

000 001 002 003 004 005 CAUSAL REASONING FAVORS ENCODERS: ON THE 006 LIMITS OF DECODER-ONLY MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 In-context learning (ICL) underpins recent advances in large language models
028 (LLMs), although its role and performance in causal reasoning remains unclear.
029 Causal reasoning demands multi-hop composition and strict conjunctive control,
030 and reliance on spurious lexical relations of the input could provide misleading
031 results. We hypothesize that, due to their ability to project the input into a latent
032 space, encoder- and encoder-decoder architectures are better suited for said multi-
033 hop conjunctive reasoning versus decoder-only models. To do this, we compare
034 fine-tuned versions of all the aforementioned architectures with zero- and few-
035 shot ICL in both natural-language and non-natural language scenarios. We find
036 that ICL alone is insufficient for reliable causal reasoning, often overfocusing on
037 irrelevant input features. In particular, decoder-only models are noticeably brittle
038 to distributional shifts, while fine-tuned encoder and encoder-decoder models
039 can generalize more robustly across our tests, including the non-natural language
040 split. Both architectures are only matched or surpassed by decoder-only architec-
041 tures at large scales. We conclude by noting that for cost-effective, short-horizon
042 robust causal reasoning, encoder or encoder-decoder architectures with targeted
043 fine-tuning are preferable.
044

1 INTRODUCTION

045 Causal reasoning is a foundational capability for modern AI systems. It underpins scientific inference,
046 reliable decision making under interventions, and safety-critical applications where spurious
047 correlations could lead to inaccurate predictions, and thus brittle and unsafe behavior. A core com-
048 ponent of causal reasoning is the ability to carry out structured, rule-based deduction: to combine
049 multiple premises, enforce boundary conditions, and derive correct conclusions in a way that re-
050 mains stable under representational changes. This deterministic, implication-driven form of reason-
051 ing, often formalized as logical deduction in first-order logic (FOL) is a crucial building block of
052 many causal systems. Large language models (LLMs), when prompted with examples, often appear
053 capable of such structured inference through in-context learning (ICL), yet it is unclear how reliably
they implement it. Logical reasoning imposes two stringent requirements: multi-hop composition
and strict conjunctive control. The former is the ability to chain several elementary implications
or constraints to derive a conclusion across multiple intermediate steps. The latter requires the is-
surance of a positive decision only when all relevant premises, guards, and boundary conditions are
simultaneously satisfied; and rejected otherwise.

054 It is known that LLMs exhibit limitations in logical reasoning, including difficulty in being logically
055 consistent (Calanzone et al., 2024) memorization Xie et al. (2024) and reliance on spurious lexical
056 features (Zhang et al., 2022; Sanyal et al., 2022). These shortcomings are particularly visible in natu-
057 ral language settings (Parmar et al., 2024). For example, Han et al. (2024a) demonstrated that LLMs
058 struggle with FOL reasoning. Although LLMs can often perform step-level reasoning, they struggle
059 with proof planning and choosing the correct next step when multiple options are available, and their
060 generalization remains uneven- robust on compositional proofs yet unreliable on unseen deduction
061 rules (Saparov & He, 2022; Saparov et al., 2023). These behavioral failures naturally raise the ques-
062 tion of whether architectural choices fundamentally constrain LLMs’ logical reasoning abilities.
063 Prior analyses (Tian et al., 2021; Han et al., 2024a) have compared a wide range of architectures on
064 FOL reasoning tasks and found significant differences across model families. However, there has

Figure 1: Overview of our approach. *Left, (A)*: Dataset creation. From a fixed set of propositions, we generate one training set, and two out-of-distribution (OOD) test sets. *Right, (B)*: For our evaluation we conduct zero- and few-shot inference with decoder-only reasoning and non-reasoning models. We also fine-tune models from all three architectural families (encoder-only, encoder-decoder, and decoder-only); namely, variants of BERT and BART, and Qwen3-1.7B (Yang et al., 2025)

not been a systematic comparison between decoder-only models¹ and encoder-enabled architectures such as BERT (Devlin et al., 2019) and BART (Lewis et al., 2019).

In this work we compare encoder and encoder-decoder architectures with decoder-only architectures. Encoder-based architectures have the innate ability to project the full input into a latent space; while decoder-only architectures perform inference recursively, in a token-by-token fashion. Our hypothesis is that an encoder’s projective ability will allow them to perform more reliable causal composition, especially under distributional shifts, when compared to decoders. To test this, we evaluate a series of encoder, decoder, and encoder-decoder architectures under various out-of-distribution (OOD) scenarios, with synthetic data especially designed to evaluate their robustness to distributional shifts.² We test these distributional shifts by (1) progressively deeper reasoning chains in a subset of first-order logic (FOL), and (2) the same dataset with randomized characters to ablate out lexical relations (e.g., “Batman is kind” in the first would be “Batman is a#d}” in the second).

We find that, under our setup, encoder-only models are able to generalize better than decoders. This means that they are able to have better accuracies at deeper reasoning chains, as well as learn to focus on the underlying logical structures of the data. This latter part holds both for non-finetuned (i.e., zero- and few-shot) and finetuned decoder-only models. Moreover, this performance gap becomes wider as the reasoning chains in both scenarios become deeper. The only outlier to our findings is a recent, state-of-the-art (SOTA) model, GPT-5 (OpenAI, 2025b), which attained near-perfect accuracy in all our tests. However, this incurred substantial latency and—presumably—higher compute cost. We thus conclude that **ICL alone is not an effective mechanism for causal reasoning**. Given the gaps in accuracy and compute cost, we argue that robust, cost-effective performance may be achieved with conventional encoder or encoder-decoder architectures and minimal fine-tuning.

2 RELATED WORKS

The study of logical reasoning capabilities in large language models (LLMs) has attracted significant attention in recent years. Several surveys provide broad entry points into this emerging area. See Liu et al. (2025) and Luo et al. (2023) for a review on analyzing and enhancing reasoning capabilities in LLMs. More recently, Roy et al. (2025) provided the first unified prompt and data-driven framework for full causal-graph discovery with LLMs, revealing that while in-context reasoning can approximate causal structure learning under favorable metadata conditions, current decoder-only ar-

¹When the architecture is undocumented we assume the model discussed is a decoder-only LLM.

²All code and artifacts are available at https://anonymous.4open.science/r/causality_grammar-DB41/README.md

108 architectures still struggle with strict compositional and conjunctive causal dependencies. Liu et al.
 109 (2025) offer an overview of current challenges and future directions in causal reasoning of LLMs.
 110

111 **Architecture** Early investigations have explored causal reasoning in encoder-only and en-
 112 coder-decoder architectures. For example, Pirozelli et al. (2024) study whether encoder-based mod-
 113 els can handle logical reasoning tasks such as propositional and FOL, including validity checking
 114 and theorem proving. Dziri et al. (2023) explore how transformers solve compositional tasks that
 115 involve multi-step reasoning. Zheng et al. (2025) analyze the first order logical entailment abilities
 116 of both encoder-based and decoder only transformer models and find that they have comparable
 117 performance.

118 **Benchmarks** Prior work has introduced a range of logical reasoning benchmarks to assess the de-
 119 ductive abilities of LLMs. JustLogic (Chen et al., 2025) provides a large-scale synthetic benchmark
 120 designed to isolate deductive reasoning by removing prior knowledge dependencies and enabling
 121 fine-grained analysis across reasoning depth and argument structure, revealing large performance
 122 gaps between models and human ceilings. Cognitive science-inspired evaluations (Seals & Shalin,
 123 2024) similarly show that current LLMs struggle with classical deductive reasoning problems when
 124 presented in their original form. Other efforts focus on improving evaluation diversity: DivLogicE-
 125 val (Chung et al., 2025) highlights distributional biases in prior datasets and introduces linguistically
 126 diverse evaluation settings with metrics that reduce randomness and bias. In contrast to synthetic-
 127 only settings, FOLIO (Han et al., 2024a) and P-FOLIO (Han et al., 2024b) provide human-authored
 128 stories paired with first-order logic annotations and step-by-step proofs, enabling analysis of multi-
 129 step inference capabilities. Synthetic proof-oriented datasets like PrOntoQA (Saparov & He, 2022)
 130 also support structured formal evaluation through symbolic parsing of reasoning chains. Finally,
 131 LogicBench (Parmar et al., 2024) expands the scope of assessment by covering a wider range of
 132 propositional, first-order, and non-monotonic reasoning patterns, moving beyond the few inference
 133 rules traditionally tested. Together, these benchmarks reveal persistent weaknesses in LLM deduc-
 134 tive reasoning despite growing capabilities.

135 **Improving logical reasoning in LLMs** Beyond evaluation, several methods have been proposed
 136 to enhance logical reasoning in LLMs. Logic-LM (Pan et al., 2023) augments language models with
 137 symbolic solvers to better navigate formal reasoning tasks by explicitly enforcing logical constraints.
 138 LogicAsker (Wan et al., 2024) takes a complementary skill-based approach, decomposing reasoning
 139 into atomic propositional and predicate logic abilities, and using these structured skills to diagnose
 140 and improve model performance. Data synthesis techniques have also proven effective: LogicPro
 141 (Jiang et al., 2025) creates a large corpus of challenging logic problems with verified reasoning
 142 chains, enabling substantial performance gains across multiple benchmarks such as LogicBench,
 143 GSM8K, and AR-LSAT. Meanwhile, DREAM (Cao et al., 2025) targets proof-based reasoning,
 144 identifying failures in multi-step first-order logic inference due to limited strategy exploration and er-
 145 ror propagation. To address this, it introduces diversified proof generation and feedback-driven error
 146 correction, yielding notable improvements on complex theorem proving tasks. Collectively, these
 147 approaches demonstrate promising pathways to strengthen deductive reasoning in LLMs through
 148 external symbolic guidance, structured skill decomposition, data-driven training, and improved rea-
 149 soning strategy search.

150 3 BACKGROUND

151 3.1 LOGICAL REASONING AND OUR DATASET

152 Causal reasoning is the process of determining how individual facts or conditions combine to pro-
 153 duce an overall outcome (Penn & Povinelli, 2007). Although causal reasoning concerns understand-
 154 ing how mechanisms generate outcomes (Pearl, 2009), its deductive backbone ultimately reduces
 155 to patterns that can be expressed as logical implications; **logical reasoning**, therefore, captures the
 156 premise-conclusion structure that underlies many causal judgments. Unlike simple associative pre-
 157 diction, it requires models to identify dependencies between propositions and to compute how local
 158 truths influence global conclusions. In practice, this almost always entails *multi-hop reasoning*,
 159 where intermediate inferences must be chained together across several steps. For example, given
 160 clauses X , Y , and Z , a model must first verify whether each clause holds (local checks), then com-

162 bine them through logical connectives (e.g., $X \vee Y$ at the clause level), and finally apply strict con-
 163 junctive control across all clauses to decide whether the full formula is satisfied (e.g., $(X \vee Y) \wedge Z$).
 164 This process highlights that accuracy depends not only on local classification but also on the correct
 165 *composition* of results across depth.

166 In the context of our work, we focus on testing specifically these requirements. By stratifying
 167 instances according to compositional depth, we enforce tasks where solving the problem requires
 168 multiple reasoning hops: at shallow depths, decisions can often be made with one or two local
 169 checks, but at greater depths, models must aggregate larger sets of clauses under global conjunctions.
 170 From our framing’s perspective, reasoning over the structure (clause relations) is more important
 171 than the lexical relations encoded in them, and hence we make this the central aspect of our work.
 172

173 3.2 ARCHITECTURAL CONSIDERATIONS FOR LOGICAL REASONING

175 In this section we provide an informal argument on how encoder layers could have an advantage
 176 over decoder-only architectures when dealing with logical reasoning.

177 Remark that logical classification requires aggregating dispersed evidence across an input sequence.
 178 Encoder architectures are well-suited to this task because each layer allows every token to integrate
 179 information from the entire sequence. This means that it will be able to express, in its own latent
 180 space, every element of an input sequence as a linear combination of the learned features and the
 181 other inputs. In other words, this allows for instant global information sharing.

182 Formally, let s be an n -token input sequence $s = \langle x_1, x_2, \dots, x_n \rangle$, where every x_i is represented by
 183 a d_{in} -dimensional vector; $x_i \in \mathbb{R}^{d_{\text{in}}}$. This sequence may be then rewritten as a matrix $X \in \mathbb{R}^{n \times d_{\text{in}}}$.
 184

185 In the context of encoder layers, a encoder layer ℓ of hidden dimension d , for $\ell: \mathbb{R}^{n \times d_{\text{in}}} \rightarrow \mathbb{R}^{n \times d}$,
 186 transforms X into a contextualized hidden state H . A classification decision would then be the
 187 result of pooling h into a single vector $z = \text{pool}(h)$, for some pooling (aggregation) function
 188 $\text{pool}: \mathbb{R}^{n \times d} \rightarrow \mathbb{R}^d$. From this perspective, z may be viewed as the output of a projection onto
 189 \mathbb{R}^d . Informally, this projection collapses the information from all tokens into a global representa-
 190 tion. In other words, logical programs of the form

$$191 \text{(literals)} \Rightarrow \text{(clause-level disjunction)} \Rightarrow \text{(global conjunction)} \quad (1)$$

192 are encoded onto the projection. Given sufficient observations, this mechanism could allow a model
 193 to evaluate, in a single pass, such programs by repeatedly projecting and composing the *full*
 194 sequence.

195 In contrast, decoder-only architectures are recursive. To read and aggregate information distributed
 196 across the sequence, the model must propagate it step-by-step from left to right. There is still a
 197 projective step, but, algorithmically, the output at position t depends only on the previously-observed
 198 and generated tokens. If the input clauses are not given in implication order, a solver will require
 199 some backtracking to fully consider and evaluate all given clauses. While reasoning models are
 200 able to do this to an extent through their “baked-in” chain-of-thought, it comes at the cost of a
 201 non-controllable inference process and multiple calls to the same model.

203 4 METHODS

204 4.1 DATASET

207 From 3.1, it follows that a-comparatively-simple evaluation of causal reasoning capabilities could
 208 be carried out on FOL. Hence, we base our work on a benchmark known as SimpleLogic (Zhang
 209 et al., 2022). SimpleLogic is designed to evaluate deductive reasoning skills in a subset of FOL
 210 that excludes disjunctions. Every example from SimpleLogic is an algorithmically-generated tu-
 211 ple $\langle \text{facts}, \text{rules}, \text{query}, \text{explanation}, \text{label} \rangle$, where the facts are given atoms; the rules are definite
 212 clauses; the query is a single atom; and the label indicates whether the query can be deduced. All
 213 atoms are drawn from a vocabulary that leverages natural language (e.g., “Amy is sad”). The re-
 214 sulting entries may not be logical from a commonsense perspective, but they are valid within FOL.
 215 SimpleLogic uses a templatized language, which allows for controllable input length, linguistic vari-
 216 ability, and reasoning depth—that is, the minimum number of reasoning steps needed to derive the

truth value of the query. We refer to the reasoning steps as "Proof Chain". In turn this ensures that difficulty is governed by logical complexity, rather than linguistic features.

In this work we create a base training set, and two OOD test datasets. The *training set* is akin to the original SimpleLogic work, with full natural-language strings generated by the base algorithm. It has 40,000 samples from depths 0 to 7, with 5,000 samples per depth. The **natural-language (NL) dataset** is a test set analogous to the training set, but manifests OOD by including deeper (up to 11) sequences. Finally, the **non-natural language (NNL) dataset** is constructed by sampling random characters to form an ungrammatical, likely unseen by the tokenizers, vocabulary; and then continue generating the dataset as before. Both test sets have 3,600 samples each, from depths 0 to 11, and 300 samples per depth. See Figure 2 for examples of entries in our corpora, and Appendix A for in-depth details.

<p>Facts: Batman is kind [PERIOD] Batman is generous Rules: kind [AND] generous [IMPLY] helpful [PERIOD] helpful [IMPLY] friendly [PERIOD] Query: Batman is friendly [PERIOD] Proof chain: kind [AND] generous \Rightarrow helpful helpful \Rightarrow friendly Label: 1 Depth: 2 </p>	<p>Facts: Batman is a#d) [PERIOD] Batman is pqrs Rules: a#d) [AND] y_hu] [IMPLY] u&~ho [PERIOD] u&~ho [IMPLY] {hu}? [PERIOD] Query: Batman is {hu}? [PERIOD] Proof chain: Cannot apply rule a#d) \wedge y_hu] \Rightarrow u&~ho because missing: y_hu Label: 0 Depth: 1 </p>
--	--

Figure 2: Sample datapoints from our corpora. *Left*: an NL entry with depth 2. Remark that it will not always be a natural sentence, although it is guaranteed to be a valid set of clauses in SimpleLogic. The proof chain for this example contains the sequence of reasoning steps which solves it. *Right*: an NNL entry with depth 1. The proof chain in this example indicates that it is an unsolvable problem, given that the atom "y_hu]" is not in the derivation. In all corpora we use the separators [AND], [IMPLY], and [PERIOD] to separate elements of SimpleLogic from the atoms.

4.2 MODELS USED

For our encoder-only evaluation, we used two BERT variants (base and large), and for encoder-decoders we used BART variants (base and large). For the decoder-only models we evaluated two non-reasoning models, GPT-4.1 (OpenAI, 2025a) and Qwen 2.5 (Bai et al., 2025); and three reasoning models, GPT-5, Claude Opus 4.1 (Anthropic, 2025), and Qwen3-1.7B. All of these models are considered state-of-the-art LLMs, albeit only the Qwen-line of LLMs have open weights. We finetuned BERT, BART, and Qwen3. See Appendix B for further details on our methodology.

4.3 EVALUATION METRICS

We evaluate models using three complementary views: overall accuracy as a point estimate of correctness; *per-depth* precision, recall, and F_1 -score to determine how performance changes with reasoning complexity; and threshold-swept discrimination via ROC curves and area under the curve (AUROC), which assesses ranking quality independent of a fixed decision threshold. We utilize the latter as our measure of statistical significance. Unless stated otherwise, depth-wise results are summarized with *macro* averages (the unweighted mean across depths) so that each depth contributes equally. Our setting is binary; accordingly, we report AUROC for the positive class. We describe our prompt methods, including how outputs are requested for each model family, in Appendix B.5. Given the nature of our experiments, we expect parsing errors in the LLMs across various settings. To mitigate this, we retry the calls up to five times; and to maintain consistency across data volumes, we default any failed calls to 0. We report analyses on the responses, including class distributions.

5 RESULTS

In this section we discuss the core results of our work on both corpora before and after finetuning (5.1 and 5.2, respectively). See 6 for ablation studies on these results.

5.1 NON-FINETUNED RESULTS

For our first experiment, we compared decoder-only models with the (unfinetuned) BERT, BART and Flan-T5 models. In this scenario—as expected—the BERT, BART and Flan-T5 models underpe-

formed. However, the LLMs had a more distinct behavioural pattern divided between the reasoning and non-reasoning types. For all models and datasets, we observed marginal changes (+0.5% average) in accuracy when increasing the number of shots from zero to five, and thus we only report zero-shot. In the NL dataset, the accuracies were 64% for GPT-4.1; 47% for Qwen-2.5; and 65% for Qwen-3 1.7B (zero and five-shot, respectively). In the NNL dataset, these were 65% for GPT-4.1; 53% for Qwen-2.5, and 61% for Qwen-3 1.7B. The API-based **reasoning models**, on the other hand, **had excellent performance**: GPT-5 achieved 100% accuracy in both the NL and NNL datasets. Claude Opus 4.1 scored 93% in the former (both zero and five-shot), and 65% and 66% in the latter (zero and five-shot, respectively).

Upon further inspection, we noted that the **low performances were *not* due to random guessing**, but, instead, the response patterns. In particular, for BART, BERT, Flan T5, and Qwen3-1.7B, we observed that the models often output the same label at every call (Figure 3) regardless of split.

Figure 3: Class distribution for fine-tuned and non-finetuned models in the (top) NL and (bottom) NNL datasets. Parsing errors are marked as “-1”. Fine-tuning improved the class distribution all across the board, with a less skewed distribution and fewer parsing errors. Label compliance in the NL dataset increased from 1.3% to 99.8% in BART-Base, and from 5.8% to 91.6% in Qwen3-1.7B. In the NNL dataset, label compliance increased from 0% to 91.2% in BART-Base, and from 17.7% to 92.2% in Qwen3-1.7B. Remark that in both cases there is still a label skewness in all models.

5.2 FINETUNED RESULTS

Next, we finetuned Flan-T5, BART and BERT, along with Qwen3-1.7B. **All models attained above-random, somewhat equivalent scores** in the NL split: 76% for Flan-T5 Base, 74% for BART-Base; 73% for Qwen3-1.7B; and 71% for BERT-Base. On the other hand, the NNL split proved to be more challenging: 61% for BERT-Base; 55% for BART-Base; 54% for Flan-T5 Base and 53% for Qwen3-1.7B.

Although these results would appear reasonable, observing the **AUC for all models revealed** that in the NL split, **Qwen-3 1.7B had near-random performance** (0.50), when compared to BART-Base, Flan-T5 Base and BERT-Base (0.62, 0.66, 0.76 and respectively), indicating better discrimination capabilities. In the NNL split, these numbers were 0.60, 0.53, 0.51 and 0.60 for Qwen-3 1.7B, BART-Base, Flan-T5 Base and BERT-Base, respectively. These were all improvements over the original, non-finetuned results, however: in the NL split the AUC increased by 0.06, 0.29, 0.38, and 0.08 (BART-Base, Flan-T5 Base, BERT-Base, Qwen-3 1.7B) and in NNL by 0.02, 0.07 0.09, and 0.1.

Figure 4: Averaged depth-wise accuracy for finetuned models in the NL (left) and NNL (right) datasets. Accuracy decreases with depth: in the NL dataset, average accuracy gradually declines from 90% to 50%; in the NNL dataset, it drops sharply from 89% to 50% and then plateaus. On average, encoder-based models outperformed decoder-only models across most depths.

6 ABLATION STUDIES

We present ablation studies on the relationship between the dataset depth and accuracy (6.1); and an evaluation on the inference time required to obtain our results (6.2).

6.1 ABLATION: (DATA) DEPTH VERSUS ACCURACY

In this study we decomposed the relationship between the number of reasoning steps and accuracy for the finetuned models only. Recall that both datasets manifested OOD by having deeper reasoning steps (8 to 11) than observed in the training data. The results are in Figure 4. For this we decomposed the predictions by depth. We observed a relatively even distribution on the prediction curves for the NL dataset. In the NNL dataset, however, the performance differences were more noticeable: **Flan-T5 Base and Qwen3-1.7B struggled to generalize to deeper reasoning chains**, rapidly reaching random guessing at depths 4 (Flan-T5 Base) and 3 (Qwen3-1.7B). On the other hand, BERT-Base was much slower to reach this state: depth 7. Numerically, we performed an OLS fit in the accuracy–depth profiles. Across models, the NL dataset exhibited a more gradual decline in accuracy (average slope = -3.45 , std = 0.49), whereas the NNL dataset showed a less consistent but slightly flatter overall trend (average slope = -3.04 , std = 1.31). We attribute this to the rapid accuracy drop in the NNL setting by depth 4, after which accuracy plateaus and flattens the global linear fit. To further isolate the initial region where performance deteriorates most, we repeated the OLS analysis over only the first four depths. In this regime, **the NNL dataset shows a substantially sharper decline** (average slope = -10.91 , std = 3.36), compared to the NL dataset (average slope = -4.73 , std = 2.45), confirming that accuracy degrades more abruptly in the absence of lexical cues.

6.2 ABLATION: INFERENCE TIME

We compared the accuracies of every model, along with the time and hardware requirements to acquire it. For this, we considered the *efficiency* of a model (accuracy over hours taken). We found GPT-5 to be the least efficient, in spite of its high performance, with an efficiency of 1.1: that is, it took over an hour to obtain a one-percent accuracy point. The most efficient was BART-Base; where one-percent accuracy points could be acquired every one tenth of a minute. Remark that LLMs took on average almost twice as long to compute the NNL split, due to the high amount of non-natural tokens produced. While we were unable to perform a full comparison given that the GPT and Claude models were behind an API—and hence the numbers above are estimates at best.

7 MECHANISTIC INTERPRETABILITY OF LOGICAL FLOW

Understanding how language models internally implement reasoning requires tools that go beyond input-output behavior. Recent theoretical work by Zhou et al. (2025) introduces a differential-geometric framework for analyzing the *flow of logic* inside hidden representations. Their key insight

Model	Inference Time (hours; \downarrow)	Efficiency (Accuracy/Hour; \uparrow)	Hardware
BART-Base	0.1	640	Nvidia RTX 6000
Flan-T5-Base	0.45	143.4	Nvidia RTX 6000
BERT-Base	0.17	388.2	Nvidia RTX 6000
Qwen2	1.08	43.52	API
Qwen3-1.7B	4.9	12.9	Nvidia RTX 6000
GPT-5	90.6	1.1	API
GPT-4.1	0.5	129	API
Claude Opus 4.1	14.4	5.5	API

Table 1: Average inference time in hours for zero-shot, averaged across both the NL and NNL datasets. Some calls were done through APIs, and so we are unable to provide accurate estimates comparing them. It is worth noting that the LLMs took on average twice as long on the NNL dataset, likely due to tokenization. To quantify the effort required to obtain the (average) accuracy, we provide the efficiency as a ratio of accuracy to time taken (in hours), with the highest (most efficient) model highlighted in blue (BART-Base); and the lowest in red (GPT-5). For BART-Base, Flan-T5-Base and Qwen3-1.7B, we consider the finetuned version of these models. These numbers are not fully comparable due to the (unknown) hardware used in some configurations.

is that reasoning manifests as a smooth trajectory in representation space, whose higher-order invariants, in particular, *curvature* encode the structural consistency of the underlying logical transformation. We build on this framework and adopt curvature similarity as our primary mechanistic probe, allowing us to evaluate whether different architectures maintain stable logical updates as reasoning depth increases.

Curvature as a mechanistic probe. Following Zhou et al. (2025), we interpret each incremental reasoning step as inducing a displacement in the model’s hidden states. Curvature captures the second-order behavior of this trajectory and is invariant to superficial semantic variation. High curvature similarity across depths therefore indicates that the model re-applies a consistent internal update rule, rather than relying on shallow correlational shortcuts. This makes curvature a powerful, model-agnostic indicator of mechanistic structure in logical reasoning.

Encoders preserve structural invariants. Figure 5 shows depth-wise curvature similarity for four architectures. BERT (encoder-only) exhibits the highest and most stable similarity across depths 6–11, suggesting that its representations evolve according to a coherent geometric transformation. Encoder–decoder models (Flan-T5, Bart) partially preserve this behavior but degrade with depth, while the decoder-only Qwen displays the steepest decline. This mirrors the geometric findings of Zhou et al. (2025), where curvature structure collapses when the representation flow lacks global contextual integration.

Mechanistic implication. The ordering BERT > Flan-T5 > Bart > Qwen reflects the availability of *bidirectional contextualization* at representation time. Encoders expose every token to the full relational field, enabling the model to encode logical dependencies as a smooth, curvature-preserving flow. Decoder-only architectures, however, update representations autoregressively, accumulating local noise that disrupts higher-order invariants. Our results therefore provide mechanistic evidence that encoder components *substantially aid* the preservation of stable geometric transformations associated with logical reasoning, while decoder-only architectures exhibit greater curvature drift and reduced structural consistency.

8 CONCLUSION

While in-context learning (ICL) has propelled large language models to the forefront of AI research, our study shows that their ability to perform causal reasoning remains limited. We systematically compared encoder-based architectures with decoder-only LLMs under the hypothesis that the recursive nature of ICL is a hindrance rather than a benefit for reasoning over structured logical forms. Our results support this view: most LLMs—including state-of-the-art reasoning models—struggled to match the efficiency and robustness of encoder-only models such as BERT,

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

Figure 5: **Depth-wise curvature similarity across reasoning depths 6–11.** Encoder-only BERT maintains a stable geometric transformation across reasoning steps, reflecting strong preservation of logical invariants. Encoder-decoder models partially retain this structure, while the decoder-only Qwen shows pronounced curvature drift. These observations align with the geometric reasoning framework of Zhou et al. (2025).

particularly at greater reasoning depths and under lexical perturbations. Fine-tuned encoders and encoder-decoders demonstrated superior stability under distributional shifts, validating our mechanistic account of global projection versus recursive aggregation. The sole exception was GPT-5, which attained near-perfect accuracy across both natural-language and symbolic test sets. We hypothesize that this outlier performance stems from a combination of immense capacity and built-in chain-of-thought priors, though at the cost of substantially higher inference-time compute. Taken together, these findings suggest a practical trade-off: encoders and encoder-decoders remain the most resource-efficient and reliable choice for causal reasoning tasks, while decoder-only models can only close the gap at massive scale and cost.

Causal reasoning is important in many contemporary applications of LLMs, ranging from explainable AI to its applications to scientific discovery. Although LLMs are convenient and easy to use, the results shown here illustrate that their application must be done with caution. Our work also suggests that ICL is limited in its ability to properly capture causal compositionality. While further mathematical development is required to formally show the bounds and limits to which this occurs, empirical work could explore the development of architectures that merge the convenience of ICL with the capabilities of encoder-based architectures.

9 ETHICS

The datasets used for our experiments were generated synthetically for the specific purpose of evaluating logical reasoning and do not contain any personally identifiable information (PII) or sensitive user data. The language models evaluated, such as BERT, BART, Qwen, and GPT, were used in accordance with their intended research licenses. While the primary goal of this work is to advance the scientific understanding of AI reasoning, we acknowledge that enhancing logical capabilities in models could have dual-use applications. We encourage the responsible development and deployment of such technologies. The environmental impact associated with training and evaluating these

486 models was considered, and our findings highlight the efficiency of smaller, encoder-based models
487 for specific tasks, which can guide more sustainable model selection in practice.
488

489 10 REPRODUCIBILITY STATEMENT 490

491 All code developed for data generation, model fine-tuning, and evaluation, along with the complete
492 NL and NNL datasets, will be made publicly available in a GitHub repository upon publication. The
493 pre-trained models used in this study are publicly available and were accessed from the Hugging
494 Face Hub. Detailed configurations, including all hyperparameters, training scripts, and library ver-
495 sions (e.g., PyTorch, Transformers), will be provided in the repository to allow for the full replication
496 of our experiments and to facilitate future research building upon this work. Hyperparameters, call
497 parameters for API-based LLMs, and in-depth methodology are also reported in Appendix B
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Anthropic. Claude Opus 4.1, 2025. URL <https://www.anthropic.com/news/claude-opus-4-1>.

543

544 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
545 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
546 2025.

547

548 Diego Calanzone, Stefano Teso, and Antonio Vergari. Logically consistent language models via
549 neuro-symbolic integration. *arXiv preprint arXiv:2409.13724*, 2024.

550

551 Chuxue Cao, Mengze Li, Juntao Dai, Jinluan Yang, Zijian Zhao, Shengyu Zhang, Weijie Shi,
552 Chengzhong Liu, Sirui Han, and Yike Guo. Towards advanced mathematical reasoning for LLMs
553 via first-order logic theorem proving. In Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn
554 Rose, and Violet Peng (eds.), *Proceedings of the 2025 Conference on Empirical Methods in
555 Natural Language Processing*, pp. 12440–12460, Suzhou, China, November 2025. Association
556 for Computational Linguistics. ISBN 979-8-89176-332-6. doi: 10.18653/v1/2025.emnlp-main.
557 628. URL <https://aclanthology.org/2025.emnlp-main.628/>.

558

559 Michael K Chen, Xikun Zhang, and Dacheng Tao. Justlogic: A comprehensive benchmark for
560 evaluating deductive reasoning in large language models. *arXiv preprint arXiv:2501.14851*, 2025.

561

562 Tsz Ting Chung, Lemao Liu, Mo Yu, and Dit-Yan Yeung. DivLogicEval: A framework for bench-
563 marking logical reasoning evaluation in large language models. In Christos Christodoulopoulos,
564 Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Findings of the Association for
565 Computational Linguistics: EMNLP 2025*, pp. 901–915, Suzhou, China, November 2025. As-
566 sociation for Computational Linguistics. ISBN 979-8-89176-335-7. doi: 10.18653/v1/2025.
567 findings-emnlp.47. URL <https://aclanthology.org/2025.findings-emnlp.47/>.

568

569 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
570 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
571 the North American chapter of the association for computational linguistics: human language
572 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

573

574 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen
575 Lin, Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang,
576 Soumya Sanyal, Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith
577 and fate: Limits of transformers on compositionality. In A. Oh, T. Naumann,
578 A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural In-
579 formation Processing Systems*, volume 36, pp. 70293–70332. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/deb3c28192f979302c157cb653c15e90-Paper-Conference.pdf.

580

581 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
582 Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with first-
583 order logic. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
584 Processing*, pp. 22017–22031, 2024a.

585

586 Simeng Han, Aaron Yu, Rui Shen, Zhenting Qi, Martin Riddell, Wenfei Zhou, Yujie Qiao, Yilun
587 Zhao, Semih Yavuz, Ye Liu, et al. P-folio: Evaluating and improving logical reasoning with
abundant human-written reasoning chains. *arXiv preprint arXiv:2410.09207*, 2024b.

588

589 Jin Jiang, Yuchen Yan, Yang Liu, Jianing Wang, Shuai Peng, Xunliang Cai, Yixin Cao, Mengdi
590 Zhang, and Liangcai Gao. LogicPro: Improving complex logical reasoning via program-guided
591 learning. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
592 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
593 (Volume 1: Long Papers)*, pp. 26200–26218, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1270. URL
<https://aclanthology.org/2025.acl-long.1270/>.

594 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
 595 Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
 596 training for natural language generation, translation, and comprehension. *arXiv preprint*
 597 *arXiv:1910.13461*, 2019.

598 Hanmeng Liu, Zhizhang Fu, Mengru Ding, Ruoxi Ning, Chaoli Zhang, Xiaozhang Liu, and Yue
 599 Zhang. Logical reasoning in large language models: A survey. *arXiv preprint arXiv:2502.09100*,
 600 2025.

601 Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak Aditya,
 602 Chitta Baral, et al. Towards logiglue: A brief survey and a benchmark for analyzing logical
 603 reasoning capabilities of language models. *arXiv preprint arXiv:2310.00836*, 2023.

604 OpenAI. Introducing GPT-4.1 in the API, 2025a. URL <https://openai.com/index/gpt-4-1/>.

605 OpenAI. Introducing GPT-5, 2025b. URL <https://openai.com/index/introducing-gpt-5/>.

606 Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-LM: Empowering large
 607 language models with symbolic solvers for faithful logical reasoning. In Houda Bouamor, Juan
 608 Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP*
 609 2023, pp. 3806–3824, Singapore, December 2023. Association for Computational Linguistics.
 610 doi: 10.18653/v1/2023.findings-emnlp.248. URL <https://aclanthology.org/2023.findings-emnlp.248/>.

611 Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
 612 Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical reasoning
 613 ability of large language models. *arXiv preprint arXiv:2404.15522*, 2024.

614 Judea Pearl. *Causality*. Cambridge University Press, 2 edition, 2009.

615 Derek C Penn and Daniel J Povinelli. Causal cognition in human and nonhuman animals: A com-
 616 parative, critical review. *Annu. Rev. Psychol.*, 58(1):97–118, 2007.

617 Paulo Pirozelli, Marcos M José, Paulo de Tarso P. Filho, Anarosa AF Brandão, and Fabio G Cozman.
 618 Assessing logical reasoning capabilities of encoder-only transformer models. In *International
 619 Conference on Neural-Symbolic Learning and Reasoning*, pp. 29–46. Springer, 2024.

620 Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
 621 optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
 622 lika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 623 Processing*, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
 624 tics. doi: 10.18653/v1/2023.emnlp-main.494. URL <https://aclanthology.org/2023.emnlp-main.494/>.

625 Amartya Roy, N Devharish, Shreya Ganguly, and Kripabandhu Ghosh. Causal-LLM: A uni-
 626 fied one-shot framework for prompt- and data-driven causal graph discovery. In Christos
 627 Christodoulopoulos, Tamoy Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Findings of
 628 the Association for Computational Linguistics: EMNLP 2025*, pp. 8259–8279, Suzhou, China,
 629 November 2025. Association for Computational Linguistics. ISBN 979-8-89176-335-7. URL
 630 <https://aclanthology.org/2025.findings-emnlp.439/>.

631 Soumya Sanyal, Zeyi Liao, and Xiang Ren. RobustLR: A diagnostic benchmark for eval-
 632 uating logical robustness of deductive reasoners. In Yoav Goldberg, Zornitsa Kozareva, and
 633 Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-
 634 guage Processing*, pp. 9614–9631, Abu Dhabi, United Arab Emirates, December 2022. Associa-
 635 tion for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.653. URL <https://aclanthology.org/2022.emnlp-main.653/>.

636 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 637 of chain-of-thought. *arXiv preprint arXiv:2210.01240*, 2022.

648 Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
 649 Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
 650 models using ood examples. *Advances in Neural Information Processing Systems*, 36:3083–3105,
 651 2023.

652 S Seals and Valerie Shalin. Evaluating the deductive competence of large language models. In
 653 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of*
 654 *the North American Chapter of the Association for Computational Linguistics: Human Lan-*
 655 *guage Technologies (Volume 1: Long Papers)*, pp. 8614–8630, Mexico City, Mexico, June
 656 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.476. URL
 657 <https://aclanthology.org/2024.naacl-long.476/>.

658 Jidong Tian, Yitian Li, Wenqing Chen, Liqiang Xiao, Hao He, and Yaohui Jin. Diagnosing the first-
 659 order logical reasoning ability through LogicNLI. In Marie-Francine Moens, Xuanjing Huang,
 660 Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical*
 661 *Methods in Natural Language Processing*, pp. 3738–3747, Online and Punta Cana, Dominican
 662 Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
 663 emnlp-main.303. URL <https://aclanthology.org/2021.emnlp-main.303/>.

664 Yuxuan Wan, Wenzuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang
 665 Jiao, and Michael Lyu. LogicAsker: Evaluating and improving the logical reasoning ability
 666 of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 667 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*,
 668 pp. 2124–2155, Miami, Florida, USA, November 2024. Association for Computational Linguis-
 669 tics. doi: 10.18653/v1/2024.emnlp-main.128. URL <https://aclanthology.org/2024.emnlp-main.128/>.

670 Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih
 671 Ghazi, and Ravi Kumar. On memorization of large language models in logical reasoning. *arXiv*
 672 preprint [arXiv:2410.23123](https://arxiv.org/abs/2410.23123), 2024.

673 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 674 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 675 [arXiv:2505.09388](https://arxiv.org/abs/2505.09388), 2025.

676 Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the
 677 paradox of learning to reason from data. *arXiv preprint arXiv:2205.11502*, 2022.

678 Tianshi Zheng, Jiazheng Wang, Zihao Wang, Jiaxin Bai, Hang Yin, Zheye Deng, Yangqiu Song, and
 679 Jianxin Li. Enhancing transformers for generalizable first-order logical entailment. *arXiv preprint*
 680 [arXiv:2501.00759](https://arxiv.org/abs/2501.00759), 2025.

681 Yufa Zhou, Yixiao Wang, Xunjian Yin, Shuyan Zhou, and Anru R Zhang. The geometry of reason-
 682 ing: Flowing logics in representation space. *arXiv preprint arXiv:2510.09782*, 2025.

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

A DATASET GENERATION

704 We construct a supervised dataset of logical reasoning instances with grounded facts, Horn-style
 705 rules, and a target query. Each instance is automatically labeled as true or false ($\{0, 1\}$); and an-
 706 notated with a minimal proof chain (or a failure trace) by running an algorithm based on Dijkstra's
 707 algorithm, which is available in the repository.

709

A.1 PROBLEM SCHEMA AND DSL

711 Each example \mathcal{E} comprises (i) a set of unary atoms (predicates) \mathcal{A} over a single entity e (e.g.,
 712 aggressive, uptight), (ii) a set of Horn rules $\mathcal{R} = \{(\Pi_i \Rightarrow c_i)\}$ with $\Pi_i \subseteq \mathcal{A}$ and $c_i \in \mathcal{A}$,
 713 and (iii) a unary query $q \in \mathcal{A}$. We serialize \mathcal{E} using a compact DSL:

714

```
prem_1 [AND] ... [AND] prem_k [IMPLY] concl [PERIOD]
```

715 We explicitly encode the logical connectives from SimpleLogic and the clause separator as tokens
 716 ([AND], [IMPLY], [PERIOD]) otherwise not present in \mathcal{A} . Facts are written as entity is atom
 717 [PERIOD] and queries as query : entity is atom [PERIOD]. This DSL maps deter-
 718 ministically to the internal graph representation described next.

720

A.2 LABELING AND ANNOTATION

722 For each instance \mathcal{E} , we evaluate all premises in $\Pi \Rightarrow c$. If q is reached, we backtrack to extract a
 723 minimal proof sequence (the proof chain), and otherwise we emit a structured failure trace that lists
 724 available premises (with their own proofs) and missing atoms.

725 **Depth Control and Curriculum** We control reasoning depth by constraining the longest path
 726 length to the query. That is, $\text{depth}(q)$ is the minimum number of rule applications to derive q . We
 727 build a curriculum over depths $d \in \{1, \dots, D_{\max}\}$, balancing the dataset across depths to prevent
 728 shallow-pattern overfitting.

730 **Negative Sampling Without Artifacts** To avoid annotation shortcuts, we introduce three strate-
 731 gies: premise-missing negatives, where a random premise is removed from a q -concluding rule;
 732 distractor chains, where additional rules derive atoms unrelated to q ; and adversarial swaps, where
 733 one premise is replaced with a semantically close predicate (e.g., hot vs. uptight) that already
 734 appears in the facts.

735 **Quality Checks** We enforce the following invariants:

737

- 738 • **Well-formedness:** every rule has non-empty premises; all atoms occur in the vocabulary.
- 739 • **Sound labels:** recomputing our search algorithm reproduces (y , explanation) exactly.
- 740 • **Bounded depth:** $\text{depth}(q) \leq D_{\max}$.

741 Failed instances are discarded or repaired by re-sampling.

743

B DETAILED METHODS

745

B.1 MODEL SPECIFICATIONS

747 For the decoder-only models we used GPT-4.1 (version SHORTCO-2025-04-14), GPT-5 (2025-08-
 748 07), Claude Opus 4.1 (20250805), Qwen-2.5 (vl-7B), Qwen3-17B, and Qwen3-1.7B. For encoder-
 749 only we used BERT (Large and Base). For encoder-decoder we used BART (Large and Base).
 750 Further details are in Table 2.

752

B.2 CALL PARAMETERS

754 For the LLM calls, we set the temperature to zero whenever possible. The requested completion
 755 tokens were 128 for the non-reasoning models, and 5,000 tokens for the reasoning models. All our
 calls were made through the Azure OpenAI API.

756	Model	Parameters	Type
757	GPT-4.1 [×]	-	Non-reasoning, ?
758	GPT-5 [×]	-	Reasoning, ?
759	Claude Opus 4.1 [×]	-	Reasoning, ?
760	Qwen-2.5	7B	Non-reasoning, decoder-only
761	Qwen3-17B	17B	Reasoning, decoder-only
762	Qwen3-1.7B	1.7B	Reasoning, decoder-only
763	BERT-Base	110M	Non-reasoning, encoder-only
764	BART-Base	139M	Non-reasoning, encoder-decoder
765	Flan-T5-Base	250M	Non-reasoning, encoder-decoder

766 Table 2: Models evaluated. For the models marked with \times , details regarding architecture, parameter
 767 size, or pretraining strategies have not been disclosed. We mark with ? models that we conjecture
 768 are decoder-only.

770 You are evaluating a subset of first-order logic.
 771 In this subset, conjunctions are given by [AND], implications by [IMPLY], and separations between
 772 clauses as [PERIOD]
 773 You will be given Facts, and Rules. Based on these, determine the truth value of the Query.
 774 Your final answer should be 0 (if the Query is false) or 1 (if true).
 775 Give your answer in JSON with the following schema:
 776 {
 777 "Label" (int): The label from the criterion. Only use the numbers 0 or 1.
 778 }
 779 Only use the key "Label".

780 Prompt 1: Prompt used for the LLMs. The data samples, as displayed in 2, are inserted as part of
 781 the user/assistant tuples in the case of five-shot. All LLMs typically adhered to the output format,
 782 and the parse failures mostly stemmed from API errors.
 783

785 B.3 FINETUNING

787 All models were finetuned for 3 epochs on a single NVIDIA RTX 6000 GPU with 48 GB of VRAM.
 788 A batch size of 8 was employed due to computational constraints, with a learning rate of 5×10^{-5}
 789 yielding the best performance. We have finetuned explicitly with both components: the reasoning
 790 path (proof chain) and the final prediction. The models are therefore supervised not only on the
 791 direct label but also on the intermediate reasoning steps, ensuring that the evaluation reflects actual
 792 reasoning ability rather than surface-level label prediction.
 793

795 B.4 DATASET CREATION

797 Most of the dataset creation is covered in Appendix A. Throughout our generation, we fix random
 798 seeds at every stage and log the canonical form of each generated hypergraph, enabling exact regen-
 799 eration of splits for future work.

801 B.5 OUTPUT FORMAT

803 The prompt used for the LLMs is in Prompt 1.

806 B.6 LEARNING CURVES

808 See Figure 6 for the finetuning loss for all models. For the same hyper-parameters, both Flan-T5
 809 Base and BART-Base achieve a much smaller loss (≈ 0.15) whereas Qwen3-1.7B and BERT-Base
 converge to a loss value of ≈ 0.5 .

Figure 6: Finetuning loss curves for the models: Both BART-Base and Flan-T5 Base achieve better generalization.

B.7 EVALUATING PROMPT SENSITIVITY

To assess the model’s sensitivity to prompt formatting, we conducted automatic prompt optimization on GPT-4.1 Pryzant et al. (2023) using a beam size of 6 and a search depth of 8 on both dataset splits (See Table 5).

Table 5: Automatic prompt optimization on GPT 4.1. Marginal increase ($\approx 1\%$) in performance in comparison to evaluations without prompt optimization (Table 7 and 11)

Dataset	Depth	Metrics					
		precision		recall		f1	
		Label 0	Label 1	Label 0	Label 1	Label 0	Label 1
NL	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	94.48	100.0	100.0	93.84	97.16	96.82
	2	73.30	92.55	95.57	61.27	82.97	73.73
	3	61.32	92.98	97.39	36.05	75.25	51.96
	4	52.57	85.11	95.00	25.00	67.68	38.65
	5	57.37	85.71	95.36	28.19	71.64	42.42
	6	54.09	86.05	95.86	23.87	69.15	37.37
	7	53.73	66.67	90.13	20.27	67.32	31.09
	8	56.86	60.00	88.96	19.71	69.38	29.67
	9	54.81	72.13	88.51	28.95	67.70	41.31
	10	52.94	44.44	84.38	14.29	65.06	21.62
	11	48.80	34.00	78.71	11.72	60.25	17.44
	Average	58.62	85.71	91.72	43.41	71.53	57.64
NNL	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	93.07	93.94	94.00	93.00	93.53	93.47
	2	70.54	76.14	79.00	67.00	74.53	71.28
	3	58.65	59.38	61.00	57.00	59.80	58.16
	4	62.39	64.84	68.00	59.00	65.07	61.78
	5	59.05	60.00	62.00	57.00	60.49	58.46
	6	58.56	60.67	65.00	54.00	61.61	57.14
	7	58.62	56.64	51.00	64.00	54.55	60.09
	8	57.30	55.86	51.00	62.00	53.97	58.77
	9	57.33	54.40	43.00	68.00	49.14	60.44
	10	51.47	50.76	35.00	67.00	41.67	57.76
	11	60.27	55.91	44.00	71.00	50.87	62.56
	Average	63.15	67.28	59.36	70.69	61.20	68.94

Figure 7: ROC curves for non-finetuned models. Performance is near random across all models in both datasets.

C AUC/ROC EVALUATION

C.1 NON-FINETUNED

In the NL dataset (Appendix C.1), the AUC values for all models (Flan-T5 Base, BART-Base, BERT-Base, and Qwen3-1.7B) are near 0.5 (ranging from 0.4 to 0.6). The ROC curves closely follow the dashed random line, confirming that the models’ performance on this task, without finetuning, is near random across the board. In the NNL dataset (Appendix C.1), the ROC curves for Flan-T5 Base (AUC 0.448), BART-Base (r. 0.5), BERT-Base (r. 0.5), and Qwen3-1.7B (r. 0.5) are also nearly indistinguishable from the random baseline, and, as before, the performance of the non-finetuned models in this corpus is random

C.2 FINETUNED

In the NL dataset, the AUC values of all models except Qwen3-1.7B are above random- 0.66, 0.62 and 0.76 for Flan-T5 Base, BART-Base and BERT-Base respectively. The ROC curves, as shown in Appendix C.2 are above the dashed random line, illustrating strong discrimination capabilities for encoder based architectures. In the NNL dataset the ROC curves for Flan-T5 Base (AUC 0.513), BART-Base (r. 0.53), BERT-Base (r. 0.6) and Qwen3-1.7B (r. 0.6) are above random but the AUC gains smaller compared to the NL dataset.

D TEST RESULTS ON THE NATURAL LANGUAGE DATASET

We evaluate four finetuned models—BERT-Base, BART-large, Flan-T5-Base and Qwen-3-1.7B—on the Natural Language benchmark across depths 0–11 (See Figure 11, Table 6). Averaged over depths, Flan-T5-Base achieves the highest accuracy (0.76), followed by BART-Base (0.74) and Qwen-3-1.7B (0.73) and . Per-class analysis shows that Flan-T5-base generally balances precision and recall across both labels, BART-Base has high precision and recall for Label 1 and 0 respectively, while Qwen-3-1.7B excels in F1 for Label 0, and BERT-Base combines strong precision on Label 0 with high recall on Label 1.

We also evaluate current reasoning and non-reasoning models (See Figure 10, Tables 7 to 9). GPT-5, Claude Opus 4 (Zero and five shot) have very strong performance across all depths, with GPT-5 achieving near perfect accuracy across all depths. The non-reasoning models (GPT-4 Qwen 2.5, Qwen3-17B) struggle to generalize at higher depths. GPT 4.1 (zero and five shot) and Qwen3-17B

Figure 8: ROC curves for finetuned models. Finetuning markedly boosts discrimination on the NL dataset. The models illustrate strong cross-domain generalization in the NNL dataset with smaller absolute gains compared to the NL dataset.

Figure 9: Averaged depth-wise accuracy for Decoder-only models in the NL (left) and NNL (right) datasets. In general, accuracy decreases with depth: in the NL dataset, average accuracy gradually declines from 90% to 50%; in the NNL dataset, it drops sharply from 89% to 50% and then plateaus.

(Zero shot) have roughly similar accuracy (≈ 0.65). Qwen 2.5 (zero and five shot) performs worse than average (0.47)(Table 9).

E TEST RESULTS ON THE NON-NATURAL LANGUAGE DATASET

On the Non-Natural Language benchmark, overall accuracies are lower than in the Natural Language setting for the finetuned models. BERT-Base performing best (0.61), followed by BART-base (0.55), Flan-T5-Base (0.54) and Qwen-3-1.7B (0.53) (See Figure 13). Per-class results reveal complementary strengths: BERT-base balances Label 0 precision and Label 1 recall/F1, Qwen-3-1.7B strongly favors Label 0 (high recall/F1) but suffers from poor Label 1 recall, while Flan-T5-Base and BART-base remain intermediate across metrics.

Performance on the non-natural language test set varies considerably across models. GPT-5 achieves near-perfect accuracy (Figure 12, Table 11), clearly outperforming others. Claude Opus 4.1 attains 0.66 accuracy in the five-shot setting and 0.65 in zero-shot (Table 12), marking a substantial drop compared to its performance on the natural language test dataset. GPT-4.1, by contrast, maintains consistent accuracy (0.65–0.66) across both test datasets. The Qwen family shows a different trend

Figure 10: Depth-wise metrics of the Decoder only models for the NL Dataset

Figure 11: Depth-wise metrics of the finetuned models for the NL Dataset

1080

1081

1082 Table 6: Performance of finetuned models on Natural Language Depth 12 test data. We highlight
1083 the best (**bold**) and second-best (underline) values.

1084

1085	Model	Depth	Metrics						accuracy	
			precision		recall		F ₁			
			Label 0	Label 1	Label 0	Label 1	Label 0	Label 1		
1088	BERT-Base	0	0.000	100.00	0.000	97.67	0.000	98.82	97.67	
		1	93.10	58.68	35.06	97.26	50.94	73.20	65.33	
		2	88.35	65.99	57.59	91.55	69.73	76.70	73.67	
		3	90.35	73.12	67.32	92.52	77.15	81.68	79.67	
		4	84.40	74.87	65.71	89.38	73.90	81.48	78.33	
		5	87.93	73.37	67.55	90.60	76.40	81.08	79.00	
		6	86.84	75.27	68.28	90.32	76.45	82.11	79.67	
		7	79.83	68.51	62.50	83.78	70.11	75.38	73.00	
		8	72.73	54.73	44.17	80.29	54.96	65.09	60.67	
		9	66.25	56.82	35.81	82.24	46.49	67.20	59.33	
		10	64.29	50.00	28.12	82.14	39.13	62.16	53.33	
		11	60.27	51.10	28.39	80.00	38.60	62.37	53.33	
		Average	<u>80.00</u>	67.34	50.63	89.00	62.00	76.65	71.00	
1099	BART-Base	0	0.00	100.00	0.00	99.33	0.00	99.67	99.33	
		1	100.00	96.69	96.75	100.00	98.35	98.32	98.33	
		2	73.23	87.25	91.77	62.68	81.46	72.95	78.00	
		3	72.77	87.16	90.85	64.63	80.81	74.22	78.00	
		4	65.38	82.20	85.00	60.62	73.91	69.78	72.00	
		5	67.22	75.63	80.13	60.40	73.11	67.16	70.33	
		6	67.55	84.68	87.59	60.65	76.28	70.68	73.67	
		7	63.24	76.04	84.87	49.32	72.47	59.84	67.33	
		8	68.75	71.30	80.98	56.20	74.37	62.86	69.67	
		9	59.04	62.69	66.22	55.26	62.42	58.74	60.67	
		10	61.63	57.81	66.25	52.86	63.86	55.22	60.00	
		11	59.47	61.82	72.90	46.90	65.51	53.33	60.33	
		Average	68.42	81.00	82.00	66.89	<u>75.00</u>	73.32	<u>73.00</u>	
1110	Flan-T5 Base	0	00.00	100.00	00.00	99.67	00.00	99.83	99.67	
		1	98.46	84.71	83.12	98.63	90.14	91.14	90.67	
		2	95.71	85.00	84.81	95.77	89.93	90.07	90.00	
		3	88.11	82.80	82.35	88.44	85.14	85.53	85.33	
		4	82.58	81.55	77.86	85.62	80.15	83.54	82.00	
		5	85.50	76.92	74.17	87.25	79.43	81.76	80.67	
		6	83.85	78.82	75.17	86.45	79.27	82.46	81.00	
		7	75.00	67.44	63.16	78.38	68.57	72.50	70.67	
		8	74.34	57.75	51.53	78.83	60.87	66.67	64.00	
		9	68.97	58.69	40.54	82.24	51.06	68.49	61.67	
		10	58.51	49.03	34.38	72.14	43.31	58.38	52.00	
		11	57.45	50.97	34.84	72.41	43.37	59.83	53.00	
		Average	81	73.12	63.55	<u>87</u>	71.09	80	76	
1122	Qwen-3-1.7B	0	00.00	100.00	00.00	88.00	00.00	93.62	88.00	
		1	100.00	96.43	87.66	92.47	93.43	94.41	90.00	
		2	97.76	90.85	82.91	90.85	89.73	90.85	86.67	
		3	94.70	90.07	81.70	86.39	87.72	88.19	84.00	
		4	84.67	89.93	82.86	78.12	83.75	83.61	80.33	
		5	79.87	82.03	78.81	70.47	79.33	75.81	74.67	
		6	77.48	87.02	80.69	73.55	79.05	79.72	77.00	
		7	70.83	77.27	78.29	57.43	74.38	65.89	68.00	
		8	66.87	64.91	66.87	54.01	66.87	58.96	61.00	
		9	59.72	62.79	58.11	53.29	58.90	57.65	55.67	
		10	65.03	60.50	58.13	51.43	61.39	55.60	55.00	
		11	63.31	62.28	69.03	48.97	66.05	54.83	59.33	
		Average	77.31	83	<u>75</u>	71.94	76	<u>77</u>	73.31	

1133

1134
1135
1136
1137
1138
1139
1140
1141

Table 7: Performance of GPT models on Natural Language Depth 12 test data. We highlight the best (**bold**) and second-best (underline) values. All numeric values are rounded to two decimal places.

Model	Depth	Metrics					
		precision		recall		F ₁	
		Label 0	Label 1	Label 0	Label 1	Label 0	Label 1
GPT 5 (Zero Shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	100.0	99.32	99.35	100.0	99.67	99.66
	2	100.0	100.0	100.0	100.0	100.0	100.0
	3	100.0	100.0	100.0	100.0	100.0	100.0
	4	100.0	100.0	100.0	100.0	100.0	100.0
	5	100.0	100.0	100.0	100.0	100.0	100.0
	6	100.0	100.0	100.0	100.0	100.0	100.0
	7	100.0	100.0	100.0	100.0	100.0	100.0
	8	100.0	100.0	100.0	100.0	100.0	100.0
	9	100.0	100.0	100.0	100.0	100.0	100.0
	10	100.0	99.29	99.38	100.0	99.69	99.64
	11	99.35	99.31	99.35	99.31	99.35	99.31
Average		99.94	99.84	99.82	99.95	99.88	99.90
GPT 4.1 (Five Shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	95.48	95.86	96.10	95.21	95.79	95.53
	2	71.57	83.50	89.24	60.56	79.44	70.20
	3	59.57	77.14	89.54	36.73	71.54	49.77
	4	50.21	67.21	85.71	25.62	63.32	37.10
	5	56.03	69.12	86.09	31.54	67.89	43.32
	6	54.39	70.83	85.52	32.90	66.49	44.93
	7	53.95	59.72	80.92	29.05	64.74	39.09
	8	56.60	53.85	81.60	25.55	66.83	34.65
	9	54.79	65.43	81.08	34.87	65.40	45.49
	10	52.50	43.33	78.75	18.57	63.00	26.00
	11	50.00	41.38	78.06	16.55	60.96	23.65
Average		58.20	77.84	84.75	46.80	69.01	58.45
GPT 4.1 (Zero Shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	93.08	95.74	96.10	92.47	94.57	94.08
	2	70.15	82.83	89.24	57.75	78.55	68.05
	3	59.31	76.81	89.54	36.05	71.35	49.07
	4	48.75	61.67	83.57	23.13	61.58	33.64
	5	56.33	69.01	85.43	32.89	67.89	44.55
	6	55.51	78.12	90.34	32.26	68.77	45.66
	7	52.25	53.85	76.32	28.38	62.03	37.17
	8	56.67	55.00	83.44	24.09	67.49	33.50
	9	52.97	60.49	78.38	32.24	63.22	42.06
	10	51.27	39.06	75.62	17.86	61.11	24.51
	11	50.21	43.08	76.13	19.31	60.51	26.67
Average		57.60	76.65	83.98	45.97	68.33	57.47

1183
1184
1185
1186
1187

1188 Table 8: Performance of Claude Opus 4.1 models on Natural Language Depth 12 test data. We
 1189 highlight the best (**bold**) and second-best (underline) values. All numeric values are rounded to two
 1190 decimal places.

1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207	1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207	1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207	1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207					
			precision		recall		F ₁	
			Label 0	Label 1	Label 0	Label 1	Label 0	Label 1
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203	Claude Opus 4.1 (Five shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
		1	100.0	97.33	97.40	100.0	98.68	98.65
		2	100.0	90.45	90.51	100.0	95.02	94.98
		3	100.0	89.63	88.89	100.0	94.12	94.53
		4	99.21	91.38	89.29	99.38	93.98	95.21
		5	97.73	86.90	85.43	97.99	91.17	92.11
		6	95.49	89.22	87.59	96.13	91.37	92.55
		7	93.53	86.34	85.53	93.92	89.35	89.97
		8	92.50	89.29	90.80	91.24	91.64	90.25
		9	93.38	87.20	85.81	94.08	89.44	90.51
		10	92.96	82.28	82.50	92.86	87.42	87.25
		11	89.10	88.89	89.68	88.28	89.39	88.58
		Average	<u>95.69</u>	90.57	88.51	<u>96.51</u>	91.96	93.45
								92.78
1208 1209 1210 1211 1212 	Claude Opus 4.1 (Zero shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
		1	100.0	97.33	97.40	100.0	98.68	98.65
		2	100.0	87.65	87.34	100.0	93.24	93.42
		3	100.0	91.30	90.85	100.0	95.21	95.45
		4	99.17	88.83	85.71	99.38	91.95	93.81
		5	96.30	87.27	86.09	96.64	90.91	91.72
		6	97.50	84.44	80.69	98.06	88.30	90.75
		7	93.66	87.97	87.50	93.92	90.48	90.85
		8	92.81	85.71	87.12	91.97	89.87	88.73
		9	97.10	91.36	90.54	97.37	93.71	94.27
		10	87.50	81.76	83.13	86.43	85.26	84.03
		11	92.72	89.93	90.32	92.41	91.50	91.16
		Average	95.91	<u>90.15</u>	<u>87.91</u>	96.72	<u>91.73</u>	<u>93.32</u>
								<u>92.61</u>

1220

1221

1222 (Table 13): Qwen 2.5 (zero and five shots) improves by 6% over its performance on the natural
 1223 language test dataset while Qwen3-17B shows performs slightly worse (0.61).

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 12: Depth-wise metrics of the Decoder only models for the NNL Dataset

1350
1351
1352
1353
13541355 Table 9: Performance of Qwen 2.5 models on Natural Language Depth 12 test data. We highlight
1356 the best (**bold**) and second-best (underline) values. All numeric values are rounded to two decimal
1357 places.

1358

Model	Depth	Metrics						
		precision		recall		F ₁	accuracy	
		Label 0	Label 1	Label 0	Label 1			
Qwen 2.5 (Five Shot)	0	00.00	100.0	00.00	98.67	00.00	99.33	98.67
	1	73.68	66.47	63.64	76.03	68.29	70.93	69.67
	2	46.23	43.81	31.01	59.86	37.12	50.60	44.67
	3	50.00	48.45	34.64	63.95	40.93	55.13	49.00
	4	31.37	45.45	22.86	56.25	26.45	50.28	40.67
	5	36.45	41.97	25.83	54.36	30.23	47.37	40.00
	6	35.25	42.70	29.66	49.03	32.21	45.65	39.67
	7	33.06	36.93	26.97	43.92	29.71	40.12	35.33
	8	34.38	30.81	26.99	38.69	30.24	34.30	32.33
	9	39.02	43.50	32.43	50.66	35.42	46.81	41.67
	10	36.64	33.73	30.00	40.71	32.99	36.89	35.00
	11	41.55	39.24	38.06	42.76	39.73	40.92	40.33
	Average	<u>41.72</u>	<u>50.48</u>	33.00	59.71	36.85	<u>54.71</u>	<u>47.25</u>
Qwen 2.5 (Zero Shot)	0	00.00	100.0	00.00	99.00	00.00	99.50	99.00
	1	71.53	65.64	63.64	73.29	67.35	69.26	68.33
	2	45.95	43.39	32.28	<u>57.75</u>	37.92	49.55	44.33
	3	50.49	48.73	33.99	65.31	40.62	55.81	49.33
	4	31.78	45.08	24.29	54.37	27.53	49.29	40.33
	5	37.17	41.71	27.81	52.35	31.82	46.43	40.00
	6	34.15	41.81	28.97	47.74	31.34	44.58	38.67
	7	34.71	38.55	27.63	46.62	30.77	42.20	37.00
	8	35.66	31.58	28.22	39.42	31.51	35.06	33.33
	9	37.80	42.20	32.43	48.03	34.91	44.92	40.33
	10	34.38	32.56	27.50	40.00	30.56	35.90	33.33
	11	41.96	39.49	38.71	42.76	40.27	41.06	40.67
	Average	<u>41.56</u>	<u>50.33</u>	<u>33.29</u>	<u>59.08</u>	<u>36.97</u>	54.36	47.06
Qwen3-17B (Zero Shot)	0	00.00	100.0	00.00	96.00	00.00	97.96	96.00
	1	82.70	99.13	<u>99.35</u>	78.08	90.27	87.36	89.00
	2	74.63	94.74	96.84	63.38	84.30	75.95	81.00
	3	62.87	93.65	97.39	40.14	76.41	56.19	69.33
	4	55.13	83.33	92.14	34.38	68.98	48.67	61.33
	5	55.28	72.22	90.07	26.17	68.51	38.42	58.33
	6	52.31	77.50	93.79	20.00	67.16	31.79	55.67
	7	53.78	65.31	88.82	21.62	67.00	32.49	55.67
	8	55.21	51.22	87.73	15.33	67.77	23.60	54.67
	9	50.96	61.54	89.86	15.79	65.04	25.13	52.33
	10	54.51	53.33	86.88	17.14	66.99	25.95	54.33
	11	50.40	41.67	81.94	13.79	62.41	20.73	49.00
	Average	57.70	84.52	91.30	41.49	70.71	55.66	64.72

1399
1400
1401
1402
1403

1404

1405

1406 Table 10: Performance of finetuned models on Non-Natural Language Depth 12 test data. We
1407 highlight the best (**bold**) and second-best (underline) values. All numeric values are rounded to two
1408 decimal places.

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Model	Depth	Metrics						
		precision		recall		F ₁		
		Label 0	Label 1	Label 0	Label 1	Label 0	Label 1	
BERT-base	0	00.00	100.0	00.00	90.33	00.00	94.92	90.33
	1	80.22	63.16	48.67	88.00	60.58	73.54	68.33
	2	77.98	65.97	56.67	84.00	65.64	73.90	70.33
	3	77.06	65.45	56.00	83.33	64.86	73.31	69.67
	4	69.23	56.76	36.00	84.00	47.37	67.74	60.00
	5	74.60	56.54	31.33	89.33	44.13	69.25	60.33
	6	61.82	52.65	22.67	86.00	33.17	65.32	54.33
	7	55.77	51.21	19.33	84.67	28.71	63.82	52.00
	8	51.11	50.20	15.33	85.33	23.59	63.21	50.33
	9	52.94	50.60	18.00	84.00	26.87	63.16	51.00
	10	59.26	52.03	21.33	85.33	31.37	64.65	53.33
	11	56.86	51.41	19.33	85.33	28.86	64.16	52.33
	Average	65.69	59.72	31.33	86.15	42.43	70.54	61.03
BART-base	0	00.00	100.0	00.00	100.0	00.00	100.0	100.0
	1	52.13	54.02	73.33	31.33	60.94	39.66	52.33
	2	50.45	50.63	74.00	26.67	60.00	34.93	50.33
	3	50.24	50.54	68.67	31.33	58.03	38.68	50.00
	4	50.00	50.00	68.00	31.33	57.63	38.52	49.67
	5	50.00	51.96	64.67	35.33	56.40	42.06	50.00
	6	52.22	53.33	62.67	42.67	56.97	47.41	52.67
	7	51.85	52.78	65.33	38.00	57.82	44.19	51.67
	8	51.08	51.75	63.33	39.33	56.55	44.70	51.33
	9	49.44	50.00	58.67	40.00	53.66	44.44	49.33
	10	52.15	53.51	64.67	40.67	57.74	46.21	52.67
	11	48.37	47.83	59.33	36.67	53.29	41.51	48.00
	Average	50.73	61.55	<u>65.70</u>	45.64	<u>57.25</u>	52.41	<u>54.83</u>
Flan-T5-Base	0	00.00	100.0	00.00	99.33	00.00	99.67	99.33
	1	85.14	88.32	84.00	80.67	84.56	84.32	82.33
	2	81.45	76.71	67.33	74.67	73.72	75.68	71.00
	3	74.02	74.80	62.67	61.33	67.87	67.40	62.00
	4	72.04	63.19	44.67	68.67	55.14	65.81	56.67
	5	56.92	53.94	24.67	59.33	34.42	56.51	42.00
	6	43.08	50.91	18.67	56.00	26.05	53.33	37.33
	7	50.00	52.43	17.33	64.67	25.74	57.91	41.00
	8	54.17	57.14	17.33	64.00	26.26	60.38	40.67
	9	57.14	52.54	16.00	62.00	25.00	56.88	39.00
	10	44.23	48.02	15.33	56.67	22.77	51.99	36.00
	11	53.06	50.62	17.33	54.67	26.13	52.56	36.00
	Average	66.74	<u>65.44</u>	35.03	<u>69.33</u>	45.95	<u>67.33</u>	53.61
Qwen-3-1.7B	0	00.00	100.0	00.00	76.33	00.00	86.58	76.33
	1	75.32	94.17	77.33	64.67	76.32	76.68	71.00
	2	58.56	83.02	86.67	29.33	69.89	43.35	58.00
	3	51.24	68.00	82.67	11.33	63.27	19.43	47.00
	4	50.19	58.82	88.00	06.67	63.92	11.98	47.33
	5	52.63	75.00	93.33	06.00	67.31	11.11	49.67
	6	51.66	63.64	93.33	04.67	66.51	08.70	49.00
	7	48.70	46.15	87.33	04.00	62.53	07.36	45.67
	8	49.82	42.86	91.33	02.00	64.47	03.82	46.67
	9	50.94	77.78	90.67	04.67	65.23	08.81	47.67
	10	49.82	60.00	94.00	02.00	65.13	03.87	48.00
	11	50.18	33.33	94.00	01.33	65.43	02.56	47.67
	Average	51.89	88.57	88.97	22.26	65.66	35.57	52.83

1458
1459
1460
1461
14621463 Table 11: Performance of GPT models on Non-Natural Language Depth 12 test data. We highlight
1464 the best (**bold**) and second-best (underline) values. All numeric values are rounded to two decimal
1465 places.

1466

Model	Depth	Metrics					
		precision		recall		F ₁	
		Label 0	Label 1	Label 0	Label 1	Label 0	Label 1
GPT 5 (Zero Shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	100.0	100.0	100.0	100.0	100.0	100.0
	2	100.0	100.0	100.0	100.0	100.0	100.0
	3	100.0	100.0	100.0	100.0	100.0	100.0
	4	100.0	100.0	100.0	100.0	100.0	100.0
	5	100.0	99.01	99.00	100.0	99.50	99.50
	6	100.0	100.0	100.0	100.0	100.0	100.0
	7	100.0	100.0	100.0	100.0	100.0	100.0
	8	100.0	100.0	100.0	100.0	100.0	100.0
	9	100.0	100.0	100.0	100.0	100.0	100.0
	10	100.0	98.04	98.00	100.0	98.99	99.01
	11	100.0	100.0	100.0	100.0	100.0	100.0
Average		100.0	99.77	99.73	100.0	99.86	99.88
GPT 4.1 (Five Shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	94.74	90.48	90.00	95.00	92.31	92.68
	2	69.90	71.13	72.00	69.00	70.94	70.05
	3	64.81	67.39	70.00	62.00	67.31	64.58
	4	62.73	65.56	69.00	59.00	65.71	62.11
	5	61.86	61.17	60.00	63.00	60.91	62.07
	6	54.08	53.92	53.00	55.00	53.54	54.46
	7	57.32	55.08	47.00	65.00	51.65	59.63
	8	54.43	52.89	43.00	64.00	48.04	57.92
	9	58.02	55.46	47.00	66.00	51.93	60.27
	10	52.46	51.08	32.00	71.00	39.75	59.41
	11	57.69	54.92	45.00	67.00	50.56	60.36
Average		63.31	66.48	<u>57.09</u>	72.00	60.04	69.13
GPT 4.1 (Zero Shot)	0	00.00	100.0	00.00	100.0	00.00	100.0
	1	94.79	91.35	91.00	95.00	92.86	93.14
	2	70.09	73.12	75.00	68.00	72.46	70.47
	3	64.08	64.95	66.00	63.00	65.02	63.96
	4	64.22	67.03	70.00	61.00	66.99	63.87
	5	63.92	63.11	62.00	65.00	62.94	64.04
	6	58.42	58.59	59.00	58.00	58.71	58.29
	7	56.79	54.62	46.00	65.00	50.83	59.36
	8	52.56	51.64	41.00	63.00	46.07	56.76
	9	56.94	53.91	41.00	69.00	47.67	60.53
	10	53.23	51.45	33.00	71.00	40.74	59.66
	11	56.58	54.03	43.00	67.00	48.86	59.82
Average		<u>63.85</u>	<u>66.64</u>	57.00	<u>72.69</u>	<u>60.23</u>	<u>69.54</u>

1507
1508
1509
1510
1511

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522

1523 Table 12: Performance of Claude Opus 4.1 model on Non-Natural Language Depth 12 test data. We
 1524 highlight the best (**bold**) and second-best (underline) values. All numeric values are rounded to two
 1525 decimal places.

1526

Model	Depth	Metrics						accuracy	
		precision		recall		F ₁			
		Label 0	Label 1	Label 0	Label 1	Label 0	Label 1		
Claude Opus 4.1 (Five shot)	0	00.00	100.0	00.00	47.00	00.00	63.95	47.00	
	1	67.57	100.0	100.0	52.00	80.65	68.42	76.00	
	2	65.03	87.72	93.00	50.00	76.54	63.69	71.50	
	3	67.15	87.30	92.00	55.00	77.64	67.48	73.50	
	4	63.83	83.05	90.00	49.00	74.69	61.64	69.50	
	5	65.47	85.25	91.00	52.00	76.15	64.60	71.50	
	6	61.27	77.59	87.00	45.00	71.90	56.96	66.00	
	7	63.57	81.67	89.00	49.00	74.17	61.25	69.00	
	8	59.46	76.92	88.00	40.00	70.97	52.63	64.00	
	9	56.85	68.52	83.00	37.00	67.48	48.05	60.00	
	10	59.44	73.68	85.00	42.00	69.96	53.50	63.50	
	11	60.00	73.33	84.00	44.00	70.00	55.00	64.00	
	Average	58.70	<u>83.77</u>	<u>89.27</u>	46.85	70.83	60.09	66.29	
Claude Opus 4.1 (Zero shot)	0	00.00	100.0	00.00	44.50	00.00	61.59	44.50	
	1	65.31	92.45	96.00	49.00	77.73	64.05	72.50	
	2	62.07	81.82	90.00	45.00	73.47	58.06	67.50	
	3	66.67	87.10	92.00	54.00	77.31	66.67	73.00	
	4	63.33	90.00	95.00	45.00	76.00	60.00	70.00	
	5	64.58	87.50	93.00	49.00	76.23	62.82	71.00	
	6	64.08	84.48	91.00	49.00	75.21	62.03	70.00	
	7	60.84	77.19	87.00	44.00	71.60	56.05	65.50	
	8	60.67	82.00	91.00	41.00	72.80	54.67	66.00	
	9	57.62	73.47	87.00	36.00	69.32	48.32	61.50	
	10	59.33	78.00	89.00	39.00	71.20	52.00	64.00	
	11	56.74	66.10	80.00	39.00	66.39	49.06	59.50	
	Average	<u>57.89</u>	84.16	90.09	<u>44.54</u>	<u>70.48</u>	<u>58.25</u>	<u>65.42</u>	

1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566
1567
1568
1569
1570

1571 Table 13: Performance of Qwen 2.5 models on Non-Natural Language Depth 12 test data. We
1572 highlight the best (**bold**) and second-best (underline) values. All numeric values are rounded to two
1573 decimal places.

1574

Model	Depth	Metrics						
		precision		recall		F ₁	accuracy	
		Label 0	Label 1	Label 0	Label 1			
Qwen 2.5 (Five Shot)	0	00.00	100.0	00.00	99.50	00.00	99.75	99.50
	1	72.41	67.26	63.00	76.00	67.38	71.36	69.50
	2	57.75	54.26	41.00	70.00	47.95	61.14	55.50
	3	58.14	56.14	50.00	64.00	53.76	59.81	57.00
	4	51.25	50.83	41.00	61.00	45.56	55.45	51.00
	5	45.00	46.67	36.00	56.00	40.00	50.91	46.00
	6	43.04	45.45	34.00	55.00	37.99	49.77	44.50
	7	48.24	48.70	41.00	56.00	44.32	52.09	48.50
	8	42.50	45.00	34.00	54.00	37.78	49.09	44.00
	9	48.31	48.65	43.00	54.00	45.50	51.18	48.50
	10	36.84	38.10	35.00	40.00	35.90	39.02	37.50
	11	46.88	47.12	45.00	49.00	45.92	48.04	47.00
	Average	49.84	<u>56.70</u>	42.09	64.15	45.64	60.19	<u>54.04</u>
Qwen 2.5 (Zero Shot)	0	00.00	100.0	00.00	99.50	00.00	99.75	99.50
	1	72.73	67.86	64.00	76.00	68.09	71.70	70.00
	2	53.33	52.00	40.00	65.00	45.71	57.78	52.50
	3	55.17	53.98	48.00	61.00	51.34	57.28	54.50
	4	48.72	49.18	38.00	60.00	42.70	54.05	49.00
	5	45.35	46.49	39.00	53.00	41.94	49.53	46.00
	6	46.75	47.97	36.00	59.00	40.68	52.91	47.50
	7	45.65	46.30	42.00	50.00	43.75	48.08	46.00
	8	45.24	46.55	38.00	54.00	41.30	50.00	46.00
	9	45.56	46.36	41.00	51.00	43.16	48.57	46.00
	10	39.13	40.74	36.00	44.00	37.50	42.31	40.00
	11	41.30	42.59	38.00	46.00	39.58	44.23	42.00
	Average	48.83	<u>56.10</u>	41.82	<u>62.92</u>	45.05	<u>59.32</u>	53.25
Qwen3-17B (Zero Shot)	0	00.00	100.0	00.00	94.50	00.00	97.17	94.50
	1	77.60	96.00	97.00	72.00	86.22	82.29	84.50
	2	61.94	91.11	96.00	41.00	75.29	56.55	68.50
	3	55.76	77.14	92.00	27.00	69.43	40.00	59.50
	4	53.89	69.70	90.00	23.00	67.42	34.59	56.50
	5	55.63	72.50	89.00	29.00	68.46	41.43	59.00
	6	50.29	51.72	86.00	15.00	63.47	23.26	50.50
	7	52.10	60.61	87.00	20.00	65.17	30.08	53.50
	8	54.07	75.00	93.00	21.00	68.38	32.81	57.00
	9	49.12	44.83	84.00	13.00	61.99	20.16	48.50
	10	50.00	50.00	83.00	17.00	62.41	25.37	50.00
	11	47.34	35.48	80.00	11.00	59.48	16.79	45.50
	Average	54.31	79.53	88.82	36.77	67.40	50.29	60.62

1615
1616
1617
1618
1619