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ABSTRACT

We introduce EURUS, a suite of large language models (LLMs) optimized for
reasoning. Finetuned from Mistral-7B, Llama-3-8B, and Mixtral-8x22B, EURUS
models achieve state-of-the-art results among open-source models on a diverse set
of benchmarks covering mathematics, code generation, and logical reasoning prob-
lems. Notably, EURUX-8X22B outperforms GPT-3.5 Turbo in reasoning through
a comprehensive benchmarking across 12 test sets covering five tasks. The strong
performance of EURUS can be primarily attributed to ULTRAINTERACT, our
newly-curated large-scale, high-quality training data dataset specifically designed
for complex reasoning tasks. ULTRAINTERACT can be used in both supervised
fine-tuning, preference learning, and reward modeling. It pairs each instruction with
a preference tree consisting of (1) reasoning chains with diverse planning strategies
in a unified format, (2) multi-turn interaction trajectories with the environment and
the critique, and (3) pairwise positive and negative responses to facilitate prefer-
ence learning. ULTRAINTERACT allows us to conduct an in-depth exploration of
preference learning for reasoning tasks. Our investigation reveals that some well-
established preference learning algorithms may be less suitable for reasoning tasks
compared to their effectiveness in general conversations. The hypothesis is that in
reasoning tasks, the space of correct answers is much smaller than that of incorrect
ones, so it is necessary to explicitly increase the reward of chosen data. Therefore, in
addition to increasing the reward margin as many preference learning algorithms do,
the absolute values of positive responses’ rewards should be positive and may serve
as a proxy for performance. Inspired by this, we derive a novel reward modeling
objective and empirically that it leads to a stable reward modeling curve and better
performance. Together with ULTRAINTERACT, we obtain a strong reward model.
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Figure 1: Evaluation results on LeetCode and TheoremQA, two challenging OOD coding and math
benchmarks with only test sets. Our EURUS-7B is comparable with baselines that are 10x larger and
EURUX-8X22B is the only one on par with GPT-3.5 Turbo.

1 INTRODUCTION

Current alignment techniques have significantly advanced the development of open-source large lan-
guage models (LLMs) that effectively meet user expectations and align with human values (Touvron
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et al., 2023; Tunstall et al., 2023). On complex reasoning, success has been achieved by specializing
models for specific capabilities, such as coding (Wei et al., 2023; Guo et al., 2024a; Zheng et al., 2024)
and solving math problems (Fu et al., 2023; Yue et al., 2023; Luo et al., 2023a; Toshniwal et al., 2024).
However, these models still fall short, by large margins, of the most advanced proprietary models in
their all-around capabilities to tackle a diverse range of challenging problems. We conjecture that this
performance gap can be primarily attributed to (1) the lack of high-quality alignment data and (2)
the underexploration of preference learning techniques for improving models’ complex reasoning
capabilities. In this paper, we take strides towards bridging this gap by addressing both factors and
developing EURUS.

EURUS consists of a suite of LLMs and reward model finetuned from Mistral-7B (Jiang et al.,
2023a), Llama-3 (Meta, 2024), and Mixtral-8x22B (Jiang et al., 2024). Across a diverse set of
complex reasoning benchmarks that are mostly out-of-distribution (OOD), EURUS achieves state-of-
the-art overall performance among all open-source models. In particular, EURUS excels in solving
challenging problems that often require sophisticated planning, reasoning, tool integration, and the
ability to interact with and learn from the environment and users. As shown in Figure 1, on university-
level STEM questions TheoremQA (Chen et al., 2023) and competition-level coding problems
LeetCode Contest (Guo et al., 2024a), EURUS significantly outperforms all open-source models,
achieving comparable performance to GPT-3.5 Turbo. Besides, our reward model, EURUS-RM-7B,
outperforms baselines with a 5x larger size on various reward model benchmarks and demonstrates
superiority on best-of-N and MCTS-guided decoding tasks.

EURUS models are trained on ULTRAINTERACT, our newly-curated, large-scale, and high-quality
alignment data specifically designed to improve LLMs’ reasoning capabilities. ULTRAINTERACT
consists of a diverse set of instructions spanning math, coding, and logical reasoning problems from 12
established datasets. For each instruction, ULTRAINTERACT collects a preference tree that includes:
(1) Diverse planning strategies in a unified pattern, such as sequential processing (Wei et al., 2022)
and tool creation (Qian et al., 2023), followed by executing step-by-step actions formatted in either
text or code, to provide divserse reasoning trajectories. (2) Multi-turn interaction trajectories with
the environment and the critique, to improve models’ capabilities to learn from feedback and correct
previous errors (Wang et al., 2023b). (3) Paired correct and incorrect actions organized in tree
structures, to facilitate preference learning. In total, ULTRAINTERACT contains 86K instructions
and 220K action pairs, where each pair consists of an instruction, a correct response, and an incorrect
one. Conceptually, ULTRAINTERACT’s data resemble imbalanced binary trees as shown in Figure 2.

ULTRAINTERACT can be used in both supervised fine-tuning and preference learning. Our experi-
ments show that, using ULTRAINTERACT along with established datasets in instruction fine-tuning
already achieves strong performance. ULTRAINTERACT further facilitates preference learning for
reasoning tasks, improving the performance even further with KTO (Ethayarajh et al., 2024) and NCA
(Chen et al., 2024a). Surprisingly, applied to an instruction finetuned EURUS model, DPO (Rafailov
et al., 2023) sometimes hurts the performance.

Through careful analysis, we provide evidence that the performance in reasoning correlates with
the value of rewards of chosen data—a higher final reward often indicates a better reasoning
capability. Besides, our investigation suggests that DPO may be less suitable for reasoning tasks
than KTO and NCA. Inspired by this fresh finding, we devise a new objective for reward modeling
to augment the Bradley-Terry objective (Bradley & Terry, 1952), explicitly encouraging training
to increase the absolute rewards of chosen solution and decrease those of rejected data. Furthermore,
ULTRAINTERACT leads to our reward model EURUS-RM-7B, which achieves a better correlation
with human annotators than all existing models on AutoJ (Li et al., 2023a) and MT-Bench (Zheng
et al., 2023), including GPT-4 (OpenAI, 2023). EURUS-RM-7B demonstrates especially strong
preference modeling performance on reasoning tasks.

In short, we compiled this work by first synthesizing both SFT and preference datasets to improve
the reasoning ability of open-source models (Section §2). We examined the effectiveness of our
datasets by training both policy and reward models (Section §3). We evaluated the performance of
policy models in Section §4, during which we observed a correlation between reward patterns and
benchmark performances. Next, we then evaluated our reward models and validated that our insights
on the reward-performance correlation can be converted into gains in model training (Section §5).
Finally, we ablate some factors in our dataset construction in Section §6.
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2 ULTRAINTERACT: TREE-STRUCTURED ALIGNMENT DATA FOR REASONING

Solving complex problems often requires the model’s capability in planning and reasoning,
integrating with tools, and interacting with and learning from both the environment and the
users. This is reflected in ULTRAINTERACT’s design choices: (1) Its instructions are di-
verse, challenging, and of a large scale (§2.1); (2) It provides multi-turn trajectories that solve
the input instruction through multiple turns of interaction with and learning from the envi-
ronment and critique. At each turn, it breaks down the problem into smaller ones (§2.2).
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Figure 2: Left: CodeActInstruct (Wang et al., 2024) and Code-
Feedback (Zheng et al., 2024); Middle: HH-RLHF (Bai et al.,
2022); Right: ULTRAINTERACT. Each instruction in ULTRAIN-
TERACT is constructed as a preference tree.

(3) ULTRAINTERACT includes
pairwise data to facilitate prefer-
ence learning (§2.3).

Conceptually, ULTRAINTER-
ACT collects a preference tree
for each instruction, with the
instruction being the root and
each action a node (Figure 2).
A trajectory is a root-to-leaf
path consisting of a sequence
of actions. In each preference
tree, all nodes of correct actions
and all trajectories ending with
correct actions can be used for
SFT. Paired correct and incorrect
nodes or trajectories can be used
for preference learning.

2.1 INSTRUCTION SELECTION EMPHASIZING COMPLEXITY, QUALITY, AND DIVERSITY

We target three representative reasoning tasks: math problem-solving, code generation, and logical
reasoning. The complexity, quality, and diversity of the alignment data are crucial to the model’s
performance (Liu et al., 2023). Following Wang et al. (2023b), we select challenging problems that
GPT-3.5-Turbo fails to solve. We intentionally restrict the selection of the datasets to those with
ground-truth solutions, aiming to ensure high-quality oversight signals rather than relying on LLM-
as-a-judge annotation (Weyssow et al., 2024). Besides, the gold solutions also serve as references for
the critique model to generate feedback. To promote ULTRAINTERACT’s diversity, we pick datasets
of different categories. For each dataset, we include distinct reasoning patterns based on question
categories or formulations necessary to solve the problems. Table 8 summarizes the datasets selected
by ULTRAINTERACT. Except for MATH, none of the training datasets is used in our evaluation.

2.2 DECOMPOSITION AND INTERACTION AT EACH TURN

Figure 3 provides an illustrative example. In what follows, we connect the actor model with a Python
interpreter as the “environment”. We use GPT-3.5 Turbo as the actor model.

Following Wang et al. (2024), the actor model first decomposes the input problem into several
sub-problems and then solves each by generating Python code pieces as actions and using the
environment to execute them. To promote solution diversity, the actor model randomly samples
one reasoning schema in the form of either CoT (Wei et al., 2022) or modularization programming
(Qian et al., 2023; Yuan et al., 2023). The actor then generates actions in text or code to solve each
sub-problem, with each step being marked by explicit notations.

Multi-turn interactions with the environment are often necessary to solve challenging problems (Wang
et al., 2023b). To improve such capabilities of the models, ULTRAINTERACT collects trajectories in
which the actor model interacts with the environment and a critique model (a proxy for user) and
refines its action based on their feedback.

The environment receives an action from the actor model along with the interaction history, and
then the code interpreter returns two kinds of “Observation”: (1) Python execution results, either
program outputs or error traceback messages; (2) binary feedback, indicating whether the solution is

3
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In a classroom, x children have 7 books each. […] what is the value of unknown variable x ?

<thought>

Step 1: First, let's calculate the total […].
Step 2: Then, we need to add the […].
Step 3: The sum of the books should […].
</thought>

<execute>

# Step 4: First, let's calculate […].
total_books_child = x * 7
# Step 5: Next, we need to add […].
total_books = total_books_child + 8
# Step 6: We can now solve for […].
x = (78 - 8) / 7
</execute>

<solution>

x
</solution>

Generation Observation

[…] 

NameError: name 'x' is 

not defined.

Your answer is wrong.

Expert feedback:

Your thought process is 
accurate and your error lies 
in your code. You need to 
define `x` first […]

Critique

<thought>

Step 1: First, create an equation […].
Step 2: Each child has 7 books, so […].
Step 3: The teacher brings 8 […].

  Step 4: Now we can solve for x by […].
</thought>

<execute>

# Step 5: Setting up equation:
equation = "7x + 8 = 78"
# Step 6: Solving for x:
x = (78 - 8) / 7
</execute>

<solution>

x
</solution>

[…]

Out: 10.0

Your answer is 

correct.

Expert feedback:

Good job! You have fixed 
the error in last turn. 
Now your answer is 
correct. […]

1 Generation Observation

Critique

2

3

4 5

6

Figure 3: An illustrative example of an ULTRAINTERACT trajectory over two turns. In each turn, the
actor model generates step-by-step reasoning chains, and the environment and the critique model
provide observations and textual critique respectively.

correct or not. Then, the observations along with the history will be passed to a critique model, which
locates the errors and provides suggestions for improvements. To avoid potential bias introduced
by self-correction (Wang et al., 2023b; Xu et al., 2024), we adopt a stronger model, GPT-41., as
the critique and ensure critique quality by providing GPT-4 with ground truth answers as references.

This procedure resembles Wang et al. (2024). However, we adopt more diverse reasoning patterns to
teach LLMs to learn rationales rather than simply memorizing answers (Mitra et al., 2023), and learn
to create and use tools (Qian et al., 2023; Yuan et al., 2023; Qin et al., 2023). Besides, we believe that
it is important for LLMs to learn from the feedback provided by the critique rather than solely from
observations of the environment.

2.3 PREFERENCE TREES FACILITATES PREFERENCE LEARNING ACROSS MULTIPLE TURNS

Unlike open-ended conversations, where human preference is ambiguous and challenging to specify,
many reasoning tasks have clear and objective preferences for correct actions. The preference
annotation is therefore an evaluation of the correctness of the solutions conditioning ground truth
ones, which come with the datasets in ULTRAINTERACT. This eliminates the need for human or
LLM-based preference annotation and ensures high data quality. To facilitate preference learning,
ULTRAINTERACT pairs correct and incorrect actions in each turn.

Sampling Paired Correct and Incorrect Actions at Each Turn. For each instruction in
ULTRAINTERACT, we sample, from the actor model, a pair of correct and incorrect actions following
§2.2. We follow Cui et al. (2023) to sample the pair from different actor models to ensure response
diversity. To prevent models from exploiting shortcuts based on surface features, we exclude
instances that fail to pass the Python syntax check.

Certain challenging problems in ULTRAINTERACT pose difficulties in obtaining correct actions, even
using strong actors such as GPT-4, with nearly zero pass@100 accuracies. To improve the pass rates
of the actor models while keeping the expense under control, we sequentially take the following
steps. (1) Directly sampling 20 actions and randomly keeping a correct one, if any. (2) If no correct
action is obtained, we repeat the above process up to three times, progressively switching from
more cost-effective models to the strong yet expensive GPT-4 Turbo. (3) For the remaining difficult
problems where no correct action is acquired after the previous two steps, we provide the actor with
ground-truth rationales and answers, and then apply various techniques to elicit correct actions. The
specific information provided and the techniques applied vary depending on the tasks (Appendix A.2).

Tree-structured Action Pairs Across Multiple Turns. After each turn, the correct action concludes
its trajectory. We expand the incorrect action into the next turn, and have the actor interact with
the environment and the critique to refine its solution (§2.2). We then repeat the procedures
introduced earlier in this section to collect an additional action pair. By expanding the incorrect

1The majority of data collection and experiments are prior to the release of GPT-4o.
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action, ULTRAINTERACT can provide data to help models learn from feedback, and collect multiple
action pairs for preference learning across multiple turns.

Conceptually, for every instruction, ULTRAINTERACT constructs a binary preference tree with each
action being a node (Figure 2). We cap the tree at a maximum of five turns.

Additional Instruction-action Pairs for Challenging Problems. We believe the challenging
instructions that make it to step (3) above can provide valuable training signals. Therefore, for a subset
of these problems with multiple ground truth solutions, we further sample additional correct actions to
cover all ground truths. Accordingly, we further sample incorrect actions to pair with these additional
correct actions, so that they can be used in both supervised fine-tuning and preference learning.

With preference trees, ULTRAINTERACT enables comparisons at every turn, in contrast to comparing
only at the last turn (Bai et al., 2022), and thus can improve the models’ interaction ability. Closing
this section, Table 1 summarizes statistics of ULTRAINTERACT. Check more details in Appendix
A.4. We show examples of the data in Appendix G.

Table 1: Some statistics of ULTRAINTERACT.
Task Type # Instructions # Turns per Traj. # Tokens

per Traj.
Avg. # Traj

per Ins.
Total

# Pairs
# Correct
Answersw/ Interaction? w/ Tool? T1 T2 T3 T4 T5

Math

! ! 22,928 10,440 4,122 1,898 904 5,564 1,750.0 1.0 42,780 68,033
% ! 2,757 16,154 - - - - 439.1 5.9 13,217 16,154
! % 22,639 10,708 3,521 1,459 723 6,228 1,521.9 1.0 44,750 62,182
% % 2,083 16,348 - - - - 538.1 7.8 12,624 16,348

Coding ! - 20,463 13,265 2,584 987 379 3,248 1,728.5 1.0 18,106 22,215
% - 8,495 92,618 - - - - 1,070.4 5.5 78,634 92,618

Logic ! ! 2,086 1,685 298 72 8 23 1,299.8 1.0 1,750 2,198
! % 4,467 2,453 1,674 340 0 0 1,266.7 1.0 7,958 7,231

Total - - 85,918 163,671 12,199 4,756 2,014 15,063 1,201.8 2.3 219,819 286,979

3 EURUS: STATE-OF-THE-ART OPEN LLMS IN REASONING

ULTRAINTERACT helps us develop EURUS, a suite of LLMs and a reward model (RM).

Supervised Fine-Tuning. EURUS-7B-SFT and LLAMA-3-EURUS-8B-SFT are fine-tuned from
Mistral-7B (Jiang et al., 2023a) and Llama-3-8B (Meta, 2024) respectively, and EURUX-8X22B-SFT
from Mixtral-8x22B (Jiang et al., 2024). First, we perform SFT using all correct actions (287K)
in ULTRAINTERACT. We find it yields better performance to discard interaction history and train
only on correct leaf nodes in each tree. To improve general instruction-following ability, we include
some open-source SFT datasets in our data mixture. Please find mixture details in Appendix B.

Preference Learning. Based on EURUS-SFT models, we explore three preference learning algo-
rithms, DPO (Rafailov et al., 2023), KTO (Ethayarajh et al., 2024), and NCA (Chen et al., 2024a).
Differently from SFT, here we include all multi-turn trajectory pairs in our ULTRAINTERACT (220K)
and include all UltraFeedback (Cui et al., 2023) pairs (340K).

Reward Modeling. Similarly to the preference learning, we use all 220K multi-turn trajectory
pairs from ULTRAINTERACT; it is further augmented with the 240K single-turn action pairs
from ULTRAINTERACT. More details are in the Appendix B. We include all 340K pairs from
UltraFeedback and one pair for each instruction from UltraSafety (Guo et al., 2024b), totaling 3K.
EURUS-RM-7B is initialized from EURUS-7B-SFT with a new linear layer.

Our findings in §4.2 indicate that the absolute values of rewards make a big difference in the
models’ reasoning performance, with decreasing rewards of chosen actions possibly resulting in a
perfroamce degradation. We therefore augment the established Bradley-Terry (BT) objective LBT
with an additional term LDR to directly increase the reward of the chosen actions for instances from
ULTRAINTERACT, and decrease those of the rejected ones:

LULTRAINTERACT = − log
(
σ
(
rθ(x, yc)− rθ(x, yr)

))
︸ ︷︷ ︸

LBT: optimize relative rewards

− log
(
σ
(
rθ(x, yc)

))
− log

(
σ
(
−rθ(x, yr)

))
︸ ︷︷ ︸

LDR: increase rθ(x, yc) and decrease rθ(x, yr)

We train ULTRAINTERACT examples with LULTRAINTERACT, while for instances from other datasets, we
train with LBT only. θ denotes the reward model’s parameters, rθ (x, yc) and rθ (x, yr) the rewards
on the chosen and rejected actions respectively. We ablate the importance of LBT and LDR in §6.2.
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Table 2: Open-source LLM baselines that we compare to.

Type Models

General Purpose
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a), Zephyr-7B-β (Tunstall et al., 2023), OpenChat-3.5-1210 (Wang et al.,
2023a), Starling-LM-7B-α (Zhu et al., 2023), Mixtral-8x7B-Instruct (Jiang et al., 2023a), DeepSeek-LLM-67B-
Chat (DeepSeek-AI, 2024), QWen1.5-72B-Chat (Bai et al., 2023)

Coding Magicoder-S-DS-6.7B (Wei et al., 2023), OpenCodeInterpreter (OpenCI for short, DS-6.7B/CL-70B) (Zheng et al.,
2024), DeepSeek-Coder-33B-Instruct (Guo et al., 2024a), and CodeLLaMA-70B-Instruct(Roziere et al., 2023).

Math MAmmoTH-7B-Mistral (Yue et al., 2023), WizardMath-7B-v1.1 (Luo et al., 2023a), OpenMath (Mistral-
7B/CodeLLaMA-70B) (Toshniwal et al., 2024).

4 EVALUATION OF EURUS MODELS

Evaluation Setup. We consider both single-turn and multi-turn reasoning. For single-turn evaluation,
we consider HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), and LeetCode (Guo et al.,
2024a) for coding, GSM-Plus (Li et al., 2024), MATH, TheoremQA (Chen et al., 2023), SVAMP
(Patel et al., 2021), and ASDiv (Miao et al., 2020) for math, and BBH-Hard (Suzgun et al., 2022)
for reasoning. We evaluate with pass@1 accuracy. We also use IFEval (Zhou et al., 2023) to assess
the instruction-following ability and report the prompt-level loose score. For multi-turn evaluation,
we adopt MINT (Wang et al., 2023b) and only consider the coding and math problems. We report
the success rate at Turn 5. Please find further details on evaluation setups and evaluations beyond
reasoning in Appendix C. As shown in Table 2, we compare our EURUS with general-purpose
models, and those specialized in coding and math of various sizes. We also summarize the results
of GPT-3.5 Turbo and GPT-4 reported in previous works.

Table 3: Overall performance. All test sets except MATH are out-of-distribution to our models and
most baselines. MAmmoTH, OpenChat, and Starling-LM have been trained on TheoremQA test sets.
We strikethrough the contaminated numbers.

Coding Math Reasoning Ins-Following Multi-Turn
Model HumanE. MBPP LeetC. GSM-Plus MATH Theo.QA SVAMP ASDiv BBH IFEval Code Math Avg.

∼7B

Mistral-7B-Instruct-v0.2 39.0 30.8 6.1 15.7 9.5 8.5 42.9 49.5 62.4 44.4 7.4 26.2 28.5
Zephyr-7B-β 29.3 35.8 2.2 23.3 5.0 7.8 19.1 28.0 61.8 39.7 5.2 16.9 22.8
OpenChat-3.5-1210 64.0 61.7 11.7 46.7 28.1 19.1 75.4 77.0 67.0 50.3 21.3 32.4 46.2
Starling-LM-7B-α 46.3 51.1 8.9 23.7 21.5 12.0 26.3 39.8 67.1 26.1 18.4 28.9 30.8
Magicoder-S-DS-6.7B 75.6 70.4 23.9 16.4 19.9 13.1 61.6 62.8 57.0 21.1 27.9 8.0 38.1
OpenCI-DS-6.7B 76.8 66.2 16.1 41.5 31.6 16.1 74.5 79.8 53.9 22.6 5.9 1.3 40.5
MAmmoTH-7B-Mistral 24.4 42.4 7.2 40.1 36.0 26.3 60.7 72.3 57.7 34.9 3.7 6.7 34.4
WizardMath-7B-v1.1 50.0 53.9 6.7 54.6 30.0 16.5 57.8 73.5 64.4 22.6 16.2 8.9 37.9
OpenMath-Mistral-7B 33.5 46.6 11.7 59.4 39.1 13.1 83.4 79.8 58.6 15.0 2.9 5.3 37.4
EURUS-7B-SFT 55.5 59.1 20.0 52.1 32.6 20.0 82.2 84.1 64.6 44.0 15.4 28.4 46.5

+ DPO 50.6 52.1 8.3 51.0 28.3 20.9 78.7 83.8 65.0 42.5 20.6 32.4 44.5
+ KTO 56.1 58.6 18.9 55.0 33.2 20.6 84.4 85.0 67.6 43.1 19.1 43.6 48.8
+ NCA 55.5 60.2 14.4 54.9 34.2 20.9 84.6 85.4 64.3 42.7 21.3 38.7 48.1

LLAMA-3-EURUS-8B-SFT 51.2 57.9 17.2 50.7 32.0 21.3 82.2 83.7 72.4 47.1 18.4 24.5 46.6
+ DPO 43.9 50.1 11.7 45.3 26.8 21.4 54.1 67.5 71.3 56.7 21.3 39.2 42.4
+ KTO 51.8 58.1 15.6 54.8 34.2 24.9 80.1 86.7 71.7 50.6 26.5 37.4 49.4
+ NCA 50.6 60.4 15.6 55.2 34.8 25.4 79.9 87.5 71.7 56.2 21.3 36.3 49.6

∼40B

Mixtral-8x7B-Instruct 50.6 50.1 5.6 49.6 25.9 20.4 66.4 68.8 73.5 48.8 12.5 37.3 42.5
DeepSeek-Coder-33B-Ins 82.3 73.9 27.8 29.5 20.2 21.9 75.2 85.0 61.5 26.1 35.3 21.8 46.7

∼70B

CodeLLaMA-70B-Instruct 56.7 58.6 14.4 34.9 12.0 8.4 63.5 70.1 74.5 24.0 3.7 14.2 36.3
DeepSeek-LM-67B-Chat 70.7 65.7 20.0 65.0 41.0 17.9 74.0 84.0 78.9 52.7 30.9 41.8 53.5
QWen1.5-72B-Chat 71.3 56.9 15.6 65.4 43.4 18.5 79.5 79.1 78.0 53.4 27.2 38.2 52.2
OpenCI-CL-70B 77.4 71.7 20.0 46.1 29.2 18.8 76.1 79.4 66.7 26.8 30.9 12.0 46.3
OpenMath-CL-70B 39.0 52.6 15.0 62.2 45.9 15.9 86.6 82.8 59.9 15.7 14.0 0.4 40.8
WizardLM-2-8x22B 72.0 64.2 24.4 57.0 50.9 32.0 81.2 82.2 85.3 68.9 13.2 43.2 56.2
Mixtral-8x22B-Instruct-v0.1 76.2 68.7 23.3 51.2 49.6 33.1 88.3 92.4 86.0 67.1 39.0 59.7 61.2
EURUX-8X22B-KTO 71.3 68.9 29.4 68.3 48.1 35.3 91.5 90.6 83.6 67.1 38.2 57.5 62.5
EURUX-8X22B-NCA 75.0 69.7 35.0 68.1 49.0 35.5 91.6 92.1 83.5 67.1 33.1 63.0 63.6

Proprietary Models

GPT-3.5 Turbo 76.8 82.5 23.3 61.2 37.8 35.6 83.0 90.6 70.1 56.6 29.4 36.9 57.0
GPT-4 85.4 83.5 41.8 85.6 69.7 52.4 94.8 92.6 86.7 79.7 59.6 65.8 74.8

4.1 RESULTS

According to Table 3, all EURUS variants achieve the best overall performance among open-
source models of similar sizes. EURUS even outperforms specialized models in corresponding
domains in many cases. Notably, EURUS-7B and LLAMA-3-EURUS-8B outperform baselines that
are 5× larger, and EURUX-8X22B achieves better performance than GPT-3.5 Turbo. EURUS’s
instruction-following performance is among the best general-purpose models, substantially better
than specialized ones.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Preference learning with ULTRAINTERACT can further improve the performance, especially in
math and the multi-turn ability. KTO and NCA consistently improve the models’ performance in
all five math benchmarks and mult-turn evaluations, while their effects vary in others. Since SFT
models only use the single-turn data from ULTRAINTERACT while preference learning uses the
multi-turn ones, the improvements in interaction ability should also be attributed to ULTRAINTERACT
rather than the algorithms alone (See Appendix H for data mixture ablation results). Surprisingly, we
observe that DPO is not as effective as its variants. We analyze this phenomenon in §4.2.
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Figure 4: Reward patterns of EURUS-7B and LLAMA-3-EURUS-8B preference learning with DPO,
KTO, and NCA. For all algorithms, the rewards of rejected data keep decreasing and the margins
between chosen and rejected data keep increasing. However, the rewards of chosen data decrease
below zero in DPO while keeping increasing and staying positive in KTO and NCA. The absolute
values of the reward in the last step (in red) of the three algorithms positively correlate with their
performance in Table 3.

4.2 EXPLICIT REWARD AS A PROXY? HYPOTHESIS FOR PREFERENCE LEARNING IN
REASONING

We investigate the reason why DPO behaves differently than KTO and NCA. We start by empirically
inspecting the rewards throughout the preference learning process, as shown in Figure 4. Rewards for
chosen and rejected data both keep decreasing through DPO, though the rewards for chosen data is
still higher hence the loss decreases. In KTO and NCA, the rewards of chosen data keep increasing
with those of rejected data decreasing.

Therefore, we hypothesize it is the distinction in the trend of rewards that leads to the performance gap
between DPO and the other two algorithms. This distinction can be attributed to that DPO, derived
from the Bradley-Terry model, only optimizes the relative differences between chosen and rejected
data overlooking the absolute values of the rewards. This is a non-issue in alignment with general hu-
man values where preference is “relative” and there can be many valid answers to the same input. How-
ever, in reasoning tasks, the space of correct answers is much smaller than that of incorrect ones. Fur-
ther, we notice that the rewards of chosen data in the last training step follow the ranking order of KTO
> NCA > DPO, positively correlate with their performance trends. Therefore, we believe that increas-
ing the rewards of the chosen data is especially beneficial in preference learning for reasoning tasks.

5 EVALUATION OF EURUS-RM-7B

5.1 REWARD MODELING PERFORMANCE

We evaluate EURUS-RM-7B on three RM benchmarks, RewardBench (Lambert et al., 2024), AutoJ
(Li et al., 2023a), and MT-Bench (Zheng et al., 2023). Aiming for a more realistic OOD evalation,
we exclude the “prior sets” split from RewardBench, since many baselines train on the datasets that
this split contains. We compare with PairRM (Jiang et al., 2023b), Starling-RM-7B/34B (Zhu et al.,
2023), UltraRM-13B (Cui et al., 2023), GPT-3.5 Turbo, and GPT-4.
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Table 4: Results on reward modeling benchmarks. UF: UltraFeedback; US: UltraSafety. The best
performance in each benchmark is in bold and the second best one is underlined. Most baseline
results are from Jiang et al. (2023b) and Lambert et al. (2024).

Model Reward Bench AutoJ MT-Bench
Chat Chat-Hard Safety Reasoning Avg. Code Math Others Overall

PairRM 90.2 53.0 31.5 60.0 58.7 58.3 52.8 58.9 59.1 59.0
Starling-RM-7B 98.0 43.4 88.6 74.6 76.2 59.2 47.2 61.4 60.8 56.8
Starling-RM-34B 96.9 59.0 89.9 90.3 84.0 65.8 54.2 62.3 62.6 60.4
UltraRM-13B 96.1 55.3 45.8 82.0 69.8 55.0 43.1 59.6 59.9 56.0
GPT-3.5 Turbo - - - - - 36.6 40.3 41.2 42.7 57.1
GPT -4 - - - - - 69.2 51.4 61.4 61.9 63.9

EURUS-RM-7B 96.5 65.3 80.7 87.0 82.4 87.5 82.5 78.0 80.7 79.4
w/o LDR 96.4 59.9 79.5 77.5 78.3 83.8 82.5 78.9 80.7 79.3
w/o LBT 96.8 58.5 83.8 84.2 80.8 88.8 92.5 79.4 81.9 79.6
w/o US 96.5 66.2 67.7 81.7 73.3 87.5 90.0 79.2 81.8 79.2
w/o UF + US 95.1 61.1 63.7 73.4 78.0 73.8 80.0 71.7 72.8 73.0

Results. Table 4 summarizes reward modeling performance. Takeaways are as follows:

EURUS-RM-7B stands out as the best 7B RM overall, and achieves similar or better per-
formance than much larger baselines. Particularly, it outperforms GPT-4 in certain tasks.
EURUS-RM-7B achieves a better correlation with human experts than all existing models on AutoJ
and MT-Bench, and it achieves comparable performance to the 5× larger Starling-RM-34B on
RewardBench. On RewardBench, EURUS-RM-7B outperforms all baselines on the “Chat-Hard”
split while achieving very competitive performance on the “Reasoning” split. Across the AutoJ splits,
EURUS-RM-7B outperforms all baselines, with the only exception being GPT-4’s results on Coding.

Our training objective is beneficial in improving RM performance on hard problems and
reasoning. Table 4 shows that optimizing LDR improves RM’s reasoning ability, but BT modeling is
still beneficial in equipping RM with abilities in general chatting as suggested in the “Chat-Hard”
column, though its effect on reasoning may vary.

ULTRAINTERACT is compatible with other datasets like UltraFeedback and UltraSafety, and
mixing these datasets can balance different RM abilities. Improving RM’s capabilities in reasoning
with ULTRAINTERACT does not sacrifice others, which indicates that ULTRAINTERACT can be a
great ingredient for the training data mixture of reward models.
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Figure 5: Results on reranking Mistral-7B-Instruct-v0.2’s responses. Full results in Table 11.

5.2 BEST-OF-N AND MCTS DECODING

To further explore EURUS-RM-7B’s potential in improving models’ performance through reranking,
we use it to rerank Mistral-7B-Instruct-v0.2’s responses on HumanEval, MBPP, GSM8K, and MATH.
We report the results of random sampling, self-consistency, and Starling-RM-34B as baselines.
Finally, we examine the ability of EURUS-RM-7B to guide Mistral-7B-Instruct-v0.2 for MCTS
decoding on math, compared to Starling-RM-7B. Due to the inference overhead, we only sample 500
samples from GSM8K and MATH for evaluation.

Results. Figure 5 and Table 5 presents some results with others in Appendix D.1.

EURUS-RM-7B improves LLMs’ reasoning performance by a large margin through reranking.
It consistently improves pass@1 accuracy across all tasks and performs better than 5× larger baseline
Starling-RM-34B. Also, EURUS-RM-7B’s reranking performance scales well with #responses per
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instruction, except for a slight decrease in HumanEval when increasing the response number from 8
to 16. In contrast, Starling-RM-34B suffers from a severe performance drop on HumanEval and it
consistently hurts model accuracy on MATH.

Table 5: Mistral-7B-Instruct-v0.2 results
with RM-guided MCTS decoding.

Model GSM8K MATH

Mistral-7B-Instruct-v0.2 25.8 6.4
+ Starling-RM-7B 44.8 6.6
+ EURUS-RM-7B 46.6 9.2

EURUS-RM-7B can improve the performance of
Mistral-7B-Instruct-v0.2 by 81.4% on GSM8K and
43.8% on MATH. According to Table 5, the policy model
only achieves 25.8% and 6.4% on GSM8K and MATH
respectively, but the performances are largely improved
with RM-guided MCTS decoding. Compared to Starling-
RM-7B, EURUS-RM-7B shows an advantage of 46.8%
vs. 44.8% on GSM8K, and 9.2% vs. 6.6% on MATH.

5.3 HOW DOES LDR WORK IN REWARD MODELING?

Results in Table 4 have demonstrated the effectiveness of our proposed reward modeling objective. To
figure out the working mechanism, we plot the reward patterns in reward modeling in Figure 6. As we
can see, LBT only optimize the reward margin, and the reward trend of chosen data is unstable while
rewards of rejected data are positive for the most time. In contrast, LDR forces the reward of chosen
data to be positive and that of rejected data to be negative as expected. There is a consistent trend of
increasing the reward of chosen data and decreasing that of rejected data, which also leads to a widen-
ing reward margin. When combining LBT with LDR, the resulting pattern is more similar to using LDR
only. These results indicate the importance of the absolute value of rewards in reward model training.
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Figure 6: Reward pattern in reward modeling. The rewards of chosen data and margins increase
regardless of LDR, but the rewards of rejected data decrease to be negative with regularization.

6 ANALYSIS

6.1 ARE PROPRIETARY MODELS NECESSARY FOR HIGH-QUALITY DATA CONSTRUCTION?

The current construction of ULTRAINTERACT largely adopts GPT models. However, using proprietary
models raises concerns on the non-permissive license and the heavy burden in financial budgets, both
of the which can be addressed by open-source models. Therefore, to ablate the use of proprietary
models and examine how far we can go with open-source models for data synthesis, we supplement
another version of ULTRAINTERACT by substituting all GPT responses with those generated by
open-source models, including EURUS itself. We list the statistics, incluidng models used to sample
responses and corresponding proportions, in Appendix F. We named the original GPT-involved
version as ULTRAINTERACT-v1 and the open-source model generated as ULTRAINTERACT-v2.
We retrain LLAMA-3-EURUS-8B with ULTRAINTERACT-v2 and union of v1 and v2. Results are
presented in Table 6.

Surprisingly, LLAMA-3-EURUS-8B performances are greatly improved. Compared to v1, training on
v2 improves model performance on both SFT and preference learning stage, and particularly, LLAMA-
3-EURUS-8B-KTO (v2) successfully surpasses the official Llama-3-8b-Instruct model (Meta, 2024),
which it previously failed to, indicating we can train strong models without distilling proprietary
models. Further, trained on the mix of v1 and v2, LLAMA-3-EURUS-8B consistently outperforms
Llama-3-8B-Instruct after preference learning. Notably, to the best of our knowledge, this is the first
open recipe on Llama-3-8B that can outperform the official Llama-3-8B-Instruct model on reasoning.

6.2 ABLATION STUDY
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Table 6: Performances of LLAMA-3-EURUS-8B trained with different versions of ULTRAINTERACT.
Model Coding Math Reasoning Ins-Following Multi-Turn Avg.HumanEval MBPP LeetC. GSM-Plus MATH Theo.QA SVAMP ASDiv BBH IFEval Code Math
Llama-3-8b-Instruct 59.8 60.4 21.1 49.1 28.3 15.0 73.7 75.9 73.6 81.9 25.0 44.7 50.7
LLAMA-3-EURUS-8B-SFT (v1) 51.2 57.9 17.2 50.7 32.0 21.3 82.2 83.7 72.4 47.1 18.4 24.5 46.6

+ DPO 43.9 50.1 11.7 45.3 26.8 21.4 54.1 67.5 71.3 56.7 21.3 39.2 42.4
+ KTO 51.8 58.1 15.6 54.8 34.2 24.9 80.1 86.7 71.7 50.6 26.5 37.4 49.4
+ NCA 50.6 60.4 15.6 55.2 34.8 25.4 79.9 87.5 71.7 56.2 21.3 36.3 49.6

LLAMA-3-EURUS-8B-SFT (v2) 55.5 60.2 17.8 54.4 37.7 24.6 88.1 85.0 73.2 49.9 18.4 29.7 49.5
+ DPO 57.9 53.9 12.2 49.1 37.5 27.6 78.6 76.9 73.1 55.6 22.8 44.0 49.1
+ KTO 59.1 55.9 21.1 60.1 39.7 25.9 86.9 86.6 73.4 47.5 22.1 38.8 51.4
+ NCA 56.7 52.6 15.6 56.8 36.2 24.1 88.0 84.1 73.6 51.0 21.3 36.3 49.7

LLAMA-3-EURUS-8B-SFT (v1 + v2) 54.9 62.2 16.7 54.4 38.0 25.0 86.4 85.9 72.5 59.1 21.3 30.4 50.6
+ DPO 53.0 54.4 18.3 58.8 37.0 27.5 83.1 89.0 72.2 51.0 25.0 42.1 51.0
+ KTO 61.6 59.1 15.6 61.2 39.0 26.8 86.8 88.2 72.1 47.7 29.4 39.2 52.2
+ NCA 53.7 60.9 12.8 62.2 38.1 25.4 87.3 87.7 72.5 49.0 25.0 35.5 50.8

Table 7: Ablation study of SFT data.
Model Coding Math BBH IFEval Avg.
EURUS-7B-SFT 44.9 58.5 64.6 44.0 53.6
Ground-truth 33.9 46.1 64.4 42.9 44.0
Existing Data Only 31.2 33.5 65.3 43.6 37.0
ULTRAINTERACT Only 37.3 56.2 67.0 17.4 47.7

We study the impact of ULTRAINTERACT
and other open-source alignment data on
EURUS-7B-SFT’s performance. We consider
three settings: (1) With original ground-truth
answers, which replaces the generated actions
with ground-truth rationales and answers from
the original datasets. If no rationales are available, we use those from ULTRAINTERACT. (2)
Existing data only. (3)ULTRAINTERACT only. We evaluate with the same setting as §4 and report
the averaged scores. See full results in Appendix E.

In Table 7, EURUS outperforms the “Grouth-truth” model on all tasks, confirming the advantage
of ULTRAINTERACT’s designs of divide-and-conquer and code-as-action patterns, in line with
conclusions of concurrent work (Chen et al., 2024b; Wang et al., 2024). Training only on existing
data without ULTRAINTERACT greatly hurts the reasoning performance, confirming the effectiveness
of ULTRAINTERACT. Meanwhile, training only on ULTRAINTERACT suffers a performance drop
except for BBH, especially in instruction following. We attribute the performance drop to a worse
instruction-following ability. This suggests the necessity of mixing ULTRAINTERACT with other
alignment data for better all-around supervised fine-tuning.

7 RELATED WORK

Open LLMs in Reasoning. Open-source LLMs have shown remarkable progress in building
specialists that excel in mathematics reasoning (Luo et al., 2023a; Yue et al., 2023; Toshniwal et al.,
2024) or coding abilities (Roziere et al., 2023; Wei et al., 2023; Guo et al., 2024a; Zheng et al., 2024).
On the contrary, mastering general reasoning capabilities still challenges open models, while the most
advanced ones (DeepSeek-AI, 2024; Bai et al., 2023; Touvron et al., 2023; Jiang et al., 2024) are well
behind proprietary models. More, these cutting-edge open general-purpose models maintain their
alignment recipes confidential, which further hinders the replication and development of open-source
reasoning models.

Preference Learning for Reasoning. Aligning language models from human or AI preferences has
emerged as a prevalent approach in the open-source community (Tunstall et al., 2023; Bai et al., 2023)
with the proposal of DPO (Rafailov et al., 2023) and high-quality preference datasets (Cui et al., 2023;
Zhu et al., 2023). Different from open-domain chatbots, preference learning is largely underexplored
in complex reasoning. Recent research showed performance degradation when applying DPO on
reasoning tasks, but some newly proposed algorithms demonstrated a positive effect (Ethayarajh
et al., 2024; Chen et al., 2024a; Mitra et al., 2024; Shao et al., 2024b). However, a deep understanding
of preference learning, specifically its efficacy on complex reasoning, is not yet established.

8 CONCLUSION

We strive to narrow the huge gap between open-source models and proprietary models from the
perspective of alignment. Our work pushes the boundaries of open-source reasoning generalists by
(1) releasing a high-quality multi-turn reasoning dataset ULTRAINTERACT with preference trees, (2)
introducing EURUS-series LLMs which achieve new SOTA on challenging reasoning benchmarks
and (3) providing insights on preference learning for reasoning through analysis, leading to new
reward modeling objectives as well as a powerful reward model for reasoning.
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Table 8: ULTRAINTERACT covers a diverse set of datasets spanning three tasks.

Task Datasets

Math GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b), MathQA (Amini et al., 2019), NumGlue
(Mishra et al., 2022), TabMWP (Lu et al., 2023)

Coding CodeContest (Li et al., 2022), TACO (Li et al., 2023b), WikiTableQuestions (Pasupat & Liang, 2015),
Magicoder-Evol-Instruct (Luo et al., 2023b; Wei et al., 2023)

Logic ReClor (Yu et al., 2020), HotpotQA (Yang et al., 2018), StrategyQA (Geva et al., 2021)

A ADDITIONAL DETAILS IN ULTRAINTERACT CONSTRUCTION

A.1 DATASET DETAILS

Math. We adopt GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al., 2021b), MathQA (Amini
et al., 2019), and NumGLUE (Mishra et al., 2022)for mathematic reasoning, and include TabMWP
(Lu et al., 2023) for tabular processing. We retain all the instructions for all datasets except MathQA,
NumGLUE, and TabMWP. MathQA divides problems into different categories according to the
topics and annotates the formula that indicates the pattern needed to solve each problem. We apply
stratified sampling to sample at most five problems for each pattern and prioritize the problems that
come from the long-tail category. Numglue contains eight different reasoning tasks and we discard
Task 5 (Reading Comprehension + Explicit Numerical Reasoning), Task 6 (Reading Comprehension
+ Implicit Numerical Reasoning), and Task 7 (Quantitative NLI) due to the simplicity Mishra et al.
(2022). For TabMWP, we only keep the questions with difficulty levels 4 and 5 since the rest are too
easy for current state-of-the-art models.

Code. We focus on programming with Python for the simplicity of integration of the interpreter.
We use CodeContest (Li et al., 2022) and TACO (Li et al., 2023b), two competition-level coding
datasets collected from various online platforms. We filter out the overlapped questions. Note that
part of the questions in TACO only contain ground-truth solutions and do not contain test cases for
evaluation, hence we apply GPT-4 to generate 12 test case inputs (4 basic inputs, 4 edge cases, and
4 large numbers) for each question and then execute the ground-truth solution snippets to produce
outputs. Given that the two datasets mainly focus on competition problems that may deviate from
real-world daily uses, we exclusively adopt Magicoder-Evol-Instruct (Luo et al., 2023b; Wei et al.,
2023), the only dataset in our selection that does not contain test cases or ground-truth solutions. We
employ GPT-4 Turbo to judge the correctness of generated code during interaction, and therefore we
do not use this dataset for preference learning since we cannot rigorously construct pairs of correct
and incorrect actions limited by the evaluation reliability. We also include WikiTableQuestions
(Pasupat & Liang, 2015) for table processing with code.

Logical Reasoning. we use the multi-hop reasoning datasets HotpotQA (Yang et al., 2018) and
StrategyQA (Geva et al., 2021), and the logical reasoning dataset ReClor (Yu et al., 2020). We
follow the setting of Wang et al. (2023b) and convert HotpotQA to a generation task, removing the
contexts and requiring LLMs to search relevant information using Wikipedia API.

A.2 DETAILS ON PREFERENCE TREE CONSTRUCTION

Models Adopted for Incorrect Action Sampling. We randomly sample one model from Mistral-7B-
Instruct-v0.2, DeepSeek-Coder-33B-Instruct, Mixtral-8x7B-Instruct, and DeepSeek-LLM-67B-Chat
to generate one incorrect action to pair with each correct one.

Correct Action Generation Based on Ground Truth Annotations.

We adopt GPT-3.5 Turbo as the generator to generate correct actions based on ground truth considering
the instruction-following ability. We provide different access to the ground truth information for
different tasks, specifically: (1) For coding, where test cases are black boxes to reference solutions,
we provide full access to the solution codes. The actor model will add step marks and corresponding
explanations to the ground-truth code to make it easier to understand, or further refine the code for
optimization. (2) For tool-free math problems, to avoid the actor model directly copying the answers
to pass the correctness checking, we mask the answer numbers in the rationale before providing it
to LLMs. This approach can better ensure response quality since it encourages LLMs to generate
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Table 9: Stats breakdown

Task Dataset w/ Tool? # Prompts # Pairs # Correct Answers. Avg. Length Human Annotation
Has Answer? Has Rationale?

Math

GSM8K ! 4,522 10,277 17,392 1,746.7 ! !

% 7,257 10,879 15,752 823.3 ! !

MATH ! 7,474 22,905 34,667 1,189.0 ! !

% 7,471 25,765 36,005 1,735.0 ! !

MathQA ! 7,552 15,079 20,328 2,338.5 ! !

% 7,159 17,743 22,500 1,916.3 ! !

NumGLUE ! 3,020 3,601 5,717 1,474.6 ! %

% 2,835 2,987 4,273 1,056.1 ! %

TabMWP ! 3,117 4,135 6,083 842.6 ! %

Coding

CodeContest - 8,167 44,319 44,666 2,061.7 ! !

TACO - 9,016 50,877 58,191 2,143.5 ! !

WikiTableQuestions - 1,401 1,544 1,738 1,794.8 ! %

Magicoder-Evol-Instruct - 10,374 0 10,238 687.1 % %

Logic
Reclor % 4,467 7,958 7,231 1,266.7 ! %

HotpotQA ! 1,182 1,009 1,230 1,333.2 ! %

StrategyQA ! 904 741 968 1,256.2 ! %

responses with complete reasoning chains with each step clearly marked. (3) For program-enhanced
math reasoning, we first translate the textual rationale into code. Then, we either directly provide it
to the actor model to generate plans, or ask the actor model to convert the code into modularization
programming and then make plans to create tools to solve problems.

A.3 DATA DECOMTAMINATION

We conduct careful decontamination. Firstly, for LeetCode, we apply the Exact Substring Matching
Algorithm2 to compare with each instruction in the ULTRAINTERACT and find no overlaps. For
others, we perform 8-gram exact matching to compare ULTRAINTERACT instructions with test sets
of the same task. We remove those instructions that overlap 8 grams with any test sample.

A.4 DETAILED STATISTICS

In total, ULTRAINTERACT has 86K instructions and 220K action pairs. The Total # Pairs does not
equal Total # Turns in ULTRAINTERACT, since we fail to generate sufficient correct actions for every
incorrect action in multi-turn trajectories mainly due to a lack of sufficient ground truth annotations.
The total # pairs may not equal # correct answers, either, because it is also difficult and unnecessary
to sample incorrect actions for the correct ones for some simple instructions. We present the specific
information for each dataset. In particular, we list information on human annotation in each dataset,
which plays an important role in correct action generation (§2.3 and Appendix A.2). All three steps
of correct action sampling methods mentioned in §2.3 can be applied to datasets that have rationales,
while for datasets only containing answers, only the first two steps are applicable. We do not apply
any of the three-step methods to generate correct answers for Magicoder, the only dataset without
any human annotation, to construct preference pairs.

B ADDITIONAL DETAILS ON TRAINING EURUS MODELS

Supervised Fine-Tuning. We finetune base models for 1 epoch with a 2e-5 learning rate and 0.1
warmup ratio using a cosine scheduler. For EURUS-7B, we mix 32K UltraChat (Ding et al., 2023),
30K ShareGPT3, and 50K OpenOrca(Lian et al., 2023). For EURUS-70B, we mix 63K UltraChat, 30K
ShareGPT, and 70K OpenOrca. For LLAMA-3-EURUS-8B, we mix 50k UltraChat, 18k OpenChat
(Wang et al., 2023a), TheoremQA decomtaminated OpenHermes4, and the entire ChatQA (Liu et al.,
2024) and CodeAct (Wang et al., 2024).

2https://github.com/bigcode-project/bigcode-dataset/tree/main/
decontamination

3https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset
4https://huggingface.co/datasets/teknium/OpenHermes-2.5
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Preference Learning. For hyperparameters, all β is set to 0.1, and λ+/λ− in KTO is set to 1.33 as
recommended. We finetune models for 1 epoch with a 5e-7 learning rate and 0.1 warmup ratio using
a cosine scheduler.

Reward Modeling. We train RM for 1 epoch with lr=1e-5 learning rate. We also use a cosine
scheduler with a warmup ratio of 0.1.

Regarding pair augmentation, we scale up the pairs by matching every correct action for each
instruction with one incorrect action of other turns. This leads to NxN pairs of single-turn actions for
a trajectory of depth N. We remove the action pairs consisting of nodes at the same turn, as they are
already part of the multi-turn trajectory pairs we included. Next, to avoid overfitting on the training
set, we only select instructions with NxN ≤ 10, and for these instructions, we randomly sample at
most 9 pairs with each action occurring no more than 3 times. This leads to an augmentation of 240k
single-turn action pairs.

C ADDITIONAL EVALUATION RESULTS OF EURUS
Table 10: MMLU and MT-Bench.

Model MMLU MT-Bench
∼7B

Mistral-7B-Instruct-v0.2 58.9 7.60
Zephyr-7B-β 59.7 7.34
OpenChat-3.5-1210 63.4 7.81
Starling-LM-7B-α 64.0 8.09
Magicoder-S-DS-6.7B 37.1 4.21
OpenCI-DS-6.7B 37.2 4.06
MAmmoTH-7B-Mistral 56.2 4.25
WizardMath-7B-v1.1 60.3 5.62
OpenMath-Mistral-7B 58.3 2.69
EURUS-7B-SFT 61.8 7.15
+ DPO 62.4 7.38
+ KTO 62.2 7.38
+ NCA 62.2 7.38
LLAMA-3-EURUS-8B-SFT 64.6 6.82
+ DPO 64.8 7.44
+ KTO 64.9 7.27
+ NCA 64.7 7.14

∼40B

Mixtral-8x7B-Instruct 70.3 8.30
DeepSeek-Coder-33B-Ins 40.2 3.83

∼70B

CodeLLaMA-70B-Instruct 55.1 5.12
DeepSeek-LM-67B-Chat 72.3 8.08
QWen1.5-72B-Chat 72.9 8.61
OpenCI-CL-70B 52.4 5.67
OpenMath-CL-70B 60.2 2.29
WizardLM-2-8x22B 77.0 9.08
Mixtral-8x22B-Instruct-v0.1 77.6 8.66
EURUX-8X22B-SFT 75.9 8.20
+ KTO 75.9 8.58
+ NCA 75.6 8.46

Proprietary Models

GPT-3.5 Turbo 70.0 7.94
GPT-4 86.4 8.96

Detailed Setup in §4. For math, we test both textual rea-
soning and program-enhanced settings and report the best
performance of the two. All evaluations are conducted
in 0-shot CoT with two exceptions: BBH uses 3 shots and
IFEval does not use CoT. For MINT, we select MATH,
TheoremQA, and MMLU-math from “reasoning” as a new
“math” split. We also evaluate 5-shot MMLU (Hendrycks
et al., 2021a) for STEM knowledge and MT-Bench (Zheng
et al., 2023) for conversation abilities to study whether
EURUS needs to trade off other capabilities for reasoning.

Results. Results are shown in Table 10.

On MMLU, EURUS outperforms baselines dedicated to
coding and math, and achieves comparable or higher
results than Mistral-Instruct-v0.2 and Mixtral-8x22B-
Instruct-v0.1, the official aligned versions of our base
model built by their authors. Compared to general-
purpose baseline models, EURUS-7B and LLAMA-3-
EURUS-8B achieve comparable performance with the
top-performance OpenChat and Starling-LM, and EURUX-
8X22B also matches the top level of performance among
other general-purpose models.

On MT-Bench, we report baseline numbers from the offi-
cial leaderboard5 if available. EURUS matches the perfor-
mance of mainstream open-source general-purpose mod-
els, and EURUX-8X22B further surpasses the score of
GPT-3.5 Turbo.

D DETAILED RESULTS ON REWARD
MODELING

D.1 ADDITIONAL RESULTS ON RERANKING

We present the full results on reranking in Table 11, where the conclusions are consistent with
those drawn from §D: (1) Our reward models always achieve the highest accuracy on all test sets
across different N, except when N=2 on HumanEval. (2) Both LBT and LDR consistently help
improve reranking performance on three test sets except for HumanEval, where removing either of
the objectives can prevent the accuracy from dropping when increasing N from 8 to 16. (3) Modeling

5https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Table 11: Detailed results of reranking Mistral-Instruct-v0.2’s responses on coding and math.

Datasets HumanEval MBPP GSM8K MATH

N 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

Random 41.5 39.0 40.2 39.6 33.1 33.6 34.3 30.1 45.0 43.1 44.5 40.2 11.5 11.3 10.0 8.5
Top Logits 43.3 43.3 43.3 43.3 35.3 35.3 35.3 35.3 45.7 45.7 45.7 45.7 12.1 12.1 12.1 12.1
Self-Consistency 43.3 42.7 42.1 40.9 35.3 36.3 36.6 37.1 45.7 49.5 52.2 52.8 12.1 13.8 15.8 16.8
Starling-RM-34B 47.6 47.0 49.4 45.7 37.8 38.8 39.6 40.4 49.1 52.8 56.0 56.5 6.5 7.2 7.7 7.7

EURUS-RM-7B 44.5 45.7 47.6 47.0 39.3 42.6 43.4 43.9 49.8 53.7 56.3 57.3 14.3 16.2 17.1 17.3
w/o LDR 45.7 44.5 46.3 50.0 39.3 42.4 42.4 42.1 49.4 53.2 55.4 56.3 14.2 16.1 17.0 16.9
w/o LBT 45.1 44.5 47.0 48.2 38.6 40.6 39.6 40.1 49.1 52.5 55.2 57.8 14.3 16.3 17.2 17.1
w/o US 45.7 47.0 49.4 50.6 39.3 41.1 41.4 42.9 49.4 53.8 57.4 58.7 14.5 16.6 17.2 17.5
w/o UF + US 43.9 43.3 47.0 46.3 36.3 38.1 36.6 35.3 49.4 52.3 54.6 57.2 14.3 16.5 17.4 17.4

Pass@N 62.8 73.8 88.4 92.7 42.4 48.1 52.6 58.6 54.9 64.1 73.2 80.4 16.9 22.7 28.9 35.5

Table 12: Ablation Study.

Model Coding Math Reasoning Ins-Following Avg.
HumanEval MBPP LeetCode GSM8K MATH TheoremQA SVAMP ASDiv BBH IFEval

EURUS-7B-SFT 55.5 59.1 20.0 73.7 32.6 20.0 82.2 84.1 64.6 44.0 53.6
Ground-Truth 46.3 46.4 8.9 62.2 15.0 9.6 75.1 68.8 64.4 42.9 44.0
Exisiting Data Only 38.4 44.1 11.1 45.3 10.8 9.3 52.7 49.4 65.3 43.6 37.0
ULTRAINTERACT Only 46.3 50.1 15.6 67.6 30.9 20.1 80.4 82.0 67.0 17.4 47.7

safety hurts reranking performance in reasoning. When removing UltraSafety from the training data,
the RM achieves higher accuracies than EURUS-RM-7B except on MBPP.

E DETAILED ABLATION RESULTS

We present the full results of §7 in Table 12, with detailed metrics on all coding and math datasets.

F STATISTICS OF ULTRAINTERACT-V2

We use EURUS-7B-KTO, EURUX-8X22B-NCA, Llama-3-8/70B-Instruct, Llama-3.1-8/70B-Instruct,
DeepSeek-Chat-V2 Zhu et al. (2024), DeepSeek-Coder-V2 (Guo et al., 2024a), DeepSeek-Math-RL
Shao et al. (2024a), etc, to construct the ULTRAINTERACT-v2. Particularly, the proportion of EURUS
responses is 26.4% in the SFT split and 28.2% in the preference split, while the Llama responses
take the share of 59.0% and 56.7% in the SFT split and preference split respectively. We present
the detailed statistics of ULTRAINTERACT-v2 in Table 13 and Table 14.

G DATA EXAMPLE

We present an example for SFT data in Table 15 and an example for preference learning in Table 16.

H ADDITIONAL ABLATION EXPERIMENT RESULTS

We present the ablation study on prefernce data mixture in this section. We perform KTO on Llama-
3-Eurus-8B-SFT with different combinations of UltraFeedback and UltraInteract and the results
are presented in Table 17. From the results, we see that training only on UltraInteract leads to
higher overall reasoning performances, which are mainly credited to the multi-turn interaction ability,
demonstrating the superiority of the tree structure of our data. However, we also observe a lower
MT-Bench score compared to training solely on UltraFeedback. Nevertheless, this can be mitigated
without hurting reasoning performances by mixing these two datasets together, which indicates that
our data is compatible with other datasets, consistent with our conclusions on reward modeling.
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Table 13: Some statistics of ULTRAINTERACT-v2.

Task Type # Instructions # Turns per Traj. # Tokens
per Traj.

Avg. # Traj
per Ins.

Total
# Pairs

# Correct
Answersw/ Interaction? w/ Tool? T1 T2 T3 T4 T5

Math

! ! 20,935 8,018 6,149 2,413 1,091 3,264 1,374.2 1.0 61,738 80,982
% ! 1,279 6,723 - - - - 423.0 5.3 2,055 6,723
! % 21,474 10,117 4,707 1,263 589 4,798 1,155.7 1.0 72,944 143,587
% % 634 4,876 - - - - 396.0 7.7 2,172 4,876

Coding ! - 9,498 4,323 2,057 942 459 1,717 1,429.4 1.0 71,900 155,429
% - 2,877 9,824 - - - - 591.0 3.4 5,990 9,824

Total - - 56,697 43,881 12,913 4,618 2,139 9,779 894.9 3.2 216,799 410,421

Table 14: Stats breakdown for ULTRAINTERACT-v2

Task Dataset w/ Tool? # Prompts # Pairs # Correct Answers. Avg. Length Human Annotation
Has Answer? Has Rationale?

Math

GSM8K ! 4,438 14,616 17,797 642.4 ! !

% 6,997 10,708 11,893 367.6 ! !

MATH ! 6,197 20,056 27,217 681.8 ! !

% 6,799 46,720 115,924 531.7 ! !

MathQA ! 6,046 19,315 22,062 653.8 ! !

% 5,898 14,525 16,237 570.3 ! !

NumGLUE ! 2,436 4,241 9,113 570.4 ! %

% 2,414 3,163 4,409 409.0 ! %

TabMWP ! 3,097 5,565 11,516 507.1 ! %

Coding

CodeContest - 5,788 39,713 76,272 1,291.7 ! !

TACO - 6,459 37,317 86,844 1,062.9 ! !

Codeforces - 128 860 2,137 1,480.9 ! !
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Table 15: An example from the SFT data.

Task: Coding
Instruction: Write Python code to solve the task.
Mike has a string s consisting of only lowercase English letters. He wants to change exactly one character
from the string so that the resulting one is a palindrome.
A palindrome is a string that reads the same backward as forward, for example strings z, aaa, aba, abccba are
palindromes, but strings codeforces, reality, ab are not.
Input
The first and single line contains string s.
Output
Print YES (without quotes) if Mike can change exactly one character so that the resulting string is palindrome
or NO (without quotes) otherwise.
Response:
Step 1: This problem asks us to determine if it is possible to change exactly one character in the string to
make it a palindrome.
Step 2: We can start by iterating through the characters in the string and counting the number of differences
between corresponding characters from the beginning and end of the string.
Step 3: If the length of the string is odd and there is only one difference, or if the length is even and there is
exactly one difference, then it is possible to change exactly one character to make the string a palindrome.
Step 4: We need to consider edge cases such as a single character string or an empty string. “‘python
# Step 5: Take the input string
s = input()
# Step 6: Calculate the length of the string
n = len(s)
# Step 7: Initialize a counter to keep track of the number of differences
cnt = 0
# Step 8: Iterate through the first half of the string and count the number of differences between corresponding
characters from the beginning and end of the string.
for i in range(n//2):

if s[i] != s[n-i-1]:
cnt += 1

# Step 9: If the length of the string is odd and there are no differences, or if the length is even and there is
exactly one difference, print ”YES” (without quotes)
if (n % 2 == 1 and cnt == 0) or (cnt == 1):

print(’YES’)
# Step 10: Otherwise, print ”NO” (without quotes)
else:

print(’NO’)
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Table 16: An example from the Preference data.

Task:Math
Trajectory:
[ {

from: user,
value: Tool available:[1] Python interpreter. When you send a message containing Python code to

python, it will be executed in a stateful Jupyter notebook environment. Solve the following math problem
step-by-step. Simplify your answer as much as possible. Simplify (−3− 2i)− (1 + 4i).
},
{

from: assistant,
value: Step 1: To simplify the expression (−3− 2i)− (1 + 4i), we need to distribute the negative sign

to both terms inside the parentheses. Step 2: We can then combine like terms by adding the real parts and the
imaginary parts separately. # Step 3: Distribute the negative sign to both terms inside the parentheses. (-3) -
(-1) + (-2i) - (-4i) # Step 4: Combine like terms by adding the real parts and the imaginary parts separately.
-3 + 1 + (-2i + 4i)
},
{

from: user,
value: Out: Cell In[1], line 2 (-3) - (-1) + (-2i) - (-4i) SyntaxError: invalid syntax. Your answer is wrong.

Your thought process for simplifying the given complex numbers is correct. However, you made a syntax
error in the code. In Python, the multiplication operation must be explicitly written out with an asterisk (*),
even for complex numbers. Remember, the imaginary unit in Python is denoted as j and not i. Try correcting
the syntax and calculate again.
},
{

from: assistant,
value: Step 1: To simplify the expression (−3− 2i)− (1 + 4i), we need to distribute the negative sign

to both terms inside the parentheses. Step 2: We can then combine like terms by adding the real parts and the
imaginary parts separately. # Step 3: Distribute the negative sign to both terms inside the parentheses. (-3) -
(-1) + (-2j) - (-4j) # Step 4: Combine like terms by adding the real parts and the imaginary parts separately.
-3 + 1 + (-2j + 4j)
},
{

from: user,
value: Out: (-2+2j). Your answer is wrong. Your thought process for simplifying the given complex

numbers is on the right track. However, you made an arithmetic error when adding the real parts and the
imaginary parts. You should have combined the like terms correctly to get the right answer -4 and -6j
respectively. Please try again with the correct arithmetic calculations.
} ]
Chosen:
Step 1: Split the expression into real and imaginary terms.
Step 2: Subtract the real terms from each other.
Step 3: Subtract the imaginary terms from each other.
Step 4: Combine the results of the subtraction to get the simplified form of the expression.
# Step 5: Split the expression into real and imaginary parts and then subtract them.
real part = -3 - 1 parts
imaginary part = -2 - 4
# Step 6: Combine the real and imaginary parts to get the result.
result = f{real part}{imaginary part:+d}i
print(result)
Rejected:
Step 1: To simplify the expression (−3 − 2i) − (1 + 4i), we need to distribute the negative sign to both
terms inside the parentheses.
Step 2: We can then combine like terms by adding the real parts and the imaginary parts separately.
# Step 3: Distribute the negative sign to both terms inside the parentheses.
(-3) - 1 - (-2j) - 4j
# Step 4: Combine like terms by adding the real parts and the imaginary parts separately.
-3 - 1 - 2j - 4j
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Table 17: Additional experiment results on preference learning with different compositions of
UltraFeedback and UltraInteract.

Model Coding Math BBH IFEval Multi-Turn Avg. MT-Bench
Llama-3-Eurus-8B-SFT 42.11 53.97 72.40 47.10 21.45 46.60 6.8
+KTO (UF + UI) 41.84 56.14 71.70 50.60 31.92 49.40 7.3
+KTO (Only UF) 44.60 56.26 72.00 50.10 24.03 48.80 7.5
+KTO (Only UI) 40.70 55.86 71.70 50.60 34.49 49.40 7.2
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