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Abstract

Modern deep learning models have the ca-
pability to train large datasets effectively for
Natural Language Processing (NLP) tasks, re-
sulting in exceptional performance. However,
these models are prone to susceptibility when
there is a distribution shift between the train-
ing and the application data. Hence, it is im-
perative to develop methods for identifying
data that does not conform to the same distri-
bution. This article provides an overview of
the out-of-distribution issue and outlines var-
ious detection methods, beginning with their
mathematical underpinnings.  Additionally,
the Dist11BERT model is modified to incor-
porate diverse aggregations. Finally, the detec-
tors are applied to multiple datasets and aggre-
gations to make a comparative analysis.

1 Introduction

1.1 State-of-the-art

With the development of Deep Learning, NLP
models are more and more present and use more
and more important datasets. Nevertheless, these
training datasets have their own distribution in
the textual space. Applying these models to
datasets that do not have the same distribution
as the one that made it possible to fit the model
is one of the major vulnerabilities of NLP (Pi-
cot et al., 2023a,b). This problem is named Out-
Of-Distribution (OOD) detection (Darrin et al.,
2023a; Gomes et al.; Darrin et al., 2023b).

In this article, we use an already built classifier
for textual data named Dist 1 1BERT (Sanh et al.,
2019). The first OOD detectors mainly used the
output of the last layer, called logits, which cor-
respond to scores assigned to each class that can
then be transformed into a probability assigned to
each class. With these logits, first simplistic detec-
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tors have been created like the likelihood (Gangal
et al., 2019; Choi et al., 2018), the max softmax
(Hendrycks and Gimpel, 2018), the entropy score
(Kuan and Mueller, 2022) and the energy score
(Zhou et al., 2021). Some are more complex like
the Mahalanobis distance (Fort et al., 2021).

The development of deeper metrics has prompted
researchers to create more complex but also more
accurate detectors. First, by applying the Maha-
lanobis distance to deep layer outputs (Serfling
and Zuo, 2000), then using metrics specific to the
depth of the models such as the Integrated Rank-
Weighted depth (Ramsay et al., 2019; Staerman
et al., 2021).

1.2 Our contribution

We have first realized the state of the art of
the main OOD detectors by quickly re-explaining
their concept and their mathematical basis in or-
der to provide a global understanding of the dif-
ferent solutions that can be used to solve OOD
problems. Then, we apply these detectors to dif-
ferent datasets, both to understand how to apply
them and also to compare these different detectors
and determine the most efficient.

Moreover, we make our code available on github'
in order to be able to reuse these OOD detectors
when using the Dist i 1BERT model. In this con-
text, we have made a modification to the initial
code of the transformers package in order to have
direct access to the outputs of the intermediate lay-
ers of Disti1BERT and to be able to concate-
nate them directly if needed. Particular care has
been taken to optimize the computation time and
the memory needed to perform these calculations.

'https://github.com/Julien2048/NLP_
Project_OOD.git
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2 Problem Framing

Notation. We denote by X the textual input space
and by ) the target space for a multiclass model.
We also denote by X, the dataset used to fit the
model. In the following, x represents a sample and
z the classification of x between OOD (z = 0) and
IN (z = 1). In a similar way, we have X and Z
when we study a dataset.

Score function. Our goal is to build a score func-
tion s : X — R which accounts for the proximity
of samples with the training dataset. Then, to clas-
sify samples between OOD and IN, we introduce
a threshold ~y such that the sample x is OOD if
s(z) < v (ie. 2 = 0)and INif s(x) > v (ie.
z=1).

Performance evaluation. The OOD problem is
then a classification problem and to measure the
performance of our detectors we use the true de-
tection rate which is the proportion of samples that
are OOD and that are classified as OOD and the
false alarm rate which is the proportion of sam-
ples that are predicted OOD when they are IN.

We use two metrics to compare the different OOD
detectors, the first one is the Area Under the Re-
ceiver Operating Characteristic curve (AUROC)
which is the area under the ROC curve computed
as follows: v — (P(Z = 0|Z = 0),P(Z =
1|Z = 1)). Intuitively, this metric represents the
probability that the score of an IN sample is higher
than the score of an OOD sample.

The second metric is the Area Under the
Precision-Recall curve (AUPR) which represents
the area under the precision-recall curve : v —
(P(Z=1|Z=1),P(Z =1)|Z = 1)).

3 OOD Detectors

3.1 From logits

Logits are the last element of the NLP model and
allow us to assimilate a score to each class of pre-
diction, which we denote by Fy(z) € Re@rd)
the logits of the sample x. To get a probability for
each class we then use a softmax function.

Max Softmax. This method is applied to many
datasets in the article of (Hendrycks and Gimpel,
2018). Intuitively, if the sample is in the distri-
bution of the dataset train, then the model will
classify it in a class with a high probability. Con-

versely, if the sample is OOD, then it will be dif-
ficult to classify it and no class will really stand
out. We then use the score function spsga/(z) =
max softmax(Fp(z)). If this score is too low,
then there is no class that stands out from the oth-
ers and the sample is OOD.

KL Divergence. Similar to the above func-
tion, to best study the separations between
classes, we use the Kullback-Leibler (KL) diver-
gence. The score function becomes si(x) =
KL(softmax(Fr(x))). A large divergence be-
tween the probabilities of the classes indicates that
one class stands out from the others and therefore
the sample is IN, conversely a divergence that is
too small means that the probabilities are more or
less at the same level and therefore the sample is
classified as OOD.

As we will see later, these detectors allow a good
classification of the samples between OOD and
IN. Nevertheless, they only use the last layer of
the NLP models. It would be interesting to intro-
duce detectors that use more intermediate layers to
determine OODs. This is what we will see in the
following.

3.2 From prelogits or other hidden states

Overall, we will use the outputs of some inter-
mediate layers of the model. More precisely, we
will use the prelogits (output before the last layer
- for the Mahalanobis distance) and a special ag-
gregation of hidden layers (explained after - for
the IRW). In what follows, we note F'(z) a vector
of size d, the output of one of these layers for the
sample x. In the case of the Dist11BERT model
F(z) is a vector of size 768.

Mahalanobis Distance. The use of the Maha-
lanobis distance in OOD problems is largely de-
tailed in this article (Fort et al., 2021). For any out-
put F' of our model, we can use the Mahalanobis
distance as a score function with :

sup(x) = (F(z) — p) 71 (F(2) — p),

where 1 = E(F(Xin)) and X = cov(F (Xirain))-
Intuitively, this distance represents the deviation
from the mean of the training dataset with respect
to the output of an intermediate layer.

Integrated Rank-Weighted (IRW). Introduced
in (Ramsay et al., 2019) and developed in (Staer-
man et al., 2021), the IRW depth corresponds



to a need to have metrics specific to data depth.
To have a good approximation of the IRW depth
(Colombo et al., 2022a) we first need to introduce
S%-1 the unit sphere, Vk € (1, nproj], ur € Sd-1
with np.; the number of direction sampled in the
sphere (high number in practice) and (x;)1,..n
the training dataset. We also defined A} (z) =
% ZZZI I((ug, F(x;) — F(x)) > 0) and hy () =
=i I (ug, F(x;) — F(x)) < 0). A good ap-
proximation of the IRW depth which we use as a
score function is then defined as :

Nproj

Z min(hf (), by, ()

Mtoroj 2

1

sirw (z) =

This computation is really time-consuming in
practice because its complexity is in O(np,nd).

4 Experiments Protocol

This section presents the settings used in the
project, by describing the datasets, the pre-trained
models and the methods.

4.1 Datasets selection

Datasets are responsible for any result in OOD de-
tection. Thus, the benchmarks must be carefully
chosen, because we can not expect good results on
any datasets. We rely on the research from (Zhou
et al., 2021; Colombo et al., 2022a; Hendrycks
and Gimpel, 2018). Two types of in-distribution
were chosen: sentiment analysis and topic classi-
fication.

For the sentiment analysis, the in-distribution was
IMDB (Maas et al., 2011), a dataset providing po-
larized movie reviews with 10 000 sampled train-
ing and 400 sampled test data. For each one of
the out-distributions, we kept 400 test occurrences.
We chose SST2 (Socher et al., 2013), a corpus
based on sentences extracted from movie reviews,
Movie Review (Pang et al., 2002), a dataset where
reviews came from professional rather than ama-
teur, MNLI (Williams et al., 2017), a collection
of sentences with textual entailment annotations,
we use both matched and mismatched test sets,
RTE (Dagan et al., 2005; Bar-Haim et al., 2006;
Giampiccolo et al., 2007; Bentivogli et al., 2009),
a series of annual textual entailment challenges.
Note that IMDB, Movie Review, and SST2 belong
to the same task and then can not be considered as
OOD to each other.

For the topic classification, we took 20Newsgroup
(Lang, 1995), a dataset for topic classification with
20 classes, as in and out distribution, the first 15
categories for in and the 5 left for out.

4.2 Pre-trained model

Model. We used the model Disti1BERT (Sanh
et al., 2019), pre-trained first from DistilBERT-
base-uncased”. Then, we trained it (Colombo
et al., 2022a) with batch-size of 32, weight decay
set to 0.01, warmup ratio of 0.06, and learning rate
of 1072, over 4 epochs, over the in-distribution
chosen before (one model for both).

Aggregation procedures. We change the base-
line of the DistilBERT model from the
transformers package in order to get several
aggregations.

First, we create a class to return both pre-logits and
logits of the model. The pre-logits correspond to
the output of the pre-classifier of Dist i1BERT,
while the logits are obtained after the pre-logits
thanks to a ReLU, followed by a dropout and the
classifier.

Then, we create another class to return an aggre-
gation of the latent representations of x. Thanks
to the output’s attention of the model, we take
the last representation where the attention is dif-
ferent from zero. Then, we took the mean of
each layer on it to obtain what we call after F'py,
(Colombo et al., 2022a). Rigorously, we have:

Fpar(z) = $ 312y du(x), where {61, ..., ¢1.} are
the layers of the model.

OOD methods. We use the four detectors ex-
plained before. Thanks to the logits, we compute
the Maximum Softmax and the Kullback-Leibler
Divergence. With the pre-logits, the Mahalanobis
Distance is obtained. Finally, we use the Inte-
grated Rank Weighted Depth on the aggregation of
the hidden states obtained. Due to a lack of power
in our systems, we use only 1000 training data,
100 test data, and a number of directions sampled
on the sphere equal to 768 (the size of the output).

5 Results

In this section, we analyse the results obtained, de-
pending on the in-distribution used, summarised
in table 1. As expected, as Movie Review, SST2
and IMDB came from the same task, and can not



be considered as OOD, it is very difficult for the
detector to perform good scores. Similarly, for
the 20Newsgroup, given that the in and out dis-
tribution came from the same dataset, even if it
is from different labels, it is quite impossible for
DistilBERT to differentiate both. However,
even if the scores of the softmax and the KL are
bad for SST2, meaning that Distil1BERT suc-
ceeds to be enough certain with one or another
label for the test, the Mahalanobis score and the

IRW seem to get good scores.

IMDB

Out Scores Aggreg. | AUROC | AUPR
MaxSoftmax Logits 60.8% | 57.2%
Movie KL Logits 60.8% | 57.2%
Review | Mahalanobis | Pre-Logits | 64.4% | 61.3%
IRW Fpy 53.8% | 61.5%
MaxSoftmax Logits 91.8% | 93.3%
MNLI KL ' Logits‘ 91.8% | 93.3%
Mabhalanobis | Pre-Logits | 97.6% | 98.6%
IRW Fpnr 95.0% | 95.6%
MaxSoftmax Logits 61.2% | 54.7%
SST2 KL Logits 61.2% | 54.7%
Mabhalanobis | Pre-Logits | 97.1% | 98.3%
IRW Fpyr 92.9% | 93.2%
MaxSoftmax Logits 94.9% | 96.2%
RTE KL Logits 94.9% | 96.2%
Mabhalanobis | Pre-Logits | 97.1% | 98.3%
IRW Fpnr 94.2% | 95.5%

20Newsgroup (15/5)
Out Scores Aggreg. | AUROC | AUPR
MaxSoftmax Logits 61.1% | 68.4%
KL Logits 62.4% | 68.8%
Mabhalanobis | Pre-Logits | 57.8% | 57.8%
IRW Fpy 299% | 44.2%

Table 1: OOD detection performance per IN-DS.

However, unlike (Colombo et al., 2022a), our
Trusted/IRW score did not have the best results.
Due to the lack of power of our systems, we can
not run it on 400 samples of the test sets of oth-
ers, the entire training set, and we could not set
the number of directions sampled on the sphere to
768 x {number of samples of the test set}.

Figure 1 summarises the results of each OOD de-
tector for the IMDB (IN-DS) and MNLI (OUT-
DS) datasets. As we can see, the maximum soft-
max and the KL divergence gave the same score,
however, the KL divergence is a much more visual
graph than the softmax. The Mahalanobis score is
the best due to the lack of samples for the IRW,
which should give the best results according to the
literature. The lack of examples can be seen in
the non-smoothness of the curve, unlike the other

SCOres.

Figure 1: Summary of results: IMDB (IN-DS) - MNLI
(OUT-DS)

6 Discussion and Future Work

As shown in the results, if the datasets come from
the same kind of tasks, it can be very difficult to
distinguish the in from the out samples. OOD de-
tection does not seem to be universal, some detec-
tors are more suitable for some tasks than others.

To get better results, the training of the encoder
can be done on more epochs. Moreover, the com-
putation of the scores has to be done on more data
above all for the IRW one.

As the performance of OOD detectors is highly
correlated with the choice of the model, the hy-
perparameters of the training, the datasets, and the
aggregation methods, we would like to deeper the
possibilities in future research.

7 Conclusion

This work presents several out-of-distribution de-
tectors for pre-trained transformers, precisely us-
ing Disti1BERT. We show the great improve-
ment of using Mahalanobis distance on the pre-
logits instead of just the logits. However, cur-
rently, combining out-of-distribution detection
with fairness (Colombo, 2021; Colombo et al.,
2021; Pichler et al., 2022; Colombo et al., 2022b)
is an open problem in deep learning. In the fu-
ture, we aim to address this issue by exploring the
potential of using the IRW distance merged with
the mean aggregation of the hidden model states,
which may require additional computational re-
sources to showcase its superiority. We believe
that the combination of out-of-distribution detec-
tion and fairness will be crucial for creating trust-
worthy and unbiased Al models in the future.

Concerning ethical considerations, this work, even
if it does not directly impact society, would allow




detecting when an input is different from the train-
ing data. This would increase the reliability of
models in today’s real world. Moreover, all ex-
periments were performed on open datasets.
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