
Designing Knowledge-Based Rule-Based Agents
in Schnapsen: Leveraging Human Winning

Strategies

VU Amsterdam

No Institute Given

Abstract. This research focuses on developing a rule-based computer
bot for the Schnapsen game, a trick-taking card game known for its
strategic depth. In contrast to well-studied board games like chess and
Go, Schnapsen poses unique challenges due to incomplete information
and the influence of chance events. Leveraging insights from human
strategies, we construct a rule-based system for the bot, with a particular
focus on moderately aggressive gameplay. The experiment setup involves
measuring the bot’s performance against random, rdeep, and ml bots,
with a sample of 1000 plays for each opponent. The results showcase the
bot’s competitive winning rates, providing insights into the efficacy of
rule-based strategies in the context of Schnapsen.

Keywords: Rule-based Agent · Knowledge-based Agent · Human Strate-
gies · Computer poker · Intelligenet Agent keyword.

1 Introduction

Developing computer players for adversarial strategy games has been a focal
point of modern AI research for many years. Beginning with A. L. Samuel’s
world’s first self-learning computer program in 1959, employing minimax search
and alpha-beta pruning to play checkers, research for construct intelligent play-
ers for adversial games have produced notable success stories [1]. From Deep
Blue defeating reigning world champion Garry Kasparov in chess in 1997[2] to
the highly publicised AlphaGo’s triumph over the human European Go cham-
pion by 5 games to 0 through embedded neural networks [3], computers have
showcased their power to challenge human supremacy in various games, includ-
ing chess, Tic-Tac-Toe, Hex, and Go.
However, despite these famous 2-player, zero-sum board games, card games such
as poker and bridge can be more challenging for AI researchers. A critical dif-
ference between poker and those well-studied board games like Chess and Go
is that the actions and states of poker are not complete for players (i.e. the in-
ability to see opponents’ hands), unlike the complete information provided by
the fully observable board of chess-like games. Moreover, the existence of chance
events in poker games — random private and public cards that are dealt each
hand, will introduce significant uncertainty. While agents for perfect information

games mostly rely on tree search, the imperfect information nature of poker will
make similar search techniques computationally more expensive.
From the vast majority of previous research on poker-playing agents, agent-
building approaches can be categorized into 1) knowledge-based systems, 2)
Monte-Carlo simulations, 3) game theoretic principles, and 4) adaptive imper-
fect information game trees [4]. However, developing high-performance AI agents
often means the use of sophisticated methods (e.g., deep learning, neural net-
works) that involve computationally complex tasks far away from the knowledge
we’ve learned.
In our research, we aim to focus on the side we naturally master: human logic and
strategies. We include strategies and specific cases from domain experts to con-
struct a rule-based computer bot. Strategies and tips for playing the Schnapsen
game from experts will be condensed into a single winning strategy to provide
guidelines for the agent. Literature on poker strategies already shows that ag-
gressive strategies usually outperform passive ones [5], so the overall strategy is
formulated in a moderately aggressive way.
The subsequent sections of the paper are structured as follows: Section 2 de-
scribes the rules of the Schnapsen game and explores related works on rule-based
agents. Sections 3 and 4 outline our research question and experiment setup. Sec-
tions 5 present and discuss our experimental results. Finally, in Sections 6 and7,
we offer conclusions and suggest possible future work.

2 Background and related work

2.1 The Schnapsen game

introduction to the game Schnapsen is a well-known trick-taking card game,
which is popular in Bavaria, Austria, Hungary, and areas of the former Austro-
Hungarian Empire. As the national card game of Austria and Hungary, it blends
elements from both Point Trick and Trick-and-Draw card game types and known
for its strategic depth. The game is mostly about earning points by winning
tricks with high-value cards and making ”marriages” – pairs of kings and queens.
Players use a trick-and-draw approach, which gives them flexibility in how they
play their cards. They don’t need to follow suit until the talon (the pile of
remaining cards) runs out or closed, and this period is called phase 1. Once the
talon is closed, the game will enter phase 2 and becomes stricter about following
suit and leading tricks. The goal of the game is to reach 66 points, and players
have to keep track of their scores in their heads as using a scoresheet isn’t allowed.
If you miscalculate your score, you might face penalties or lose by mistake, which
adds an element of challenge. Schnapsen is also a game of incomplete information,
which means players can’t see the entire state of the game. It creates a lot
of uncertainties. With billions of possible situations, players must constantly
adjust their strategies based on the limited information they have. This makes
Schnapsen a game that’s both mentally challenging and continuously engaging.

Rules of the game Schnapsen is a trick taking game that needs two players. A
game consists of many deals and a single deal is won by the first player who man-
ages to collect 66 points. In each deal, players collect cards by winning ‘tricks’.
And the points can be obtained through each collected card and declaring a
marriage which is a king and a queen in the same suit. Up to 3 points are able
to be obtained in each deal depending on the trick points at the end of the deal.
And the player who wins 7 points from deals wins the whole game. Schnapsen
is played with 20 cards(5 cards in each suit). The rank and value are listed as
follows: ACE–11, TEN–10, KING–4, QUEEN–3, JACK–2.

2.2 Knowledge-based Intelligent Agent

Rule-based The rule-based system utilises a vast array of predefined, human-
crafted rules to facilitate decision-making and problem-solving in specific do-
mains. Mimicking human decision processes, it applies these rules to relevant
conditions and data to make decisions.[4] Typically, it uses an ’if-then’ structure
as its logical rules: ’if’ means the condition or criteria, while ’then’ indicates the
consequent action. While highly effective in domains where expert knowledge
can be distinctly formulated as rules, its efficacy is limited the rule set’s com-
prehensiveness and accuracy, and it lacks the capacity to adapt or ’learn’ from
new data.

Formula based The formula-based system, unlike the rule-based systems that
operate on predefined rules, takes a border range of input data into account and
uses mathematical formulas to calculate the probabilities of different results. The
formula-based system is more generalised so it can be used in a wider range of
situations by interpreting current state. But the formula-based system also has
some limitations. The decision making progress involves intensive computations
especially in complex situations. This can lead to high computational resource
demands and may not be practical in real-time gaming environments where quick
decisions are needed.

Cased-based reasoning agent The Case-based reasoning agent is another
approach which uses past experience to analyse, understand and solve new prob-
lems. It makes decisions and predictions depending on the data of past cases.
The Case-based reasoning agent has the ability to improve overtime by learn-
ing new cases. Also, it can be applied to various domains and problems since it
does not rely on domain-specific rules. However, it requires relevant cases which
could be difficult to find when the database is large. And how to reuse and adapt
solutions from the past cases is also challenging.

Choice of the project For this project, we choose the rule-based agent. First,
a rule-based system is relatively straightforward to implement. And due to the
fact that this project is required to be finished in a short time, this approach is

more suitable. Second, such an approach needs low computational resources. In
that case, it is possible to make real-time responses in the games which is crucial.
Additionally, the rule-based system is easy to make adjustments and maintain
because the structure of the program is relatively simple.

3 Research question

Our research question is: How can the incorporation of human winning strategies
help create a knowledge-based, rule-based agent in the Schnapsen game?

4 Experiment setup

4.1 Introduction to strategies

Poker-winning strategies typically fall into two categories: specific instances that
guide optimal reactions in particular situations and overarching principles that
dictate behavior across a multitude of games.. Considering the time constraint
of the project, we will exclude case-specific strategies and only focused on com-
bining strategies and tips into a unified winning approach.

Typically, pokers strategies can be classified based on several features, such
as tight and loose. One important feature in describing a player’s strategy is
agressive or defensive. In the first phase of schnapsen, different levels of strategies
can be conclude as follows:

1. Aggressive: Play trump, claim marriage when you have to win maximum
points

2. Neutral: Keep trump, use the non-trump. Claim marriage if you have.
3. Defensive: Keep trump and marriage, use non-trump JQK.
Many research have shown that aggressive strategies usually dominate their

passive counterparts. [The Dynamics of Human Behaviour in Poker]. Conse-
quently, our focus will center on strategies that can be seen as rational and
aggressive.

4.2 Rule-based systems

We control the rules with four primary sets of conditions, each comprising several
sub-rules. The sub-rules will be selectively applied to the bot depending on
whether the bot is in phase 1 or 2 of the game, and whether the bot is lead or
not. When the conditions are met, corresponding sub-rules will be applied. The
details of sub-rules are outlined below:

5 Experiment results

The bot is set to play against random, rdeep, and ml bots, keeping track of wins
and losses. We chose a sample of 1000, meaning our bot will play against these

Fig. 1. Flowchart of Phase1

Fig. 2. Flowchart of Phase2

Table 1. Bot Decision Rules

Condition Sub-rules

Phase 1 and Lead

1. If there is a marriage: claim marriage if trump exchange is available, do trump exchange.
2. If King or Queen cards in hand can claim marriage with unseen cards, keep the King or Queen.
3. If there is trump jack on hand, play trump jack.
4. If there is no trump jack, play the card with the smallest rank.

Phase 1 and Follow
1. If King or Queen cards in hand can claim marriage with unseen cards, keep the King or Queen.
2. If opponent plays trump: play card with smallest rank.
3. If opponent plays nontrump: if available, play the largest winning card, else play card with smallest rank.

Phase 2 and Lead
1. If there is a marriage: claim marriage.
2. If have trump card in hand: play largest trump card.
3. If no trump card in hand: 1) if a card can beat all opponent cards, play the card; 2) else play smallest nontrump card.

Phase 2 and Follow
1. If opponent plays trump: play card with smallest rank.
2. If opponent plays nontrump: if available, play the largest winning card, else play card with smallest rank.

bots 1000 times, and then we calculate the win rate. The RuleBot demonstrates
a winning performance against different opponents better than predicted. Its
winning rate over the randbot stands 68.2, reflecting 682 victories compared
to 318 losses. When runing against the rdeep bot, RuleBot has a winning rate
of 52.3(523 wins against 477 losses). When facing mlbot, RuleBot achieving a
winning rate of 37.7 (377 wins and 623 losses).

The code for our bot is constructed upon the Schnapsen framework, which
incorporates game rules, maintains game states, and furnishes intelligent agents
with a set of allowable actions.

6 Conclusion

In conclusion, our research presents a rule-based card-playing agent for the
Schnapsen game, drawing inspiration from human strategies. The bot demon-
strates competitive performance against different opponents, highlighting the
potential of rule-based approaches in complex and uncertain gaming environ-
ments. Future work should explore strategies against human players, consider
psychological gameplay elements, and delve into game theory. Additionally, in-
vestigating alternative methods, such as machine learning for adaptive agents,
could enhance the bot’s capabilities in tackling the complexity of the Schnapsen
strategy.

7 Future work

In future work, it is essential to carefully consider strategies that play against
human players. While strategies for 2-layer, non-sum games like chess, with
perfect information and optimal solutions, may perform well, strategies may
become intricate in the face of significant uncertainty arising from chance events.
Decision-making in such scenarios requires consideration of numerous factors.

Additionally, some human strategies involve psychological gameplay against
opponents. Random bots, which do not take into account the opponent’s card
distribution, may not effectively measure performance. Therefore, challenging
expert human players could be a more optimal choice.

Many strategies delve into complex game theory, which might pose challenges
for comprehension. Exploring and understanding these intricate game-theoretic
elements would be a domain for future investigation.

Given the complexity of the Schnapsen strategy, it may not be ideal for
rule-based approaches. Investigating alternative methods such as learning agents
using machine learning or other adaptive techniques, could be a fruitful direction
for further research.

References

1. Gio Wiederhold and John McCarthy. Arthur samuel: Pioneer in machine learning.
IBM Journal of Research and Development, 36(3):329–331, 1992.

2. Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1-2):57–83, 2002.

3. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

4. Jonathan Rubin and Ian Watson. Computer poker: A review. Artificial Intelligence,
175(5):958–987, 2011. Special Review Issue.

5. Marc Ponsen, Karl Tuyls, Steven Dejong, Jan Ramon, Tom Croonenborghs, and
Kurt Driessens. The dynamics of human behaviour in poker. In Proceedings of
the 20th Belgian-Dutch Conference on Artificial Intelligence, pages 225–232. Uni-
versiteit Twente, 2008.

References

References

1. Gio Wiederhold and John McCarthy. Arthur samuel: Pioneer in machine learn-
ing. IBM Journal of Research and Development, 36(3):329–331, 1992.

2. Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artifi-
cial intelligence, 134(1-2):57–83, 2002.

3. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

4. Jonathan Rubin and Ian Watson. Computer poker: A review. Artificial Intelli-
gence, 175(5):958–987, 2011. Special Review Issue.

5. Marc Ponsen, Karl Tuyls, Steven Dejong, Jan Ramon, Tom Croonenborghs, and
Kurt Driessens. The dynamics of human behaviour in poker. In Proceedings
of the 20th Belgian-Dutch Conference on Artificial Intelligence, pages 225–232.
Universiteit Twente, 2008.

A Appendix

A.1 Code of RuleBot

Listing 1.1. rulebot.py

from schnapsen . game import Bot , Move , P layerPerspect ive , GamePhase , RegularMove , Marriage
from schnapsen . game import SchnapsenTrickScorer
from schnapsen . deck import Card , Suit , Rank

c l a s s RuleBot (Bot) :
de f get move (s e l f , p e r s p e c t i v e : P layerPerspect ive , leader move : Move | None) −> Move :

i f p e r sp e c t i v e . ge t phase () == GamePhase .ONE:
i f p e r sp e c t i v e . am i l e ade r () :

r e turn s e l f . phase1 l ead (pe r spec t i v e ,)
e l s e :

r e turn s e l f . pha s e1 f o l l ow (pe r spec t i v e , leader move)
e l s e :

i f p e r sp e c t i v e . am i l e ade r () :
r e turn s e l f . phase2 l ead (p e r sp e c t i v e)

e l s e :
r e turn s e l f . pha s e2 f o l l ow (pe r spec t i v e , leader move)

re turn pe r sp e c t i v e . va l id moves [0]

de f phase1 l ead (s e l f , p e r s p e c t i v e : P laye rPer spec t i ve) −> Move :
’ ’ ’
I f the re i s a marraige : c la im marriage . I f trump exchange i s ava i l ab l e , do trump exchange .
I f i t ’ s p o s s i b l e f o r the King or Queen cards in hand to cla im marriage with unseen cards , keep the King or Queen .

I f the re i s trump jack on hand , play trump jack .
I f the re i s no trump jack , play the card with the sma l l e s t rank .

’ ’ ’
hand = pe r sp e c t i v e . get hand ()
va l id moves = pe r sp e c t i v e . va l id moves ()
known cards = pe r sp e c t i v e . get opponent won cards () . c a rd s + pe r sp e c t i v e . get known cards o f opponent hand () . c a rd s + pe r sp e c t i v e . get won cards () . c a rd s
marr iage = []
f o r card1 in hand :

f o r card2 in hand :
i f card1 . s u i t == card2 . s u i t and card1 . rank == Rank .KING and card2 . rank == Rank .QUEEN:

return Marriage (card2 , card1)
f o r move in val id moves :

i f move . i s t rump exchange () :
r e turn move . as trump exchange ()

f i l t e r e d mov e s = []
f o r mycard in hand :

f o r card in known cards :
i f (mycard . Rank == Rank .QUEEN or mycard . Rank == Rank .KING)\

and (mycard . Su i t == card . Su i t and mycard . Rank == card . Rank) :

cont inue
e l s e :

f i l t e r e d mov e s . append (RegularMove (mycard))
break

f o r move in f i l t e r e d mov e s :
i f move . s u i t == pe r sp e c t i v e . g e t t rump su i t () and move . card . rank == Rank .JACK:

return move
cards = [move . card f o r move in f i l t e r e d mov e s]
cards ranked = sor t ed (cards , key=lambda c : SchnapsenTrickScorer () . r ank t o po i n t s (c . rank))
re turn Move(cards ranked [0])
r e turn pe r sp e c t i v e . va l id moves ()

de f pha s e1 f o l l ow (s e l f , p e r s p e c t i v e : P layerPerspect ive , leader move : Move | None) −> Move :
”””
1 . I f i t ’ s p o s s i b l e f o r any King or Queen cards in hand to cla im marriage with unseen cards , keep the King or Queen .
2 . I f opponent play trump : play card with sma l l e s t rank .
3 . I f opponent play nontrump : i f ava i l ab l e , play the l a r g e s t card that i s ab le to win , e l s e play card with sma l l e s t rank .
”””
hands = pe r sp e c t i v e . get hand ()
va l id moves = pe r sp e c t i v e . va l id moves ()
known cards = pe r sp e c t i v e . get opponent won cards () . c a rd s + pe r sp e c t i v e . get known cards o f opponent hand () . c a rd s + pe r sp e c t i v e . get won cards () . c a rd s
f i l t e r e d mov e s = []
f o r mycard in hands : # ru l e 1

f o r card in known cards :
i f (mycard . rank == Rank .QUEEN or mycard . rank == Rank .KING)\

and (mycard . s u i t == card . s u i t and mycard . rank == card . rank) :
cont inue

e l s e :
f i l t e r e d mov e s . append (RegularMove (mycard))
break

cards = [move . card f o r move in f i l t e r e d mov e s]
cards ranked = sor t ed (cards , key=lambda c : SchnapsenTrickScorer () . r ank t o po i n t s (c . rank))
i f leader move . i s ma r r i a g e () :

i f leader move . under ly ing regu la r move () . card . s u i t == pe r sp e c t i v e . g e t t rump su i t () : # ru l e 2
re turn RegularMove (cards ranked [0])

e l i f leader move . card . s u i t == pe r sp e c t i v e . g e t t rump su i t () :
r e turn RegularMove (cards ranked [0])

e l s e : # ru l e 3
f o r card in r eve r s ed (cards ranked) :

i f card . rank . va lue > l eader move . card . rank . va lue :
r e turn RegularMove (card)

re turn RegularMove (cards ranked [0])
p e r sp e c t i v e . va l id moves () [0]

de f phase2 l ead (s e l f , p e r s p e c t i v e : P laye rPer spec t i ve) −> Move :
’ ’ ’
1 . I f the re i s a marr iage : c la im marriage .
2 . I f have trump card in hand : play l a r g e s t trump card
3 . I f no trump card in hand : 1) i f a card can beat the a l l cards the opponent holds , play the card ;

2) e l s e play the sma l l e s t nontrump card .
’ ’ ’
va l id moves = pe r sp e c t i v e . va l id moves ()
opponent hand = pe r sp e c t i v e . get opponent hand in phase two () . cards
so r t card in terms o f po in t s in decending order
cards = [move . card f o r move in va l id moves]
cards ranked = sor t ed (cards , key=lambda c : SchnapsenTrickScorer () . r ank t o po i n t s (c . rank) , r e v e r s e=True)
works f o r r u l e 1
f o r card1 in hand :

f o r card2 in hand :
i f card1 . s u i t == card2 . s u i t and card1 . rank == Rank .KING and card2 . rank == Rank .QUEEN:

return Marriage (card1 , card2)
f o r card in cards ranked : # works f o r r u l e 2

i f card . hand . i s t rump () :
r e turn RegularMove (card)

f o r card in cards ranked : # works f o r r u l e 3 , part 1
beat = False
beat = any (card . s u i t == oppcard . s u i t and card . rank . va lue > oppcard . rank . va lue f o r oppcard in opponent hand)
i f beat == True :

re turn RegularMove (card)
re turn RegularMove (cards ranked [−1]) # works f o r r u l e 3 , part 2
re turn pe r sp e c t i v e . va l id moves () [0]

de f pha s e2 f o l l ow (s e l f , p e r s p e c t i v e : P layerPerspect ive , leader move : Move | None) −> Move :
’ ’ ’
I f opponent play trump : play card with sma l l e s t rank .
I f opponent play nontrump : i f ava i l ab l e , play the l a r g e s t card that i s ab le to win , e l s e play card with sma l l e s t rank .
’ ’ ’
va l id moves = pe r sp e c t i v e . va l id moves ()
cards = [move . card f o r move in va l id moves]
cards ranked = sor t ed (cards , key=lambda c : SchnapsenTrickScorer () . r ank t o po i n t s (c . rank))
i f leader move . i s ma r r i a g e () :

i f leader move . under ly ing regu la r move () . card . s u i t == pe r sp e c t i v e . g e t t rump su i t () : # ru l e 2
re turn RegularMove (cards ranked [0])

e l i f leader move . card . s u i t == pe r sp e c t i v e . g e t t rump su i t () :
r e turn RegularMove (cards ranked [0])

e l s e : # ru l e 3
f o r card in r eve r s ed (cards ranked) :

i f card . s u i t == leader move . card . s u i t and card . rank > l eader move . card :
re turn RegularMove (card)

re turn RegularMove (cards ranked [0])
r e turn pe r sp e c t i v e . va l id moves () [0]

