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Abstract: The domain of Embodied Al, in which agents learn to complete tasks
through interaction with their environment from egocentric observations, has ex-
perienced substantial growth with the advent of deep reinforcement learning and
increased interest from the computer vision, NLP, and robotics communities. This
growth has been facilitated by the creation of a large number of simulated en-
vironments (such as AI2-THOR, Habitat and CARLA), tasks (like point navi-
gation, instruction following, and embodied question answering), and associated
leader-boards. While this diversity has been beneficial and organic, it has also
fragmented the community: a huge amount of effort is required to do something
as simple as taking a model trained in one environment and testing it in another.
This discourages good science. We introduce AllenAct, a modular and flexible
learning framework designed with a focus on the unique requirements of Embod-
ied Al research. AllenAct provides first-class support for a growing collection
of embodied environments, tasks and algorithms, provides reproductions of state-
of-the-art models and includes extensive documentation, tutorials, start-up code,
and pre-trained models. We hope that our framework makes Embodied AI more
accessible and encourages new researchers to join this exciting area.

1 Introduction

In recent years we have witnessed a surge of interest within the computer vision, natural language,
and robotics communities towards the domain of Embodied Al (E-Al) - learning, while situated
within some animate body (e.g. a robot), to perform tasks in environments through interaction.
This has led to the development of a multitude of simulated environments employing photorealistic
images (such as Gibson [1] and Al Habitat [2]), involving robot-object interaction (such as Al2-
THOR [3] and Virtual Home [4]), focused on manipulation (such as RL-Bench [5], Sapien [6], and
Meta-world [7]), using advanced physics simulations (such as MuJoCo [8] and ThreeDWorld [9]),
and also physical counterparts to simulation environments (RoboTHOR [10] and iGibson [11]) to
enable research in simulation-to-real transfer. Within these environments, research has progressed
towards learning to interact: including visual navigation [12, 13, 14], question answering [15, 16],
task completion [17], instruction following [18, 19], language grounding [20, 21], grasping [22, 23],
object manipulation [24, 25], future prediction [26], and multi-agent collaboration [27, 28]; as well
as using interaction as a tool to learn: environment representations [29], intuitive physics [30],
and objects and attributes [31]. The rapidly growing list of publications in E-Al, see Fig. 1, as
well as popularity of E-Al workshops and challenges in top computer vision and machine learning
conferences over the past couple of years exemplify the growing interest in this domain.

As the domain of E-Al continues to grow, it faces several challenges: (a) Replication across tasks
and datasets - While our community proposes a host of novel methods each publication cycle, these
techniques are frequently evaluated on a single task and within a single simulation environment (see
Fig. 1). Just as we now expect neural architectures to be evaluated across multiple tasks (e.g. com-
puter vision tasks include classification, detection, and segmentation) and multiple datasets (such
as ImageNet [33] and Places [34]), we must also start evaluating E-Al methods across tasks and
datasets. Unfortunately, this currently requires large-scale changes to a code-base and thereby dis-
courages comprehensive evaluation. (b) Unravelling what matters - As the field progresses via
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Figure 1: Growth and fragmentation of E-Al Left - the cumulative number of papers published
on arXiv since 2015 which were identified as being in the E-Al domain (see Appendix A for de-
tails). The number of publications has dramatically increased in recent years. Right - after manually
annotating the 20+ most-cited E-Al papers, we plot histograms of the frequencies with which these
papers ran experiments on multiple environments, with multiple tasks, etc. The large frequency with
which only a single task, environment, and modality is evaluated suggest large barriers to compre-
hensive evaluation. While several papers evaluate multiple algorithms, we noticed little standard-
ization - some compare imitation with reinforcement learning, some compare A3C and PPO, others
try Q-learning. Moreover, these represent the most cited papers of the past years, likely making this
analysis not representative of a randomly selected paper. This analysis used the S20RC [32].

improvements on standard tasks and benchmarks, it is crucial to understand what components of
systems matter most and which do not matter at all. This unravelling requires careful ablation
studies and analyses. In addition to evaluations across tasks and datasets, this involves swapping out
learning algorithms (e.g., on-policy and off-policy), losses (e.g., primary and auxiliary), model com-
ponents (representation stacks, maps, etc.), and hyperparameters. These analyses are often critical
for good science and also fast progress. Today’s frameworks and libraries can certainly be improved
in this regard. Why should swapping a learning algorithm (e.g., PPO with A2C) be any more tedious
than changing, e.g., the learning rate? (c) Ramp up time - Getting up to speed with E-AI algorithms
takes significantly longer than ramping up to classical tasks in vision and NLP like image classi-
fication or sentiment analysis. Just as the early deep learning libraries like Caffe and Theano, and
numerous online tutorials, lowered entry barriers and ushered in a new wave of researchers towards
deep learning, E-Al can benefit from modularized coding frameworks, comprehensive tutorials, and
ample startup code. (d) Large training cost - E-Al is expensive. Today’s state of the art reinforce-
ment learning (RL) methods are sample inefficient and training competitive models for embodied
tasks can cost tens of thousands of dollars - within the reach of industrial Al labs, but unaffordable
for independent researchers and smaller organizations. The availability of large networks pre-trained
on ImageNet (with accompanying code and models on standard libraries like PyTorch) significantly
reduced the cost of training on downstream tasks. A similar centralized repository with a diverse set
of E-Al code and models can greatly benefit our community.

As detailed in Section 2, there is no shortage of open-source reinforcement learning libraries and
frameworks available today. While these frameworks excel in their particular domains, for research
in E-AI we found that each individually lacked features we consider critical. In particular, no single
framework simultaneously provides: support for a large number of E-Al environments and tasks,
a variety of training algorithms, a capacity to construct custom training pipelines, the right balance
between adding new and exploiting existing functionality, and a high likelihood of continued support
and development. For this reason, we set out to develop a new framework focused on E-Al research.

We present the AllenAct framework, written in Python and using PyTorch [35], designed for re-
search in E-Al with a focus on modularity, flexibility, and well encapsulated abstractions. It inherits



the best design principles and builds upon other Al libraries including pytorch-a2c-ppo-acktr!
and Habitat-API [2]. While AllenAct will continue to improve, we highlight the following ex-
isting features: (1) Environments - we provide first-class support for the iTHOR [3], RoboTHOR
[10], and Habitat [2] embodied environments and numerous tasks within, as well as for grid-worlds
including MiniGrid [36]. Grid-worlds serve as excellent sand-boxes to evaluate new algorithms ow-
ing to their rendering speed and variable complexity. Swapping out environments, as well as adding
new ones, is made simple. (2) Task Abstraction - tasks and environments are decoupled in AllenAct.
This allows researchers to easily implement a large variety of tasks in the same environment. (3)
Algorithms - we provide support for a variety of on-policy algorithms including PPO [37], DD-PPO
[13], A2C [38], Imitation Learning (IL), and DAgger [39] as well as offline training such as offline
IL. (4) Sequential Algorithms - AllenAct makes it trivial to experiment with different sequences of
training routines, which are often the key to successful policies (example: IL followed by PPO).
(5) Simultaneous Losses - AllenAct allows researchers to easily combine various losses while train-
ing models (for instance, use an external self-supervised loss while optimizing a PPO loss). While
seemingly trivial, we found that present day RL libraries make this unnecessarily harder than it need
be. (6) Multi-agent support - AllenAct provides support for multi-agent algorithms and tasks. (7)
Visualizations - effective visualizations of embodied environments are critical for debugging and
ideation. AllenAct provides out-of-the-box support to easily visualize first person and third person
cameras for agents as well as intermediate model tensors and integrates these into Tensorboard. (8)
Pre-trained models - AllenAct provides a number of models and accompanying code to train these
models for standard E-Al tasks. (9) Tutorials - we provide start-up code to help ramp up new re-
searchers to the field of embodied-Al as well as tutorials for performing common actions like adding
new environments, tasks, and models.

The AllenAct framework will be made open source and freely available under the MIT License. We
welcome and encourage contributions to AllenAct’s core functionalities as well as the addition of
new environments, tasks, models, and pre-trained model weights. Our goal in releasing AllenAct is
to make E-AI more accessible and encourage thorough, reproducible, research.

2 Related Work

Embodied AI platforms. Al research has benefited from platforms that enable agents to interact
with, and obtain observations from, an environment. These platforms have been used as benchmarks
to evaluate Al models on different types of tasks ranging from games [40] to performing tasks in
indoor environments [3] to autonomous driving [41]. ALE [40], ViZDoom [42], and Malmo [43] are
example game environments. Arena [44] provides a multi-agent platform for games. Several efforts
have produced environments for navigation with virtual robotic agents [10, 2, 11]. AI2-THOR [3],
CHALI [45], and Virtual Home [4] are examples of platforms that go beyond navigation and enable
evaluation of agents on tasks that require interaction such as applying forces and/or changing object
states. Platforms such as RLBench [5], Sapien [6], and Meta-World [7] focus on manipulation tasks,
while [46, 47] enable studying the task of grasping. The DeepMind Control Suite [48] provides a
platform for continuous control tasks. CARLA [41] is designed to evaluate autonomous driving
capabilities. Our goal is to provide a framework with general abstractions so researchers can easily
plug-in their environment of interest and begin experimentation. We provide code for integrating
multiple environments and tasks (see Sec. 3). We will continue to add more ourselves and encourage
other researchers to do the same. OpenAl Gym [49] also provides a standard wrapper for a set of
environments including the Atari games and MuJoCo control tasks. AllenAct differs from Gym in
its abstractions, capabilities, and E-Al being its primary focus.

Embodied AI and reinforcement learning libraries. There have been several libraries developed
over the years for E-Al, a few recent libraries that are most relevant to ours are discussed here.
ML-Agents [50] enables defining new environments in the Unity game engine and provides a col-
lection of example environments and RL algorithms. PyRoboLearn [51] provides a robot learning
framework, where the idea is to disentangle the learning algorithms, models, robots, and their in-
terface and to provide an abstraction for each of these components. Habitat-API [2] is a modular
framework for defining embodied tasks and agent configurations and training and evaluating these
agents. There are also RL frameworks without an embodied focus, for example, Garage’ (also
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known as rllab), OpenAl Gym [49], Dopamine [52], and Keras-RL?. Each of these libraries of-
fers a unique feature set well-suited to a particular research, or production, workflow. In contrast to
these libraries, AllenAct is designed to provide first-class support (e.g., including tutorials, starter-
code, visualization, and pretrained models) for a wide range of E-Al tasks while also allowing for
substantial flexibility in defining new training pipelines and integrating new environments and tasks.

3 The AllenAct framework

Designing software for Al tasks requires a delicate balance between the ease with which (a) new
functionality can be added and (b) the existing functionality can be exploited. For instance, a frame-
work designed only to train GRU based agents with the PPO algorithm to complete a navigation
task within the AI2-THOR environment can narrow its API so that a user needs only to specify a
small set of relevant hyperparameters before running a new experiment. This makes research within
this domain extremely streamlined at the expense of flexibility: if a user now wants to try something
beyond the scope of the design (e.g. train with the A2C loss) they will need to dive into the internals
of the framework to understand what, often substantial, changes must be made. In our experience
with E-Al research, the frequency with which we have had to modify our software to adapt to new
experimental requirements has followed the following approximate pattern:

Daily-Weekly: Modify hyperparameters associated with the training loss (e.g. reward discount
factor ), model (e.g. RNN hidden state size), optimization (e.g. learning rate, batch size), and
hardware (e.g. number of GPUs and training processes).

Weekly-Monthly: Modify model architectures, training strategies (e.g. warm-start a model with IL
before training with PPO), sensor modalities (e.g. adding depth maps as input to the model).
Quarterly-Yearly: Adding new environments (e.g. SAPIEN), new tasks (e.g. a language and vision
task such as ALFRED [19]), changes to the definition of an existing task (e.g. success in object-
navigation requires an explicit stop signal in addition to proximity to the object), new losses to be
used during training (e.g. auxiliary self-supervision), and incorporating new training paradigms (e.g.
moving from asynchronous methods, e.g. A3C [38], to synchronous methods, e.g. PPO [37]).

In designing AllenAct, we have stressed modularity and flexibility while keeping the above in
mind. Thus changing hyperparameters or model architectures is trivial and making more substantial
changes, such as adding a new training paradigm (e.g. deep-Q learning), requires more knowledge
of the framework’s internals but is still relatively straightforward. Following community standards,
AllenAct is written in the Python programming language and heavily leverages the PyTorch library
for designing deep-neural models and enabling their optimization. Next, we describe AllenAct’s
API, features, documentation, and associated pre-trained E-Al models.

3.1 Abstractions and API

The API of AllenAct is defined by a collection of abstractions (each corresponding to a Python
class) which, themselves, are best understood in context of their relationships. At a high level, an
agent is defined by an ACTORCRITICMODEL, observes the world using SENSORs, and interacts
with its ENVIRONMENT to complete a TASK which defines rewards and success criteria. New
instances of a TASK (e.g. navigation starting from a different point) are created, sequentially, for
the agent by a TASKSAMPLER and, during training, the agent’s parameters are updated to minimize
some collection of LosSes. Which LoSSes are used at a particular point in training is determined
by the TRAININGPIPELINE. Rather than describing all of these abstractions in detail® we instead
highlight how these abstractions differ from those used in most RL libraries. Our code adapts and
generalizes several abstractions from Habitat-API. For instance, their DATASET is generalized into
our TASKSAMPLER, and while we both share a TASK abstraction, theirs is used within an Open Al
gym ENV class while ours acts as an intermediary between the agent and the environment.

Experiments defined in code. In AllenAct, experiments are defined by creating an implementation
of the abstract EXPERIMENTCONFIG class. Changing hyperparameters in such files is just as sim-
ple as doing so within text-based configuration files (a necessity, as noted above, as these types of
changes occur daily to weekly) but with the added benefit that, at the cost of some additional boil-
erplate, it is trivial to add new hyperparameters, update model architectures, etc. Moreover, writing

3See AllenAct’s documentation for these comprehensive details.



configuration in code allows easy access to a wide range of productivity features provided by modern
integrated development environments such as auto-completion and type hints. This hugely simplifies
daily-weekly modifications and enables researchers to easily run several experiments. An example
of how one might create an EXPERIMENTCONFIG implementation to train a navigation model in
AI2-THOR can be seen in the documentation.

Flexible training pipelines. Training high-quality agents often requires a pipelined approach where,
for example, an agent’s policy is given a warm-start by first training with IL after which reinforce-
ment learning is used to further improve performance and generalization. While such training
pipelines can be accomplished manually, AllenAct introduces a TRAININGPIPELINE class which
makes the concept of a training pipeline a core concept within the framework. A TRAINING-
PIPELINE is defined by a collection of sequential PIPELINESTAGEs which define: (a) the losses
to be used, (b) the length of training and any early stopping criteria, and (c) whether or not to apply
teacher forcing (see Sec. 3.2). During training, AllenAct moves through these stages and updates
the agent accordingly. With this design, adding an IL. warm-start to an experiment requires adding a
single additional line of code. Thus the weekly-monthly change in training pipeline takes, at most,
a few minutes and requires little additional bookkeeping.

Decoupling the environment from the task. A standard abstraction used within multiple RL frame-
works is OpenAl Gym’s ENV. This ENV class defines (i) how an agent interacts with the environ-
ment, (ii) whether or not success criteria are met, (iii) the rewards returned after every action, (iv)
observations available to the agent, and (v) how to reset itself. This abstraction is an excellent fit
for many settings, especially those in which the environment (e.g. an Atari game) is intimately tied
to the agent’s intended goal (e.g. beating the game). This abstraction is less natural in the setting
of E-Al where the environment (e.g. AI2-THOR, Habitat, ThreeDWorld, etc.) has no innate goal
and, in fact, a huge variety of distinct goals can be defined. Within the AI2-THOR environment
alone, we are aware of nine unique tasks defined by various authors ranging from navigation [10]
to multi-agent furniture moving [28]. Instead, in AllenAct we disentangle the TASK from the EN-
VIRONMENT. The ENVIRONMENT provides a means by which to modify environment state while
the TASK encapsulates the agent’s goal and acts as an intermediary between the agent and the envi-
ronment. The TASK defines the actions available to the agent, any success criteria, and the rewards
returned to the agent. Once a TASK has been completed by the agent it is simply thrown away and,
as described below, a new task is generated by the TASKSAMPLER. Beyond being conceptually ap-
pealing, this decoupling can make the quarterly-yearly updates to (and additions of) tasks far easier
as, generally, changes are confined to the TASK class and large portions of code require no changes.
This decoupling also simplifies the process of introducing new environments within the AllenAct
framework.

Flexible task initialization. As previously noted, an OpenAl Gym’s ENV instance must be able to
reset itself and so any implementation of ENV implicitly defines the stream of goals that the agent
observes during training. This is well-suited for most RL research but is not a good fit for E-Al
where one often needs more control over which goals are presented to the agent and their order. We
instead use a TASKSAMPLER abstraction to allow complete control of how new instances of a task
are, sequentially, generated for the agent. With this abstraction, enabling curriculum learning is as
simple as defining a TASKSAMPLER that progressively samples more difficult instances of a task.
TASKSAMPLERSs enable quick experimentation with new training strategies which we require at the
weekly-monthly frequency.

Together these changes allow for considerable flexibility and provide a useful mindset by which to
approach E-Al problems. These abstractions are sufficiently general to be of use even beyond E-
Al research, indeed AllenAct has been used in a grid-world-based study of reinforcement learning
methodology [53].

3.2 Features

Environments and Tasks. A key goal of AllenAct is to provide first-class support for a diverse
range of embodied environments and tasks. In this early release, we provide support for Habitat,
iTHOR, and RoboTHOR and tasks within them (See Table 1). We also provide support for Min-
iGrid that serves as a fast sand-box for algorithm development. In future releases, we will extend
support to the recently released SAPIEN [6] and ThreeDWorld [9] environments and associated
tasks (e.g. robotic manipulation). A crucial advantage of AllenAct is the ease at which one may
test the same model (or training pipeline, loss, etc.) across multiple environments and tasks. The



AllenAct documentation shows an example of the few changes required to an EXPERIMENTCONFIG
to switch from one task to another in iTHOR and then move to the Habitat environment.
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driven-exploration [56]. While

on-policy and synchronous RL algorithms have become very popular, with PPO the de-facto stan-
dard, and have been used with great success, on-policy methods are notoriously sample-inefficient
and synchronous methods impose run-time limitations that are not appropriate for every problem.
To this end, AllenAct currently supports two means by which to relax the on-policy assumption.
Teacher forcing - in order to implement algorithms such as DAgger [39], an agent must be able
to replace its action with the action of an expert with some probability (potentially decaying over
training). In AllenAct, implementing teacher forcing (and thus DAgger) is as simple as defining a
linear-decay function. Training with a fixed, external, dataset - it is frequently beneficial to be able
to supervise an agent using a fixed dataset (e.g. IL from a dataset of human examples). AllenAct
enables this type of supervision and also interleaving off-policy updates with on-policy ones. While
we have found the above relaxations of the synchronous and on-policy assumptions to be sufficient
for most prior work, we recognize that this will not be the case for all users of AllenAct. In light of
this, our future roadmap includes incorporating deep Q-learning methods as well as capabilities for
asynchronous execution and training.

Multiple Agents. A key facet of E-Al having received relatively little attention is collaboration
and communication among multiple agents. To support research in this direction we have natively
enabled training multi-agent systems in AllenAct. As seen in Table 1, we will soon provide high-
quality support for the multi-agent tasks recently developed for AI2-THOR [27, 28].

Visualization. In our experience, visualizations and qualitative evaluations of the policies learned by
E-AI agents are critical to debugging and understanding the limitations of current systems. Unfor-
tunately, producing such visualizations can be time consuming, especially so if these visualizations
are meant to be of sufficient quality to be used in presentations or publications. To lower the bur-
den of visualization, the AllenAct framework contains a number of utilities (including ego-centric
views, top-down views, third party views and tensor visualizations) for environments with first-class
support (recall Table 1). Some of these visualizations, which can be automatically logged during
inference, are presented in Figure 2. The range and scope of these visualization utilities will grow
as further embodied environments and tasks are incorporated into our framework.

Tutorials, Documentation, and Typing. Beginning to work with a new framework can be a daunt-
ing and frustrating experience as one must internalize a large number of new abstractions, frequently
with little documentation, written in an unfamiliar style. For this reason, we have made tutorials and
documentation a high priority within AllenAct and, in our first release, we have several tutorials
such as training a PointNav model in RoboTHOR or how to switch environments for a particular
task. Moreover, we have added type hints throughout our codebase to enable IDE auto-completion
and warnings.

Pre-trained models. To encourage reproducibility, we include several pre-trained model check-
points (reproducing, within error, published results) for tasks with first-class support. This includes

*As an easily composable grid-world, MiniGrid can be used to quickly generate a huge number of different
tasks. Taken together, MiniGrid and BabyAI have >30 unique tasks by default.
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Figure 2: Visualizations. A simple plug-in-based interface allows generating different types of
visualizations in Tensorboard for a particular task as shown in the screen capture on the left. A
navigation task is shown in this example. We display ego-centric and top-down views as well as
the policy over time. The top-down view enables observing the overall behavior of the agent. We
highlight one segment of the trajectory with a green overlay. The ego-centric view enables interpret-
ing the policy and visually assessing task success. The policy enables analyzing and debugging the
probability of each action at each point in time.

all models trained towards the experiments in Sec. 4. As these models were trained within AllenAct,
we also provide training and inference code for these models.

Future development and support. An important consideration when deciding whether or not to
adopt a new framework is that of future support. Our team is committed to research in the domain
of E-Al and expect to continue AllenAct’s development for, at least, several more years. Indeed we
currently have a number of ongoing projects using AllenAct, in executing these projects we expect
to obtain robust feedback that will be used to improve AllenAct. We will also encourage and make
it easy for E-Al researchers to contribute code and models to AllenAct.

4 Experiments

We now highlight the capabilities of AllenAct by reproducing results from the (embodied) RL liter-
ature along with evocative ablations. Code and model checkpoints for all experiments can be easily
accessed within AllenAct and serve as strong comparative baselines for future work.

Support for embodied environments and tasks. Using AllenAct, we have reproduced a number
of results for navigation in the iTHOR, RoboTHOR, and Habitat environments, see Fig. 3a. Two
variants of navigation are commonly considered in the literature: PointNav (navigating with a dis-
placement vector to the goal) and ObjectNav (navigating to goal specified by a category label). We
train DD-PPO [13] for 75 million frames and obtain a validation accuracy of 92.5%. This accuracy
is within error of, and indeed slightly outperforming, the model in [2]. [13] demonstrated that if
trained for 2.5 billion frames using ~4608 GPU hours DD-PPO can reach 99.9% validation set ac-
curacy. For our aim of demonstrating reproducibility and functionality, we restrict ourselves to 75
million frames, the same as [2] with whom we compare. When training to complete PointNav in
iTHOR and RoboTHOR we obtain similarly high performance.

We demonstrate the ObjectNav task on iTHOR and RoboTHOR. In these experiments, we use
a ResNet and LSTM based architecture and train our models for 200 million steps. Within
RoboTHOR, our model outperforms the best model submitted to the recent CVPR’20 RoboTHOR
challenge®. While no such challenge was undertaken for iTHOR, our similarly high metrics sug-
gest we have obtained a well-trained model that will serve as a strong baseline for future work.
Implementation details are in Appendix B.1.

Support for online and offline algorithms. AllenAct supports a range of different built-in training
algorithms beyond PPO including A2C and several varieties of IL (e.g. on-policy behavior cloning,
DAgger, and purely offline training from a fixed dataset of demonstrations). Precise details of these
IL-based methods are given in Appendix B.2. In Fig. 3b, we highlight the results of using these
algorithms to train an agent to complete the GoToLocal task in the BabyAl [55] grid-world environ-

https://ai2thor.allenai.org/robothor/challenge/
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Figure 3: Experimental results. (a) Validation-set success rate and Success weighted by Path
Length (SPL) [54] of models trained with DD-PPO to complete the PointNav & ObjectNav tasks
in iTHOR, RoboTHOR & Habitat. Shaded regions indicate the range of metrics in five runs for
PointNav in Habitat, three runs elsewhere. (b) Test-set success rate of models trained to complete
BabyAI’s GoToLocal task (shaded regions indicate 95% confidence intervals around the mean); (c)
Test-set success rate of models trained to complete the LC Corrupt S15SN7 from [53] (shaded regions
indicate inter-quartile ranges across 10 runs).

ment. Reproducing similar results as Chevalier-Boisvert et al. [55], we find that IL. and RL-based
algorithms can be used to train agents to nearly perfect test-set accuracy within a few million steps
but that IL methods converge far faster in general. While Chevalier-Boisvert et al. trained their
RL-based models only with PPO, our experiments suggest that A2C can be effective but appears to
be substantially less sample efficient for this task.

Support for simultaneous and sequential algorithms. Beyond offering popular online and of-
fline algorithms, AllenAct facilitates training with multiple losses in sequence (using a TRAINING-
PIPELINE) or in parallel. Sequential training, particularly IL — RL, is widely adopted in E-Al
to warm-start agents [17, 16, 27] and has recently been formally studied [53]. Reproducing simi-
lar results as [53], we find that a IL — RL combination of BC, DAgger, or BC!! (as variants of
IL) followed by PPO can significantly boost their individual (near-zero) performance (see Fig. 3c).
Moreover ADV, an adaptive, parallel, combination of IL and RL losses, performs the best on the
challenging, MiniGrid-based, LC CORRUPT task [53] (see Appendix B.3 for details). In line with
[53], we choose hyperparamers via random search with 50 samples for each baseline. For each base-
line, the best hyperparameter combination (out of the 50) is selected and we train 10 models with
different seeds. We summarize the test-set performance across these runs by plotting their medians
and inter-quartile ranges.

Support for multi-agent systems. We reproduce the Markov Stag Hunt [57]. In our re-
implementation, two agents navigate in a 5 X 5 map with 1 Stag and 2 Plants, for 45 steps. Agents
can move in any of the four cardinal directions to goal of collecting a Stag or Plant. An agent gains
+1 reward when co-located with a Plant but can obtain a much larger reward (+5) if it coordinates
with the other agent so that they occupy the same location as the Stag simultaneously. Alternatively,
the agent receives a —g penalty when it is co-located with the Stag but the other agent is not. A Stag
or Plant disappears when collected and then re-spawns randomly. As in [57], the Stag moves to-
wards to the closet agent at each step. Our reproduced model achieves 124.74+2.47, and 57.01+4.21
reward as g = {0.5,3.0} at 3M training steps (roughly 66.7K training episodes). A similar baseline
model converges to ~ 120 reward at roughly 90K training episodes in [57]. As seen in prior work,
qualitatively different behavior emerges depending on the choice of g (details in Appendix B.4).

Support for vision-language-embodiment. We re-implement ALFRED [19], which is an embod-
ied language instruction following task. We are able to reproduce the results in the paper. More
specifically, using their pre-trained model, we obtain a 4.0% task success rate and 9.4% on the goal
condition success rate on the test-seen scenario.

5 Conclusion

We present AllenAct, a framework for reproducible and reusable research in the E-Al domain. Our
framework provides a high degree of support (in the form of pre-trained models, starter code, and
tutorials) for a growing collection of E-Al and general RL environments and tasks.



Appendix

A Generating Figure 1

Citation counts for papers in Fig 1-left were obtained using The Semantic Scholar Open Research
Corpus (S20RC) [32]. We restricted this analysis to papers submitted on arXiv within the past 6
years (2015 to 2020). Papers were determined to being in the E-Al domain if either the title or
abstract contained at least 1 word from set A and at least 1 word from set B, shown below:

Set A: habitat, gibson, igibson, ai2-thor, ai2thor, matterport, matter-port,
matter-port3d, matterport3d, r2r, room-to-room, house3d, pybullet, vizdoom,
chai, malmo, rlbench, procgen, touchdown, retouchdown, carla, minos,
chalet, meta-world, sapien, mujoco, replica, house3d, embodiedqa

Set B: robot, agent, embodied, simulator, autonomous

The annotations for the histograms in Fig 1-right were produced manually by the authors of this
submission. The top 23 papers (sorted by S20RC citation counts) were used for this analysis.

B Experiment Details
In this section we provide additional details about the experiments listed in the main paper.

B.1 Support for embodied environments and tasks.

Methods. We trained all the models using DD-PPO. We trained the ObjectNav models for 200M
steps and the PointNav models for 75M steps. For all the models we used a starting learning rate of

3e-4 and have annealed it linearly to 0, over the course of the training run. We used rollout lengths
of 30 and a y of 0.99.

Task. We defined success on the PointNav task as taking the stop action within 0.2m from the target.
We define success on the ObjectNav task as taking the stop action while looking at the target at a
distance of no more than 1.0m. We used a turning angle of 30 degrees and a forward motion distance
of 0.25m for all the experiments.

B.2 Support for online and offline algorithms.

In Section 4 we trained a number of different RL and IL baseline methods to complete the Go-
ToLocal task in the BabyAl environment. We describe the details of these baseline methods, along
with relevant hyperparameters below. For all of these experiments we use the same model used by
Chevalier-Boisvert et al. [55].

Methods.

e PPO [37] — proximal policy optimization is an onpolicy, synchronous, RL algorithm which
uses an easy-to-implement clipping methodology allowing for multiple gradient-updates
with a single collection of rollouts from the agent’s policy to obtain better sample efficiency
than several other popular approaches. For each update we use 1,536 rollouts of length 32
which are broken into batches of size 384 x32 and iterated across 4 times (a total of 16
gradient updates per collection of rollouts). We use a fixed learning rate of 10~4, a reward
discount factor of v = 0.99 and a clipping parameter of 0.1 (linearly decaying to 0 over
training). Further training details can be found in our code base.

e A2C [58] - advantage actor critic is a synchronous variant of A3C ([38]) which, empirically,
often results in better performance. While A2C has fallen out of favor, with PPO largely
taking its place as the de facto onpolicy, synchronous, RL algorithm, it remains a strong
comparative baseline. For each update we use 768 rollouts of length 16. With A2C, each
such sample is used for only a single gradient update and the rollouts are together a single



o to the grey key go to a yellow ball go to the grey box

Figure 4: BabyAI’s GoToLocal. Three visualizations of the GoToLocal task in the BabyAl envi-
ronment. At every step the agent (red triangle) obtains a 7x 7 egocentric observation corresponding
to the highlighted region and must follow a given “go to” instruction. E.g. in the leftmost image, the
agent must “go to the grey key”.

batch (this is not a limitation of AllenAct, we wished instead to remain faithful to the
standard implementation of A2C). As A2C’s hyperparameters are a subset of those of PPO,
we used the same hyperparameters as from PPO when applicable.

e BC - behavioral cloning is a straightforward variant of imitation learning in which: (i)
rollouts are collected using the agent’s current policy, (ii) for each such action, we compute
and store the, possibly different, expert’s action, and (iii) the agent’s policy is trained by
minimizing a negative cross entropy loss between the agent’s policy and the expert action.
For each such update we used 128 rollouts each of length 128. Similarly as for PPO, we
use these rollouts to create 4 batches of size 32 and iterate over these batches 4 times for a
total of 16 gradient updates per collection of rollouts. We use a learning rate of 10~ which
decays linearly to O throughout training.

e DAgger - training of DAgger is essentially identical to BC except where instead of always
sampling actions from the agent’s policy we use the expert’s action with probability starting
at 1 and decaying linearly to O during training. This means that the agent will initially see
many successful rollouts which can improve training performance.

e BCY=! - in this variant of behavioral cloning we always take the expert’s action. This
is equivalent to training using a fixed dataset of expert trajectories but where this dataset
is sufficiently large that no trajectory is seen more than once during training. All other
hyperparameters are identical to as in BC.

e BCFPoliey _ this is imitation learning using a fixed dataset of 1 million expert demonstra-
tions. Unlike in BC'™', the agent will see the expert trajectory multiple times throughout
training. While the training batches used in BCf°licy are of the same size as in the above
IL methods, a single trajectory is not iterated over more than once until an entire epoch over
the dataset is complete. In our experience this difference generally means that BCOf-policy
will obtain better results early in training (when compared to BC"=") but, as BC'™=! is not
limited to to a fixed number of experiences, with BC'=! there is no fixed training set to
which it can overfit.

Task. Some examples of the GoToLocal task are given in Fig. 4. At each step the agent is given a
7X 7 egocentric observation and a five-word instruction defining the object to which it must navigate.

B.3 Support for simultaneous and sequential algorithms.

Methods. We test sequential IL—RL baselines comprising of the methods studied in Sec. B.2 and
find that these IL—RL methods significantly improve over using only IL or RL alone. Moreover, we
train ADVISOR [53] which adaptively combines imitation and rewards-based losses to bridge the
‘imitation gap’ between the expert and the agent. This is achieved via an auxiliary actor trained only
via imitation loss, details of which can be found in [53]. In line with [53], we find that ADVISOR’s
adaptive and parallel combination of IL and RL losses performs the best. Note that when referring to
imitation in this study, the baselines learn from an expert policy. [53] lists three additional baselines
where the agent learns from offline demonstrations.

Task. We deploy the above methods on the LAVA CROSSING (LC) CORRUPT (S15, N7) task
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Figure 5: Testing results for the Markov Stag Hunt over training. Here g denotes the penalty,
g € {0.5, 1.0, 2.0, 3.0}, when only one is agent co-located with the Stag. The shaded regions
indicate 95% confidence intervals around the mean over 5 different random seeds.

from [53]. This task is based on LAVACROSSING in MiniGrid environment, where an agent, only
based on its egocentric view, needs to navigate to a goal while avoiding rivers of lava. Lava in a cell
indicates that the episode will end if the agent steps on it. CORRUPT denotes that the (shortest-path)
expert might provide corrupted supervision to the agent. Particularly, the expert policy becomes a
random policy when the expert comes < 10 steps from the goal. This tackles a realistic challenge
of training agents which learn despite corruption or noise. S15 indicates that the grid is 15 x 15 in
size. N7 marks that there are a total of 7 horizontal and vertical lava rivers in the environment.

B.4 Support for multi-agent systems.

We utilize MultiGrid® to reproduce the Markov Stag Hunt [57]. MultiGrid, which is built within
MiniGrid [36], is a grid-world environment developed for studying multi-agent reinforcement learn-
ing methods. On a 5 x 5 map, the agent and the Plant occupy 1 x 1 tiles, while the Stag occupies a
2 x 2 area. Following [57], we use the full map as the observation to the agents and this observation
explicitly encodes entities’ attributes with indices predefined by the MiniGrid. Our model includes
an embedding layer with hidden size 8 to encode the observation, a GRU with hidden size 512 to
process long-term memory, and a linear layer for actor-critic output (i.e., distribution over 4 possible
actions and value estimation). Both agents share the same embedding layer and GRU, while the
linear layer’s parameters are not shared.

We train the agents for 3M steps (roughly 66.7 K training episodes). We evaluate the learned model
over 1000 testing trajectories with 5 different random seeds. As a result, we compute the average
reward with its standard deviation over 5 different random seeds. Test-time performance over train-
ing is shown in Fig. 5. We observe that the agents converge to the payoff-dominant equilibrium
when g = {0.5, 1.0, 2.0} and risk-dominant equilibrium when g = 3.0. In other words, the trained
agents learn to cooperate and collect the Stag when ¢ = {0.5, 1.0, 2.0} but, when g = 3.0, learn
instead instead to individually focus on collecting the Plants. Thus, the payoff-dominant agents
receive higher rewards than the risk-dominant agents.

Shttps://github.com/ArnaudFickinger/gym-multigrid
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