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ABSTRACT

Recent work has shown that Transformers trained from scratch can successfully
solve various arithmetic and algorithmic tasks, such as adding numbers and comput-
ing parity. While these Transformers generalize well on unseen inputs of the same
length, they struggle with length generalization, i.e., handling inputs of unseen
lengths. In this work, we demonstrate that looped Transformers with an adaptive
number of steps significantly improve length generalization. We focus on tasks with
a known iterative solution, involving multiple iterations of a RASP-L operation—a
length-generalizable operation that can be expressed by a finite-sized Transformer.
We train looped Transformers using our proposed learning algorithm and observe
that they learn highly length-generalizable solutions for various tasks.

1 INTRODUCTION

Most algorithmic tasks such as coding, writing mathematical proofs, and reasoning are defined with
inputs of variable length. The length of an input often correlates with the difficulty of the problem
instance. For example, the longer the input, the more difficult the problem tends to be. We say a
model perfectly length-generalizes if it can solve an algorithmic task on inputs of any length, even if
it was only trained on data with inputs up to a finite length (Anil et al., 2022). Generally, it is hard
to expect models to be trained on inputs with all possible lengths, and we need to rely on length
generalization. Also, if a model can length-generalize, it means the model has truly learned the
correct algorithmic solution to the task, not just a spurious solution that works only for certain lengths.

Recently, many works on Large Language Models (LLMs) have shown that we can get more powerful
AI models by scaling both compute and data at training time. This scaling approach has indeed
succeeded in improving accuracies on various benchmarks. However, even the largest and latest
LLMs like Achiam et al. (2023) trained on much of the existing text on the Internet, still struggle with
length generalization (Wu et al., 2023; Anil et al., 2022; Lee et al., 2024). One possible cause is the
particular computing model. LLMs are built based mostly on the Transformer architecture (Vaswani
et al., 2017). While Transformers can accept a variable length of inputs (that can be processed in
parallel), they usually have a fixed depth. This might be sufficient for certain tasks, but not always.

To learn a model that can effectively generalize to longer problems, it is important to consider archi-
tectures that can adaptively adjust the computational budget to the difficulty of the tasks (Anil et al.,
2022; Du et al., 2022; 2024). One approach to achieve this is to explicitly generate intermediate output
tokens, similar to writing down a scratchpad, which improves LLMs’ capability for solving harder
problems (Nye et al., 2021). In theory, LLMs may generate more scratchpad tokens representing
intermediate computation when solving a more difficult task, indicating that they can allocate elastic
computation according to the length and difficulty of the given instance. This approach can be learned
by explicitly training a model on data with intermediate computation steps (Ling et al., 2017; Cobbe
et al., 2021). Alternatively, it can be achieved via Chain-of-Thought (CoT) reasoning with few-shot
examples (Wei et al., 2022) or even in a zero-shot manner (Kojima et al., 2022). Notice that these
approaches still use fixed-depth models. While these approaches help solve more complex reasoning
tasks, they are still far from achieving near-perfect length generalization for simple algorithmic tasks.
For instance, Lee et al. applied CoT for arithmetic tasks but observed that Transformers cannot length
generalize even for simple addition tasks (Lee et al., 2024).

Recently, there has been growing interest in using recurrent architectures for reasoning (Dehghani
et al., 2018; Bai et al., 2019; Bansal et al., 2022; Yang et al., 2024). Unlike standard RNN-type
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architectures that process the input sequence incrementally, one can consider a recurrent architecture
that processes the entire input sequence multiple times, passing the intermediate output to the next
iteration’s input, possibly along with the original input. In particular, if the base model in each
iteration is a Transformer, this model is called a Looped Transformer (Yang et al., 2024).

* * #

#> #

Decoder Block  

Output

Input

...

... ...

...

Figure 1: Method Overview. During training, we
supervise the output of the model to match the
target data only after a certain number of steps
of applying the same decoder block, helping the
model learn intermediate steps that can be reused
and can handle input of arbitrary lengths. All grey
blocks share the same parameters. Examples are
from the Copy task with n symbols. “#” indicates
EOS, “*” indicates ignored output, and “>” indi-
cates the end of the query (EOQ).

Looped Transformer can naturally break the limita-
tion of the fixed depth in the standard Transformer
architecture: One can adjust the number of looped
steps based on the computational complexity of the
underlying algorithmic solution. Consider a prob-
lem set where 1) The problems can be solved by a
loop of one RASP-L (Zhou et al., 2024a) program1,
i.e., each step in the loop can be performed by a
decoder-only Transformer with a fixed depth; 2) The
number of steps needed in the loop depends on the
problem’s complexity, i.e., more difficult problems
could potentially require more steps to solve. Under
the length generalization scheme, we consider the
number of steps depending on the problem length,
and define this problem set as n-RASP-L problems.
For n-RASP-L problems, if we can learn these length-
independent steps, we can utilize an adaptive number
of steps to achieve length generalization.

Inspired by this observation, we study training
Looped Transformers models for length generaliza-
tion. Specifically, we consider a training setup where
we do not require any intermediate supervision data
(such as reasoning steps or scratchpad). We only
assume access to end-to-end supervision (input and
output) and the number of steps needed. Depending on the number of steps, we iteratively apply
the same decoder block and then decode the final answer; See Figure 1 for illustration. At inference
time, the model could either decide when to stop with predefined stopping criteria or stop when
reaching the ground-truth number of steps. Empirically, we show that looped Transformers with an
adaptive number of steps can successfully length-generalize to longer lengths simply by appropriately
adapting the number of loops at inference time, indicating that our approach encourages the model to
implicitly learn the necessary steps to solve a task.

Our contributions can be summarized as follows: (1) We first formally define n-RASP-L problems,
and provide examples of n-RASP-L solutions to the Copy, Parity, and Addition tasks (Section 3); (2)
We propose to learn n-RASP-L problems with Looped Transformers where we supervise the final
answer in a step-dependent way, which enables us to use an adaptive number of steps depending on
the problem complexity (Section 4); (3) Empirically, we show that our proposed method outperforms
the baseline approaches in terms of length generalization performance (Section 6).

2 BACKGROUND

2.1 RASP-L

A decoder-only Transformer is a type of Transformer architecture that consists of only the decoder
part of the original Transformer model introduced by Vaswani et al. (2017), where a causal mask is
applied to the attention weights to prevent the model from attending to future tokens.

RASP (Restricted Access Sequence Processing) (Weiss et al., 2021) is a computational model for the
Transformer architecture in the form of a programming language. RASP-L (Zhou et al., 2024a), is a
learnable subset of the RASP language. Some key points about RASP-L are:

• RASP-L programs accept an input sequence and return an output sequence of the same length for
an arbitrary length, like decoder-only Transformers.

1Here we consider a more general way to loop, i.e., predicting all missing tokens at the end of the loop, not
necessarily in the way of predicting the single next token at a time. See more discussions in Section 2.2.
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• The core operations in RASP-L include element-wise operations on sequences and a specific type
of non-elementwise operation called kqv, which simulates a causal attention layer.

• RASP-L has restrictions on the allowed operations to ensure learnability: It does not allow
arbitrary index arithmetic, and restricts operations on token indices to order comparisons and
computing successor/predecessor.

• RASP-L does not allow control flow statements like branching or loops. Programs must be
straight-line code, with each line being a call to a core function or another RASP-L program.

In Zhou et al. (2024a), they show algorithmic tasks that can be written as a RASP-L program can
be easily learned by a Transformer in a length-generalizable way with next-token prediction. The
length-generalizable tasks include counting, finding the mode, copying the input sequence (consisting
of unique tokens), and sorting. However, they also showed that for algorithmic tasks whose RASP-L
program representation is not known to exist, such as addition, parity, and copying the input sequence,
it is hard to learn in a length-generalizable way. In other words, once the Transformer is trained on
in-distribution data up to a particular length, it fails to generalize to unseen lengths.

2.2 NEXT-TOKEN PREDICTION AND FULL-ANSWER PREDICTION

* * * 0 1 1 # #

0   1  ->  0 1 1 > # # #

Output

Input

#

TF model

* * * 0 1 1 # #

0   1  ->  0 1 1 > 0 1 1

TF model

Output

Input

#

(a) NTP (b) FAP

Figure 2: Visualization of the next-token prediction
(NTP) and full-answer prediction (FAP) schemes. “#"
indicates EOS, “*" indicates ignored output, and “>"
indicates the end of the query (EOQ).

Decoder-only Transformers are naturally con-
venient for next-token prediction (NTP) which
could be efficiently trained in parallel. In Zhou
et al. (2024a), their setup and RASP-L solutions
are both constrained to predicting the single next
token: During training, the full sequence (both
the query and the answer) is provided as input
and the output is expected to be the shifted se-
quence. During inference, only the query part is
provided, and the model continues to output the
next token and append the token to the current
sequence until the output token is EOS. The out-
put locations before the end of query (EOQ) sign
are ignored. See (a) in Figure 2 for illustration.

On the other hand, we can also consider a
more general way of predicting the answer: full-
answer prediction (FAP). During both training
and inference time, the input given is just the query part, and the rest of the locations are filled with
multiple EOS tokens to keep the input and the output to be the same length. The model is supposed to
output the answer with a shifted location, and the output locations before the EOQ sign are ignored;
see (b) in Figure 2. Notice that in FAP, the model is not forced to predict token-by-token as NTP.
Instead, the model is expected to predict all missing tokens after all internal processing steps.

3 n-RASP-L
Recall that RASP-L programs do not allow loops. If we consider the next-token prediction (NTP)
scheme, it means that we need to find the same RASP-L program (which can be represented with
a fixed-depth decoder-only Transformer) to predict the next token given any possible prefix in the
answer sequence. Such solutions might not always exist for all problems: there is no known RASP-L
program for addition, parity, and copy under the NTP scheme (Zhou et al., 2024a).

On the other hand, architectures such as the Looped Transformer have external loops embedded in
the architecture which naturally provides adaptive depth. Thus, a natural question is: what kind of
algorithmic tasks can we represent with a decoder-only Transformer in a loop? Specifically, what if
we also allow the number of iterations to explicitly depend on the input length, say n? Moreover,
what if we are not constrained by the NTP scheme, but a more general FAP scheme?

Inspired by these questions, we define the following class of algorithmic tasks:

Definition 3.1 (n-RASP-L). A program P is called an n-RASP-L program if (1) there exist T :
N → N, and (2) P can be decomposed to a sequential application of P ′ for T (n) steps with a
possible pre-processing step Ppre and post-processing step Ppost: P = Ppre ◦ (P ′)T (n) ◦ Ppost where
P ′, Ppre, Ppost ∈ RASP-L.
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* * * 0

0   1  ->  0 1 1 >

* 0 11

0 0 0 1

0   1  ->  0 1 >

0 0 >1

input 0   1  ->  1 1 >

0   1  ->  0 1 1
0 0 00 0 00 0 00 1 1

0   1  ->  0 0 1
0 1 0

(a) Copy (b) Parity

summand 2

summand digits

answer digits

summand 1

carry-on
partial ans

partial ans

(c) Addition

0 0 00 0 00 0 00 0 0 0   1  ->  1 1 0
0 0 000 0 000 0 000 1 0 0000

0 #0
0

0   1  ->  0 1 0
0 0 000 0 000 0 000 1 0 0000

0 #0
0

carry-on 0   1  ->  0 1 0
0 0 000 0 000 0 000 0 0 0000

0 #0
0

carry-on

ans

0   1  ->  0 0 0
0 0 000 0 000 0 000 0 0 0000

0 #0
1

input

shifted input

shifted input

init ans

partial ans

ans

ans

digits to be checkeddigits to be copied

answer digits

answer digits

0

Figure 3: Visualization of the n-RASP-L solutions for Copy, Parity, and Addition with n = 2. Copy is
implemented by n iterations of shifting; Parity is implemented by n iterations of shifting and XOR; Addition is
implemented by n+1 iterations of shifted XOR and AND; The inputs are preprocessed. See details in Section 3.

We show that n-digit addition, n-bit parity, copying n symbols indeed have n-RASP-L solutions.
Proposition 3.2. (Parity.) There exists a n-RASP-L program with T (n) = n that solves the n-bit
parity check task:

x1 . . . xn︸ ︷︷ ︸
n tokens

> # . . . #︸ ︷︷ ︸
n′ tokens, n′ ≥ 0

⇒ * . . . *︸ ︷︷ ︸
n tokens

y # . . . #︸ ︷︷ ︸
n′ tokens

,

where y is the parity check result for the arbitrary binary input sequence {xi}.

Proof. See Listing 1 in Appendix A, where the number of steps required in parity_loop is
T (n) = n for the input query with n bits.

Proposition 3.3. (Copy.) There exists a n-RASP-L program with T (n) = n that solves the n-symbol
copy task:

x1 . . . xn︸ ︷︷ ︸
n tokens

> # . . . #︸ ︷︷ ︸
n′ tokens, n′ ≥ n − 1

⇒ * . . . *︸ ︷︷ ︸
n tokens

x1 . . . xn︸ ︷︷ ︸
n tokens

# . . . #︸ ︷︷ ︸
n′ − n + 1 tokens

,

where {xi} is an arbitrary binary input symbols.

Proof. See Listing 2 in Appendix A, where the number of steps required in copy_loop is T (n) = n
for the input query with n symbols.

Proposition 3.4. (Addition.) There exists a n-RASP-L program with T (n) = n+ 1 that solves the
n-digit addition task:

x1 . . . xn︸ ︷︷ ︸
n tokens

+ y1 . . . yn︸ ︷︷ ︸
n tokens

> # . . . #︸ ︷︷ ︸
n′ tokens, n′ ≥ n

⇒ * . . . *︸ ︷︷ ︸
2n + 1 tokens

z1 . . . zn+1︸ ︷︷ ︸
n + 1 tokens

# . . . #︸ ︷︷ ︸
n′ − n tokens

,

where {xi}, {yi} are arbitrary binary summands and {zi} is the result of adding {xi} and {yi}2.

Proof. See Listing 3 in Appendix A, where the number of steps required in addition_loop is
T (n) = n+ 1 for the input summands with n digits each.

We present visualizations of the intermediate steps in the loops of our n-RASP-L solutions in Figure 3:
For the parity task, P ′

parity is to shift the input sequence to the right by 1 and calculate XOR of the
answer sequence and the input sequence; For the copy task, P ′

copy is to shift the input sequence to
the right by 1; For the addition task P ′

addition is to calculate the XOR of two sequences and shift the
results to the right by 1 position as the partial answer, and calculate the AND of two sequences as the
carry-on sequence3.

2For simplicity, we include the leading 0’s to keep the same length of the output for all possible inputs.
3Here we omit the pre-processing and post-processing steps like handling EOS (“#”) and EOQ (“>”) tokens

which can be done by fixed-depth attention layers outside of the loop (see Listings 1, 2, 3).
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4 LEARNING n-RASP-L PROBLEMS WITH LOOPED TRANSFORMERS

Consider a task solvable by an n-RASP-L program. It is straightforward to learn the looped Trans-
former model with the supervision of the ground truth intermediate outputs: One can use a fixed-depth
TF block and simply supervise the input and output for each step. However, such intermediate super-
vision can be difficult to get, just like collecting helping CoT steps could be difficult. Therefore, a
more interesting setup we consider is to learn looped Transformers in an end-to-end manner without
intermediate-step supervision.

Here we present a novel framework for length generalization: In the absence of ground truth CoT
data/intermediate output, we propose to leverage the inherent structure of the problem with the help of
“knowing when to stop”. We present the setup for training data in Section 4.1, the model architecture
and training algorithm in Section 4.2, and the inference algorithm in Section 4.3.

4.1 END-TO-END SUPERVISED DATA WITHOUT INTERMEDIATE STEP SUPERVISION

We consider the following settings for the training data and the tasks:

• There exists an n-RASP-L program that solves the given task.
• Training data consists only of (x, y) pairs, but not intermediate steps. That is, we do not have

access to P ′(x), P ′(P ′(x)), . . ..
• T (n), i.e., the pre-defined number of iterations to solve the problem (with some P ′) is available

in the training data4.
• The length n is diversely distributed in the dataset, e.g., n ∈ {1, . . . , nmax} where nmax is the

maximum number of lengths in the dataset; The pre-defined number of steps needed T (n) is
also diversely distributed in the dataset, e.g., T (n) ∈ {T (1), . . . , T (nmax)} where T (nmax) is the
maximum number of steps in the dataset5.

4.2 LOOPED TRAINING WITH STEP SUPERVISION

4.2.1 ARCHITECTURE OF THE LOOPED TRANSFORMERS

We present the architecture for Looped Transformer model in Figure 1. The key characteristics are:

Recurrence: Instead of having a simple stack of blocks, the Looped Transformer is recurrent
(like Giannou et al. (2023) but with decoder-only structure) in the sense that we reuse the same
decoder block (which consists of a certain number of layers) for a number of looped steps, and we
can adjust the number of looped steps at will.

Input injection: For each step, the original input sequence is injected together with the output from
the previous decoder block, i.e. the input embeddings are added to the output embeddings of the
previous step as the input of the current step. With input injection, the model can maintain a strong
connection to the original input, preventing information loss with improved performance (Bai et al.,
2019; Yang et al., 2024).

Positional embedding: Notice that there is no positional encoding in the RASP-L operations (Zhou
et al., 2024a). To follow our n-RASP-L assumption and test the effect of the looped training only, we
use NoPE (Kazemnejad et al., 2024) in decoder-only Transformers to avoid the impact from different
positional embeddings6.

4.2.2 TRAINING ALGORITHM

Given a dataset D = {({(xl)
Li

l=1}i, {(yl)
Li

l=1}i, Ti, Li)}Ni=1, where {(xl)
Li

l=1}i is the input with Li

tokens, {(yl)Li

l=1}i is the output with Li tokens, and Ti is pre-defined number of steps of sample i.
We aim to learn the transformer model Mθ

7 by minimizing the following loss:

ED[L
(
fTi

(Mθ, {({(xl)
Li

l=1}i), {(yl)
Li

l=1}i
)
], (1)

4This assumption is to provide supervision for when to stop during training; for inference, we can either use
the pre-defined steps or leverage the confidence of the output as a stopping criterion (see Section 4.3 for details.)

5The length of the problem is not necessarily the same as the actual length of the input due to EOS and EOQ
tokens; see Section 6.1.1 for the definition of the length of the specific tasks.

6NoPE is shown to inherently learn to use relative positional embeddings in practice Kazemnejad et al.
(2024).

7Mθ only handles the embedding space and we use greedy decoding to get the decoded output.
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where L is the cross entropy loss and fTi
(Mθ, {(xl)

Li

l=1}i) = Mθ(Mθ(· · ·Mθ︸ ︷︷ ︸
Ti iterations

({(xl)
Li

l=1}i))).

How would our training help to learn more length-generalizable steps without intermediate supervi-
sion? Consider that for some input, we want to match the target after T steps, T ≥ 1. Although we do
not have intermediate supervision for this input, there could exist some other input where we match
the output after T − 1 steps as shown in Figure 1, which means the model also receives supervision
from T − 1 steps with a different input length. The same argument applies to other T values covered
in the training set, so the same decoder block receives supervision from not only variable lengths,
but also a variable number of steps. As a result, we expect the model to learn length-generalizable
intermediate steps that could potentially generalize to more steps at test time.

4.3 ADAPTIVE INFERENCE

Recall that looped Transformers can use adaptive depth at inference time, so we need certain rules to
decide when to stop. In this paper, we consider two rules: 1) Oracle: We can assume that the number
of steps needed is given; 2) Maximum confidence: We can use confidence base rules to decide when
to stop, i.e., stop when we are confident about the output at the current step. More specifically, for 2),
given B test sequences with length L: {(xl)

L
l=1}Bi=1 and a trained model Mθ, we can get the number

of steps T from Equation (2):

T = argmint∈[1,Tmax]L
(
ft(Mθ, {(xl)

L
l=1}Bi=1), {(ŷtl )Ll=1}Bi=1

)
, (2)

where {(ŷtl )Ll=1}Bi=1 is the decoded sequences from ft(Mθ, {(xl)
L
l=1}Bi=1) at step t, Tmax is the

maximum number of steps. Here B could be Ntest, which is the size of the test set with some specific
length. Also, we can choose B = 1 to calculate the per-sample stopping criterion (see Section 6.4).

5 RELATED WORK

Positional embedding for length generalization. Positional embeddings have been shown to greatly
affect Transformers’ ability to generalize to longer lengths (Press et al., 2021; Kazemnejad et al., 2024;
Ruoss et al., 2023; Su et al., 2024; Li et al., 2023; Cho et al., 2024; Sabbaghi et al., 2024; McLeish
et al., 2024; Golovneva et al., 2024). By designing positional embedding schemes that better capture
relative positional information with techniques such as randomization and functional representations,
researchers have made significant progress in improving length generalization. Especially, Cho
et al. (2024) and McLeish et al. (2024) use tailor-made positional embeddings for some arithmetic
problems without potential generality. 8 This direction is orthogonal to our work since there is no
positional encoding in RASP-L operations. We choose no positional embedding in our experiments,
but other positional embeddings could further be synergistically applied with our approach. However,
they might not be expressed as RASP-L operations. We leave further investigation with different
positional embeddings to future work.

RNNs and Chomsky Hierarchy. Delétang et al. (2022) conduct an extensive empirical study
to investigate the limits of the generalization performance of different neural network structures,
demonstrate that grouping tasks according to the Chomsky hierarchy allows forecasting whether
certain architectures will be able to generalize to out-of-distribution inputs. Their results show
that RNNs and Transformers fail to generalize on non-regular tasks, LSTMs can solve regular and
counter-language tasks, and only networks augmented with structured memory (such as a stack or
memory tape) can successfully generalize on some context-free and context-sensitive tasks. In our
paper, the Looped Transformer architecture also has augmented memory and the recurrent structure
but is potentially more powerful since each iteration contains an operation of the whole sequence.
Universal Transformers and other looped models. Our method is highly inspired by Universal
Transformers (UT) (Dehghani et al., 2018), but we introduce several novel modifications to design
looped Transformers that are compatible with our n-RASP-L assumption. One major architectural
innovation is the use of FAP, while all the other prior works are based on NTP. We also only use
decoder-only Transformers, which is different from UT and the follow-up work PonderNet (Banino

8In McLeish et al. (2024), they show that models with weight-tied layers (but with a fixed depth) can improve
the generalization ability when comparing with the variants of the same positional embedding, but they do not
find adaptive depths to be helpful since they do not perform the step-specific training as our method, while the
key to our method is to use models with adaptive depths. To also compare with this baseline, we add NTP-Loop
in Section 6.1.2.
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Method Encoder/Decoder Prediction Type PE Input Injection Halting Mechanism
UT Both NTP Yes No ACT (Bolukbasi et al., 2017)
PonderNet Both NTP Yes No Halting node
Ours Decoder-only FAP No Yes Confidence based or predefined

Table 1: Comparison between UT, PonderNet, and ours. PE is short for “Positional Embeddings”.

et al., 2021), which use both encoder and decoder Transformers. In addition to these two critical
differences, we do not use any positional encoding, and use a simpler halting mechanism. Moreover,
we find input injection useful to further improve the performance (see details in Section 6.3). Table 1
summarizes the differences between ours and the previous approaches. Besides architectural differ-
ences, we are also the first to show the benefit of using step-dependent supervision for training looped
Transformers. Apart from Transformers, Bansal et al. (2022) study learning recurrent networks to
generalize to harder maze problems than seen during training, but with a focus on CNNs.

Input representation. Recall that adding two numbers of length n could not be solved by a RASP-L
program where the difficulty mainly comes from indexing operations (Zhou et al., 2024a). It could be
solved by reformatting the input so that each digit is presented to the model with “index hints” in
Zhou et al. (2024a). Such reformatting enables a simple RASP-L program for addition. Similarly,
representing the answer in reversed order also helps because the corresponding RASP-L program
gets much shorter, providing a concrete justification of the empirical observation made in Lee et al.
(2024). However, such input representations are highly dependent on the specific problems and might
not necessarily exist in general.

COT. Scratchpad or CoT reasoning (Nye et al., 2021; Ling et al., 2017; Cobbe et al., 2021; Wei
et al., 2022; Hou et al., 2024) is also useful for length generalization as it could simplify the next-
token prediction task with intermediate results presented to the input layer. There are also potential
drawbacks and limitations to CoT reasoning. First, CoT training data could be hard to collect.
Training and inference with pause tokens (Goyal et al., 2023) has been proposed to learn implicit
CoT steps without CoT data, but pause tokens only increase horizontal compute, not sequential
compute. Second, not all CoT steps are helpful. If CoT steps introduce additional complexity or
require operations not easily expressible in RASP-L, then CoT may hinder length generalization, as
shown in Zhou et al. (2024a). Moreover, CoT steps that could convert the next token prediction task
to RASP-L programs might not always exist. Besides, CoT is normally constrained to fixed-depth
models, while we study a more general and powerful way to use adaptive compute at inference time.

6 EXPERIMENTS

We evaluate the efficacy of looped Transformers in solving tasks that require length generalization.
We introduce the experimental setup in Section 6.1, present length generalization results in Section 6.2
and ablation studies in Section 6.3, and visualize the stopping criterion in Section 6.4.

6.1 EXPERIMENTAL SETUP

6.1.1 TASKS

Here we consider tasks with n-RASP-L solutions presented in Section 3: Parity, Copy, and Addition,
together with more tasks like calculating the sum, multiplication, and calculating the unique set.

Parity. Checking the parity of the binary string. Example input: 0 0 0 1 1 > # # , example
output: * * * * * 0 # # . We define the length of the problem to be the number of the digits,
set T (the number of steps needed) to be the same as the length, and train with length [1, 20).

Copy (with repeated tokens). Copying the binary string. Example input: 1 0 1 > # # # # ,
example output: * * * 1 0 1 # # . We define the length of the problem to be the number of
the binary digits to copy, set T to be the same as the problem length, and train with length [1, 20).
It has been shown that copy with unique tokens could be easily solved by inductive head (Olsson
et al., 2022), but copy with repeated tokens (e.g., binary) does not length-generalize with vanilla NTP
training (Zhou et al., 2024a).

Binary Addition. Performing binary addition of two binary numbers with the same number of
digits, and the output has one more digit (without removing leading 0 if it appears). Example input:
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Figure 4: Length Generalization Performance. Our looped Transformer model with adaptive depth generalized
better than NTP methods across studied tasks, including the variants with pause tokens and weight-tied layers.
The vertical dashed line indicates the maximum training length.

1 0 + 1 1 > # # # , example output: * * * * * 1 0 1 # # . We highlight that we do
not reverse the output like recent works (Lee et al., 2024; McLeish et al., 2024; Zhou et al., 2024b).
We define the length of the problem to be the number of digits to be added, set T to be the same
as the problem length, and train with length [1, 20). It has been shown that binary addition without
index hint is hard to generalize in vanilla NTP (Zhou et al., 2024a).

Binary Sum. Calculating the sum of the binary string in the binary form (in reversed order). Example
input: 1 0 1 1 > # # # # , example output: * * * * 1 1 # # # . We define the length
of the problem to be the number of binary digits to be added, set T to be the same as the problem
length, and train with length [1, 20).

Binary Multiplication. Multiplying two binary numbers, while the first number has up to two
digits. The output is in reversed order and the length is the sum of the lengths of two numbers,
without removing leading 0. Example input: 1 1 × 1 1 0 > # # # # # , example output:

* * * * * * 0 1 0 0 1 0 # . We define the problem length to be the length of the second
number, and set T to be the product of the lengths of two numbers, and train with length [1, 12).

Unique Set. Calculating the unique set with the first occurrence order with an alphabet of 50 tokens.
Example input: 1 4 2 2 4 3 > # # # # # , example output: * * * * * * 1 4 2 3 # # .
We define the length of the problem to be the number of digits to be calculated, set T to be the same
as problem length, and train with length [1, 20).

6.1.2 BASELINE METHODS

Vanilla NTP. We use vanilla next-token prediction as a baseline, referred to as “NTP” in Figure 4. To
ensure that the baseline method uses a maximum effective depth comparable to ours during training,
we train the transformer model with a depth 20 times the depth of the looped block in our approach.

NTP with pause tokens. Training and inference with pause tokens (Goyal et al., 2023) is a way to
implicitly learn implicit CoT steps without CoT data by enabling extra compute pathways before
outputting the answer in NTP. We use it as a baseline with the same depth as in vanilla NTP, referred to
as “NTP-Pause” in Figure 4. We include a visual illustration of NTP-Pause in Figure 7 in Appendix C.

NTP with weight-tied layers. Using weight-tied layers but with a fixed number of overall depths in
NTP is also shown to improve the performance in McLeish et al. (2024). Here we fix the number of
looped steps as 20, use the same depth as the decoder block of our looped model, and train the model
with NTP as another baseline which is referred to as “NTP-Loop” in Figure 4.
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6.1.3 TRAINING AND EVALUATION SETUP

For training, we use a decoder-only GPT-2 architecture (Radford et al., 2019). We adopt a curriculum
learning strategy for all methods that starts from the smallest length and incrementally increases the
length during training till it reaches the maximum length as in Garg et al. (2022).

For evaluation, we measure the exact match accuracy for the whole output sequence. For our looped
inference, we test two possible stopping criteria discussed in Section 4.3: 1) Oracle: Adopt the same
rule when generating the dataset as the number of steps to perform, 2) Maximum confidence: Run a
maximum number of steps, and choose the step using Equation (2)9. We report test results from 1) in
Section 6.2 and 6.3, and we also find 2) to be an effective stopping criterion in Section 6.4.

Full details of training and evaluation are in Appendix F.

6.2 LENGTH GENERALIZATION RESULTS

We present the generalization performance on various reasoning tasks in Figure 4.

Looped Transformers help with length generalization. Our looped training significantly improves
the length generalization performance. For example, for Parity, it can generalize to more than 50
digits near perfectly10 when only trained with up to 20 digits. Moreover, for tasks like addition
and copy, where the next token prediction failed when tested on maximum training length +10, our
looped model can still perform nearly perfectly. Note that the models are only trained with a relatively
small number of lengths, but generalize surprisingly well.

Variants of NTP could improve generalization but not as effectively as our adaptive-depth model.
Compared with vanilla NTP, we observe that NTP-Loop could lead to improved generalization in tasks
like Addition, Copy and Multiplication. Similarly, NTP-pause could introduce slight improvement in
Parity and Unique Set. However, they all fall behind compared with our method. Besides, NTP-Loop
suffers from lower in-distribution accuracy in Parity, possibly from the reason that using a fixed-depth
model with weight-tied layers for NTP with all lengths might be too constrained for the task.

6.3 ABLATION STUDIES

In Section 6.2, we compare with NTP baselines while the efficacy of components in our architecture
design remains unclear. In this section, we compare with FAP variants of our model in Figure 6
(Appendix B): “FAP-Loop-Adaptive-WO” indicates our method but without input injection; “FAP-
Pause” indicates FAP with pause tokens11; “FAP” indicates vanilla FAP without weight-tied layers
and adaptive depths.

Effect of input injection. We observe the generalization performance with input injection is generally
better than without it, which aligns with the findings in Bai et al. (2019) and Yang et al. (2024). The
effect of input injection is more visible in tasks like Addition, Binary Sum, and Unique Set.

Comparison with pause tokens and vanilla FAP. Training with pause tokens in FAP could boost
the generalization performance compared to vanilla FAP, but not as effective as our method with
looped steps and adaptive depth. As discussed in Goyal et al. (2023), pause tokens mainly introduce
parallel but not sequential compute, which is less powerful than adaptive depth. Besides, we find
worse in-distribution accuracy for both FAP and FAP-Pause in Addition, which mainly comes from
the difficulty in training a deep model (20× the depths of the decoder block used in the looped model)
in FAP. It further highlights the importance of supervision with variant depths used in our training.

6.4 THE STOPPING CRITERION AND VISUALIZATIONS

In this section, we visualize the accuracy and the cross-entropy loss with respect to the decoded
output in each iterative step across tasks in Figure 5, with the test length to be the maximum length in
Figure 4. We also provide more visualizations from other test lengths in Appendix D. The vertical
lines in Figure 5 are chosen based on the full test set using Equation 2 with B = Ntest given the
specific length. We also include the full test results both from B = 1 and B = Ntest respectively in
Figure 9 in Appendix D.

9Another option is to set a threshold for the cross-entropy loss and stop when the threshold is first met. This
will also succeed if the maximum confidence rule works.

10It still maintains accuracy higher than 0.95 when tested with 100 digits, which is not included in the graph.
11Visual illustration of FAP-Pause is in Figure 8 in Appendix C.
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Figure 5: Stopping criterion visualizations. Plot of the stopping criterion on the test set. The vertical line
indicates the step chosen from Equation (2) (where B = Ntest equals the size of the test set) within the step
range shown in the plots. The accuracy is on the full test set. The chosen steps have accuracy ≈ 1 across tasks.

Convergence in Addition, Copy, Multiplication, and Unique Set. We notice that for Addition,
Copy, Multiplication, and Unique Set, the looped model somehow learns to converge for a certain
number of steps after solving the task, even though we do not explicitly train the model to converge.
The loss curves for these tasks are also smoother than those without convergence behaviors. We also
notice that such convergence also affects the performance of the per-sample-based stopping criterion
in Figure 9 (Appendix D): the per-sample stopping criterion performs almost as well as when using
B = Ntest to decide for converging tasks, but the performance is worse in non-converging tasks. This
could also be explained by Figure 5 since the converging tasks are more tolerant of when to stop.

The maximum confidence stopping criterion chooses the step with near-perfect accuracy when
B = Ntest. In Figure 5, the cross-entropy loss reaches the lowest when the generalization performance
is near perfect, which indicates the maximum confidence rule chooses the right time to exit. By
training with the pre-defined number of iterations in the loop, we learn both the length-generalizable
iterative steps and when to stop, which is important for looped models.

7 LIMITATIONS AND CONCLUSION

Our current definition of n-RASP-L does not support tasks that require multiple loops followed
by each other. Thus, one important future direction would be extending our current definition to
support multiple loops and identifying a larger class of tasks that can be implemented only with
multiple loops but not with a single loop. For training, direct looped training could be computationally
demanding when the number of looped steps is too large. A possible workaround for more efficient
training could be stopping the gradient tracking for earlier steps like Clark et al. (2023), but there
might be a trade-off in performance and computation. We only train the looped Transformers for a
limited number of steps and lengths due to a lack of computing resources. With more diverse training
data, the looped model has the potential to generalize to even longer test lengths. We use NoPE
for simplicity, and an orthogonal direction is to use more delicate positional embedding to further
improve length generalization performance. Moreover, our step-dependent supervision requires the
ground-truth number of steps in the training data, which is an additional requirement compared with
normal end-to-end training. However, we still require fewer assumptions than CoT training.

In conclusion, we show that n-RASP-L problems can be learned by looped Transformer with step-
dependent supervision on the final answer, and can be applied with an adaptive number of steps
during inference time to improve generalization. Note that n-RASP-L, as a challenging algorithmic
problem set, could cover more challenging reasoning problems than presented in the paper, and we
believe that our method has the potential to generalize to more challenging tasks.
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A n-RASP-L PROGRAMS

Here we provide the n-RASP-L programs for our Parity, Addition and Copy tasks in Listings 1, 2, 3.
We also present the RASP-L library functions we use in Listing 4, which is partially taken from Zhou
et al. (2024a).

# Input example: 1 1 0 1 > # # #
# Output example: * * * * 1 # # #
# * indicates ignored token, > is EOQ, and # is EOS.

def parity_step(partial_ans_seq, seq):
# align the last digit with the answer location
seq = shift_right(seq, 1)
# calculate XOR
partial_ans_seq = (partial_ans_seq | seq) \
& (~(partial_ans_seq & seq))
return partial_ans_seq, seq

def parity_loop(seq, num_step):
# get the question in the prompt
prompt_mask = 1-has_seen(seq, full(seq, EOQ))
seq = mask(seq, prompt_mask)
# init answer seq with 0
partial_ans_seq = full(seq, 0)
# generate EOS seq after EOQ
end_seq = where(prompt_mask==1, full(seq, 0), full(seq, EOS))
# perform parity steps
for i in range(num_step):

partial_ans_seq, seq = parity_step(partial_ans_seq, seq)
# get answer with EOS
ans_seq = partial_ans_seq
end_seq = shift_right(end_seq, 1)
ans_seq = where(end_seq == EOS, end_seq, ans_seq)
return ans_seq

Listing 1: Parity.

# Input example: 0 1 0 1 1 > # # # # # #
# Output example: * * * * * 0 1 0 1 1 # #
# * indicates ignored token, > is EOQ, and # is EOS.

def copy_step(seq, end_seq):
seq = shift_right(seq, 1)
end_seq = shift_right(end_seq, 1)
return seq, end_seq

def copy_loop(seq, num_step):
# generate EOS seq after EOQ
end_mask = has_seen(seq, full(seq, EOQ))
end_seq = where(end_mask==0, full(seq, 0), full(seq, EOS))
# perform copy steps
for i in range(num_step):

seq, end_seq = copy_step(seq, end_seq)
# get answer with EOS
seq = where(end_seq == EOS, end_seq, seq)
return seq

Listing 2: Copy.

# Input example: 0 0 1 + 1 1 1 > # # # # # #
# Output example: * * * * * * * 1 0 0 0 # # #
# * indicates ignored token, > is EOQ, and # is EOS.

def addition_step(seq1, seq2, end_seq):
end_seq = shift_right(end_seq, 1)
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seq1 = np.array(seq1, dtype = bool)
seq2 = np.array(seq2, dtype = bool)
carry_on = seq1 & seq2
# A XOR B = (A OR B) AND (NOT (A AND B))
in_place = ((seq1 | seq2) & (~(seq1 & seq2)))
in_place = shift_right(in_place, 1)
seq1 = np.array(in_place, dtype = int)
seq2 = np.array(carry_on, dtype = int)
return seq1, seq2, end_seq

def addition_preprocess(seq):
# generate EOS seq after EOQ
end_mask = has_seen(seq, full(seq, EOQ))
end_seq = where(end_mask==0, full(seq, 0), full(seq, EOS))
# generate masks for the first and second summands
seen_tok0 = has_seen(seq, full(seq, ADD_SIGN))
seen_tok1 = has_seen(seq, full(seq, EOQ))
mask1 = ~seen_tok0
mask2 = seen_tok0 & (~seen_tok1)
mask2 = mask2 & shift_right(mask2, 1)
# get the first and second summands
seq1 = mask(seq, mask1)
seq2 = mask(seq, mask2)
# align the first summand with the second
induct_num1 = cumsum(mask1)
induct_num2 = cumsum(mask2)
target_index = firsts(induct_num1, induct_num2, default = 0)
seq1 = index_select(seq1, target_index)
seq1 = mask(seq1, mask2)
return seq1, seq2, end_seq

def addition_loop(seq, num_step):
seq1, seq2, end_seq = addition_preprocess(seq)
# perform addition steps
for i in range(num_step):

seq1, seq2, end_seq = addition_step(seq1, seq2, end_seq)
# get answer with EOS
ans = seq1
ans = where(end_seq == EOS, end_seq, ans)
return ans

Listing 3: Addition (in forward order).

import numpy as np

def full(x, const):
return np.full_like(x, const, dtype=int)

def indices(x):
return np.arange(len(x), dtype=int)

def select(k, q, pred, causal=True):
# compute attention matrix
s = len(k)
A = np.zeros((s, s), dtype=bool)
for qi in range(s):
for kj in (range(qi+1) if causal else range(s)): # k_index <= q_index
if causal

A[qi, kj] = pred(k[kj], q[qi])
return A

def sel_width(A):
return np.dot(A, np.ones(len(A))).astype(int)

def aggr_mean(A, v, default=0):
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out = np.dot(A, v)
norm = sel_width(A)
out = np.divide(out, norm, out=np.full_like(v, default,dtype=float),
where=(norm != 0))
return out.astype(int)

def kqv(k, q, v, pred, default=0,):
return aggr_mean(select(k, q, pred), v, default=default)

def shift_right(x, n, default = 0):
# shifts sequence x to the right by n positions (other positions
filled with default)
return kqv(indices(x)+n, indices(x), x, equals, default = default)

def where(condition, x_if, y_else):
# equivalent to np.where(condition, x_if, y_else)
x_masked = seq_map(x_if, condition, lambda x, m: x if m else 0)
y_masked = seq_map(y_else, condition, lambda y, m: y if not m else 0)
return seq_map(x_masked, y_masked, lambda x, y: x if y == 0 else y)

def has_seen(x, queries):
return kqv(x, queries, full(x, 1), equals, default=0)

def mask(x, bool_mask, mask_val=0):
# equivalent to x*bool_mask + default*(~bool_mask)
return where(bool_mask, x, full(x, mask_val))

Listing 4: Library functions from Zhou et al. (2024a).

B ABLATION STUDY

We present the generalization performances of our method compared with FAP variants in Section 6.3.
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Figure 6: Ablation study. Our looped Transformer model with adaptive depth generalized better than FAP
variants across studied tasks, including the variant of our method without input injection, and FAP with pause
tokens. The vertical dashed line indicates the maximum training length.

C VISUALIZATION OF USING PAUSE TOKENS IN NTP AND FAP

We visualize NTP-Pause in Figure 7 and FAP-Pause in Figure 8 respectively, where we add a fixed
number of pause tokens (3 in the figures, 20 in our experiments) before outputting the final answer
during both training and inference.
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Figure 7: NTP-Pause visualization. Examples are from the Copy task. “...” indicates the pause token.
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Figure 8: FAP-Pause visualization. Examples are from the Copy task. “...” indicates the pause token.

D (MORE) VISUALIZATIONS OF THE STOPPING CRITERION

Here we present the length generalization results in Fugire 9 with different stopping criteria: 1)
Oracle 2) Maximum confidence based on the full test set using Equation (2) with B = Ntest given the
specific test length and 3) Maxumum confidence using Equation (2) where B = 1 is calculated per
sample (we still calculate the accuracy across the full test set). For tasks with converging behaviors
(Addition, Copy, Multiplication, Unique Set), per sampler stopping criterion works almost as well
as using B = Ntest, while for tasks without the converging behavior (Parity and Binary Sum), per
sampler stopping criterion does not work as well as using B = Ntest.
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Figure 9: Effect of different stopping criteria. “FAP-Looped-Adaptive” indicates stopping with the pre-defined
number of steps; “FAP-Looped-Adaptive-Batch” indicates stopping with Equation (2) where B is the size of the
test set; “FAP-Looped-Adaptive-Instance” indicates the number of steps is chosen per sample, with Equation (2)
where B = 1 (the accuracy is still calculated across the dataset).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We present more visualization of the stopping criterion in Figure 10 when tested with different lengths
from Section 6.4. We can still see similar patterns of convergence in Addition, Copy, Multiplication,
and Unique Set. Moreover, the maximum confidence stopping criterion chooses the step with
near-perfect accuracy.
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Figure 10: Stopping criterion visualizations. Plot of the stopping criterion. The vertical line indicates the step
chosen from Equation (2) within the range shown in the plots. The chosen steps have accuracy ≈ 1 across tasks.

E INFERENCE TIME COMPLEXITY

Here we present the inference time complexity for our method, vanilla NTP and vanilla FAP.

Assume that the maximum length of the training set is n, the number of steps needed is T (n), and
the number of layers in each step is k. Assume that NTP and FAP are using a fixed number of layers
C. And we test on length n′.

For the first stopping criterion where we know a(n′), our inference time would be O(ka(n′)n′2), and
NTP (with KV cache) and FAP will be O(Cn′2). For the second criterion, we need to specify the
maximum number of steps in order to find the step with maximum confidence. So our inference time
would be O(kN ′n′2), where N ′ is the maximum number of steps.

In NTP and FAP, we use some C ≈ kT (n) in our experiments such that they use similar compute
during training. Our inference time is then slightly longer than NTP with KV cache and FAP since
we use more steps than the fixed-depth models.

Moreover, we provide the inference time (in seconds) in Table 2, where we test on length 50 for Parity
with batch size 64. Ours (1) and (2) indicate our first and the second stopping criterion respectively.

Table 2: Inference time from Parity.

Ours (1) Ours (2) FAP FAP-pause NTP NTP-pause NTP (weight-tied)
0.1967s 0.2190s 0.1117s 0.1262s 0.1229s 0.1315s 0.1527s

F EXPERIMENTAL DETAILS

We use the decoder-only GPT-2 model with NoPE, 8 heads, 256 embedding dimensions as the basic
block for the looped iterations with task specific depth in Table 3. We convert the input to the
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embedding space, perform the loop in the embedding space, and decode the final output after the loop
stops. We use a curriculum to gradually increase the maximum training length (see Table 3 for the
specific setup for each task). We use AdamW optimizer with a cosine learning rate decay schedule
from 10−4 to 0 after reaching the maximum training length, and train up to 100K gradient steps
with batch size 64 for all tasks. For the training distribution, we adopt the online training scheme
following Zhou et al. (2024a) where each batch is i.i.d. sampled. Given any length, the probability of
each possible character is evenly distributed instead of from a finite train set to avoid over-fitting,
and the length is also evenly distributed. For input injection, we use a similar technique as Yang
et al. (2024) that adds the original input embedding to each looped block as part of the input. For
vanilla NTP, we adopt the same training scheme, but trained with autoregressive loss instead. For
NTP-Pause and FAP-Pause, we add 20 pause tokens before outputting the final answer. Each training
run takes about 4-6h on NVIDIA A100 40 GB GPU, depending on the maximum training lengths of
the problems.

For evaluation, we use 100× the batch size number of samples in Figure 4, 6, 5, 10, and report the
mean exact match accuracy and standard error from five training runs with different random seeds.

Table 3: Task-specific experimental hyperparameters. “Incremental Interval” denotes the number of training
steps between successive increases in the input sequence length.

Task Depth of the Decoder Block Incremental Interval
Parity 1 1000
Copy 2 1000
Addition 3 1600
Multiplication 4 500
Binary Sum 3 1000
Unique Set 3 1000

19


	Introduction
	Background
	RASP-L
	Next-token prediction and full-answer prediction

	-RASP-L
	Learning -RASP-L problems with looped Transformers
	End-to-end supervised data without intermediate step supervision
	Looped training with step supervision
	Architecture of the looped Transformers
	Training algorithm

	Adaptive inference

	Related work
	Experiments
	Experimental setup
	Tasks
	Baseline methods
	Training and evaluation setup

	Length generalization results
	Ablation studies
	The stopping criterion and visualizations

	Limitations and conclusion
	-RASP-L programs
	Ablation study
	Visualization of using pause tokens in NTP and FAP
	(More) visualizations of the stopping criterion
	Inference time complexity
	Experimental details

