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Abstract

We propose Topic-Activated Document Explo-001
ration (TADE), a hierarchical topic generation002
and label framework that uses large language003
models (LLMs) to dynamically extract docu-004
ment contents based on semantic relevance to005
specific topics. TADE presents a substantial de-006
parture from embedding-based clustering meth-007
ods for topic modeling which primarily pro-008
duce results that over-index on linguistic simi-009
larity compared to semantic similarity. When010
applied to large corpora, BERTopic-based ap-011
proaches often generate spurious topics with012
compound or overly narrow labels, making ob-013
jective, automated assessment of themes within014
a corpus error-prone and thus requiring substan-015
tial human intervention to ‘massage’ the results.016
By contrast, TADE’s LLM-based generation017
and refinement of topics eliminates such noisy018
topics through a semantic algorithm, resulting019
in topic sets with greater distinctness between020
different topics. Furthermore, TADE enables021
hierarchical exploration of themes through022
context-aware subtopic generation and assign-023
ment, providing a top-down approach that con-024
trasts with the bottom-up methodology typi-025
cally employed in BERT-based methods. Ex-026
perimental results show TADE outperforms tra-027
ditional BERT and LDA topic models in inter-028
pretability, achieving superior topic coherence,029
comparable topic diversity, and better distribu-030
tion balance.031

1 Introduction032

Topic modeling has been widely used for analyzing033

and organizing large text corpora. Abstractly, topic034

modeling aims to discover the underlying themes035

or topics that are present in a collection of docu-036

ments. Early probabilistic and matrix factorization-037

based methods(Blei et al., 2003; Deerwester et al.,038

1990; Hofmann, 2013) laid the groundwork for039

topic modeling by treating text as bag-of-words040

distributions. While hierarchical variants (Griffiths041

et al., 2003; Blei et al., 2010; Paisley et al., 2012)042

introduced layered structures to capture topic rela- 043

tionships, these classical approaches faced funda- 044

mental challenges with interpretability and context 045

preservation. 046

Neural approaches (Miao et al., 2016; Srivastava 047

and Sutton, 2017) began incorporating deep archi- 048

tectures to learn richer document representations 049

beyond simple word counts, enabling better capture 050

of semantic relationships. Later, with the advent 051

of transformer architectures (Vaswani et al., 2017), 052

methods like BERTopic (Grootendorst, 2022) lever- 053

aged contextual embeddings to model how word 054

meaning changes with context, achieving further 055

improvements in topic coherence and interpretabil- 056

ity over both classical and early neural approaches. 057

Despite these architectural advances, both classi- 058

cal topic models and more recent embedding-based 059

approaches struggle with semantic nuance and in- 060

terpretability (Chang et al., 2009; Lau et al., 2014). 061

Even with significant hyperparameter tuning, they 062

tend to produce topics based primarily on word 063

co-occurrence patterns rather than true semantic 064

relationships. This focus on linguistic similarity 065

rather than meaning leads to topics that may be 066

mathematically coherent but fail to capture the ac- 067

tual thematic structure of the documents. Moreover, 068

topic models generated using LDA and BERTopic 069

often require the user to pre-segment the corpus 070

or documents into chunks—with sizes that depend 071

on the nature of the corpus as well as the intended 072

analysis—in order to assign topics with some level 073

of utility/meaningfulness (Tang et al., 2014; Hoyle 074

et al., 2021). Combined with the over-emphasis on 075

linguistic similarity, such approaches often result 076

in the generation of spurious topics from text that 077

has been stripped of sufficient context and are thus 078

not typically representative of the document’s con- 079

tent. The uncanny quality of these topics can be a 080

significant barrier to the interpretability of the topic 081

model and furthermore undermine a user’s level of 082

confidence in the model’s results for those items 083
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which are correctly assigned, as they must consider084

the extent to which their results and the conclusions085

drawn thereby would have been changed if such086

dangling components would have been properly087

integrated (Boyd-Graber et al.).088

Recent advances in large language models089

(LLMs) (Brown et al., 2020; Raffel et al., 2019)090

offer a promising direction, evolving from early091

demonstrations of language understanding with092

GPT-3 (Brown et al., 2020) and PaLM (Chowdhery093

et al., 2022) to sophisticated interpretative capabil-094

ities in models like GPT-4 (Achiam et al., 2023),095

Claude (Anthropic, 2024), and Gemini (Google,096

2024), and more recently enhanced reasoning abil-097

ities demonstrated by models like OpenAI’s O1098

and DeepSeek’s R1. While these capabilities099

have largely remained untapped in topic modeling100

workflows—primarily relegated to generating topic101

labels from classical topic model outputs (Kojima102

et al., 2022; Pham et al., 2023) or other auxiliary103

tasks—the ability of LLMs to recognize latent pat-104

terns and semantic relationships enables a funda-105

mentally different approach through direct seman-106

tic interpretation rather than statistical clustering107

approaches.108

In this work, we introduce Topic-Activated Doc-109

ument Exploration (TADE), a framework that lever-110

ages LLMs to dynamically identify and extract111

topic-relevant content from documents. We de-112

scribe this approach in detail in Section 2. In Sec-113

tion 3, we present a comparison of TADE to LDA114

and BERTopic on the NewsGroups dataset and in115

Section 4, we provide a discussion on applications116

and comparison to recent efforts.117

2 Methodology118

In this paper, we introduce Topic-Activated Docu-119

ment Exploration (TADE), a framework that har-120

nesses the multifaceted power of LLMs in a staged,121

hierarchical process to provide a comprehensive122

assessment of the contents of complex corpora.123

TADE dynamically extracts document components124

relevant to identified topics, ensuring that text is125

segmented only when a topic’s presence is con-126

cretely identified.127

Unlike prior statistical approaches that identify128

topics based on cluster contents, TADE begins by129

subsampling the documents to generate potential130

topics which are then refined by an LLM to pro-131

duce abstract representations of common themes.132

This refinement process is repeated until the LLM133

has decided that the provided set of ‘macro’-topics 134

are sufficiently distinct and representative of the 135

breadth and depth of the contents. Once this set 136

of macro-topics is determined, an LLM reviews 137

each document and considers which of the top- 138

ics to assign to it. For each assignment the LLM 139

makes, an explanation is required to facilitate chain 140

of thought and the components relevant to the topic 141

itself are extracted. While high level concepts are 142

useful for general interpretation, it is also practi- 143

cally necessary to obtain more granular topics to 144

understand the specific themes within each macro- 145

topic. TADE accomplishes this through an iterative 146

process where the extracted components for each 147

macro-topic serve as a focused corpus from which 148

subtopics are generated, refined, and assigned us- 149

ing the same LLM-driven approach. This hierar- 150

chical exploration can continue to arbitrary depth 151

as needed, with each level maintaining contextual 152

coherence through the selective extraction of rele- 153

vant components. For instance, a “Corporate Care” 154

topic may spawn sub-topics related to healthcare 155

policies, stakeholder engagement, or financial over- 156

sight within that domain, with each of these then 157

spawning further sub-sub-topics and so on. 158

2.1 Algorithm 159

Algorithm 1 outlines the TADE process, which 160

consists of four main stages: 161

1. Generate Initial Topics: Initial topics are 162

generated across the corpus by subsampling 163

the documents. 164

2. Refine Topics: The set of topics are iteratively 165

refined to ensure they are simultaneously (1) 166

representative of the breadth and depth of the 167

contents and (2) sufficiently distinct from each 168

other. 169

3. Assign Topics and Extract Components: 170

Topics are assigned to documents, and rel- 171

evant text segments are extracted. 172

4. Hierarchical Subtopic Discovery (Itera- 173

tive): Subtopics are derived for each sub- 174

corpus containing the relevant components 175

for individual macro-topics. Such sub-topics 176

are then refined and assigned. 177

where each step is carried out by an LLM which 178

can be provided with additional user-provided con- 179

text about the nature of the response (e.g. ‘this is a 180
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response from a survey of employees at a tech com-181

pany’, ‘this is a legal brief about a case involving a182

patent dispute’, etc.).183

2.2 Non-exclusive Topic Assignment184

One of the key differentiators of TADE is its de-185

parture from the probabilistic underpinnings of186

prior methods. While this may seem like a lim-187

itation, it actually better reflects the inherent nature188

of language and document content. Traditional189

approaches assign ranked probabilities to topic as-190

signments based solely on statistical patterns within191

the corpus, fundamentally limiting their scope to192

surface-level co-occurrences. This means they can193

only identify topics that are explicitly represented194

in the document collection’s vocabulary and fre-195

quency patterns. In contrast, TADE’s use of LLMs196

enables abstraction to higher-level concepts and197

themes that may not be directly observable in the198

corpus statistics but are semantically present in the199

content. For example, where a statistical model200

might identify separate clusters around terms like201

“recurrent neural networks”, “backpropagation”,202

and “gradient descent”, an LLM might abstract203

these into the broader concept of “deep learning204

fundamentals”, which, when assigned, may surface205

subtler components like “The system kept over-206

shooting the optimal solution - we had to introduce207

dampening factors to stabilize it” or “Each layer208

was learning too quickly relative to the previous209

ones, creating a bottleneck in information flow” or210

“The model performed well on the training exam-211

ples but failed to generalize to new cases, suggest-212

ing it wasn’t capturing the underlying patterns.”213

This ability to recognize semantic content with-214

out relying on explicit terminology becomes even215

more crucial when considering that language is216

inherently multi-faceted, dynamic, and always con-217

textual. Probabilistic topic models attempt to man-218

age this complexity by constraining their scope219

to patterns observable within a corpus, providing220

a practical approach to the combinatorically ex-221

plosive nature of thematic analysis. While this222

constraint makes the problem tractable, it funda-223

mentally misrepresents how topics relate to docu-224

ments. The forced normalization of probabilities225

across a restricted set of corpus-derived topics di-226

lutes assignment strengths when documents gen-227

uinely relate to multiple themes, often resulting in228

arbitrary single-topic assignments or, worse, null229

assignments when no single topic dominates the230

probability mass.231

These limitations reveal a fundamentally flawed 232

approach to thematic detection, rooted in how top- 233

ics actually exist in language. Topics inhabit a 234

space of semantic degeneracy, where “artificial 235

intelligence”, “AI”, “machine intelligence”, and 236

“computational reasoning” might all represent the 237

same underlying concept, yet this equivalence itself 238

shifts with context and interpretation. This seman- 239

tic fluidity points to a fundamental uncertainty prin- 240

ciple in topic modeling: because the set of possible 241

themes for any document is necessarily infinite, at- 242

tempting to compute meaningful probabilities over 243

this space becomes fundamentally impossible. The 244

combination of infinite topic space and semantic 245

degeneracy precludes any meaningful evaluation 246

of exclusive or conditional probabilities between 247

topics—any such probability would be arbitrary 248

and context-dependent rather than reflecting a true 249

measure of thematic presence. 250

TADE sidesteps these limitations through two 251

key mechanisms. First, it abandons probabilistic 252

assignments in favor of direct semantic interpre- 253

tation, where topics activate and extract relevant 254

components from documents rather than assigning 255

probabilities to whole texts. This activation-based 256

approach means that when a topic is identified, it 257

surfaces specific text segments that demonstrate its 258

presence, making the assignments both more pre- 259

cise and more verifiable. Second, while avoiding 260

probabilistic assignments, TADE can still provide 261

insight into the reliability of topic-document rela- 262

tionships by constructing empirical distributions 263

through multiple runs—observing, for instance, 264

that a document consistently gets assigned topics 265

A, B, and C with occasional assignments to D or 266

E. These distributions reflect the robustness of se- 267

mantic relationships as understood by the LLM’s 268

latent space, rather than forced probability normal- 269

izations over an artificially constrained topic set. 270

This component-level topic activation represents a 271

fundamental departure from traditional approaches 272

where whole documents receive either singular 273

labels or probability distributions. By allowing 274

LLMs to use context and semantic interpretation 275

to extract topic-specific evidence from documents, 276

TADE naturally accommodates the multi-faceted 277

nature of language, enabling multiple topics to co- 278

exist within a single document while maintaining 279

clear, inspectable links between topics and their 280

supporting text. 281
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Algorithm 1 Topic-Activated Document Exploration (TADE)

1: Input: Document corpus D
2: Output: Hierarchical structureH of topics and their assigned components.

3: Stage 1: Generate Initial Topics
4: T ← GenerateTopics(D) {Generate and refine a set of high-level (macro) topics across the corpus.}
5: Stage 2: Refine Topics
6: T ∗ ← RefineTopics(T ) {Merge/prune overlapping topics until distinct}
7: Stage 3: Assign Topics and Extract Components
8: for each document d ∈ D do
9: A(d) ← AssignAndExtract(d, T ∗) {Identify which topics apply to d, extract relevant text seg-

ments,
and provide LLM-generated explanations & confidence scores}

10: end for
11: Stage 4: Hierarchical Subtopic Discovery (Iterative) {For each macro topic, derive subtopics (and

further subdivisions if needed) from its filtered text.}
12: for each topic t ∈ T ∗ do
13: Dt ← AllRelevantComponents(t) {Collect the extracted components for topic t across all docu-

ments}
14: St ← GenerateTopics(Dt) {Propose subtopics (or sub-subtopics, and so on) within t}
15: S∗

t ← RefineTopics(St)
16: AssignAndExtract(Dt, S

∗
t ) {Repeat assignment & extraction specifically within these components}

17: (Optional): If further subdivision is needed, repeat Stage 4
for each newly derived sub topic in S∗

t .
18: end for
19: returnH = {T ∗, S∗

t , . . . }
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3 NewsGroups Experiment282

To evaluate TADE’s effectiveness, we conducted an283

experiment comparing it against established topic284

modeling approaches using the 20 Newsgroups285

dataset (Mitchell, 1997)—a standard benchmark286

containing 20,000 documents across 20 distinct287

categories ranging from politics and religion to sci-288

ence and technology. This dataset’s combination289

broad thematic coverage and subtle topical over-290

laps makes it particularly suitable for evaluating291

topic modeling approaches.292

3.1 Experimental Setup293

We compared TADE against two widely-used base-294

line approaches that represent different paradigms295

in topic modeling:296

• Latent Dirichlet Allocation (LDA), represent-297

ing traditional probabilistic methods, using298

Gensim’s implementation with standard pa-299

rameters300

• BERTopic, representing modern embedding-301

based approaches, using default settings with302

BERT-base embeddings303

For TADE, we used gpt-4o-mini through Ope-304

nAI’s API. We initially developed and tested the305

framework using Google’s Gemma2:9b (Gemma306

Team et al., 2024) model through an Ollama infer-307

ence layer and have tested it successfully with other308

similar-sized open models. For this experiment, we309

selected gpt-4o-mini to reduce inference time. In310

our data set, we used a random subset of 2,000311

documents across all experiments, with minimal312

preprocessing (lowercasing and removal of special313

characters) applied consistently. All other analyses314

were performed on a MacBook with an M3 Max315

chip.316

3.2 Evaluation Framework317

Topic modeling presents unique evaluation chal-318

lenges since there’s often no ground truth for what319

constitutes the ‘correct’ topics. Indeed, in Sec-320

tion 2.2 we have even made an argument that such321

ground truth cannot exist in the context of topic322

modeling. Still, one can characterize the results323

produced by topic models using informational mea-324

sures. In order to demonstrate its differences and325

advantages, we evaluated the resultant topic sets326

from the different approaches using three metrics327

that together provide a view of TADE’s perfor-328

mance relative to previous methods.329

• Topic Coherence (Cv): A measure of seman- 330

tic meaningfulness that evaluates how natu- 331

rally topic words appear together in the cor- 332

pus (Röder et al., 2015). This metric cap- 333

tures whether the words that define each topic 334

tend to appear together in meaningful ways 335

throughout the corpus, rather than being arbi- 336

trarily grouped. For a topic t with word set 337

Wt, we calculate: 338

Cv(t) =
2

|Wt|(|Wt| − 1)

∑
i<j

NPMI(wi, wj)

(1) 339

where NPMI (Normalized Pointwise Mutual 340

Information) (Bouma, 2009) measures the sta- 341

tistical independence of observing two words 342

together versus separately, normalized to [- 343

1,1]. Higher scores indicate topics whose key 344

terms naturally co-occur in meaningful con- 345

texts within the corpus, suggesting the topic 346

captures a genuine theme rather than a spuri- 347

ous word grouping. 348

• Topic Diversity (D): A measure of distinct- 349

ness between topics that quantifies whether 350

the model is identifying truly different themes 351

versus repeatedly capturing slight variations 352

of the same concepts (?). Using the Jaccard 353

similarity coefficient (Jaccard, 1912) between 354

topic word sets: 355

D = 1− 1

|T |
∑
t∈T

max
t′ ̸=t

J(Wt,Wt′) (2) 356

where J(Wt,Wt′) = |Wt ∩Wt′ |/|Wt ∪Wt′ | 357

measures vocabulary overlap between top- 358

ics. A score closer to 1 indicates topics 359

use distinct vocabulary with minimal overlap, 360

suggesting the model has identified separate 361

themes. Lower scores indicate topics share 362

many terms, which may signal redundancy in 363

the topic set. 364

• Distribution Entropy (H): A measure de- 365

rived from information theory (Shannon, 366

1948) that evaluates how evenly topics are 367

utilized across the corpus. This helps identify 368

whether all discovered topics are meaningfully 369

used or if the model is defaulting to a small 370

subset of dominant topics while rarely using 371

others. For topic proportions pi: 372

H = − 1

log2(|T |)

|T |∑
i=1

pi log2(pi) (3) 373
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where normalization by log2(|T |) bounds the374

score to [0,1]. Higher entropy indicates more375

balanced topic usage across documents, sug-376

gesting each identified topic represents a gen-377

uine theme in the corpus. Lower entropy sug-378

gests the model may be identifying spurious379

topics that aren’t truly representative of the380

content.381

For TADE, we calculate these metrics sepa-382

rately for THE macro-topic and sub-topic sets to383

demonstrate how its hierarchical structure enables384

both broad thematic representation as well as fine-385

grained topic resolution.386

3.3 Results and Analysis387

Our experiments revealed several key insights388

about TADE’s performance. First, TADE demon-389

strated superior semantic coherence, achieving a390

score of 0.533 at the macro level compared to391

0.300 for BERTopic and 0.286 for LDA (Figure 1a).392

This coherence advantage stems from two key fac-393

tors: (1) TADE’s LLM-based approach can recog-394

nize semantic relationships beyond simple word co-395

occurrence patterns, and (2) its component extrac-396

tion ensures topics are built from contextually rel-397

evant text segments rather than whole documents.398

When we examined the word sets defining each399

topic, TADE’s topics showed stronger semantic400

alignment.401

The topic diversity analysis revealed comple-402

mentary strengths across approaches (Figure 1b).403

BERTopic achieved the highest diversity (0.993),404

followed closely by TADE-Macro (0.946), while405

TADE-Sub (0.724) and LDA (0.743) showed mod-406

erate diversity. This pattern aligns with TADE’s407

hierarchical design: macro-topics should be dis-408

tinct, while subtopics within the same domain nat-409

urally share some semantic overlap. Moreover,410

when different macro-topics share common ele-411

ments, TADE may generate similar or equivalent412

subtopics across multiple macro-topics, introduc-413

ing an expected level of vocabulary overlap.414

The distribution entropy scores revealed distinct415

patterns at different hierarchical levels (Figure 1c).416

At the macro level, TADE (0.811) achieved com-417

parable entropy to LDA (0.867), while BERTopic418

showed more skewed distribution (0.668). This419

indicates that TADE’s macro-topics maintain a nat-420

ural balance similar to traditional probabilistic ap-421

proaches. At the subtopic level, TADE achieved422

near-optimal entropy (0.979), but this stems from423

its fundamentally different approach to topic as- 424

signment: while traditional models distribute docu- 425

ments across all available topics, TADE’s subtopics 426

are highly specific, typically assigned to only 1-3 427

documents each. 428

Taken together, these results demonstrate 429

TADE’s key advantage: it successfully combines 430

high semantic coherence with effective hierarchical 431

organization while maintaining balanced coverage 432

across topics. The framework’s ability to achieve 433

this while supporting multi-topic assignments and 434

providing explicit component extraction represents 435

a significant advance in topic modeling capability. 436

In addition to our metric-based analysis, we car- 437

ried out an additional LLM-powered assessment to 438

see which of the results it preferred. We showed 439

gpt-4o-mini 500 samples from the Newsgroups 440

data set and then the topic model sets anonymously 441

and in a random order each time and requested that 442

the LLM pick which of the three sets (designated as 443

#1, #2, or #3) it believed to be the ‘most coherent, 444

representative, and useful for understanding the 445

dataset’. We additionally requested that it explain 446

its reasoning to ensure that the LLM was carefully 447

approaching the problem. In 100 independent calls, 448

TADE was chosen 100 times. 449

4 Discussion and Future Work 450

Topic-Activated Document Exploration represents 451

a fundamental shift in how we approach topic mod- 452

eling, moving beyond statistical co-occurrence pat- 453

terns to leverage semantic understanding through 454

LLM reasoning. While current computational costs 455

and inference speeds present practical constraints, 456

rapidly improving LLM technology and emerging 457

batch inference methods suggest frameworks like 458

TADE will become increasingly viable for both 459

industrial and research applications. 460

Recent work has also begun exploring LLM in- 461

tegration in topic modeling pipelines. The QualIT 462

framework (?) exemplifies a hybrid approach, us- 463

ing LLMs to extract key phrases before applying 464

traditional clustering techniques. This method- 465

ology highlights a key design choice in LLM- 466

augmented topic modeling: whether to use lan- 467

guage models primarily for feature extraction or 468

to leverage their reasoning capabilities more di- 469

rectly. While QualIT demonstrates the value of 470

LLM-enhanced feature extraction, TADE’s direct 471

use of LLM reasoning for topic generation, refine- 472

ment, and assignment enables richer semantic rela- 473
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Figure 1: Comparison of topic modeling approaches
across three key metrics: (a) Topic Coherence measured
by NPMI score, showing TADE’s superior semantic co-
herence; (b) Topic Diversity indicating the distinctness
of topics; and (c) Topic Distribution Balance measured
by entropy, demonstrating the evenness of topic assign-
ments.

tionships and greater interprability. This architec-474

tural difference reflects a broader transition in NLP475

from using LLMs as sophisticated feature extrac-476

tors to employing them as reasoning engines that477

can directly interpret and organize textual informa-478

tion.479

Early user feedback has been particularly encour-480

aging regarding TADE’s interpretability. The in-481

line explanations and relevant components helps to482

build trust in the ultimate results, while the preser-483

vation of document context and support for multi-484

topic assignments better reflects how humans nat-485

urally organize information. This increased trans-486

parency and flexibility makes TADE especially487

promising for domains like clinical documentation488

or legal analysis where understanding the reasoning489

behind topic assignments is crucial. Furthermore,490

by making use of LLMs, TADE can make cross-491

language analyses more comprehensive and under-492

standable, as frontier LLMs can naturally extract 493

semantic meaning across different languages. 494

Looking forward, TADE’s architecture opens 495

several exciting research directions. The frame- 496

work can be extended to support arbitrary hierar- 497

chical depths, with user-specified criteria determin- 498

ing optimal topic granularity and or whether or 499

not topics may need to be remapped or reassigned. 500

Real-time applications could leverage TADE’s on- 501

demand extraction capabilities, dynamically re- 502

vealing document relationships as users explore 503

collections. The success of TADE also points to 504

a broader shift in how we might approach topic 505

modeling—moving from purely statistical meth- 506

ods toward hybrid approaches that combine algo- 507

rithmic rigor with human-like reasoning capabili- 508

ties. Additionally, the assignment process in TADE 509

could be performed with some pre-determined la- 510

bel set rather than one generated automatically. 511

This makes TADE an appealing framework for doc- 512

ument tagging for use cases like support ticket tag- 513

ging in a business (e.g. bug versus feature request 514

versus documentation). 515

5 Limitations 516

While TADE demonstrates significant advantages 517

over traditional topic modeling approaches, sev- 518

eral limitations should be noted. First, the frame- 519

work’s reliance on LLMs introduces computational 520

overhead and potential cost barriers compared to 521

statistical methods, particularly for large-scale ap- 522

plications. Additionally, there are broader consid- 523

erations around LLM biases - the topics generated 524

will necessarily reflect societal biases present in the 525

LLM’s training data, potentially leading to skewed 526

or incomplete topic representations for certain do- 527

mains or demographics. 528

6 Conclusions 529

In this work, we have introduced Topic-Activated 530

Document Exploration (TADE), a context-aware 531

LLM-powered hierarchical topic generation and 532

labeling framework. TADE addresses a critical 533

gap in topic modeling: the need for more meaning- 534

ful and interpretable topic assignments that ensure 535

comprehensive document coverage. While tradi- 536

tional approaches often leave documents partially 537

or completely unassigned due to their reliance on 538

statistical patterns, TADE’s semantic-first approach 539

enables more interpretable and complete topic as- 540

signments. 541
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Moreover, we present an argument that proba-542

bilistic topic modeling implementations face fun-543

damental theoretical barriers: the assumption of544

conditional independence between topics forces545

artificial trade-offs in assignments, while the re-546

quirement to normalize probability distributions547

prevents documents from fully belonging to multi-548

ple distinct themes. When combined with semantic549

degeneracy—where different phrasings represent550

equivalent concepts—these constraints make tra-551

ditional probability distributions inherently inad-552

equate for capturing true thematic relationships.553

TADE circumvents these theoretical constraints554

through direct semantic interpretation and topic555

activation of document components.556

Our experimental validation demonstrates that557

this semantic-first approach better aligns with how558

humans understand and organize information. By559

preserving document context and enabling transpar-560

ent multi-topic assignments, TADE ensures more561

meaningful topic coverage while maintaining inter-562

pretability through in-line explanations. As LLM563

capabilities continue to advance, the shift from sta-564

tistical analyses of exclusively in-corpa contents565

towards semantic reasoning with generative steps566

will enable more reliable and useful topic modeling567

across numerous domains and languages.568
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