) dynamically updates visual conceptions. PromptCAL Zhang et al. (2023)
refines affinity graphs in vision transformers. GPC Zhao et al. (2023) uses a GMM-based method for
representation learning and category estimation. µ-GCD Vaze et al. (2023) applies a student-teacher
mechanism. However, existing GCD methods neglect domain shifts in unlabelled data.

Semi-supervised learning (SSL) aims to develop robust classification models using both labelled and
unlabelled data, assuming instances belong to the same class set. Consistency-based approaches, such
as Mean-teacher Tarvainen & Valpola (2017), Mixmatch Berthelot et al. (2019), and Fixmatch Sohn
et al. (2020), have demonstrated effectiveness in SSL. Recent methods Chen et al. (2020b;c; 2021)
have enhanced SSL performance by incorporating contrastive learning (e.g., Chen et al. (2020a), He
et al. (2020)). Several studies Wang et al. (2022); Rizve et al. (2022); Wang et al. (2024b); Sun et al.
(2024) have extended standard SSL to open-world settings.

Unsupervised domain adaptation (UDA) adapts models from a source domain to a target domain,
with labelled data from the former and unlabelled data from the latter. UDA methods are categorized
into moment matching Tzeng et al. (2014); Long et al. (2015; 2017); Zhang et al. (2019) and
adversarial learning Ganin et al. (2016); Gao et al. (2021); Tang & Jia (2020) methods. DANN,
FGDA, DADA are popular examples using a min-max game. MCD and SWD implicitly use
adversarial learning with L1 distance and sliced Wasserstein discrepancy, respectively. CGDM Du
et al. (2021) leverages cross-domain gradient discrepancy, while Chen et al. (2022b) couples NWD
with a single task-specific classifier with implicit K-Lipschitz constraint. PMTrans Zhu et al. (2023)
aligns the source and target domains with the intermediate domain by employing semi-supervised
mixup losses in both feature and label spaces. MCC Jin et al. (2020) minimizes between-class
confusion and maximizing within-class confusion, while NWD Chen et al. (2022b) uses a single
task-specific classifier with implicit K-Lipschitz constraint to obtain better robustness for all the
domain adaptation scenarios.

3 HILO NETWORKS FOR GCD WITH DOMAIN SHIFTS

In this section, we start with the problem statement of GCD with domain shifts. Subsequently, we
introduce the SimGCD baseline in 3.1, which serves as a robust GCD baseline upon which our
method is built. Finally, we introduce our HiLo networks for GCD with domain shifts in Section 3.2.

Problem statement. We define Generalized Category Discovery with domain shifts as the task of
classifying images from mixed domains Ω = Ωa ∪ Ωb (where Ωa ∩ Ωb = ∅ and Ωb may contain
multiple domains in practise), only having access to partially labelled samples from domain Ωa. The
goal is to assign class labels to the remaining images, whose categories and domains may be seen
or unseen in the labelled images. Formally, let D be an open-world dataset consisting of a labelled
set Dl = {(xi, yi)}Nl

i=1 ⊂ X l × Y l and an unlabelled set Du = {xi}Nu
i=1 ⊂ X u. The label space for
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labelled samples is Y l = C1 and for unlabelled samples is Yu = C = C1 ∪ C2, where C, C1, and C2
represent the label sets for ‘All’, ‘Old’, and ‘New’ categories, respectively. It is important to note that
Y l ⊂ Yu. The objective of GCD with domain shifts is to classify all unlabelled images in Du (from
either Ωa or Ωb) using only the labels in Dl. This is different from the setting of NCD with domain
shift and GCD, which assumes Y l ∩ Yu = ∅ for the former and Ωa = Ωb with |Ωa| = |Ωb| = 1 for
the latter. For notation simplicity, hereafter we omit the subscript i for each image xi.

3.1 BACKGROUND: SIMGCD

SimGCD Wen et al. (2023) is a representative end-to-end baseline for GCD, which integrates
two primary losses for representation learning and parametric classification: (1) a contrastive loss
Lrep based on InfoNCE Oord et al. (2018) is applied for the representation learning of the feature
backbone; and (2) a cross-entropy loss Lcls for training a cosine classification head Gidaris &
Komodakis (2018), utilizing different image views as pseudo-labels for one another. Following Vaze
et al. (2022), SimGCD employs the ViT model as the backbone containing m Transformer layers.
Let F be the feature extractor consisting of these m layers and H be a projection head. For an
input image x, a ℓ2-normalised feature can be obtained by z = H(F(φ(x))), where φ is a standard
embedding layer before the multi-head attention layers in the ViT model. The representation loss is

Lrep(x) = − 1

|P(x)|
∑

z+∈P(x)

log σ(z · z+; τ), (1)

where σ(·; τ) is the softmax operation with a temperature τ for scaling and P(x) denotes the positive
feature set for each x. Suppose we sample a batch B, which contains labelled images and unlabelled
images, denoted as Bl and Bu, respectively. For each x ∈ B (either a labelled or unlabelled image),
P(x) contains only the feature of a different view of the same image. For each x ∈ Bl, an additional
P(x) including features of other images from the same class and the feature of a different view of
the same image is also used for supervised constrastive learning. Likewise, the classification loss can
be written as

Lcls(x) = −
∑

w∈W

q log σ(ẑ ·w; τ), (2)

where W is a set of prototypes and each vector w in W represents a ℓ2-normalised learnable class
prototype. ẑ is the ℓ2-normalised vector of F(φ(x)). For each x ∈ B, q is the pseudo-label from a
sharpened prediction of a different view of the same image. For each x ∈ Bl, an additional q as the
one-hot ground-truth vector is also used for supervised learning. Let Lr,c be the summation of Lrep

and Lcls for simplification, the overall loss can then be written as:

Lsim = λ
∑

x∈B
Lr,c(x) + (1− λ)

∑

x∈Bl

Lr,c(x) + ϵ∆, (3)

where Bl denotes the subset of labelled samples in the current mini-batch, and ∆ is an entropy
maximization term to prevent pseudo-label collapse Assran et al. (2022). Finally, λ and ϵ are
hyperparameters, and we refer to the original work for further details Wen et al. (2023).

Despite achieving strong performance on the standard single-domain GCD task, SimGCD struggles
in the more realistic scenario in which the unlabelled data exhibits domain shifts. However, due to the
lack of consideration for domain shifts in the design of SimGCD, it struggles to achieve satisfactory
GCD performance in the presence of domain shifts. Next, we present our HiLo framework, which
builds upon SimGCD and introduces three key innovations to effectively handle domain shifts in
GCD.

3.2 HILO: HIGH AND LOW-LEVEL NETWORKS

The architecture of our HiLo framework is outlined in Figure 2. Firstly, we propose a method to
disentangle domain features and semantic features using mutual information minimization. Secondly,
we introduce patch-wise mixup augmentation in the image embeddings, facilitating knowledge
transfer between labelled and unlabelled data across different domains. Lastly, we employ a curricu-
lum sampling scheme that gradually increases the proportion of samples from the unseen domain
during training. This curriculum-based approach aids the learning process by initially focusing on
easier single-domain discrimination and gradually transitioning to more challenging cross-domain
discrimination.
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3.2.1 LEARNING DOMAIN-SEMANTIC DISENTANGLED FEATURES FOR GCD

As covariate shift observed by new domains Ω in Du degrades performance, we aim to learn two
distinct feature sets encoding domain and semantic aspects by minimizing their mutual information.
For each image x, we thus consider that its feature can be partitioned into two parts, depicting
domain-specific (e.g., real, sketch) and semantic information (e.g., cat, dog), respectively. However,
it is intractable to estimate the mutual information between random variables of semantic and domain
in finite high-dimensional space without parametric assumptions Zhao et al. (2018); Song & Ermon
(2019). Instead of calculating the exact value, assumptions based on convex conjugate Nguyen et al.
(2010) and GAN Nowozin et al. (2016) are utilized for estimation. Belghazi et al. (2018); Hjelm
et al. (2018) further demonstrate that this estimation can be achieved without such assumptions.
We thus adopt the approach from Hjelm et al. (2018) based on Jensen-Shannon divergence to
estimate the mutual information. For each image, instead of considering a single feature vector
as z = H(F(φ(x))), here we consider two feature vectors, zd and zs, for domain and semantic
information respectively. Inspired by the fact that deeper layers of the model give higher-level features
and the shallower layers of the model give lower-level features Sze et al. (2017); Zhou et al. (2021),
we use the feature from the very first layer of the ViT as zd and that from the very last layer as zs.
Specifically, we obtain [zd, zs] = H̃(F(φ(x))), where H̃ consists of two projection heads, one on
the first layer feature of F and the other on the last layer feature of F (see Figure 2). Therefore, the
mutual information between domain and semantic features can be approximated by a Jensen-Shannon
estimator:
Lm = IΦ(zd, zs) = Ep(zd,zs)

[
− log

(
1 + e−Φ(zd,zs)

)]
− Ep(zd)p(zs)

[
log
(
1 + eΦ(zd,zs)

)]
,

(4)
where Φ is an MLP and an output dimension of 1. Φ takes the concatenation of zs and zd as
input and predict a single scalar value. We aim to minimize the expected log-ratio of the joint
distribution concerning the product of marginals. Note that here zs and zd may come from two
different images. In practice, we tile the domain and semantic features of all the images in the
mini-batch, and concatenate them, before applying Φ on all the concatenated features. We then
extract the diagonal entries (which are from the marginals) as the first term and the other entries
(which are from the joint distribution) as the second term in Equation (4).

3.2.2 PATCHMIX CONTRASTIVE LEARNING

Mixup Zhang et al. (2018b) is a powerful data augmentation technique that involves blending pairs
of samples and their corresponding labels to create new synthetic training examples. It has been
shown to be very effective in semi-supervised learning Hataya & Nakayama (2019), long-tailed
recognition Xu et al. (2021), etc. In the presence of domain shifts, Mixup has also been shown to
be effective in unsupervised domain adaptation Na et al. (2021) and domain generalization Zhang
et al. (2018a); Yun et al. (2019); Zhou et al. (2021). Recently, PMTrans Zhu et al. (2023) introduced
PatchMix, which is a variant of Mixup augmentation by mixing up the embeddings of images in the
Transformer-based architecture for domain adaptation. Particularly, for an input image x with label
y, PatchMix augments its j-th embedding patch by

φ̄(x)j = βj ⊙ φ(x)j + (1− βj)⊙ φ(x′)j , (5)
where x′ is an unlabelled image with or without domain shift, βj ∈ [0, 1] is the random mixing
proportion for the j-th patch, sampled from Beta distribution, and ⊙ denotes the multiplication
operation. A one-hot vector derived from y is then smoothed based on βj to supervise the cross-
entropy loss to train the classification model. However, this works under the assumption that
the out-of-domain samples share the same class space with the in-domain samples, restricting its
application to the more practical scenarios where the out-of-domain samples may come from new
classes as we consider in the problem of GCD with domain shift. Hence, we devise a PatchMix-based
contrastive learning method to address the challenge of GCD in the presence of domain shift. Our
approach properly leverages all available samples, including both labelled and unlabelled data, from
both in-domain and out-of-domain sources, encompassing both old and new classes. By incorporating
these diverse samples, our technique aims to improve the model’s ability to handle domain shifts and
effectively generalize across different classes.

When incorporating the PatchMix into our problem setting, the unlabelled sample x′ in Equation (5)
may have both domain and semantic shifts. With the new PatchMix augmented embedding layer φ̄
and the two projection heads of H̃, we can obtain [z̄d, z̄s] = H̃(F(φ̄(x))). We separately consider
the learning of domain and semantic features. For semantic features, we introduce a factor α which
takes the portion semantic of the sample x into account, after mixing up with x′. In specific, the
contrastive loss in Equation (1) is now modified as:

Lrep
s (x) = − 1

|P(x)|
∑

z̄+
s ∈P(x)

α log σ(z̄s · z̄+
s ; τ), (6)
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where α = β·s
β·s+(1−β)·s′ . β denotes the vector consisting of all βj as in Equation (5). s and s′ are

two vectors storing the attention scores for all the patches for x and x′ respectively. The attention
scores, computed following Chen et al. (2022a); Zhu et al. (2023), account for the semantic weight of
each patch. To train the semantic classification head, we adopt the loss as in Equation (2). Differently,
if x is a labelled sample, inspired by Szegedy et al. (2016), we replace q with q̄ = α · q + 1−α

|C| · 1,
where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar to Equation (2),
q is a pseudo-label from a sharpened prediction of from another mixed-up view. Aside from the
label q, we also need to learn another set of semantic prototypes by replacing W with W s. Let
the modified classification loss be Lcls

s and Lr,c
s be the summation of Lrep

s and Lcls
s . The loss for

PatchMix-based semantic representation and classification learning is:

Ls = λ
∑

x∈B
Lr,c
s (x) + (1− λ)

∑

x∈Bl

Lr,c
s (x). (7)

Next, for domain-specific features, we employ the same loss as Equation (6), except that we now train
on z̄d, for representation learning. We denote this loss as Lrep

d . For training the classification head,
we again adopt the loss as in Equation (2) but modify the label q and learn a set of domain prototypes
W d. Therefore, if x is a labelled sample, q̄ = α ·q+ 1−α

|Ω| ·1, where q is the domain label. Note that
we only assume that the labelled samples are from the same domain and do not assume that domain
labels are available for any unlabelled samples, which is more realistic and challenging. Therefore,
the only known domain label is typically 1. To obtain pseudo-labels for the unlabelled samples, we
run the semi-supervised k-means as in Vaze et al. (2022) on the current mini-batch. We denote this
modified classification loss as Lcls

d and the summation of Lrep
d and Lcls

d as Lr,c
d . Therefore, the loss

for representation and classification learning can be written as

Ld = λ
∑

x∈B
Lr,c
d (x) + (1− λ)

∑

x∈Bl

Lr,c
d (x). (8)

Overall loss. We apply the mean-entropy maximization regularizer, as described in Equation (3), to
both semantic and domain feature learning. These regularizers are denoted as ∆s and ∆d respectively.
Let ∆ = ∆s +∆d and ε be the balance factor. The overall loss for our HiLo framework can then be
written as

L = Lm + Ls + Ld + ε∆. (9)

3.2.3 CURRICULUM SAMPLING

As curriculum sampling Bengio et al. (2015) can effectively enhance the generalization capability of
models by gradually increasing the difficulty of the training data, which is also a natural fit to the
GCD with domain shift problem. Here, we also introduce a curriculum sampling scheme to further
enhance the learning of our HiLo framework. We expect the training to start by focusing on samples
from the same domain to learn semantic features and leverage more samples containing the additional
challenge of domain shifts in the later training stages. To this end, we devise a difficulty measure
pcs(x|t) for each sample x at training time step t (i.e., epoch), by considering the portion of samples
belonging to each domain. As the unlabelled samples are from multiple domains and we do not have
access to the domain label, we run the semi-supervised k-means on all the domain features extracted
using the DINO pretrained backbone. Let the resulting clusters along the domain axis be D̂a and D̂b,
which corresponds to domains Ωa and Ωb respectively and Du = D̂a ∪ D̂b. With the above, we then
define the sampling probability weight pcs(x|t) for each sample as follows:

pcs(x|t) =





1, x ∈ Dl

|Dl|
|D̂a|

, x ∈ D̂a,

r0 + (r′ − r0)1(t > t′), x ∈ D̂b

(10)

where 1(·) is an indicator function, t′ is a constant epoch number since which we would like to
increase the portion of samples from unknown domains, r0 and r′ are constant probabilities for
samples from unknown domains to be sampled in the earlier stages (i.e., < t′) and latter stages (i.e.,
> t′), t indicates the current training time step. In our formulation, (1) if x is a labelled sample, its
pcs(x|t) is set to 1, without any discount; (2) if x is an unlabelled sample and is in D̂a (i.e., predicted
as from the seen domain), pcs(x|t) is set to |Dl|

|D̂a| (i.e., proportional to the labelled and unlabelled
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samples from the same domain, as per the sampling strategy used in the conventional GCD without
domain shifts Vaze et al. (2022)); and (3) if x is an unlabelled sample and is in D̂a (i.e., predicted as
from the unseen domain), its pcs(x|t) will increase along with the training after epoch t′. We also
investigate choices of r0, r′ and t′ in Appendix M.

In Appendix D, we provide an approximated theoretical analysis for our method. Theorem 1 suggests
(1) that learning on the original domain data first can effectively lower the error bound of category
discovery on Du and (2) the domain head that can reliably discriminate original and new domain
samples can further reduce this error bound. Theorem 2 suggests that minimizing the mutual
information between domain and semantic features can further lower the error bound of category
discovery on Du. These theorems further validate the effectiveness of our method from a theoretical
perspective.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To validate the effectiveness of our method, we perform various experiments on the largest
public datasets with domain shifts, DomainNet Peng et al. (2019a), containing about 0.6 million
images with 345 categories distributed among six domains. Moreover, based on the Semantic Shift
Benchmark (SSB) Vaze et al. (2021) (including CUB Welinder et al. (2010), Stanford Cars Krause
et al. (2013b), and FGVC-Aircraft Maji et al. (2013)), we construct a new corrupted dataset called
SSB-C (i.e., CUB-C, Scars-C, and FGVC-C) following Hendrycks & Dietterich (2019). We exclude
unrealistic corruptions and corruptions that may lead to domain leakage to ensure that the model
does not see any of the domains in SSB-C during training (see Appendix A for details). Overall,
we introduce 9 types of corruption and 5 levels of corruption severity for each type, resulting in a
dataset 45× larger than SSB. For the semantics axis, on both DomainNet and SSB-C, following Vaze

Table 1: Statistics of the evaluation datasets.
Labelled Unlabelled

Dataset #Image
#Class
|Y l|

#Domain
|Ωa| #Image #Class

|Yu|
#Domain

|Ω|
DomainNet 39.1K 172 1 547.5K 345 6
CUB-C 1.5K 100 1 45K 200 10
Scars-C 2.0K 98 1 61K 196 10
FGVC-C 1.7K 50 1 50K 100 10

et al. (2022), we sample a subset of all classes as the old classes and use 50% of the images from
these labelled classes to construct Dl

Ωa . The remaining images with both old classes and new classes
are treated as the unlabelled data Du

Ωa . For the domain axis, on DomainNet, we select images
from the ‘real’ domain as DΩa and pick one of the remaining domains as DΩb in turn (or include
all the remaining domains as DΩb). While on SSB-C, we use each dataset in SSB as DΩa and its
corresponding corrupted dataset in SSB-C as DΩb . Statistics of the datasets are shown in Table 1.

Evaluation protocol. For DomainNet, Ωa = {ω1} and Ωb = {ω2}, where ωi stands for different
domains. We also experiment with the case where Ωb = {ω2, · · · , ω6}. We train the models on
DΩa (i.e., Dl

Ωa ∪ Du
Ωa) and Du

Ωb of all classes without annotations. For SSB-C, Ωa = {ω1} and
Ωb = {ω2, · · · , ω10} since we have nine types of corruptions. During evaluation, we compare
the ground-truth labels yi with the predicted labels ŷi and measure the clustering accuracy by
ACC = 1

|Du|
∑|Du|

i=1 1(yi = ϕ(ŷi)), where ϕ is the optimal permutation that matches the predicted
cluster assignments to the ground-truth labels. We report the ACC values for ‘All’ classes (i.e.,
instances from Y), the ‘Old’ classes subset (i.e., instances from Y l), and ‘New’ classes subset (i.e.,
instances from Yu) for Du

Ωa and Du
Ωb separately.

Implementation details. Following the common practice in GCD, we use the DINO Caron et al.
(2021) pre-trained ViT-B/16 as the feature backbone and the number of categories is known as in Wen
et al. (2023) for all methods for fair comparison. When the category number is unknown, one can
employ existing methods (e.g., Han et al. (2019); Vaze et al. (2022); Hao et al. (2023); Zhao et al.
(2023)) to estimate it and substitute it into the category discovery methods (see Table 24). The
768-dimensional embedding vector corresponding to the CLS token is used as the image feature. For
the feature backbone, we only fine-tune the last Transformer layer. We train each dataset for T = 200
epochs using a batch size of 256. We follow the protocol in Vaze et al. (2022); Wen et al. (2023) to
select the optimal hyperparameters for our method and all baselines, based on the ‘All’ accuracy on
the validation split of Dω1

. The initial learning rate for our approach is 0.1 for CUB and 0.05 for other
datasets, and the rate is decayed using a cosine schedule. t′ is set to the 80-th epoch. r0 is assigned as
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|Dl|/|Ω̂b| for DomainNet and 0 for SSB-C. r′ is set to 1 for DomainNet and 0.05 for SSB-C. ϵ is set
to 0.1. Following Vaze et al. (2022); Wen et al. (2023), we set λ = 0.35. See Appendices M and N
for choices of hyperparameters for HiLo components and learning rates for all methods.

4.2 MAIN COMPARISON

We compare our method with ORCA Cao et al. (2021), GCD Vaze et al. (2022) and SimGCD Wen
et al. (2023) in generalized category discovery, along with two strong baselines RankStats+ Han
et al. (2021) and UNO+ Fini et al. (2021) adapted from novel category discovery, on DomainNet
(Table 2) and SSB-C (Table 3), respectively. Additionally, we provide results by incorporating UDA
techniques in Section 4.3 and the strong CLIP model in Appendix G.

In Table 2, we present results on DomainNet considering one domain as Ωb each time. Our method
consistently outperforms other methods for ‘All’ classes (even better for ‘New’ classes) in both
domain Ωa and Ωb by a large margin. For example, for the ‘Real’ and ‘Painting’ pair, it outperforms
the GCD SoTA method, SimGCD, by nearly 5% and 19% in proportional terms, which is remarkable
considering the gap between different methods. RankStat+ performs well on ‘Old’ categories in
the unseen domain Ωb. In Appendix B, we present results on DomainNet considering all domains
except ‘Real’ as Ωb. It can be seen, in such a challenging mixed domain scenario, our method still
substantially outperforms other methods. A breakdown evaluation of each domain shift for both
datasets can be found in Appendices H and I.

Table 2: Evaluation on the DomainNet dataset. The model is trained on the ‘Real’ (i.e., Ωa) + ‘Paint-
ing’/‘Sketch’/‘Quickdraw’/‘Clipart’/‘Infograph’ (i.e., Ωb) domains in turn.

Real+Painting Real+Sketch Real+Quickdraw Real+Clipart Real+Infograph
Real Painting Real Sketch Real Quickdraw Real Clipart Real Infograph

Methods All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
RankStats+ 34.1 62.0 19.7 29.7 49.7 9.6 34.2 62.0 19.8 17.1 31.1 6.8 34.1 62.5 19.5 4.1 4.4 3.9 34.0 62.4 19.4 24.1 45.1 6.2 34.2 62.4 19.6 12.5 21.9 6.3
UNO+ 44.2 72.2 29.7 30.1 45.1 17.2 43.7 72.5 28.9 12.5 17.0 9.2 31.1 60.0 16.1 6.3 5.8 6.8 44.5 66.1 33.3 21.9 35.6 10.1 42.8 69.4 29.0 10.9 15.2 8.0
ORCA 31.9 49.8 23.5 28.7 38.5 7.1 32.5 50.0 23.9 11.4 14.5 7.2 19.2 39.1 15.3 3.4 3.5 3.2 32.0 49.7 23.9 19.1 31.8 4.3 29.1 47.7 20.1 8.6 13.7 7.1
GCD 47.3 53.6 44.1 32.9 41.8 23.0 48.0 53.8 45.3 16.6 22.4 11.1 37.6 41.0 35.2 5.7 4.2 6.9 47.7 53.8 44.3 22.4 34.4 16.0 41.9 46.1 39.0 10.9 17.1 8.8
SimGCD 61.3 77.8 52.9 34.5 35.6 33.5 62.4 77.6 54.6 16.4 20.2 13.6 47.4 64.5 37.4 6.6 5.8 7.5 61.6 77.2 53.6 23.9 31.5 17.3 52.7 67.0 44.8 11.6 15.4 9.1
HiLo (Ours) 64.4 77.6 57.5 42.1 42.9 41.3 63.3 77.9 55.9 19.4 22.4 17.1 58.6 76.4 52.5 7.4 6.9 8.0 63.8 77.6 56.6 27.7 34.6 21.7 64.2 78.1 57.0 13.7 16.4 11.9

In Table 3, we show the results on SSB-C. We can see that HiLo significantly outperforms other
methods across the board. For example, on CUB-C, HiLo outperforms SimGCD nearly 43.8% in
proportional terms within Ωa and 51.4% on unlabelled samples within Ωb. SimGCD shows good
performance for new categories, while UNO+ demonstrates good performance for old categories.

Table 3: Evaluation on SSB-C datasets. We report results of baselines in the seen domain (i.e., Original) and
the overall performance of different corruptions (i.e., Corrupted). On ‘Corrupted’, our model provides between
20% and 80% relative gains over SimGCD Wen et al. (2023).

CUB-C Scars-C FGVC-C
Original Corrupted Original Corrupted Original Corrupted

Methods All Old New All Old New All Old New All Old New All Old New All Old New
RankStats+ 19.3 22.0 15.4 13.6 23.9 4.5 14.8 20.8 7.8 11.5 22.6 1.0 14.4 16.4 14.5 8.3 15.6 5.0
UNO+ 25.9 40.1 21.3 21.5 33.4 8.6 22.0 41.8 7.0 16.9 29.8 4.5 22.0 33.4 15.8 16.5 25.2 8.8
ORCA 18.2 22.8 14.5 21.5 23.1 18.9 19.1 28.7 11.2 15.0 22.4 8.3 17.6 19.3 16.1 13.9 17.3 10.1
GCD 26.6 27.5 25.7 25.1 28.7 22.0 22.1 35.2 20.5 21.6 29.2 10.5 25.2 28.7 23.0 21.0 23.1 17.3
SimGCD 31.9 33.9 29.0 28.8 31.6 25.0 26.7 39.6 25.6 22.1 30.5 14.1 26.1 28.9 25.1 22.3 23.2 21.4
UniOT 27.5 29.3 26.8 27.3 33.2 22.5 24.3 37.5 22.3 22.9 31.4 13.7 27.3 29.8 22.5 21.6 23.5 19.6
HiLo (Ours) 56.8 54.0 60.3 52.0 53.6 50.5 39.5 44.8 37.0 35.6 42.9 28.4 44.2 50.6 47.4 31.2 29.0 33.4

Comparing the results with the single domain results in Vaze et al. (2022); Wen et al. (2023), we find
that including corrupted data during training impairs the performance on the original domain. SSB-C
is 45× larger than SSB, posing a significant challenge and resulting in unsatisfactory performance for
existing methods. However, our method, HiLo, continues to demonstrate promising results, further
validating its effectiveness.
Table 4: Influence of different model components. We select the ‘Real’ and ‘Painting’ domains from DomainNet
to train the DINO model with the techniques introduced above as the baseline. Rows 2-4 indicate our main
conceptual methodological contributions and rows 5-7 represent the careful ablation of engineering choices.

Real Painting
Methods All Old New All Old New

Reference SimGCD Wen et al. (2023) 61.3 77.8 52.9 34.5 35.6 33.5
(1) SimGCD + PatchMix in Zhu et al. (2023) 62.5 76.3 54.2 34.8 36.0 33.8
(2) SimGCD + PatchMix for CL 63.5 75.0 57.6 36.6 39.6 33.6
(3) SimGCD + Disentangled Features 66.4 79.2 59.8 35.6 36.7 34.2
(4) SimGCD + Curriculum Sampling 63.6 78.6 55.9 38.4 39.9 35.9

Reference HiLo 64.4 77.6 57.5 42.1 42.9 41.3
(5) zd, zs from deep features only 28.2 40.3 22.7 13.6 20.0 11.0
(6) zd, zs from shallow features only 10.1 18.1 6.4 5.7 9.2 5.7
(7) Self-dist. for domain head 63.2 76.8 56.1 40.2 40.5 39.8
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4.3 ANALYSIS

Effectiveness of different components. We validate the effectiveness of different components and
design choices for our method in Table 4. As our method is built upon SimGCD, the effectiveness of
each component can be observed by comparing its performance with that of SimGCD. We combine
SimGCD with the original PatchMix in Zhu et al. (2023) (row 1) as a strong baseline for our task since
these are SoTA methods for GCD and UDA respectively. Rows 2-4 indicate our main conceptual
methodological contributions. As can be seen, simply combining SimGCD with the original PatchMix
developed for UDA leads to a relatively small influence on the results. The original PatchMix focuses
mainly on bridging the domain gap of labelled classes through a semi-supervised loss, which limits its
capability on the unseen classes from new domains. After sutbly adapting PatchMix into contrastive
learning for GCD (row 2), the unlabelled data containing both domain shifts and semantic shifts can
be properly utilized for training, leading to an obvious performance boost on Ωb. Furthermore, when
we disentangle semantic features from domain features (row 3), the model significantly improves
performance on both Ωa and Ωb, demonstrating dissociation of spurious correlations. Appendix E
also shows the efficacy of MI regularization in two distinct scenarios. Curriculum sampling further
enhances performance on Ωb (row 4).

Incorporating various techniques for GCD with domain shifts. We study the effectiveness of
incorporating the SoTA UDA techniques (MCC and NWD) into the baseline methods. Differently
to our task, domain adaptation does not consider discovering categories in the unlabelled images
from the unseen domain. Results are shown in Table 5. By comparing the results with those of
‘Real + Painting’ in Table 2, we can see that the results for each method are marginally improved
by introducing these techniques. This reveals that simply adopting the UDA techniques to the GCD
methods is not sufficient to handle the challenging problem of GCD with domain shifts. Moreover,
HiLo again notably outperforms all other methods after introducing these UDA techniques, despite
the gain by these techniques being relatively marginal, further demonstrating the effectiveness
and significance of our HiLo design. We also extend our analysis by incorporating various UDA
techniques (e.g., EFDM Zhang et al. (2022), SFA Li et al. (2021), UniOT Chang et al. (2022)), data
augmentation methods (e.g., Mixstyle, Mixup, Cutmix) and curriculum learning (e.g., CL Bengio
et al. (2009), SPL Kumar et al. (2010)) into baseline models. Our findings reveal that while some
UDA techniques and data augmentations offer improvements, they fall short of addressing the full
complexity of GCD with domain shifts. Specifically, EFDM improves SimGCD’s performance only
on Ωa, likely due to its reliance on explicit source-target domain alignment, which is not available
in our task formulation. The performance of different augmentation methods has a clear drop when
compared with our proposed PatchMix CL. Notably, HiLo consistently outperforms all tested UDA
baselines and data augmentation techniques. These results underscore the necessity of our tailored
approach for the challenging task of GCD with domain shifts, demonstrating that simply adopting
existing UDA or data augmentation methods is insufficient to address this complex problem.

Table 5: Evaluation on the DomainNet dataset by introducing SoTA UDA techniques.
Real Painting

Methods All Old New All Old New

RankStats+

+MCC+NWD

37.3 62.1 23.4 31.0 51.2 9.2
UNO+ 46.9 72.4 32.8 32.1 47.6 17.7
ORCA 33.4 50.1 26.7 30.0 41.1 9.1
GCD 50.6 54.0 48.4 34.0 43.1 22.7
SimGCD 63.1 77.1 56.9 35.7 39.0 32.4
HiLo (Ours) 65.0 77.8 58.0 42.5 43.1 42.0

Table 6: Influence of different UDA techniques (e.g., Mixstyle, EFDM), data augmentations (e.g., Mixup,
Cutmix) and curriculum learning (e.g., CL, SPL). We select the ‘Real’ and ‘Painting’ domains from DomainNet
to train the DINO model with the SoTA GCD method SimGCD as the baseline and compare with one baseline
method UniOT from universal domain adaptation.

Real Painting
Methods All Old New All Old New

Reference SimGCD 61.3 77.8 52.9 34.5 35.6 33.5
SimGCD + Mixstyle 62.3 76.8 54.0 35.0 36.1 34.0
SimGCD + EFDM 62.6 76.0 54.7 34.1 34.8 33.8
SimGCD + Mixup 62.7 76.5 54.3 34.9 37.2 32.5
SimGCD + Cutmix 62.5 76.3 54.1 33.2 36.0 31.6

Reference HiLo 64.4 77.6 57.5 42.1 42.9 41.3
HiLo + Mixup - PatchMix 63.7 77.1 56.8 39.8 39.9 38.7
HiLo + Cutmix - PatchMix 62.9 76.8 56.0 37.4 38.0 36.7
HiLo + CL - curriculum sampling 62.0 75.9 53.2 34.7 35.8 33.8
HiLo + SPL - curriculum sampling 62.8 76.5 54.5 35.0 36.1 34.0

Reference HiLo 64.4 77.6 57.5 42.1 42.9 41.3
SFA 60.1 73.4 52.8 34.9 38.0 32.6
UniOT 63.3 77.4 57.4 35.3 38.7 32.0

Importance of domain-semantic feature disentanglement. To validate the necessity of extracting
domain and semantic features from different layers, we experiment on two variants of the model, by
attaching both heads in H̃ either to the deepest layer or to the shallowest layer. As shown in rows 5-6
in Table 4, both variants are significantly inferior to our approach using features from different layers.
In addition, we further carry out controlled experiments by fixing the layer for one of the two heads
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while varying the other. In Figure 3 (a), we fix the semantic head to the last layer and vary the
‘Shallow’ layer for the domain head, from layer 1 to layer 4. As can be seen, attaching the domain
head to the earlier layers gives better performance, which also validates that lower-level features are
more domain-oriented. Similarly, in Figure 3 (b), we fix the domain head to the first layer and vary
the ‘Deep’ layer for the semantic head, from the last layer to the fourth last layer. We can see that
the last layer is the best choice for the semantic head. These results corroborate the importance of
domain-semantic feature disentanglement and our design choice of using lower-level features for
domain-specific information and higher-level features for semantic semantic-specific information.
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Figure 3: To investigate the effect of features extracted from different layers, we fix the layer for one of the
two heads while varying the other on the CUB-C dataset. Features from the first and last layers yield the best
performance.

4.4 QUALITATIVE RESULTS

We provide qualitative results on DomainNet and CUB-C. In Figure 4(a), we present the visualization
by first applying PCA to the domain features and semantic features obtained through H̃, and then
plotting the corresponding images. As can be seen, the images are naturally clustered according
to their domains and semantics, demonstrating that HiLo successfully learns domain-specific and
semantic-specific features.
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(a) Domain and semantic features projection (b) Attention map for different heads in the last layer

Figure 4: (a) Visualization of domain and semantic features via projecting them through PCA. We randomly
sample instances from the entire dataset and apply PCA to project the semantic and domain features into a
2-dimensional space. The domain branch tends to cluster images based on covariate features, while the semantic
branch clusters images based on categories. Best viewed in PDF with zoom. (b) Visualization of the attention
map for different heads in the last layer on DomainNet and CUB-C. We highlight the attended regions with
top 10% contribution in red. Compared with SimGCD, the attention maps of HiLo consistently focus on the
foreground object without affecting by the strong domain shifts of painting style and foggy weather.

The attention map offers valuable insights into the focus of Transformer-based models on the input.
We obtain the attention maps for the CLS token from multiple attention heads in the final layer of
the ViT backbone, highlighting the top 10% most attended patches in Figure 4(b). We observe that,
compared with the baseline, HiLo is much more effective in focusing on the foreground object even in
the presence of significant domain shifts (e.g., painting style, foggy weather). This demonstrates that
HiLo is robust to domain shifts and remains unaffected by potential spurious correlations between
semantic features and low-level statistics.

5 CONCLUSION

In this paper, we study the new and challenging problem of generalized category discovery under
domain shifts. To tackle this challenge, we propose the HiLo learning framework, which contains three
major innovations, including domain-semantic disentangled feature learning, PatchMix contrastive
learning, and a curriculum learning approach. We thoroughly evaluate HiLo on the DomainNet
dataset and our constructed SSB-C benchmark, and show that HiLo outperforms SoTA GCD methods
for this challenging problem.
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A SSB-C BENCHMARKS

As demonstrated in Section 4.1 in the main paper, we construct the SSB-C benchmark to evaluate
the robustness of algorithms to diverse corruptions applied to validation images of the original SSB
benchmark (including CUB Welinder et al. (2010), Stanford Cars Krause et al. (2013a) and FGVC-
Aircraft Maji et al. (2013)), adopting the corruptions following Hendrycks & Dietterich (2019). We
introduce 9 types of corruption (see Figure 5) in total. Each type of corruption has 5 severity levels.
Therefore, SSB-C is 45× larger than the original SSB.

We exclude similar (i.e., defocus blur, glass blur and motion blur) or unrealistic corruptions (i.e.,
pixel noise and JPEG mosaic). We also exclude corruptions (i.e., bright noise, contrast noise) that
may lead to domain leakage (since these corruptions have been adopted during DINO pretraining) to
ensure that the model does not see any of the domains in SSB-C during training on the GCD task
with domain shifts.

Here is the list of the 9 types of corruption we applied following Hendrycks & Dietterich (2019):

• Gaussian noise often appears in low-lighting conditions.
• Shot noise, also known as Poisson noise, results from the discrete nature of light and is a

form of electronic noise.
• Impulse noise occurs due to bit errors and is similar to salt-and-pepper noise but with color

variations.
• Frosted blur appears on windows or panels with frosted glass texture.
• Zoom blur happens when the camera moves rapidly toward an object.
• Snow obstructs visibility while frost forms on lenses or windows coated with ice crystals.
• Fog shrouds objects and can be rendered using the diamond-square algorithm.
• Speckle noise is a granular texture that occurs in coherent imaging systems, such as radar

and medical ultrasound. It results from the interference of multiple waves with the same
frequency.

• Spatter occurs when drops or blobs splash, spot, or soil the images.

Gaussian Noise Shot Noise Impulse Noise

Fog

Snow FrostZoom Blur

Speckle Spatter
Figure 5: Our SSB-C dataset includes 45 distinct corruptions that are algorithmically generated from
9 types of corruptions, covering noise, blur, weather, and digital corruptions. Each type has 5 severity
levels.
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Though synthetic, SSB-C incorporates extra challenges and unique values over existing datasets like
DomainNet Peng et al. (2019a). Particularly, SSB-C includes (1) fine-grained recognition challenges
under domain shifts and (2) more types of domain shifts that are not covered in DomainNet.
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B MULTIPLE UNSEEN DOMAINS FOR DOMAINNET

Due to the large scale of DomainNet (over 587K images), which is significantly larger than SSB-C,
it is difficult to utilize all the samples from all remaining domains other than the ‘Real’ domain
in the experiments. Nonetheless, we conduct experiments with multiple domains in DomainNet
by subsampling instances while balancing classes and images per class. The total number of
unlabelled images from different domains remains the same as the single domain experiment in
the paper. Specifically, we randomly select 20% samples from each category in each domain
without replacement. Putting all these selected samples from all domains gives a subset which has
approximately equivalent number of samples to the total number of samples in ‘Painting’ domain as
in the single domain experiment (see Section 4.2 in the main paper). In this challenging multi-domain
experiment, HiLo continues to demonstrate promising results, further validating its effectiveness.

Table 7: Experiments on multiple domains in DomainNet. We subsample instances for the ease of
computation, while ensuring class and image balance. The total number of unlabelled images across
different domains is kept consistent with the single domain experiment mentioned in the main paper.

Real Painting Skecth Quickdraw Clipart Infograph

Methods All Old New All Old New All Old New All Old New All Old New All Old New

RankStats+ 34.0 62.3 19.9 30.3 50.1 11.1 17.9 31.5 7.2 2.4 2.0 2.5 25.1 46.4 6.3 12.0 22.1 5.5
UNO+ 43.1 72.0 28.6 30.3 43.7 17.4 12.0 16.3 8.9 2.1 2.3 1.8 22.8 37.4 9.5 12.4 20.3 6.5
ORCA 32.1 49.9 23.5 23.0 38.8 17.0 11.6 14.7 7.6 2.8 3.6 2.1 20.1 33.4 10.3 8.4 17.8 6.8
GCD 47.8 53.5 45.1 32.9 40.3 26.9 17.0 22.7 11.3 1.9 2.4 1.8 24.3 31.2 15.1 10.5 12.0 9.9
SimGCD 62.2 77.3 54.3 36.6 42.9 30.3 18.2 22.6 15.0 2.2 2.0 2.4 25.0 34.7 16.4 11.8 13.8 10.5

HiLo (Ours) 65.8 77.8 58.9 43.4 49.0 42.9 20.0 23.6 17.4 3.1 4.0 2.5 27.6 34.7 21.4 13.9 16.5 12.1
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C PATCHMIX CONTRASTIVE LEARNING

Specifically, PatchMix consists of a patch embedding layer that transforms input images from labelled
and unlabelled data into patches. As outlined in the main paper, PatchMix augments the data by
mixing up these patches in the embedding space (as shown in Figure 6 (a)). We randomly sample β
from Beta distribution to control the proportion of patches from images. Subsequently, we compute
the loss for representation learning (Figure 6 (b)) and classification learning (Figure 6 (c)) based on
the augmented embeddings and predictions, respectively. The confidence factor α is determined by
the overall proportion of known semantics in the mixed samples (i.e., β for all the patches) and the
attention scores for all the patches of the input image. α is then assigned based on the similarity score
or the actual label to guide the training (see Equation (6) in the paper).
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265

Lrep
s (x) = � 1

|P(x)|
X

z̄+
s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧), (6)266 266

where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275

summation of Lrep
s and Lcls

s . The loss for PatchMix-based semantic representation and276 276

classification learning is:277 277

Ls = �
X

x2B
Lr,c

s (x) + (1 � �)
X

x2Bl

Lr,c
s (x). (7)278 278

279 279
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265

Lrep
s (x) = � 1

|P(x)|
X
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↵ log �(z̄s · z̄+
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
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s be the275 275

summation of Lrep
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265

Lrep
s (x) = � 1

|P(x)|
X

z̄+
s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧), (6)266 266

where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275

summation of Lrep
s and Lcls
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265

Lrep
s (x) = � 1

|P(x)|
X

z̄+
s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧), (6)266 266

where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275

summation of Lrep
s and Lcls

s . The loss for PatchMix-based semantic representation and276 276
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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s (x) = � 1

|P(x)|
X
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s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧), (6)266 266

where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265

Lrep
s (x) = � 1

|P(x)|
X

z̄+
s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧), (6)266 266

where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265

Lrep
s (x) = � 1

|P(x)|
X

z̄+
s 2P(x)

↵ log �(z̄s · z̄+
s ; ⌧), (6)266 266

where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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X
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c
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summation of Lrep
s and Lcls
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275
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learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245

where x0 is an unlabelled image with or without domain shift, �j 2 [0, 1] is the random246 246

mixing proportion for the j-th patch, sampled from Beta distribution, and � denotes the247 247

multiplication operation. A one-hot vector derived from y is then smoothed based on �j248 248

to supervise the cross-entropy loss to train the classification model. However, this works249 249

under the assumption that the out-of-domain samples share the same class space with250 250

the in-domain samples, restricting its application to the more practical scenarios where251 251

the out-of-domain samples may come from new classes as we consider in the problem of252 252

GCD with domain shift. Hence, we devise a PatchMix-based contrastive learning method253 253

to address the challenge of GCD in the presence of domain shift. Our approach properly254 254

leverages all available samples, including both labelled and unlabelled data, from both255 255

in-domain and out-of-domain sources, encompassing both old and new classes. By256 256

incorporating these diverse samples, our technique aims to improve the model’s ability257 257

to handle domain shifts and effectively generalize across different classes.258 258

When incorporating the PatchMix into our problem setting, the unlabelled sample259 259

x0 in Equation (5) may have both domain and semantic shifts. With the new PatchMix260 260

augmented embedding layer '̄ and the two projection heads of H̃, we can obtain261 261

[z̄d, z̄s] = H̃(F('̄(x))). We separately consider the learning of domain and semantic262 262

features. For semantic features, we introduce a factor ↵ which takes the portion semantic263 263

of the sample x into account, after mixing up with x0. In specific, the contrastive loss264 264

in Equation (1) is now modified as:265 265
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where ↵ = �·s
�·s+(1��)·s0 . � denotes the vector consisting of all �j as in Equation (5).267 267

s and s0 are two vectors storing the attention scores for all the patches for x and x0268 268

respectively. The attention scores, computed following [8, 74], account for the semantic269 269

weight of each patch. To train the semantic classification head, we adopt the loss as270 270

in Equation (2). Differently, if x is a labelled sample, q is replaced by q̄ = ↵ ·q+ 1�↵
|C| ·1,271 271

where q is the one-hot vector derived from the label y of x. If x is unlabelled, similar272 272

to Equation (2), q is a pseudo-label from a sharpened prediction of from another mixed-273 273

up view. Aside from the label q, we also need to learn another set of semantic prototypes274 274

by replacing W with W s. Let the modified classification loss be Lcls
s and Lr,c

s be the275 275

summation of Lrep
s and Lcls

s . The loss for PatchMix-based semantic representation and276 276

classification learning is:277 277

Ls = �
X

x2B
Lr,c

s (x) + (1 � �)
X

x2Bl

Lr,c
s (x). (7)278 278

279 279

(x1)

ECCV 2024 Submission #4177 7

learning [25], long-tailed recognition [61], etc. In the presence of domain shifts, Mixup239 239

has also been shown to be effective in unsupervised domain adaptation [35] and domain240 240

generalization [72]. Recently, PMTrans [74] introduced PatchMix, which is a variant241 241

of Mixup augmentation by mixing up the embeddings of images in the Transformer-242 242

based architecture for domain adaptation. Particularly, for an input image x with label y,243 243

PatchMix augments its j-th embedding patch by244 244

'̄(x)j = �j � '(x)j + (1 � �j) � '(x0)j , (5)245 245
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α1

Figure 6: Illustration of PatchMix and loss functions. (a) PatchMix augments the data by mixing
up image patches in the embedding space with β sampled from Beta distribution. (b) The similarity
matrix for representation learning and (c) mixed embedding patches for classification learning are
adjusted according to the actual semantic components within the mixed patches, determined by α.
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D THEORETICAL ANALYSIS

Recall that D is an open-world dataset consisting of a labelled set Dl = {(xi, yi)}Nl
i=1 ⊂ X l × Y l

and an unlabelled set Du = {xi}Nu
i=1 ⊂ X u. We also define the mapping function g parametrized by

a deep neural network as one of the hypotheses from G.

For terminology convenience, here, we term Dl as the source domain data, distributed according to the
density ps(X,Y ), while Du as the target domain data, with a density pt(X). Note that Du contains
the unknown mixture of ps(X) and pt(X). The objective of our task is to leverage measurable
subsets Ωa and Ωb under D1 and D2 to find a hypothesis g ∈ G that minimizes the target error eDu ,
as defined by a zero-one loss function ℓ : Y × Y → R,

eDu(g) := Ex,y∼Du [ℓ(g(x), y)]. (11)

More generally, if y is determined by a labelling function g′ given the input x, we have

eDu(g, g′) := Ex∼Du [ℓ(g(x), g′(x)]. (12)

Similarly, the source error eDl(g) and eDl(g, g′) can be defined by eDl(g) := Ex,y∼Dl [ℓ(g(x), y)]
and eDl(g, g′) := Ex∼Dl [ℓ(g(x), g′(x)].

When the source domain does not adequately cover the target domain, the target risk of a learned
hypothesis cannot be consistently estimated without additional assumptions. Nonetheless, an upper
bound on the target risk can be estimated and then minimized. Ben-David et al. (2006) introduce the
A-distance (also known as H-divergence) to assess the worst-case loss when extrapolating between
domains for hypothesis classes. The A-distance between any two distributions D1 and D2 is defined
as

dG(D1,D2) = 2 sup
g∈G

∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣ .

D.1 PROOF OF BOUNDS FOR THE TARGET ERROR

Lemma 1. Consider a symmetric hypothesis class G defined on the space X , with a VC dimension
d. Let Ωa and Ωb be collections of samples under domains D1 and D2. d̂G(Ωa,Ωb) is the empirical
A-distance between these sample sets. For any δ ∈ (0, 1), with probability at least 1− δ,

dG(D1,D2) ≤ 2

(
1−min

g∈G

[
1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

])

+ 4max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|


 ,

Proof. Recall the definition of the A-distance for hypothesis class G:

d̂G(Ω
a,Ωb) = 2 sup

g∈G

∣∣∣∣PrΩa
[I(g)]− Pr

Ωb
[I(g)]

∣∣∣∣ , (13)

where
Pr
Ωa

[I(g)] =
1

|Ωa|
∑

x∈Ωa

1(g(x) = 1),

Pr
Ωb

[I(g)] =
1

|Ωb|
∑

x∈Ωb

1(g(x) = 1).

For any hypothesis g and corresponding set I(g), we have

Pr
Ωa

[I(g)]− Pr
Ωb

[I(g)] =
1

|Ωa|
∑

x∈Ωa

1(g(x) = 1)− 1

|Ωb|
∑

x∈Ωb

1(g(x) = 1).
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The empirical A-distance is then

d̂G(Ω
a,Ωb) = 2 sup

g∈G

∣∣∣∣∣∣
1

|Ωa|
∑

x∈Ωa

1(g(x) = 1)− 1

|Ωb|
∑

x∈Ωb

1(g(x) = 1)

∣∣∣∣∣∣

= 2 sup
g∈G

∣∣∣∣∣∣
1

|Ωa|
∑

x:g(x)=1

1(x ∈ Ωa)− 1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

∣∣∣∣∣∣
.

To simplify this, we consider the complement set where g(x) = 0:

Pr
Ωa

[I(g)]− Pr
Ωb

[I(g)] =
1

|Ωa|
∑

x:g(x)=1

1(x ∈ Ωa)− 1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

= 1− 1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa)− 1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb).

Thus, the empirical A-distance can be expressed as:

d̂G(Ω
a,Ωb) = 2 sup

g∈G

∣∣∣∣∣∣
1

|Ωa|
∑

x:g(x)=1

1(x ∈ Ωa)− 1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

∣∣∣∣∣∣

= 2 sup
g∈G


1−


 1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)




 .

To find the minimum value, we need to consider the complement of the set I(g), which leads to
minimizing the expression inside the supremum. This gives us:

d̂G(Ω
a,Ωb) = 2


1−min

g∈G


 1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)




 .

From Theorem 3.4 of Kifer et al. (2004), we can know that:

P |Ωa|+|Ωb|
[
|d̂G(Ωa,Ωb)− dG(D1,D2)| > ϵ

]
≤ (2|Ωa|)de−|Ωa|ϵ2/16 + (2|Ωb|)de−|Ωb|ϵ2/16

= δ.

We use a union bound to handle the two terms separately:

(2m)de−|Ωa|ϵ2/16 ≤ δ

2
and (2|Ωb|)de−|Ωb|ϵ2/16 ≤ δ

2

For the first inequality:

(2|Ωa|)de−|Ωa|ϵ2/16 ≤ δ

2

Taking the natural logarithm on both sides:

log((2|Ωa|)d)− |Ωa|ϵ2
16

≤ log
δ

2

d log(2|Ωa|)− |Ωa|ϵ2
16

≤ log
δ

2

ϵ2 ≥ 16

|Ωa|

(
d log(2|Ωa|)− log

2

δ

)

ϵ ≥ 4

√
d log(2|Ωa|)− log 2

δ

|Ωa|

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Similarly, for the second inequality:

ϵ ≥ 4

√
d log(2|Ωb|)− log 2

δ

|Ωb|

To ensure that both inequalities hold, we take the maximum of the two derived ϵ values:

ϵ ≥ max


4

√
d log(2|Ωa|)− log 2

δ

|Ωa| , 4

√
d log(2|Ωb|)− log 2

δ

|Ωb|




Thus, we have

dG(D1,D2) ≤ d̂G(Ω
a,Ωb) + 4max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|




= 2

(
1−min

g∈G

[
1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

])

+ 4max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|


 ,

Theorem 1. Consider a symmetric hypothesis class G defined on the space X , with a VC dimension
d. Let Ωa and Ωb be collections of samples under domains D1 and D2. For any δ ∈ (0, 1), with
probability at least 1− δ,

eDu(g) ≤ eDl(g) +

(
1−min

g∈G

[
1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

])

+ 2max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|


 ,

Proof. Let g ∈ G be a hypothesis such that g(x) = 1 if and only if g1(x) ̸= g2(x) for some
g1, g2 ∈ G, indicating a disagreement between g1(x) and g2(x). Based on the definition of A-
distance, we have

dG(D1,D2) = 2 sup
g∈G

∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣
= 2 sup

g1,g2∈G
|eD1(g1, g2)− eD2(g1, g2)|

= 2|eD1(g1, g2)− eD2(g1, g2)|.

Consider an ideal joint hypothesis g∗, which is the hypothesis which minimizes the combined error
(ideally zero). By using the triangle inequality Ben-David et al. (2006), we have:

dG(D1,D2) ≥ 2|(eD1(g1)− eD1(g
∗))− (eD2(g1)− eD2(g

∗))|
≥ 2|eD1(g1)− eD2(g1)|.

As Du contains samples from both D1 and D2, we immediately know that:

dG(Dl,Du) ≤ dG(D1,D2)
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By Lemma 1, we have that

2(eDu(g)− eDl(g)) ≤ 2

(
1−min

g∈G

[
1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

])

+ 4max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|




eDu(g) ≤ eDl(g) +

(
1−min

g∈G

[
1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

])

+ 2max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|


 .

Theorem 1 demonstrates that the upper bound of the error on Du depends on the error on Dl and the
domain classification performance of g. It is evident that all components involved in Equation (8)
minimize the misclassification error in the second item. For the first item, curriculum sampling
ensures a reduced error of g on Dl during the early training stage, before HiLo can accurately classify
different domains through the domain head (thus leading to a lower error in domain classification,
i.e., the second item).

D.2 A TIGHTER BOUND FOR THE TARGET ERROR

Lemma 2. For the hypothesis class G,

dG(D1,D2) ≤ 2∥D1 −D2∥TV .

Proof. Recall that the total variation (TV) distance between two distributions D1 and D2 is defined
as:

∥D1 −D2∥TV = sup
A

|D1(A)−D2(A)|,

where the supremum is taken over all measurable sets A.

The A-distance can be seen as a specific form of the TV distance where the measurable sets A are the
subsets of the input space that can be defined by the hypotheses g ∈ G. However, the TV distance
considers all possible measurable sets A. For any measurable set A, we can consider the indicator
function 1A(x) which takes value 1 if x ∈ A and 0 otherwise. The TV distance can be expressed in
terms of these indicator functions:

∥D1 −D2∥TV = sup
A

|D1(A)−D2(A)| = sup
A

∣∣∣∣
∫
1A(x) dD1(x)−

∫
1A(x) dD2(x)

∣∣∣∣ .

When considering the hypothesis class G, we look at the functions g(x) that take the value 1 or 0,
similar to indicator functions for sets:

dG(D1,D2) = 2 sup
g∈G

∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣ .

For a given hypothesis g ∈ G, let Ag = {x | g(x) = 1}. The difference in probabilities for this
hypothesis is: ∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣ = |D1(Ag)−D2(Ag)| .

We left off by noting that for any hypothesis g ∈ G, the difference in probabilities |PrD1 [g(x) =
1]− PrD2

[g(x) = 1]| is bounded by the TV distance ∥D1 −D2∥TV :

|D1(Ag)−D2(Ag)| ≤ ∥D1 −D2∥TV ,
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where Ag = {x | g(x) = 1}.

The A-distance takes the supremum of this difference over all hypotheses g ∈ G:

dG(D1,D2) = 2 sup
g∈G

∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣ .

Because each individual difference |PrD1 [g(x) = 1]− PrD2 [g(x) = 1]| is bounded by ∥D1−D2∥TV ,
the supremum over all such differences must also be bounded by ∥D1 −D2∥TV :

sup
g∈G

∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣ ≤ ∥D1 −D2∥TV

2 sup
g∈G

∣∣∣∣PrD1

[g(x) = 1]− Pr
D2

[g(x) = 1]

∣∣∣∣ ≤ 2∥D1 −D2∥TV

dG(D1,D2) ≤ 2∥D1 −D2∥TV .

Lemma 3. Let a random variable z ∈ Z be a representation of the input features X . Fφ(X) =: z
with Fφ ∈ F is a feature transformation and H ∈ H operating in the representation space Z is a
prediction function. Hypotheses g ∈ G are formed by compositions g = H ◦Fφ and G := {H ◦Fφ :
H ∈ H,Fφ ∈ F}. For all Fφ ∈ F and H ∈ H,

dH(Z l,Zu) ≤ dG(Dl,Du).

Proof. Let g ∈ G be a hypothesis such that g(x) = 1 if and only if g1(x) ̸= g2(x) for some
g1, g2 ∈ G, indicating a disagreement between g1(x) and g2(x). Based on the definition of A-
distance, we have

dG(Dl,Du) = 2 sup
g∈G

∣∣∣∣PrDl
[g(x) = 1]− Pr

Du
[g(x) = 1]

∣∣∣∣ ,

and similarly,

dH(Zd,Zs) = 2 sup
H∈H

∣∣∣∣PrZd
[H(z) = 1]− Pr

Zs
[H(z) = 1]

∣∣∣∣ .

For Z = Fφ(X), we know that:

Pr
z∼Zl

[H(z) = 1] = Pr
x∼Dl

[H(Fφ(x)) = 1],

and

Pr
z∼Zu

[H(z) = 1] = Pr
x∼Du

[H(Fφ(x)) = 1].

For each H ∈ H, there is a corresponding g ∈ G such that g = H ◦ Fφ. However, not every g ∈ G
has a corresponding H ∈ H because Fφ might not cover the entire space or map back uniquely. This
leads to:

sup
H∈H

∣∣∣∣ Pr
z∼Zl

[H(z) = 1]− Pr
z∼Zu

[H(z) = 1]

∣∣∣∣ ≤ sup
g∈G

∣∣∣∣ Pr
x∼Dl

[g(x) = 1]− Pr
x∼Du

[g(x) = 1]

∣∣∣∣

2 sup
H∈H

∣∣∣∣ Pr
z∼Zl

[H(z) = 1]− Pr
z∼Zu

[H(z) = 1]

∣∣∣∣ ≤ 2 sup
g∈G

∣∣∣∣ Pr
x∼Dl

[g(x) = 1]− Pr
x∼Du

[g(x) = 1]

∣∣∣∣

dH(Z l,Zu) ≤ dG(Dl,Du).
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Lemma 4. Let a random variable z ∈ Z be a representation of the input features X . ψ(z) =: zd, zs
with ψ ∈ Ψ is a separator for the domain-specific feature zd ∈ Zd and the semantic-specific
feature zs ∈ Zs. Let J ∈ J be a prediction function based on Zd,Zs and I(zd; zs) be the mutual
information between zd and zs, for a hypothesis space J,

dJ(Zd,Zs) ≤ dH(Z l,Zu) ≤ dG(Dl,Du).

Proof. Hypotheses g ∈ G can be formed by either compositions g = H ◦ Fφ and G := {H ◦ Fφ :
H ∈ H,Fφ ∈ F}, or compositions g = J ◦ψ◦Fφ and G := {J ◦ψ◦Fφ : J ∈ J, ψ ∈ Ψ,Fφ ∈ F}.
Then, similar to the proof for Lemma 3, we can easily get the inequality.

Theorem 2. Let G be a symmetric hypothesis class defined on the space X , with a VC dimension
d. Let Ωa and Ωb be collections of samples under domains D1 and D2, zd and zs be drawn from
Zd and Zs, and I(zd; zs) be the mutual information between zd and zs. Define the optimal function
g∗ ∈ G as follows:

g∗ = argmin
g∈G


 1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)


 .

Then, eDu(g) is more tightly bounded by eDl(g) +
√
I(zd; zs).

Proof. Recall that A-distance between two distributions Zd and Zs is defined as:

dJ(Zd,Zs) = 2 sup
g∈G

∣∣∣∣PrZd
[g(z) = 1]− Pr

Zs
[g(z) = 1]

∣∣∣∣ .

Recall that the Jensen-Shannon (JS) divergence between two distributions Zd and Zs is defined as:

DJS(Zd∥Zs) =
1

2

(
DKL(Zd∥M) +DKL(Zs∥M)

)
,

whereM = 1
2 (Zd+Zs) is the mixture distribution and DKL is the Kullback-Leibler (KL) divergence.

Using Pinsker’s Inequality Csiszár & Körner (2011), we have:

∥Zd −Zs∥2TV ≤ 1

2

(
DKL(Zd∥M) +DKL(Zs∥M)

)
.

This implies:

∥Zd −Zs∥TV ≤
√

1

2
(DKL(Zd∥M) +DKL(Zs∥M)).

Thus, we can rewrite the TV distance bound in terms of the JS divergence:

∥Zd −Zs∥TV ≤
√

DJS(Zd∥Zs).

From Lemma 2, we know that the A-distance is bounded by twice the TV distance:

dJ(Zd,Zs) ≤ 2∥Zd −Zs∥TV .

Using the bound on the TV distance in terms of the JS divergence, we get:

dJ(Zd,Zs) ≤ 2
√
DJS(Zd∥Zs).
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As Equation (4) is Donsker-Varadhan representations of KL divergence Donsker & Varadhan (1983)
that approximates the mutual information using a neural network (MLP) Φ, the bound on mutual
information in terms of the JS divergence is:

I(zd; zs) = DKL(Zd∥Zs)

≥ 1

2
DKL(Zd∥M) +

1

2
DKL(Zs∥M) (Define M =

1

2
(Zd + Zs))

= DJS(Zd∥Zs).

Substituting this into the A-distance bound, we get:

dJ(Zd,Zs) ≤ 2
√

DJS(Zd∥Zs) ≤ 2
√
I(zd; zs).

Given that g∗ is the optimal function Given that g∗ is the optimal function from the set of hypotheses
G, we consider the bound of d̂G(Ωa,Ωb) stated in Lemma 1. Specifically, we have:

d̂G(Ω
a,Ωb) ≤ 2

(
1−min

g∈G

[
1

|Ωa|
∑

x:g(x)=0

1(x ∈ Ωa) +
1

|Ωb|
∑

x:g(x)=1

1(x ∈ Ωb)

])

+ 4max



√
d log(2|Ωa|)− log 2

δ

|Ωa| ,

√
d log(2|Ωb|)− log 2

δ

|Ωb|


 ,

The minimum of this bound cannot be lower than 4. Considering the mutual information I(zd; zs),
we know that:

0 ≤ I(zd; zs) ≤ 1.

Therefore, it follows that:

0 ≤ 2
√
I(zd; zs) ≤ 2.

This implies that 2
√
I(zd; zs) can serve as a tighter upper bound for d̂G(Ωa,Ωb).

Replacing the tighter bound of d̂G(Ωa,Ωb) in the proof steps of Theorem 1, we have

2(eDu(g)− eDl(g)) ≤ 2
√
I(zd; zs)

eDu(g) ≤ eDl(g) +
√
I(zd; zs).
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E EFFECT OF MUTUAL INFORMATION MINIMIZATION ON DIFFERENT
DATASETS

Our comprehensive analysis of HiLo’s performance across diverse datasets, with and without Mutual
Information (MI) regularization, is presented in Figure 7. The results demonstrate that MI regulariza-
tion’s efficacy is particularly pronounced in two distinct scenarios: datasets with markedly distinct
low-level styles (e.g., Quickdraw, Infograph) and those with closely related semantic categories (e.g.,
SSB-C benchmark). In the case of Quickdraw, the dramatic style variations are readily captured
by low-level features, allowing MI regularization to effectively disentangle semantic features from
low-level information. Note that Quickdraw samples are still too abstract to learn from constrastive
learning, leading to poor performance of the model. For the SSB-C benchmark, where image struc-
ture remains largely unchanged across different noise types, MI regularization proves crucial in
distinguishing subtle semantic differences from low-level information variations.

Quickdraw

Clipart

Infograph

CUB-C

Scars-C

FGVC-C

Painting

Sketch

Figure 7: Comparison between HiLo with and without MI across different datasets. DomainNet is a generic
dataset with disparate styles (e.g., Painting, Quickdraw, Sketch, Clipart and Infograph). The labelled data are
all from ‘Real’ domain. SSB-C (e.g., CUB-C, Scars-C and FGVC-C) is created by adding several common
noises in the real world to the fine-grained datasets. The labelled data are all from the original SSB. When
low-level style is quite different (e.g., Infograph, quickdraw) or semantics are close (e.g., SSB-C benchmark),
the improvement of MI regularization is pronounced.
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F NOVEL CATEGORY DISCOVERY IN THE PRESENCE OF DOMAIN SHIFTS

In this paper, we consider a challenging problem of generalized category discovery with domain
shifts, which, to our knowledge, has not been studied in the literature. However, the study of novel
category discovery under domain shifts has been considered in Yu et al. (2022) from a domain
adaptation perspective, which introduces a self-labeling framework, called NCDD, that can categorize
unlabelled images from both source and target domains, by maximizing mutual information between
labels and input images. The unlabelled images from the target domain may contain images from new
categories that are not present in the source domain. Differently, in our study, we consider that unseen
classes are also present in the unlabelled data from the source domain (i.e., the domain Ωa), and new
domains may appear at test time. Meanwhile, our HiLo framework also differs significantly from
NCDD. Particularly, HiLo learns to disentangle domain-semantic features by minimizing the mutual
information between domain and semantic heads. It also incorporates a novel PatchMix contrastive
learning method and a curriculum learning approach to facilitate the robustness of representation to
domain shifts. To compare HiLo with NCDD, we reimplement the NCDD method1 and experiment
on the experimental configuration following Yu et al. (2022) on the CUB-C. We present the results
in Table 8. As can be seen, HiLo significantly outperforms NCDD and all other baselines, highlighting
its effectiveness on domain-semantic disentanglement.

Table 8: Evaluation on SSB-C datasets. We report results of baselines in the seen domain (i.e.,
Original) and the overall performance of different corruptions (i.e., Corrupted).

CUB-C

Original Corrupted

Methods All Old New All Old New

RankStats+ 19.3 22.0 15.4 13.6 23.9 4.5
UNO+ 25.9 40.1 21.3 21.5 33.4 8.6
ORCA 18.2 22.8 14.5 21.5 23.1 18.9
NCDD 37.0 50.7 28.7 30.2 53.0 11.7
GCD 26.6 27.5 25.7 25.1 28.7 22.0
SimGCD 31.9 33.9 29.0 28.8 31.6 25.0

HiLo (Ours) 56.8 54.0 60.3 52.0 53.6 50.5

1Our NCDD reimplementation’s performance aligns with other efforts An et al. (2023)
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G INVESTIGATION OF CLIP FOR GCD WITH DOMAIN SHIFTS

CLIP Radford et al. (2021) has demonstrated strong performance in various computer vision tasks.
We thus investigate its potential for the challenging problem of GCD with domain shifts. We employ
the pretrained vision transformer from CLIP as the backbone for HiLo. As illustrated in Table 9,
employing CLIP significantly improves the performance of HiLo on DomainNet, compared with the
DINO-based HiLo and SimGCD.
Table 9: Effectiveness of employing CLIP as the backbone for HiLo. We select the ‘Real’ and
‘Painting’ domains to train the DINO model with the techniques introduced above as the baseline.

Real Painting
Methods All Old New All Old New

Baseline SimGCD Wen et al. (2023) 61.3 77.8 52.9 34.5 35.6 33.5
+ Pretrained CLIP 69.8 77.2 58.9 37.1 38.0 35.1

Baseline HiLo 64.4 77.6 57.5 42.1 42.9 41.3
+ Pretrained CLIP 74.5 78.1 64.2 47.1 49.5 45.4

Table 9, verifies that a strong visual encoder can bring performance boost on both seen and novel
domains. In Table 10, we further compare with another two CLIP baselines to better understand
the potential of the visual language model, i.e., zero-shot CLIP with oracle class names (which
are not expected to be unavailable in GCD) and with zero-shot CLIP a very large vocabulary (i.e.,
WordNet Miller (1995)), where we conduct zero-shot inference using the class names of both known
and unknown classes, by comparing the visual feature of each image and the text features of class
descriptions. The results in Table 10 demonstrate that CLIP models do not enhance robustness
compared to our HiLo model, a visual-only model, on CUB-C, despite that an extra vocabulary is
provided for the CLIP model (which arguably reduces the difficulty of the GCD task, in which we
do not assume any extra textual or visual knowledge on the unlabelled data). This finding aligns
with Taori et al. (2020), which indicates that robustness under natural distribution shifts does not
necessarily translate to robustness under synthetic distribution shifts, thereby suggesting the limited
impact of CLIP models on covariate shifts. HiLo outperforms CLIP† and CLIP‡, despite that they
‘cheat’ by using an extra vocabulary, which further underscores the effectiveness and robustness of
HiLo and the challenge of GCD with domain shifts.

Table 10: Zero-shot performance of CLIP on CUB. CLIP† is the CLIP with oracle class names, while
CLIP‡ is the CLIP with a large vocabulary (i.e., WordNet Miller (1995)).

CUB-C
Original Corrupted

Methods All Old New All Old New
RankStats+ 19.3 22.0 15.4 13.6 23.9 4.5
UNO+ 25.9 40.1 21.3 21.5 33.4 8.6
ORCA 18.2 22.8 14.5 21.5 23.1 18.9
GCD 26.6 27.5 25.7 25.1 28.7 22.0
SimGCD 31.9 33.9 29.0 28.8 31.6 25.0
HiLo (Ours) 56.8 54.0 60.3 52.0 53.6 50.5

CLIP† 55.5 51.6 57.4 50.3 51.8 48.9
CLIP‡ 55.1 51.0 57.1 49.6 51.4 47.8
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H DETAILED EVALUATION OF SSB-C DATASETS

In addition to the overall SSB-C results presented in the main paper, we provide a detailed analysis of
CUB-C, Scars-C, and FGVC-C against various corruptions in Table 12 and Table 13. Our proposed
method consistently outperforms the baselines. Notably, while Gaussian, Speckle, Impulse, and
Shot noise corruptions appear qualitatively similar, their performance impacts differ significantly.
Specifically, Speckle noise has a less detrimental effect on performance compared to other noise types.
As illustrated in Figure 5, Speckle noise preserves more semantic information, whereas other noises
pervade the images. This retention of semantic information is crucial for accurate object recognition
in fine-grained settings, explaining the consistently better performance on Speckle noise compared to
other corruption types.

Table 11: A detailed evaluation of the CUB-C dataset. We assess the performance of each individual
corruption.

Gaussian Noise Shot Noise Impulse Noise Zoom Blur Snow Frost Fog Speckle Spatter
Methods All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
RankStats+ 13.6 20.9 4.5 12.7 28.4 5.1 12.3 27.4 5.4 15.2 33.7 4.9 16.0 34.7 5.6 17.5 38.4 4.8 18.7 40.7 4.9 16.8 36.5 5.3 22.3 48.1 4.7
UNO+ 18.5 32.4 7.6 17.2 30.5 7.2 17.1 31.1 6.2 20.4 35.7 8.4 20.7 35.6 7.0 20.7 35.2 7.4 30.2 52.2 10.5 22.9 42.0 8.4 29.7 52.7 11.2
ORCA 21.5 23.1 19.9 21.2 23.7 18.8 21.1 23.1 19.2 20.4 22.0 18.9 20.1 22.1 18.3 22.0 25.5 18.5 19.2 20.4 18.0 22.4 20.8 19.1 24.8 31.3 18.3
GCD 23.4 22.7 20.0 22.7 20.4 31.0 21.9 20.3 19.6 25.1 25.3 21.0 23.6 22.9 20.2 23.9 23.1 20.8 29.7 31.1 24.4 27.6 26.7 24.6 35.2 36.2 30.3
SimGCD 23.8 26.6 22.0 21.6 23.8 20.4 20.4 22.5 19.4 30.5 35.8 26.2 29.0 34.3 24.9 29.1 32.6 26.7 33.0 36.9 30.1 27.3 29.6 26.1 41.5 47.0 37.0
HiLo (Ours) 41.8 39.8 43.9 41.0 38.7 43.3 42.2 39.8 44.5 47.9 43.9 51.8 49.3 45.8 52.8 48.5 45.5 51.4 50.6 46.8 54.3 47.9 45.4 50.2 50.9 47.2 54.7

Table 12: A detailed evaluation of the Scars-C dataset. We assess the performance of each individual
corruption.

Gaussian Noise Shot Noise Impulse Noise Zoom Blur Snow Frost Fog Speckle Spatter
Methods All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
RankStats+ 8.5 16.6 1.6 8.9 16.7 1.7 7.2 13.8 1.5 11.7 22.9 0.5 8.9 17.0 1.3 11.4 21.9 0.7 16.8 32.6 1.2 12.7 24.1 1.6 17.3 34.1 1.6
UNO+ 13.9 24.8 6.5 14.0 25.0 6.9 11.2 20.4 6.4 17.1 33.2 2.6 13.3 24.0 4.5 17.3 29.9 6.3 22.4 39.8 3.8 18.6 33.1 7.1 21.8 38.4 4.0
ORCA 12.0 31.4 9.3 13.2 31.8 9.7 11.8 29.2 9.2 14.5 38.2 7.9 12.5 32.6 9.5 15.7 36.4 10.0 20.3 47.7 5.8 17.0 39.4 10.5 21.6 48.8 10.6
GCD 17.6 24.2 10.8 17.1 24.6 11.2 14.4 20.9 11.0 23.2 31.8 8.0 18.5 25.5 8.4 23.2 31.1 10.2 27.1 40.8 5.7 22.6 30.1 12.4 31.0 43.1 7.1
SimGCD 18.1 23.5 15.7 18.3 23.5 15.5 15.2 19.0 15.4 24.4 32.7 13.1 19.7 26.4 12.9 23.9 31.9 13.3 28.0 38.6 12.7 23.4 30.6 16.4 32.4 45.4 13.1
HiLo (Ours) 31.0 38.0 24.3 31.5 38.3 24.9 30.2 36.6 23.9 38.4 45.1 31.9 36.8 44.9 29.0 36.5 43.8 29.5 40.7 49.5 32.2 37.1 37.1 29.6 37.9 45.4 30.6

Table 13: A detailed evaluation of the FGVC-C dataset. We assess the performance of each individual
corruption.

Gaussian Noise Shot Noise Impulse Noise Zoom Blur Snow Frost Fog Speckle Spatter
Methods All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New All Old New
RankStats+ 7.3 13.6 5.0 6.3 10.7 5.8 6.0 10.7 5.3 10.1 19.9 4.3 6.2 12.5 3.8 8.9 17.7 4.1 12.5 24.4 4.5 7.6 14.0 5.2 10.5 20.1 4.9
UNO+ 15.5 25.2 5.8 13.5 22.1 4.9 13.2 20.1 6.2 20.1 28.2 12.0 15.6 21.3 9.9 17.6 25.2 9.9 19.3 26.9 11.7 16.5 27.2 5.6 20.9 29.6 12.3
ORCA 11.9 17.3 11.1 11.1 15.6 11.3 10.9 15.9 10.3 15.2 24.3 8.5 11.3 15.4 9.1 12.6 22.1 9.3 16.7 28.9 9.1 12.2 18.8 10.4 15.0 25.1 9.3
GCD 16.0 20.1 14.3 13.8 19.1 11.5 12.3 16.0 13.4 27.7 25.4 24.1 19.1 17.7 15.2 23.9 24.0 18.2 31.8 30.1 24.7 16.1 27.0 14.9 28.7 30.7 25.9
SimGCD 16.3 16.2 18.4 14.2 14.5 16.0 13.7 13.0 16.5 28.9 31.4 28.4 20.0 22.4 19.5 24.5 29.2 21.9 31.9 37.8 28.0 16.8 18.0 17.7 29.8 32.9 28.6
HiLo (Ours) 28.6 25.2 32.0 26.8 24.4 29.2 27.9 24.5 31.4 36.8 34.2 39.4 27.8 27.9 27.8 33.4 30.4 36.4 35.8 34.1 37.5 30.4 30.4 32.7 33.4 32.4 34.4
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I ADDITIONAL EXPERIMENTAL RESULTS ON DOMAINNET

As discussed in Section 4.1 and Section 4.2 in the main paper, among the 6 domains in DomainNet,
we utilize the ‘Real’ domain as Ωa and each of the other 5 domains serves as Ωb in turn. Note that
the model is fitted on the partially labelled data from domain Ωa, which contains labelled and novel
classes, and the fully unlabelled data from domain Ωb. Therefore, though the model does not ‘see’
the novel classes in both domains Ωa and Ωb, it does ‘see’ the unlabelled data from both domains,
regardless of whether the images are from labelled or novel classes. To more comprehensively
measure the model’s capability, we further evaluate the performance on the unlabelled images from
the remaining 4 domains aside from Ωa and Ωb.

In Table 14, we report the results by considering the ‘Infograph’ domain as Ωb. ‘Others’ denotes
the results on the unlabelled data from the remaining 4 domains aside from ‘Real’ and ‘Infograph’.
Table 15 shows the evaluation on each domain in ‘Others’. Similarly, Table 16 and Table 17 show
the results by considering ‘Quickdraw’ domain as Ωb; Table 18 and Table 19 show the results by
considering ‘Sketch’ domain as Ωb; and Table 20 and Table 21 show the results by considering
‘Clipart’ domain as Ωb. Our HiLo framework consistently outperforms baseline methods in both
’All’ and ’New’ performance. Notably, the ’Quickdraw’ domain presents greater challenges than
other domains due to its highly abstract and difficult-to-recognize images, resulting in unsatisfactory
performance for all methods.

Table 14: Evaluation on the DomainNet dataset. The model is trained on the ‘Real’ and ‘Infograph’
domains and we report the respective results on ‘Real’, ‘Infograph’ and the remaining four domains
(i.e., ‘Others’).

Real Infograph Others

Methods All Old New All Old New All Old New

RankStats+ 34.2 62.4 19.6 12.5 21.9 6.3 18.5 32.1 6.4
UNO+ 42.8 69.4 29.0 10.9 15.2 8.0 18.2 28.0 9.6
ORCA 29.1 47.7 20.1 8.6 13.7 7.1 13.8 24.8 5.4
GCD 41.9 46.1 39.0 10.9 17.1 8.8 19.0 29.1 11.1
SimGCD 52.7 67.0 44.8 11.6 15.4 9.1 20.8 28.4 14.2

HiLo (Ours) 64.2 78.1 57.0 13.7 16.4 11.9 23.0 28.5 18.3

Table 15: Evaluation on the DomainNet dataset. Besides the overall performance given in Table 14,
we show a detailed performance breakdown for each domain in ‘Others’.

Painting Quickdraw Sketch Clipart

Methods All Old New All Old New All Old New All Old New

RankStats+ 29.6 49.2 10.0 2.5 1.6 3.4 17.4 32.2 6.5 24.4 45.5 5.8
UNO+ 30.8 44.8 16.8 2.7 2.3 3.1 17.0 27.0 9.7 22.3 37.8 8.7
ORCA 20.0 40.2 8.1 1.6 1.8 1.2 13.2 21.1 8.0 20.5 36.0 4.1
GCD 30.8 45.1 18.4 3.6 4.7 2.5 18.8 26.4 11.2 22.9 40.0 12.3
SimGCD 35.9 45.6 26.3 2.1 1.7 2.5 20.8 29.3 14.5 24.5 36.9 13.6

HiLo (Ours) 40.1 46.1 35.8 2.0 2.2 1.5 22.6 29.4 17.6 26.6 36.3 18.1

Table 16: Evaluation on the DomainNet dataset. The model is trained on the ‘Real’ and ‘Quickdraw’
domains and we report the respective results on ‘Real’, ‘Quickdraw’ and the remaining four domains
(i.e., ‘Others’).

Real Quickdraw Others

Methods All Old New All Old New All Old New

RankStats+ 34.1 62.5 19.5 4.1 4.4 3.9 21.0 37.4 7.2
UNO+ 31.1 60.0 16.1 6.3 5.8 6.8 18.6 32.2 7.0
ORCA 19.2 39.1 15.3 3.4 3.5 3.2 15.6 28.4 8.1
GCD 37.6 41.0 35.2 5.7 4.2 6.9 21.9 34.3 12.2
SimGCD 47.4 64.5 37.4 6.6 5.8 7.5 22.9 33.8 13.8

HiLo (Ours) 58.6 76.4 52.5 7.4 6.9 8.0 25.9 32.5 20.4
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Table 17: Evaluation on the DomainNet dataset. Besides the overall performance given in Table 16,
we show a detailed performance breakdown for each domain in ‘Others’.

Painting Sketch Clipart Infograph

Methods All Old New All Old New All Old New All Old New

RankStats+ 29.6 49.0 10.2 17.1 32.1 6.1 24.8 45.4 6.7 12.6 23.1 5.7
UNO+ 26.8 43.7 9.9 14.7 25.6 6.6 20.7 38.4 5.1 12.2 21.0 6.4
ORCA 22.2 40.9 10.1 11.9 22.4 7.1 17.5 35.6 5.7 10.3 18.7 6.6
GCD 32.9 45.7 21.4 18.5 30.5 10.8 23.5 39.0 10.7 13.8 22.1 7.6
SimGCD 33.8 45.1 22.5 19.4 30.1 11.5 24.0 38.5 11.4 14.5 21.6 9.8

HiLo (Ours) 38.6 45.1 32.2 22.9 28.8 18.5 26.0 36.4 16.9 16.2 19.8 13.9

Table 18: Evaluation on the DomainNet dataset. The model is trained on the ‘Real’ and ‘Sketch’
domains and we report the respective results on ‘Real’, ‘Sketch’ and the remaining four domains (i.e.,
‘Others’).

Real Sketch Others

Methods All Old New All Old New All Old New

RankStats+ 34.2 62.0 19.8 17.1 31.1 6.8 17.3 30.0 6.1
UNO+ 43.7 72.5 28.9 12.5 17.0 9.2 17.4 26.4 9.5
ORCA 32.5 50.0 23.9 11.4 14.5 7.2 13.3 23.1 9.1
GCD 48.0 53.8 45.3 16.6 22.4 11.1 20.7 25.8 15.8
SimGCD 62.4 77.6 54.6 16.4 20.2 13.6 20.4 25.4 16.1

HiLo (Ours) 63.3 77.9 55.9 19.4 22.4 17.1 21.3 25.8 17.4

Table 19: Evaluation on the DomainNet dataset. Besides the overall performance given in Table 18,
we show a detailed performance breakdown for each domain in ‘Others’.

Painting Quickdraw Clipart Infograph

Methods All Old New All Old New All Old New All Old New

RankStats+ 29.7 49.2 10.2 2.3 2.1 2.4 24.6 45.9 5.9 12.5 22.6 5.9
UNO+ 30.8 44.0 17.6 2.4 2.4 2.3 23.1 38.0 10.1 13.2 21.2 7.9
ORCA 23.1 39.1 17.2 2.5 3.0 2.0 19.7 33.1 10.0 8.9 18.1 7.0
GCD 32.6 40.1 31.5 1.6 1.9 1.5 24.1 31.1 14.9 14.1 16.2 10.2
SimGCD 38.7 44.7 32.7 1.9 1.2 2.5 25.2 35.3 16.3 15.8 20.3 12.8

HiLo (Ours) 39.8 44.7 34.9 1.9 2.0 1.7 27.2 35.9 19.6 16.2 20.5 13.4

Table 20: Evaluation on the DomainNet dataset. The model is trained on the ‘Real’ and ‘Clipart’
domains and we report the respective results on ‘Real’, ‘Clipart’ and the remaining four domains (i.e.,
‘Others’).

Real Clipart Others

Methods All Old New All Old New All Old New

RankStats+ 34.0 62.4 19.4 24.1 45.1 6.2 15.8 27.0 6.4
UNO+ 44.5 66.1 33.3 21.9 35.6 10.1 16.2 23.2 10.5
ORCA 32.0 49.7 23.9 19.1 31.8 4.3 13.7 19.9 8.6
GCD 47.7 53.8 44.3 22.4 34.4 16.0 18.0 24.1 12.1
SimGCD 61.6 77.2 53.6 23.9 31.5 17.3 19.2 23.6 15.6

HiLo (Ours) 63.8 77.6 56.6 27.7 34.6 21.7 19.8 23.6 16.8

Table 21: Evaluation on the DomainNet dataset. Besides the overall performance given in Table 20,
we show a detailed performance breakdown for each domain in ‘Others’.

Painting Quickdraw Sketch Infograph

Methods All Old New All Old New All Old New All Old New

RankStats+ 30.0 50.3 9.7 2.6 2.3 2.9 17.4 31.9 6.8 13.1 23.6 6.2
UNO+ 31.5 43.3 19.6 2.8 2.1 3.6 17.3 26.8 10.2 13.3 20.6 8.5
ORCA 29.3 36.9 9.2 1.3 1.5 1.2 13.7 21.9 8.3 10.3 19.4 6.3
GCD 33.4 40.4 22.2 3.6 5.7 2.2 19.5 27.7 12.7 15.5 22.7 11.1
SimGCD 39.0 45.9 32.1 0.8 0.5 1.1 21.1 27.3 16.5 15.9 20.8 12.7

HiLo (Ours) 40.7 46.3 35.1 1.3 0.4 2.3 21.2 26.9 17.0 15.9 20.6 12.8
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J HILO ON THE VANILLA GCD SETTING

Although not explicitly designed for the vanilla GCD, we evaluate HiLo’s effectiveness without
domain shifts. We perform experiments on ImageNet-100 and SSB. Our HiLo framework outperforms
the state-of-the-art GCD method, as indicated in Table 22. We hypothesize that subtle covariate shifts
may still be present within the same distribution (e.g., varying ‘Real’ backgrounds with identical
semantics), which can still be handled by HiLo effectively.

Table 22: Evaluation of HiLo on ImageNet-100 and SSB under the vanilla GCD setting. HiLo
achieves better results than the SoTA GCD method.

ImageNet-100 SSB
Method All Old New All Old New
SimGCD 83.0 93.1 77.9 56.1 65.5 51.5
HiLo (Ours) 83.4 93.5 78.1 59.2 66.2 54.9
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K EFFECTS OF DIFFERENT OUTPUT DIMENSIONS FOR THE SEMANTIC AND
DOMAIN HEADS

In the main paper, we assume access to the ground-truth values of both the semantic class and domain
(i.e., ks and kd). However, in real-world scenarios, these values are often unknown. Therefore, it is
essential to assess the stability of our model’s performance when assigning guesses to the varying
output quantities of semantic class and domain type.

We employ different output dimensions for the semantic head and domain head. For the semantic
head, we experiment with ks ∈ {200, 1000, 2000, 5000, 10000} using all 5 severity levels. For
the domain head, we experiment with kd ∈ {2, 10, 20, 50, 100} and corruptions with the highest
severity level. Table 23 reports the accuracy with different ks and kd values, with the optimal number
utilized to fix one output size while exploring the other. The highest performance is achieved when
ks = |Y l ∪ Yu| and kd = 10. Performance declines with increasing ks or kd. As it is tractable to
roughly estimate the number of domains the model may handle, our method’s insensitivity to the
domain axis output size selection.

Table 23: Sensitivity analysis of the output size on CUB-C dataset. The inappropriate selection of
ks and kd would predispose to poor performance for the semantic head while the domain head is
relatively robust to the output size.

Sem. Head Dom. Head
Original Corrupted Original Corrupted

Size All Old New All Old New Size All Old New All Old New
ks = 200 56.8 54.0 60.3 52.0 53.6 50.5 kd = 2 43.5 45.8 40.2 35.1 37.4 32.9
ks = 1000 47.5 51.0 35.1 38.1 48.3 30.9 kd = 10 44.2 46.2 43.0 36.3 39.1 34.7
ks = 2000 40.0 48.7 30.1 31.4 40.0 25.1 kd = 20 43.0 44.6 40.0 34.9 36.5 32.3
ks = 5000 30.7 43.1 22.2 23.8 28.1 21.8 kd = 500 37.5 41.4 34.9 30.3 33.1 28.7
ks = 10000 14.2 30.1 10.0 12.1 13.9 13.1 kd = 1000 35.0 38.3 33.2 28.9 31.5 27.3
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L UNKNOWN CATEGORY NUMBER

As the total number of semantic categories cannot be accessed in the real-world setting, we evaluate
our HiLo with an estimated number of categories using an off-the-shelf method Vaze et al. (2022) on
CUB (see Table 24). We find that our method consistently outperforms the strong baseline when the
exact number of categories is unknown.

Table 24: Performance of HiLo and the baseline method SimGCD with an estimated number of
categories on CUB. Bold values represent the best results. ‘GT’ denotes the ground truth; ‘Est.’
denotes the estimation.

Original Corrupted

Method |C| All Old New All Old New
SimGCD Wen et al. (2023) GT (200) 31.9 33.9 29.0 28.8 31.6 25.0
HiLo (Ours) GT (200) 56.8 54.0 60.3 52.0 53.6 50.5
SimGCD Wen et al. (2023) Est. (257) 29.5 32.4 28.0 27.6 29.7 24.1
HiLo (Ours) Est. (257) 55.9 52.9 59.2 51.2 52.8 49.5
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M HYPERPARAMETER CHOICES FOR HILO COMPONENTS

The hyperparameters of HiLo can be grouped via each component: (a) PatchMix (i.e., βk); (b)
representation learning and parametric classification losses (i.e., τ , λ, ϵ); (c) curriculum learning
(i.e., r0, r′ and t′). We follow Zhu et al. (2023); Wen et al. (2023) to choose values for the shared
hyperparameters in (a) and (b) respectively.

As summarized in Table 25, we choose the hyperparameters in (a) and (b) following Zhu et al. (2023)
and Wen et al. (2023) respectively. For the hyperparameters in (c), we choose the values through the
validation split of the labelled data in the ‘Orignal’ domain.

Table 25: Hyperparameter choices for HiLo components.
Hyperparameters Value Descriptions
τu 0.07 Suggested values following Wen et al. (2023)
τc 1.0 Suggested values following Wen et al. (2023)
τs 0.1 Suggested values following Wen et al. (2023)
τt 0.07 Suggested values following Wen et al. (2023)
λ 0.35 Suggested values following Wen et al. (2023)
β ∼ Beta(log(1 + e), log(1 + e)) Suggested value following Zhu et al. (2023)
ε 0.1 Choose through the validation split of the labelled data in the ‘Orignal’ domain (see Figure 8(a))
r′ 0.05 Choose through the validation split of the labelled data in the ‘Orignal’ domain (see Figure 8(b))
r0 0 Choose through the validation split of the labelled data in the ‘Orignal’ domain (see Figure 8(c))
t′ 80 Choose through the validation split of the labelled data in the ‘Orignal’ domain (see Figure 8(d))

In Figure 8, we report results on CUB-C with varying values of ε, r0, r′, t′ that are specific to HiLo.
We find that the order of samples (determined by r0, r′, t′) with different difficulties has a great
influence on performance on both the source domain and target domains.

ϵ r0 r′ t′ 

(a) (b) (c) (d)
* We use validation split of the labelled data in the 'Original' domain for hyperparameters tuning
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Figure 8: The impact of varying values of ε, r0, r′ and t′ investigated on the CUB-C dataset.
Hyperparameters for curriculum sampling (i.e., r0, r′, t′) have a great influence on performance on
both source domain and target domains.
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N EFFECTS OF LEARNING RATES

As learning rate is a key hyperparameter for all methods, we present results using different learning
rates for our method and the baselines on the CUB-C datasets. We experiment with three different
learning rates, 0.1, 0.05, and 0.01, for all the methods, using the SGD optimizer with the suggested
weight decay and momentum in the original papers. 0.1 appears to be the best choice among the three
values for RankStats+, UNO+, and SimGCD, while 0.05 is a better choice for our method. Among
the compared methods, we can see that the performance variation is relatively large for GCD and
SimGCD among these three values. The variation is relatively small for RankStat+, UNO+, and
ORCA, while their performance is notably inferior to GCD and SimGCD. In contrast, our method
has a very small performance variation while significantly outperforms all other methods.

Table 26: Performance comparison on CUB-C with three different learning rates.

Method Learning Rate Original Corrupted
All Old New All Old New

RankStat+
0.1 19.3 22.0 15.4 13.6 23.9 4.5
0.05 17.1 24.9 12.7 11.9 16.7 8.5
0.01 15.0 17.1 10.7 9.1 15.5 3.8

UNO+
0.1 25.9 40.1 21.3 21.5 33.4 8.6
0.05 23.8 37.2 18.8 20.2 34.0 7.1
0.01 22.8 35.7 17.9 19.5 33.2 5.8

ORCA
0.1 17.3 22.6 13.8 20.9 22.6 17.4
0.05 18.2 22.8 14.5 21.5 23.1 18.9
0.01 17.4 22.1 13.2 20.8 23.6 15.8

GCD
0.1 26.6 27.5 25.7 25.1 28.7 22.0
0.05 24.7 25.4 23.8 24.0 28.2 20.8
0.01 48.1 53.1 47.0 33.1 37.2 29.9

SimGCD
0.1 31.9 33.9 29.0 28.8 31.6 25.0
0.05 29.2 30.7 27.1 25.0 26.5 24.0
0.01 26.3 27.0 25.9 21.8 21.4 23.5

Ours
0.1 56.0 54.1 58.9 50.8 52.4 48.1
0.05 56.8 54.0 60.3 52.0 53.6 50.5
0.01 54.7 60.1 56.4 48.1 49.0 47.6
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O STABILITY OF DIFFERENT METHODS

As the differences in the results of the GCD benchmark tests can be very large, we obtain the
averaged results in Table 2 and Table 3 by conducting three independent runs for each method on
both DomainNet and SSB-C. Here we visualize the bar chart of ‘All’ classes ACC for each methods
and list the corresponding error lines generated by the these independent runs. We notice that the
error bars of ORCA and SimGCD exhibit significant oscillations.

(a) DomainNet

(b) SSB-C
Figure 9: The ‘All’ ACC results are averaged by conducting three independent runs for each method on both
DomainNet and SSB-C.
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P MORE VISUALIZATION

We provide qualitative analysis on DomainNet and CUB-C. As shown in Figure 10, we visualize the
learned representations using t-SNE projections of domain features and semantic features extracted by
H̃. The visualization reveals clear clustering patterns: domain features group images based on their
visual styles (e.g., sketch, painting), while semantic features cluster images according to their object
categories, regardless of domain. This demonstrates HiLo’s effectiveness in learning disentangled
representations that separately capture domain-specific and semantic-specific information.

Dom head Sem head
D

om
ai

nN
et

C
U

B
-C

Figure 10: Visualization of domain and semantic features via t-SNE. We randomly sample instances from the
entire dataset. The domain branch tends to cluster images based on covariate features, while the semantic branch
clusters images based on categories.
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Q BROADER IMPACTS AND LIMITATIONS

Our study aims to extend AI systems’ capabilities from closed-world to open-world scenarios,
particularly enhancing next-generation AI systems to categorize and organize open-world data
autonomously. Despite promising results on public datasets, our method has limitations. First,
interpretability needs improvement, as the underlying decision-making principles remain unclear.
Second, cross-domain robustness is inadequate. Although our method has achieved the best overall
and new class discovery results in the GCD setting with domain shifts, performance still has significant
room for improvement. Third, the novel domains we investigated in the paper are still limited. Domain
and class imbalance present additional challenges in GCD scenarios. Our current method was not
specifically developed to handle these issues, which are important areas for future work.
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