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ABSTRACT

Reinforcement learning from human feedback (RLHF) enables machine learning
systems to learn objectives from human feedback. A core limitation of these sys-
tems is their assumption that all feedback comes from a single human teacher,
despite querying a range of distinct teachers. We propose the Hidden Utility Ban-
dit (HUB) framework to model differences in teacher rationality, expertise, and
costliness, formalizing the problem of learning from multiple teachers. We de-
velop a variety of solution algorithms and apply them to two real-world domains:
paper recommendation systems and COVID-19 vaccine testing. We find that the
Active Teacher Selection (ATS) algorithm outperforms baseline algorithms by ac-
tively selecting when and which teacher to query. The HUB framework and ATS
algorithm demonstrate the importance of leveraging differences between teach-
ers to learn accurate reward models, facilitating future research on active teacher
selection for robust reward modeling.

1 INTRODUCTION

Specifying objective functions for machine learning systems is challenging, and misspecified objec-
tives can be hacked (Pan et al.,[2022} Skalse et al., 2022) or incentivise degenerate behavior (Zhuang
& Hadfield-Menell, 2020; Thomas & Uminsky, 2020; |Krakovna et al.| [2020). Techniques such as
reinforcement learning from human feedback (RLHF) enable ML systems to instead learn appropri-
ate objectives from human feedback (Christiano et al.,2017; Lee et al.,[2021; |Stiennon et al., | 2020).
These techniques are widely used to finetune large language models (OpenAl, [2023} |Anthropic|
2023}, [Touvron et al., 2023} |Google, 2023)) and to train reinforcement learning agents to perform
complex maneuvers in continuous control environments (Christiano et al., 2017; |Lee et al., [2021).
However, while RLHF is relied upon to ensure that these systems are safe, helpful, and harmless (Bai
et al.,[2022), it still faces many limitations and unsolved challenges (Casper et al.,|[2023)).

In particular, RLHF systems typically rely on the assumption that all feedback comes from a single
human teacher, despite gathering feedback from a range of teachers with varying levels of rationality
and expertise. For example, Stiennon et al.|(2020), Bai et al.|(2022) and |(Ouyang et al.|(2022) assume
that all feedback comes from a single teacher, but find that annotators and researchers actually
disagree 23% to 37% of the time. Reward learning has been shown to be highly sensitive to incorrect
assumptions about the process that generates feedback (Hong et al., 2022; |[Freedman et al., 2021}
Skalse & Abate, 2022; [Milli & Dragan, |2020), so this single-teacher assumption exposes these
systems to dangerous failures (Daniels-Koch & Freedman, [2022). Ideally, RLHF systems should
consider the differences between each teacher to improve their safety and reliability.

To leverage multiple teachers in RLHF, we introduce a novel problem called a Hidden Utility Bandit
(HUB). A HUB is similar to a multi-armed bandit (MAB), in that at each timestep the agent has a
consistent set of alternatives (called “arms”) and receives utility based on which it chooses (“pulls”).
Unlike a MAB, however, the agent observes the arm’s output (“item”) but not the associated utility.
Like in RLHEF, it must learn the utility function based on comparison feedback, but unlike in RLHF,
the agent can choose amongst multiple teachers. Optimal HUB solutions must therefore actively
select which teachers to query when so as to maximize the expected discounted sum of utilities.
Figure |1| shows a simple HUB in which the two arms are vending machines, the two teachers are
human taste-testers, and the outputs are fruit.
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Figure 1: A simple Hidden Utility Bandit (HUB) with two arms and two teachers. The agent pulls
the first arm, observes an apple, and receives the apple’s utility of 8 without observing it. The
agent then pulls the second arm, observes a banana, and receives the banana’s utility of 2 without
observing it. Because these utilities are hidden, the agent foregoes the opportunity for utility on the
third timestep to ask the expert teacher which fruit is better. The expert replies that apples are better
than bananas, so the agent pulls the first arm to maximize apples for all remaining timesteps.

We present background in Section [2] (and discuss further related work in Appendix [A), then for-
malize the HUB framework and propose a naive baseline solution (Section [3). We then develop
an Active Teacher Selection (ATS) method that selects which teachers to query when to maximize
cumulative discounted utility (Section ). Since there are no existing solutions to the novel HUB
problem, we introduce multiple families of baseline methods and evaluate these against ATS varia-
tions on a realistic paper recommendation task (Section[5.1). ATS outperforms methods with fixed
exploration windows, demonstrating the usefulness of selecting when to query teachers, and ATS
with specific teacher selection outperforms general teacher selection, underscoring the usefulness of
selecting which teacher to query. As a proof-of-concept, we also demonstrate how this framework
can be applied to the real-world problem of evaluating COVID-19 vaccines with noisy tests (Sec-
tion . The result is a HUB framework and an ATS algorithrrﬂ that demonstrate the importance of
leveraging differences between teachers to learn accurate reward models. These will facilitate and
benchmark improved methods, ultimately leading to scalable reward learning algorithms that learn
accurate, robust and value-aligned models.

2 BACKGROUND

Multi-Armed Bandits Multi-armed bandits (MAB) are stateless sequential decision-making prob-
lems (Robbins, [1952; |Slivkins, [2019). At each timestep h = 1,2, ..., H, the agent chooses one of
K arms, each with a distribution over utilities. When the agent pulls arm k& € K, it receives utility
sampled from arm &’s distribution v ~ D*. The agent’s goal is to maximize its expected cumulative
utility. Our framework is similarly structured, though arm utilities are hidden (as in many real-life
applications), and the agent must learn about them from teacher preferences (as in RLHF).

Partially Observable Markov Decision Processes Partially observable Markov decision pro-
cesses (POMDP) are sequential decision-making problems where the state of the world is partially
hidden from the agent (Littman et al.,|1995). A POMDP problem is a tuple (S, A4, 7,R,0,Q,~),
where S and A are the state and action spaces, 7 and R are the transition and reward functions, and
~ is the discount factor. At time ¢, the agent begins in state sy, takes action a;, transitions to state sy
determined by T (s¢, a;) and receives reward r; = R(st, at, St1+1). However, rather than observing
the states directly, the agent observes an observation w;1 from the observation space O determined
by the observation function §2(s¢41,a:). A solution to a POMDP is a policy that balances infer-
ring the underlying state and acting in the environment to maximise its expected cumulative reward.
While calculating this solution is typically intractable, approximate POMDP algorithms can perform
well. Partially observable Monte Carlo planning (POMCP)-style algorithms produce time-efficient
online solvers that work by forming a belief tree of fixed depth then using rollouts to estimate the
values of the leaf nodes (Silver & Veness| 2010). In this work we use partially observable Monte
Carlo planning with observation widening (POMCPOW), a POMCP-style algorithm that uses a
weighted particle filter to efficiently produce approximate solutions for problems with large state
spaces (Sunberg & Kochenderfer, 2018).

'"Our open-source ATS Julia library is available at github.com/ [redacted] /ATS.
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3 HIDDEN UTILITY BANDITS

We design the Hidden Utility Bandit (HUB) framework to formalize the problem of reward learn-
ing from multiple teachers. Formally, a HUB is a partially-observable sequential decision-making
problem consisting of a set of items (each with a distinct utility), a set of arms (each with a fixed dis-
tribution over items), and a set of teachers (each with a rationality parameter and cost). We assume
that the agent can take one action (pulling an arm or querying a teacher) per timestep. Following an
existing standard in work on RLHF (Lee et al.| 2021, a HUB models each teacher as Boltzmann-
rational with its noisiness modulated by a rationality parameter 5 € [0,00). In particular, the
probability that a teacher with rationality parameter [ prefers item ¢ to j is below:

exp(SU(i))

exp(BU(i)) + exp(BU(5))’
where U : 7 — R gives the true utility of all items in set Z.

Pr(i - j; B,U) = )

At each timestep of the HUB problem, the agent chooses between pulling an arm, observing an item
sampled from that arm’s distribution and receiving but not observing that item’s utility, or querying
a teacher, receiving feedback modulated by that teacher’s rationality parameter but incurring that
teacher’s query cost. We assume that all teachers give feedback based on a single shared utility
function. The agent’s objective is to maximize the expected discounted sum of utilities, so it must
balance querying costly teachers to learn about the utility function with pulling arms to earn utility.

Definition 3.1. A hidden-utility bandit (HUB) is a tuple (Z,U,C, 5, F, Q,~):

* T is asetof N items, each associated with a hidden utility.

U : T — [Umin, uma[a is a utility function over T, where U is the utility function space.

o C={ct,c?,...,cKY}isaset of K arm choices, each associated with an arm distribution D :
T — [0, 1] giving the probability of returning each item in Z, where D = D! x D? x - .. x DX
is the joint arm distribution space over all arm choices C.

o B={p%,B%...,8M} is aset of M teacher rationality parameters.

e F={f1f2,..., fM}isasetof M teacher query costs.

* Q:I x I — [0,1] is a query profile that gives probabilities of picking queries in (%).

¢ v is a discount factor.

Here, the agent can observe Z, C, 3, F, (), and y but cannot observe the utility function I/ or the arm
distributions D. At each timestep ¢, the agent can select an arm choice ¢; € C or a teacher rationality
parameter 3; € (. If the agent pulls an arm choice ¢; € C, it observes an item ¢, sampled from the
arm distribution D and receives but does not observe the utility u; = U(i;). Conversely, if the
agent queries a teacher with rationality parameter 3; € (3, it receives and observes an item pair (3, j)
sampled from the query profile @), a preference p, sampled from Bernoulli( P) given the probability
P =Pr(i = j; B¢, U) in Equation and the teacher query cost u; = f7¢.

Since the agent’s objective is to maximize the expected discounted sum of utilities E[372 oy u,], it
must balance querying teachers to learn about the utility function with selecting bandit arms to earn
utility. Standard RLHF systems alternate between fitting a reward model to teacher feedback and
learning a policy using the reward model on a predefined schedule. However, the HUB framework
allows the agent to interweave these processes to optimize performance.

3.1 NAIVE HUB INFERENCE

We propose a naive HUB inference baseline in Algorithm [I] This allows the agent to infer the
hidden information: the joint arm distribution D¢ = (D!, D?,..., D) (common to stochastic
multi-armed bandit problems) and utility function ¢/ (unique to the HUB). In Algorithm[T] the agent
randomly pulls arms and queries a preselected teacher for a fixed number of timesteps (lines 1-12),
approximates the true joint arm distribution and true teacher preference probabilities with sample
means (lines 13-14), then uses these to estimate the utility function (lines 15-16). The agent can
then simply calculate the the expected utility of each arm and pull the arm with the highest expected
utility for the remainder of the episode.

Despite the simplicity of Algorithm/[I] it is possible to prove that it converges to the ground truth util-
ity function Z/* and arm distribution set D°* in the limit of infinite queries. We prove the following
theorem in Appendix
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Algorithm 1 NAIVEHUBINFERENCE(-)
Require: HUB (Z,U,C, 3, F, Q,7), Umin> Umax, T samples, 3™ of selected teacher
Initialize: frequency|c|, frequency|c][i], frequency|[b][q], preferences|b][q]

1: fort=1,...,7 do
2: if sampleUniformly({TRUE, FALSE}) then

3: sample ¢ ~ C > Sample arm uniformly at random

4: sample i ~ D¢ > Sample item from (unobserved) arm distribution

5: Sfrequencylc] < frequency|c| + 1

6: frequency|c][i] < frequencylc][i] + 1

7: else

8: sample b ~ (3 > Sample teacher uniformly at random

9: sample ¢ = (4,7) ~ Q > Sample query from query profile

10: sample p ~ Bernoulli(Pr(i = j;b,U)) > Sample preference given Equation|I]

11: frequency|b][q] + frequency[b][q] + 1

12: preferences|b)|q] < preferences|b][q] + p

13: DC(i) mizgc[]c[]ﬂ VeeC,iel > Estimate arm distributions

14: P(b,q) « '%w vbe B, qeQ > Estimate preference probabilities
DA = L 1 i i ion ??

15: Ay Fm n {P(ﬂm’ =) 1} Vi,j el > Calculate using Equation

16: (z,y) «+ argmax, , [Ay,] > Find indices of maximum element

17: U(y) < Upin, U(D) [uiff;m} Ny + Umin Vi € T\ {y} > Estimate utilities

Theorem 1. If the predicted utility function U and the predicted arm distribution DC are estimated
by executing Algorithm|l|with T samples, then U — U* and D¢ — D* as T — 0.

However, exploring randomly for a fixed number of timesteps and querying a fixed teacher may be
suboptimal. By maintaining and updating an internal belief over the hidden information, the agent
can query teachers only when teacher feedback is necessary to update its belief.

4 ACTIVE TEACHER SELECTION

The Active Teacher Selection (ATS) algorithm solves the HUB problem efficiently by maintaining
a belief over the utility function and arm distributions, and choosing when to query teachers. This
allows it to only query teachers when required for decision-relevant belief updates. ATS can also
actively select which teacher to query. When teachers are “noisy” (8 < c0), the preference proba-
bility Pr(i > j; 8,U) correlates with the difference in utility between ¢ and 7, so it will sometimes
be more informative for ATS to select teachers with lower (3 values (Michaud et al., [2020; [Barnett
et al.| [2023). Importantly, this removes the need to set the problem-specific hyperparameters in
Algorithmﬂ]for exploration (1) and teacher selection (5™).

4.1 ATS ALGORITHM

The ATS algorithm has two general steps: the HUB is first converted to a simplified partially ob-
servable Markov decision process (POMDP) (Littman et al.| |I995) and then solved using a Monte
Carlo POMDP solver with custom rollout policies.

Constructing the HUB-POMDP The HUB-POMDP state contains the HUB utility function and
arm distributions. The HUB-POMDP reward function gives the expected utility of each arm accord-
ing to this state.

Definition 4.1. A hidden utility bandit POMDP (HUB-POMDP) is a tuple (S, A, 7, R, Q, O):

+ S = U x D is the state space: the state s € S is a tuple (I, D) that is fixed.
*« A = C U g is the action space: the arm choices C and teachers .
e T:8 x A— & is the stationary transition function: 7 (s,a) = s Vses Vaca-
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¢ R:S x A— Ris the reward function:
YiezU())D(i) ifa el

R(S’“){fa ifacp

* Q: ZUPis the observation space: the items Z and query-preferences P = Z x Z x {0, 1}.
* O: AxQ —|[0,1] is the observation function:

B 'Da(i) ifaeC
Ola,w) = {Q(i,j)Pr(i - jiB" = all) ifacp

Teacher selection can be general or specific. Under specific selection, the agent chooses which
teacher to query. The HUB-POMDP’s action space contains all M teachers, A = C U 3, as shown
in the HUB-POMDP above. Under general selection, the agent chooses when to query a teacher, but
as in RLHF cannot choose which teacher to query. The HUB-POMDP’s action space is modified to
contain a single general teacher selection action, 4 = C U {39}.

These alternatives offer a tradeoff: general selection reduces the state space size and computational
complexity while specific selection provides the agent with additional control over its feedback.
Our experimental results (reported in Section [5.1)) indicate that specific greatly outperforms general
teacher selection, so we will use ATS with specific teacher selection unless otherwise specified.

Solving the POMDP While exact POMDP solutions are typically intractable, approximate
POMDP algorithms often perform well. Partially observable Monte Carlo planning (POMCP) al-
gorithms produce time-efficient online solvers that form a belief tree of fixed depth and use rollouts
to estimate leaf node values (Silver & Veness, 2010). POMCP with observation widening (POM-
CPOW) uses a weighted particle filter to efficiently produce approximate solutions for problems
with large state spaces (Sunberg & Kochenderfer, 2018), so we adapt it to the HUB-POMDP with
specialized rollout policies. We describe and compare candidate rollout policies that we designed
specifically for the HUB problem in Appendix [DI ATS with the custom best arm rollout policy
performs best, so we use that POMCPOW vriant for our experiments.

4.2 TEACHER NOISE INFERENCE IN ATS

RLHF systems typically assume that the teacher rationality parameters § are known. However, as
this is sometimes unrealistic, we show in Theorem [2] that § can also be estimated from preference
data. Specifically, given Pr(i > j; Byn,U), it is possible to etimate Bm = 153, where z is a scaling
factor determined by U/. z is based on the difference A;; = U(i) — U( jz), so as long as the same
comparison pair (4, j) is used, all teacher rationality estimates will be on the same scale. (They can
be calculated directly if A;; happens to be known for a specific (7, j )ﬂ We prove the theorem below

in Appendix [C|
Theorem 2. Given two items i,j € I where U(i) < U(j) and the preference probability P =
Pr(i = j; Bm,U) from Equationwe can estimate [3,, = éﬂm asin Equation If Ayj is known,

we can further calculate B, = z - By, where z = —Ai_jl.

By = ln(% _ 1). )

We demonstrate this procedure in our experiments in Section [5.2] In addition, we evaluate this
procedure in simulation by setting 3 = {0.01, 1.0}, running a random policy for 1000 timesteps,

estimating { Bl, 32} and scaling the estimate so that the greatest value is equal to 1.0. We observe a
mean squared error of only 0.061 across 100 simulations, indicating that this procedure is accurate.

5 EXPERIMENTS

We apply the HUB framework to two real-world domains: paper recommendations and COVID-
19 vaccine testing. In the recommendation domain, we conduct comprehensive experiments that

Note that it is also possible to directly add £ to the state space of the HUB-POMDP and then solve it, but
this increases the size of the state space and makes the problem less tractable.
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Paper Category  Relevance Professor Rationality  Cost
Application 8 Professor 1 0 0
Benchmark 5 Professor 2 0.01 0
Theory 1 Professor 3 50 0

Figure 2: Paper recommendation as a HUB problem. Paper categories (Application, Benchmark,
Theory) are items (Z), professors are teachers with rationality () and cost (F) parameters, confer-
ences are arms with distributions (D), and relevance scores are utilities (/). The goal is to recom-
mend the most relevant conferences to read papers from.

evaluate the performance of various solution algorithms (Section [5.1), compare rollout simulation
policies (Appendix [D), and examine the impact of varying teacher query costs (Appendix [E). The
more complex vaccine domain provides a proof-of-concept, using the HUB framing to address an
urgent problem and demonstrating how 3 values can be estimated from real-world data. We find
that the HUB framework captures both problems well, that the ATS algorithm outperforms all base-
lines in comprehensive testing in the recommendation domain, and that ATS is the best-performing
algorithm that also identifies the best vaccine in the vaccine domain proof-of-concept.

Algorithms We fix ATS to use specific teacher selection and the best arm rollout policy unless
otherwise specified. To our knowledge, the HUB problem is novel and has no solutions in prior
literature, so we construct multiple families of baseline methods (naive and random) for compar-
ison. Naive algorithms choose randomly amongst pulling arms and querying the selected teacher
for T' timesteps, use these observations to estimate the arm distributions and utility function (using
Algorithm I)), and then pull the arm with the highest estimated expected utility at each subsequent
timestep. Naive algorithms require problem-specific hyperparameters 3" and 7', so for these exper-
iments we select the intermediate of 3 teachers (4™ = 32) and test a range of exploration horizons
(T € [50,100,200]). Random algorithms select actions uniformly at random from a given set. We
evaluate a random algorithm that selects actions from the entire action space, as well as one that
selects only arms.

5.1 CONFERENCE RECOMMENDATION DOMAIN

In the recommendation domain, the system recommends Al conferences from which to read rel-
evant papers. There are three paper categories (Application, Benchmark, Theory) with specified
relevance scores, and three conferences (ICLR, ICML, AAAI) with different paper category com-
position The recommender cannot directly observe the relevance scores, so it must learn them
by asking professors, whose judgements vary from completely random (3! = 0) to highly accu-
rate (8% = 50). In these experiments, query costs are always 0. (See Appendix E for experi-
ments varying query costs.) Each day, the system recommends one conference, a paper is sampled
from that conference’s distribution, and the system earns a hidden utility score representing that
paper’s category’s relevance. Alternatively, the system queries a professor who provides a pref-
erence over a pair of paper categories. Applying the HUB framework, paper categories are the
item set Z = {A, B, T}, relevance scores are the hidden utility function ¢/, conferences are arm
choices C = {¢! = ICLR, ¢? = ICML, ¢* = AAAT}, and professors are teachers with rationality
B ={B"=0,82=0.0L,5° = 50},

Figure [2| shows an example paper recommendation problem in which it will sometimes be more
informative to query the noisy Professor 2 over the more rational Professor 3. This is because
the frequency with which a noisy teacher prefers a lower-reward item over a higher-reward one
gives information about the difference between the rewards, and in this example the recommender
must learn how much more relevant Application papers are than Benchmark papers. Without this
information, the system cannot distinguish between cases where U/(A) = 8 (indicating that the
expected relevance of ICLR is greater than ICML) and where I/(A) = 6 (indicating the reverse).

Experiments We evaluate all algorithms for 25 runs of 1000 timesteps on 20 different paper rec-
ommendation tasks. Each task is a HUB with Z, C, and /3 as described above and a unique tuple
U, D). U and D are discretized, and each task’s (U, DC) is chosen such that ¢! has the highest

3Example relevance scores and paper category compositions were selected arbitrarily.
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Figure 3: Comparison of ATS, naive and random algorithms. ATS best maximizes discounted re-
ward (a) and identifies the highest-reward arm more often than most baselines and comparably with
Naive[100] and Naive[200], which explore more and earn less reward (b). ATS initially queries
teachers less often than naive baselines, but continues querying teachers throughout the episode (c).
All data is averaged across 25 runs on 20 HUB problems and smoothed over 10 steps. The legend
applies to all plots.
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Figure 4: Accuracy of reward learning using ATS (with specific and general teacher selection) and
naive algorithms (with exploration parameters of 50, 100, and 200). ATS with specific teacher
selection learns both the underlying utility function (a) and the expected rewards of each arm (b)
much more accurately than ATS with general teacher selection and naive algorithms. Accuracy is
measured as L2 loss, aggregated across 25 runs on 20 HUB problems. The middle line is the median,
the boxes are the IQR, the whiskers are 1.5 times the IQR, and the diamonds are outliers.

expected relevance (E[U(i ~ )] > E[U (i ~ )] > E[U(i ~ ¢*)]) and all paper distributions are
different and non-deterministic (D7 # DF V; ;.cc and D¢(i) # 1.0 Viez cec)-

Results While all non-random algorithms successfully identify the most relevant conference in
expectation (Figure [3b), ATS with specific teacher selection best balances querying teachers with
recommending papers, achieving the highest average discounted cumulative reward (Figure[3a), and
most accurately learning relevance scores (Figure [).

Figure [3b] shows how often each algorithm learns to pull the best HUB arm and therefore recom-
mend the most relevant conference over the course of training. All HUB solution methods (ATS,
Naive[50], Naive[100], Naive[200]) successfully identify the most relevant conference, recommend-
ing it about three times as often as they would if they were behaving randomly (“Random” base-
line, light green line) and about twice as often as if they were blindly recommending conferences
(“Random Arms” baseline, dark green line). This indicates that the HUB formalism can be used to
accurately represent the paper recommendation problem.

While all solution methods identify the best arm, ATS does so most efficiently, querying teachers
sparingly even at the start of the task (Figure [3c) and best optimizing the HUB objective of ex-
pected discounted cumulative reward (Figure[3a). Moreover, ATS forms the most accurate estimates
of the utility function and expected conference relevance scores (Figure [ after 1000 timesteps,
while continuing to explore and potentially improve this estimate by occasionally querying teachers
and recommending other conferences (Figure [5a). In contrast, Naive algorithms stop learning af-
ter their hand-specified exploration horizon (Figure [5b), and Random algorithms never learn at all
(Figure[5¢). This demonstrates the benefits of actively selecting when to query teachers, as in ATS,
rather than following a predefined schedule, as in standard RLHF.
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Figure 6: Performance of ATS with specific and general teacher selection. All data is averaged
across 25 runs on 20 HUB problems, smoothed over 10 steps, and discounted with v = 0.99.

Figure[6| compares ATS with specific and general teacher selection. Standard RLHF systems do not
allow the agent to select which teacher to query and are most akin to general selection. However, we
show that the additional control afforded by specific selection allows ATS to make more informative
queries. Figure [6a)shows that ATS with specific teacher selection earns higher expected reward than
ATS with general teacher selection, and Figure [6b] shows that ATS with general teacher selection
queries all arms roughly equally, failing to identify the one with highest expected reward.

5.2 COVID-19 VACCINE TESTING DOMAIN

Bandit-type problems are commonly used to model medical treatment investigation, so as a proof-
of-concept we apply the HUB framework to a real-world medical problem: evaluating vaccines for
the 2019 Novel Coronavirus (COVID-19). This task is complicated by the difficulty of evaluating
whether a patient is infected: many infections are asymptomatic, and other common illnesses cause
similar symptoms. There are a variety of ways to test whether patients have COVID-19, including
symptom surveys, antigen tests, and RT-PCR tests, but these vary widely in accuracy and cost.

The HUB framework directly models these challenges. Let the item set be easily observable pa-
tient symptoms, Z = {None, Cough, Fever}. The “arms” are vaccine candidates, C = {c¢' =
VaccineA, c? = VaccineB,c®> = NoVaccine}, and the “teachers” are COVID-19 test types,

Symptoms Utility Test Rationality Cost Vaccine Vaccine A Vaccine B No Vaccine
None 8.0 Survey 0.36 -0.006 Symptom N c F N c F N c F
Distribution 0.9 0.1 @ 6.6 0.3 0.1 0.5 0.3 0.2
Cough 3.0 Antigen 1.32 -0.21
Expected 7.5 5.75 5.0
Fever 0.5 RT-PCR 2.54 -0.31 Utility

Figure 7: COVID-19 vaccine testing as a HUB problem. Symptoms (None, Cough, Fever) are items
(Z), tests are teachers with rationality () and cost (F') parameters, and vaccines are arms (C) with
the specified distributions over patient symptoms (D).



Under review as a conference paper at ICLR 2024

—L & Bl
500 308 —F C; B?
= — @ B3
400 g
S ¢ ;
§ g 0.6
300 &)
Q
= 04
& 200 2
ATS Naive[50] S
100 [/ ==- Random Arms Naive[100] < 02
' == Random Naive[200]
0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Step Step
(a) Discounted cumulative reward (b) ATS action frequencies

Figure 8: Performance of all algorithms and ATS action frequencies on the COVID-19 vaccine test-
ing problem. Random Arms and ATS both earn high reward from frequently vaccinating participants
(a), though only ATS additionally identifies the most effective vaccine (b). Data is averaged across
25 runs and smoothed across 10 steps.

{Survey, Antigen, RT-PCR}. Surveys are the least accurate but least expensive, while RT-PCR
tests are the most accurate and most expensive. We estimate the US dollar cost of surveys at $1.20
(accounting for 10 minutes of time at the US federal minimum wage of $7.25), antigen tests at
$42, and RT-PCR tests at $62 (median prices reported by (Lo et al.,[2023)), then scale these costs
by 0.05. We estimate 3 by gathering real-world data on the sensitivity of COVID-19 symptom
surveys (Rufino et al., [2023), antigen tests (Harmon et al., [2021), and RT-PCR tests (Binny et al.,
2023)), interpret this sensitivity as the probability P of the test “preferring” a patient with no COVID-
19 (U = Umaz) to a patient with definite COVID-19 U = wmin), let Ayjj = Umin — Umaz, and
calculate (3,,, using Equation |3} We construct arm distributions where patients display the most fre-
quent and severe symptoms with no vaccination, and the least symptoms with Vaccine A, and a
utility function where symptoms that have a greater chance of indicating COVID-19 infection have
lower scores. These values are reported in Figure[7}

Experiments We evaluate all algorithms for 25 runs of 1000 timesteps on this COVID-19 task.
U and D are more finely discretized than in the recommendation HUB in order to allow for more
realistic values, so the resulting HUB-POMDP has 5 times more states and is more challenging
to solve. While the recommendation experiments averaged results over many problem parameters,
here we fix the parameters to the values reported in Figure[/] since they are derived from real-world
data and realistic estimates.

Results Figure [§] summarises the results. Several algorithms perform well: ATS, Random Arms,
and Naive[50] (Figure . The Random Arms baseline that randomly administers vaccines without
testing for COVID-19 performs surprisingly well due to the high cost of reliable testing. However,
in this domain, we care not only about vaccinating as many people as possible during the trial, but
also about identifying which vaccine performs best. ATS clearly identifies the best vaccine, using
it increasingly frequently during the trial (Figure [8b). The Naive algorithms also identify the best
vaccine, but conduct more costly tests than necessary, leading to poorer overall performance.

6 CONCLUSION

We formalized the teacher selection problem in reward learning and proposed a solution method
that expresses this problem as a POMDP. Our empirical results underscore the applicability of this
framework to real-world problems, as well as the importance of modeling human teachers as distinct
entities and actively choosing when and which teacher to query.

The purpose of this paper is to investigate the novel problem of selecting teachers in RLHF, so the
experimental domains focus on tasks where learning the utility function is more challenging than
optimizing it. However, real-world RLHF systems often use large deep learning models to tackle
challenging problems. Future work will scale insights gained from working with the HUB formalism
to reward modeling for large language modeling and deep reinforcement learning systems.
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A RELATED WORK

Inverse Reinforcement Learning Inverse reinforcement learning (IRL) is a reward learning tech-
nique in which the agent infers a reward function given behavioral samples from an optimal pol-
icy (Ng & Russell, 2000; |Abbeel & Ng, 2004) or a noisy teacher (Ziebart, 2010). It is similar to
RLHF in that reward information comes from a teacher rather than the environment, but distinct in
that it requires teachers to perform the task well themselves (Milli & Dragan)|[2020). RLHF and the
HUB framework are most useful in domains such as those presented in Section [5| where the teacher
can distinguish good performance, but does not know how to produce it themselves.

Cooperative Inverse Reinforcement Learning Cooperative inverse reinforcement learning
(CIRL) extends the IRL framework to allow cooperation and collaboration between the agent and the
teacher (Hadfield-Menell et al., 2016;|Malik et al.,[2018)). HUB problems can be viewed as a specific
class of CIRL games in which there are multiple humans, but they can only act (by providing feed-
back) when the agent requests it (by querying them). However, CIRL problems are DEC-POMDPS,
which are NEXP-complete and thus functionally intractable (Bernstein et al., | 2002). By fixing the
human policy and arm distributions, the HUB framework reduces the problem to a POMDP with a
stationary transition function, which is much more tractable. Optimal agent solutions to the CIRL
game balance inference and control to produce several qualitatively valuable behaviors, such as only
asking the human questions when necessary (Shah et al.,|2020). The algorithm that best solves the
HUB problem, ATS, demonstrates similarly conservative querying behavior.

Crowdsourcing Prior work has investigated the related problem of combining feedback from mul-
tiple noisy annotators (Dawid & Skene, [1979), often to label training data for supervised learning
algorithms. (Raykar et al.,|2010) present an approach that learns teacher expertise and uses teacher
feedback to fit a classifier simultaneously, while (Rodrigues et al.,2014) generalise gaussian process
classification to model noisy annotators and combine their feedback into reliable labels for super-
vised learning. (Murugesan & Carbonell,|2017) develop a method that also models cost, trading off
between querying noisy peer labelers and querying a costly oracle. This body of work underscores
the difficulty and importance of combining feedback from varying and noisy teachers in machine
learning.

B THEOREM 1 PROOF

Theorem 1. If the predicted utility function U and the predicted arm distribution DC are estimated
by executing Algorithmwith T samples, then U — U* and D¢ — D¢* as T — oc.

Proof (Sketch). Since the number of arms is finite and they are pulled uniformly as 7" — oo, the
number of times that a given arm c* is pulled approaches infinity. Since each pull samples an item

from the true distribution D** i.i.d., the empirical distribution D* will approach D** in the limit of

infinite pulls. This argument applies for all arms c* € C, so D¢ — DC* as T — oco. Similarly, in

the limit of infinite queries, P (8, (4, )) will approach P*(53, (i,7)) = Pr(i > j;5,U*), the true
probablhty that teacher b prefers item ¢ over item 7, as determmed by Equatlon I Given S, (4,7)

and P (8, (i, j)) from the first T' timesteps, we can calculate Ay =U ( ) — U(j) using Equation 2?2
Given A = [Am, Ap2, .oy ANN]s Umae and Upin, We can calculate U as described in Algorlthm
U—ur as P — P*, whlchoccurs as T — oo. O]

C THEOREM 2 PROOF

Theorem 2. Given two items i,j € T where U(i) < U( ) and the preference probability P =
Pr(i = jJ; Bm,U) from Equattonlwe can estimate [, = Bm asin Equatzon If A;j is known,
we can further calculate (3, = z - ﬁm, where z = —A_

By = ln<% - 1). 3)
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Proof (Sketch). First, we define an affine mapping function f, 5(x) = ax+ b such that f, (U () =
0 and fq,(U(j)) = 1. Lemma [3|shows that this is always possible when U (i) # U(j) and further-

more that a = % Let z, y be the parameters that make this mapping for these particular values of
U(i) and U(j). Note that z = % = fA;jl.

Next, suppose we have that 3], = % Bm, it follows that:

P =Pr(i® = i'; B, U)
_ exp(Bmld (7))
exp(ﬂmU(i)) + exp(ﬂml/l(j))
exp(Zm - ald (i) + Z=b)
exp(% ~ald(i) + %”b) + exp(% ald(j) + /%b)
B exp(fy, - (ald(i) + b)) efinition of /3’
= o, (@) + b)) + exp(Fy (@) ) (by definition of &)
B exp(By, - fap(U(i))) efinition o
= D Fon U] + oxp(By, - Fas0)) (b definition of Jo)
exp(0) _ 1
exp(0) +exp(B,) 1+exp(Bl,)

Finally, solving for 3}, yields 8, = 18, =In(5 —1) — B =2z -In($ —1). O

m

(by Equation

Lemma 3. Given any two numbers m, n € R such that m # n, there exists an affine transformation
fa.b : R = R that maps the greater number to 1 and the lesser number to 0.

Proof (Sketch). Suppose that m > n without loss of generality. We therefore must solve the fol-
lowing system of equations: f, ;(m) = am +b = 1 and f,3(n) = an + b = 0. The solution is
a=—L andb= " + 1, which always exists when m # n. O

n—m n—m

D POMCPOW RoOLLOUT POLICIES

ATS solves the HUB-POMDP using partially observable Monte-Carlo planning with observation
widening (POMCPOW) augmented with a custom rollout policy for estimating the value of leaf
nodes in the search tree. We evaluate a random action rollout policy, which takes actions uniformly
at random from A = C U 3, a random arm rollout policy, which chooses arms uniformly at random
from C, and a best arm policy, which calculates which arm has the highest expected utility according
to the current belief b, then always chooses that arm.

Since a utility-maximizing agent will choose arms more often if it believes them to have higher
utility, the best arm policy rollouts most closely resemble the actions the actual policy would take
from belief b, yielding the most accurate value estimates. As a result, ATS with best arm rollouts
outperforms the alternatives on the paper recommender domain, as shown in Figure[9} Results are
averaged across 25 runs on 20 different paper recommendation tasks.

E HUB CoOST EFFECTS

We investigate the impacts of teacher query cost on ATS performance by varying professor feedback
costs in the paper recommendation domain. We set linear costs F' = {—1, —2, —3} and scale them
by a cost multiplier. As in the other paper recommendation experiments, results are averaged across
25 runs on 20 different paper recommendation tasks.

We find that ATS responds rationally to changes in costs, querying teachers more sparingly (Fig-
ure[I0b) and consequently identifying the best arm more slowly (Figure[I0a as overall costs increase.
This leads to a slight decrease in overall performance (Figure[I0c).
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Figure 9: Performance of ATS with various rollout policies. The best arm rollout policy outperforms
the random arm and random action rollout policies. All data is averaged across 25 runs on each of
20 HUB problems, smoothed over 10 steps, and discounted with v = 0.99.
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