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ABSTRACT
Current weakly supervised video anomaly detection (WSVAD) task
aims to achieve frame-level anomalous event detection with only
coarse video-level annotations available. Existing works typically
involve extracting global features from full-resolution video frames
and training frame-level classifiers to detect anomalies in the tem-
poral dimension. However, most anomalous events tend to occur
in localized spatial regions rather than the entire video frames,
which implies existing frame-level feature based works may be
misled by the dominant background information and lack the in-
terpretation of the detected anomalies. To address this dilemma,
this paper introduces a novel method called STPrompt that learns
spatio-temporal prompt embeddings for weakly supervised video
anomaly detection and localization (WSVADL) based on pre-trained
vision-language models (VLMs). Our proposed method employs a
two-stream network structure, with one stream focusing on the tem-
poral dimension and the other primarily on the spatial dimension.
By leveraging the learned knowledge from pre-trained VLMs and
incorporating natural motion priors from raw videos, our model
learns prompt embeddings that are aligned with spatio-temporal
regions of videos (e.g., patches of individual frames) for identify spe-
cific local regions of anomalies, enabling accurate video anomaly
detection while mitigating the influence of background information.
Without relying on detailed spatio-temporal annotations or auxil-
iary object detection/tracking, our method achieves state-of-the-art
performance on three public benchmarks for the WSVADL task.

CCS CONCEPTS
• Computing methodologies → Scene anomaly detection;
Visual content-based indexing and retrieval.

KEYWORDS
Video anomaly detection, spatio-temporal detection, language-
image pre-training

1 INTRODUCTION
As a challenging and long-standing problem, video anomaly detec-
tion (VAD) has garnered significant attention from the computer
vision community. The core objective of VAD is to detect various
real-world anomalous events, holding immense potential for numer-
ous practical applications, particularly in the realm of surveillance.
For example, an intelligent video surveillance system equipped with
anomaly detection capabilities can promptly perceive potential dan-
gers, thereby facilitating timely interventions to enhance public
security. Early studies have primarily focused on semi-supervised
VAD [6, 11, 14, 31, 37, 47], where the task is to learn normal patterns
by solely utilizing normal videos, with abnormal events identified
as those deviating from the learned normal pattern. However, these

Abuse Arrest

Fighting Road Accident

Arson

Shooting

Figure 1: Visualizations of spatial size of anomalies in surveil-
lance videos. Video samples are taken from UCF-Crime [52].

methods encounter limitations as they lack knowledge about ab-
normal videos, potentially leading to a high false alarm rate.

Weakly supervised video anomaly detection (WSVAD) has
emerged as a prominent research topic in recent years, distinct
from its semi-supervised counterpart in that both normal and ab-
normal videos are available during the training stage. The objective
of WSVAD is to achieve frame-level anomaly detection with weak
or coarse annotations (i.e., video-level labels). Existing works typi-
cally involve extracting features from full-resolution frames using
pre-trained models such as I3D [2], Transformer [7], and CLIP
[45], followed by training a classifier based on the multiple instance
learning (MIL) mechanism to predict anomalous events at the frame
level. While these approaches yield promising results as a standard
practice, they often overlook a crucial aspect: abnormal events tend
to occur in localized spatial regions rather than spanning the entire
full-resolution frame, especially in surveillance scenarios. Drawing
insights from the popular benchmark UCF-Crime [52], we illustrate
this observation with examples depicted in Figure 1. For clarity, the
anomalous regions are delineated using orange bounding boxes. It
is evident that various types of anomalies manifest in diverse spatial
locations and sizes; however, the spatial extent of anomalies is typi-
cally small compared to the dimensions of the full-resolution video
frame. Nevertheless, existing works compress entire frames into
single features, thereby neglecting crucial region-level abnormal
details, and leading subsequent classifiers to rely heavily on domi-
nant background information. Moreover, such operations further
cause that the VAD model lacks reliability and interpretability, as it
does not verify whether the detection align with the actual spatial
location of anomalies. Consequently, certain true positive detection
may be merely “lucky” coincidences of erroneous detection (such
as irrelevant background or events) to the abnormal events [31].

Therefore, how to explicitly exploit the spatio-temporal fu-
sion [15, 21], and detect anomalies from when and where perspec-
tives, is an important direction for exploration. It is worth noting
that our work is not the first attempt to address weakly super-
vised video anomaly detection and localization (WSVADL). Several
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previous studies [28, 33, 53, 64] have also endeavored to lever-
age spatio-temporal relation capabilities to enhance frame-level
VAD under weak supervision. However, these approaches often
necessitate complex and resource-intensive relation modeling. For
example, Liu et al. [33] re-annotated the UCF-Crime benchmark,
subsequently training detection models with full spatio-temporal
annotations. On the other hand, Wu et al. [64] paved an another
way for weakly supervised spatio-temporal VAD, which took inspi-
rations from spatio-temporal action localization [26, 42], and used
a tubelet-level detector based on pre-trained object detectors and
hierarchical clustering to detect possible spatio-temporal anomalies.
These methods have demonstrated improved frame-level anomaly
detection results over conventional WSVAD methods by mitigating
the influence of irrelevant background through intricate spatio-
temporal modeling processes. Nevertheless, these solutions are
either complicated, e.g., multi-scale spatial pyramid training [28]
and spatio-temporal coherence modeling [53] or heavily dependent
on auxiliary modules for object detection and tracking [64] and
detailed spatio-temporal annotations. [33]

In this paper, enlighted by the success of large pre-trained vision-
languagemodels (VLMs) on industrial defect detection [4, 23, 81, 82],
we propose a novel method STPrompt that learns spatio-temporal
prompt embeddings built on the top of VLMs for WSVADL. Differ-
ent from previous works [28, 33, 53, 64], our approach is both con-
ceptually straightforward and practically effective. Specifically, we
first segment the video into frames and further then split each frame
into patches, and video anomaly detection and localization can thus
be conceptualized as frame-level and patch-level classification, ob-
viating the reliance on object detection and tracking. Concurrently,
to alleviate the complexity associated with spatio-temporal relation
modeling, we explicitly decompose spatio-temporal VAD into two
distinct sub-tasks: temporal anomaly detection and spatial anomaly
localization. For temporal anomaly detection, alongside standard
temporal modeling, we introduce a simple yet effective spatial atten-
tion aggregation (SA2) mechanism aimed at enhancing background
denoising. This approach leverages motion priors derived from the
intrinsic attributes of videos. Regarding spatial anomaly localiza-
tion, we capitalize on the established image-to-concept capability
of VLMs, taking a significant step forward towards training-free
spatial anomaly localization without full supervision. By leveraging
related concepts, we identify abnormal patches. Our approach ad-
dresses the limitations of prior works while achieving superior per-
formance across three public benchmarks: UCF-Crime [52], Shang-
haiTech [38], and UBnormal [1].

To summarize, the main contributions of this paper are threefold:
• A novel model named STPrompt is proposed to address spatio-
temporal video anomaly detection under weak video-level supervi-
sions. To our knowledge, STPrompt represents the first endeavor
to efficiently transfer pre-trained vision-language knowledge from
VLMs to simultaneously tackle temporal anomaly detection and
spatial anomaly localization.
• To mitigate the requirement of extra auxiliary information and in-
tricate modeling strategies, STPrompt decouples the WSVADL task
into temporal anomaly detection and spatial anomaly localization.
A spatial attention aggregation mechanism is devised in STPrompt
to filter irrelevant background for temporal anomaly detection.
Besides, a large language models (LLMs)-enabled, training-free

anomaly localization method is introduced to obtain fine-grained
text prompts for spatial anomaly localization.
• Extensive experiments on three widely-used benchmarks show
the superiority of STPrompt over state-of-the-art competing meth-
ods. It performs substantially better than, or on par with, the recent
competing methods in anomaly detection, while largely outper-
forming them in TIoU for anomaly localization across all three
datasets, e.g., by a margin of about 1.9% on UCF-Crime, 5.7% on
ShanghaiTech, and 4.5% on UBnormal compared to VadCLIP [71].

2 RELATEDWORK
2.1 Video Anomaly Detection
2.1.1 Semi-supervised VAD. The advent of deep learning revolu-
tionized the field of semi-supervised VAD, with the mainstream
of research focusing on convolutional neural networks (CNNs)
[10, 22, 29, 35, 43, 61, 66, 69, 75], recurrent neural networks (RNNs)
[51, 74], and transformers [63, 73], with many of these approaches
adopting self-supervised learning principles. For example, several
studies [17, 38, 77] utilize 2D-CNNs, 3D-CNNs, and RNN-based
autoencoders to reconstruct normal events and identify abnormal
events based on the magnitude of the reconstruction error. Liu et
al. [34] proposed a CNN-based video prediction network to predict
future video frames based on previous frames, while Yang et al. [73]
employed transformers to extract video features and then recon-
structed video events based on key-frames. Yu et al. [75] introduced
a novel approach called video event completion to address gaps
existing in reconstruction or frame prediction methods. Several of
these approaches also address spatial anomaly localization. For in-
stance, Li et al. [31] divided the visual field into overlapping regions
and learned a global mixture model using only patches around
the current frame, with regions least similar to their surroundings
deemed most likely to be abnormal. Wu et al. [66] similarly di-
vided the visual field into overlapping regions and trained a deep
one-class model to discriminate abnormal regions.

2.1.2 Weakly supervised VAD. Weakly supervised video anomaly
detection [3, 9, 33, 52, 55, 64, 76] has emerged as a prominent re-
search focus in recent years. Sultani et al. [52] were among the
pioneers, introducing a deep MIL model that treats a video as a
bag and its segments as instances. By utilizing ranking loss with
bag-level labels, their model aims to maximize the separation be-
tween the most anomalous instances in positive bags and negative
bags. Subsequent studies have endeavored to enhance the positive
design aspect of WSVAD. For instance, Zhong et al. [78] proposed
a graph convolutional network (GCN)-based method to model fea-
ture similarity and temporal consistency between video segments.
Tian et al. [55] devised robust temporal feature magnitude learning,
significantly improving the MIL approach’s robustness to negative
instances from abnormal videos. Li et al. [30] and Huang et al. [19]
introduced transformer-based multi-sequence learning frameworks
to capture temporal relationships between frames. Zhou et al. [79]
proposed dual memory units and an uncertainty learning scheme
to better distinguish patterns of normality and anomaly. Wu et al.
[67, 68] introduced a novel multi-modal dataset and a fine-grained
weakly supervised VAD method capable of distinguishing between
different types of anomalous frames. More recently, pre-trained
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vision-language models have garnered significant attention in the
VAD community. VadCLIP [71] was the first to efficiently transfer
pre-trained language-visual knowledge from CLIP [45] to weakly
supervised VAD, achieving state-of-the-art performance. Pu et al.
[44] attempted to enhance WSVAD by learning prompt-enhanced
context features.

2.2 Image Anomaly Detection with Prompts
Generally, image anomaly detection aims to localize anomalies in
images like industrial defect images, predicting an image or a pixel
as normal or anomalous. Typical works [5, 18, 20, 48, 54, 57, 72]
mainly focused on one-class or self-supervised anomaly detection,
which only requires normal images. Recently, exploiting VLMs
with prompts has emerged as a successful enabler for this task,
especially for the zero/few-shot setting. WinCLIP [23] introduced a
language-guided paradigm for zero-shot industrial defect detection.
AnomalyCLIP [81] adapted CLIP for zero-shot industrial defect
detection across different domains, which learn object-agnostic
text prompts that capture generic normality and abnormality. InC-
TRL [82] learned residual features between query images and few-
shot in-context normal images to build generalist models for image
anomaly detection. These CLIP-based works inspired us to spatially
local anomaly in videos, but our method is more succinct and does
not require learnable parameters in the prompts.

3 METHOD
3.1 Overview
Previous WSVAD task supposes that only video-level labels are
given for model training, and encourages the model to predict
whether each video frame is abnormal at the test time, where the
detection granularity falls into the frame level. In comparison to
WSVAD, WSVADL is a more challenging task, which assumes that
the model is supposed to detect anomalies at a finer level, i.e., the
pixel level, while keeping the supervisions unchanged. Mathemat-
ically, given a set of training samples {V,Y𝑏 ,Y𝑐 }, where V , Y𝑏 ,
andY𝑐 denote the sets of video, video-level binary label, and video-
level category label, respectively. For each video sample 𝑣 , it has
two corresponding labels, namely, 𝑦𝑏 and 𝑦𝑐 . Here 𝑦𝑏 ∈ {0, 1}, and
𝑦𝑏 = 1 indicates that 𝑣 includes anomalies; and𝑦𝑐 ∈ R1+𝐶 , in which
𝐶 is the number of abnormal categories.

As aforementioned, the main limitation of previous spatio-
temporal VAD works [28, 33, 53, 64] is that they rely on labor-
intensive spatio-temporal annotations, detector-dependent pre-
processing, and computationally expensive spatio-temporal model-
ing. Compared to these works, our STPrompt is conceptually simple
yet practically effective, which is demonstrated in Figure 2. To move
beyond the above limitations, there are a series of dedicated designs
in our STPrompt. Firstly, based on this routine operation of split-
ting a video into multiple frames, we further split each frame into
multiple patches. Through such an operation, WSVADL can be con-
sidered as a coarse frame-level and patch-level classification task
without the requirement of any detection pre-processing. On this
case, a natural way is to directly treat all spatial patches as instances,
and then use the MIL mechanism to predict the anomaly confidence
of each patch. However, such a readily implemented way is compu-
tationally heavy and can not be easily optimized [13, 27]. Therefore,

to reduce the spatio-temporal modeling complexity and optimiza-
tion difficulty, we then factor the WSVADL task into two sub-tasks,
i.e., temporal anomaly detection and spatial anomaly localization.
For temporal anomaly detection, we introduce a dual-branch model
built on the top of CLIP, meanwhile, we design two key modules, on
the one hand, a spatial attention aggregation assists the temporal de-
tection model in focusing on potential spatial location of anomalies.
On the other hand, a typical temporal adapter enhances the tem-
poral context capture capabilities of the temporal detection model.
For spatial anomaly localization, to address the challenges posed
by insufficient supervisions, we design a training-free anomaly
localization strategy with the basis of “image-to-concept” capacity
of VLM.

3.2 Motion Prior-aware Spatio-Temporal
Prompt Learning for Anomaly Detection

Inspired by the pioneer work VadCLIP [71], we also introduce a
dual-branch framework, namely, classification branch and align-
ment branch. Specifically, given a video 𝑣 , we employ a frozen image
encoder of CLIP to extract the frame-level feature 𝑥𝐶𝐿𝐼𝑃 ∈ R𝑇×𝐷 ,
where 𝑇 is the length of video 𝑣 , and 𝐷 is the feature dimension.
Then these feature are fed into two branches after a series of in-
formation enhancements, classification branch is to directly pre-
dict the anomaly confidence 𝐴 ∈ R𝑇×1 by a binary classifier, an-
other align branch is to compute the anomaly category probability
𝑀 ∈ R𝑇×(1+𝐶 ) by means of the image-to-concept alignment. With
𝐴 and𝑀 in hands, we adopt the typical TopK [67] and the recent
MIL-Align [71] strategies to compute the video-level anomaly pre-
diction and category prediction, respectively, these predictions are
subsequently used to calculate losses and provide data support
for model optimization. Throughout the whole process, we devise
two modules to encourage the model to focus on anomalies from
the spatial and temporal dimensions, which are illustrated in the
following sections.

3.2.1 Motion prior-aware spatial attention aggregation. Although
we explicitly disentangle WSVADL into two independent tasks,
i.e., temporal anomaly detection and spatial anomaly detection, for
the temporal anomaly detection task, we still require the critical
spatial local anomalies as assistance information. This is because
potential spatial anomalies can eliminate the noise effect caused by
the irrelevant backgrounds, after all, most anomalies may occupy a
small spatial region. For this problem, a majority of previous works
completely ignore spatial anomaly information, and a tiny minority
attempts to learn the interaction between spatial patches and video
frames. The former works lacks the consideration of the use of
individual spatial contents, while the latter works inevitably incurs
excessive computational costs. Therefore, we propose a novel spatial
attention aggregation (SA2) scheme to capture key spatial informa-
tion with low computational costs. As we know, the whole frames
consist of the background of the scene and foreground of action,
and anomalous events often occur with foreground objects, thus
focusing on the spatial foreground captures potentially anomalous
events. The common methods for locating the foreground include
object detection algorithms [46] or optical flow [8], but these require
high computation costs. Here, we propose a considerably simple
and efficient method named SA2, inspired by motion priors based

3
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Figure 2: The pipeline of our proposed STPrompt.

works [59, 65]. Specifically, given the frame-level feature 𝑥𝐶𝐿𝐼𝑃 and
its corresponding spatial feature 𝑥𝑃𝐴𝑇𝐶𝐻 ∈ R𝑇×𝐻×𝑊 ×𝐷 , where
𝐻 and𝑊 are the height and width of the spatial feature, we argue
that when most abnormal events occur, the corresponding location
within spatial feature would change significantly [65]. Therefore,
we compute the difference between frames to obtain the motion
magnitude:

𝑀𝑜 [𝑖] = 𝐿2(𝑥𝑃𝐴𝑇𝐶𝐻 [𝑖] ×2−𝑥𝑃𝐴𝑇𝐶𝐻 [𝑖 −1] −𝑥𝑃𝐴𝑇𝐶𝐻 [𝑖 +1]), (1)
where the size of 𝑀𝑜 is 𝑇 × 𝐻 ×𝑊 , L2 is the L2 normalization
applied in the channel dimension, and 𝑖 denotes the 𝑖-th frame.
Then we use the TopK mechanism to select a fixed number of patch-
level feature 𝑥𝑀𝑜 ∈ R𝑇×𝐾×𝐷 with the highest motion magnitude
𝑀𝑜𝑇𝑂𝑃 ∈ R𝑇×𝐾×1, where 𝐾 < 𝐻 ×𝑊 , and then compute the
attention to obtain the aggregate spatial feature:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛[𝑖] = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑀𝑜𝑇𝑂𝑃 [𝑖]), (2)

𝑥𝐴𝑆 [𝑖] = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛[𝑖]⊤𝑥𝑀𝑜 [𝑖] . (3)
Different from 𝑥𝐶𝐿𝐼𝑃 in which all pixels in each frame have

nearly equal influence for anomaly detection, 𝑥𝐴𝑆 places a heavy
focus on potential anomaly locations. No matter how the spatial
region of abnormal events changes, these two features, i.e., 𝑥𝐶𝐿𝐼𝑃
and 𝑥𝐴𝑆 , can extract key abnormal information from the local and
global perspectives. In other words, they are complementary.

3.2.2 Temporal CLIP adapter. As aforementioned, we adopt the
pre-trained image encoder of CLIP to extract frame-level features,
which contain momentary information but lacks a global temporal
context critical for the VAD task. This motivates us to study tem-
poral context modeling. We propose the temporal adapter that is
similar to a vanilla multi-layer Transformer encoder, consisting of
self-attention, layer normalization (LN), and feed-forward networks
(FFN). Following [40], positional encoding is not applied. The main
difference between temporal adapter and Transformer encoder lies
in the self-attention, which is based on relative distance instead
of feature similarity [70]. The adjacency matrix in self-attention is
calculated as𝑀𝑎[𝑖, 𝑗] = −|𝑖− 𝑗 |

𝜎 , where the similarity between 𝑖-th

and 𝑗-th frames only determined by their relative temporal distance.
𝜎 is a hyper-parameter to control the range of influence of distance
relation. In this work, we add 𝑥𝐶𝐿𝐼𝑃 and 𝑥𝐴𝑆 together, and feed
the summation feature into temporal adapter, thus empowering
CLIP with temporal modeling capability, which can be formulated
as follows:

𝑥𝑇𝑀 = 𝐿𝑁 (𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 (𝑀𝑎) (𝑥𝐶𝐿𝐼𝑃 + 𝑥𝐴𝑆 )) ,
𝑥𝑇𝐴 = 𝐿𝑁 (𝐹𝐹𝑁 (𝑥𝑇𝑀 ) + 𝑥𝑇𝑀 ) . (4)

3.2.3 Dual-branch prompt learning. After obtaining the deeply pro-
cessed features, we require the model to predict the frame-level
anomaly confidence. Due to the proven performance of VadCLIP,
we further adopt its dual-branch detection framework. The one
branch is a classification branch (C-Branch), a simple linear layer
with the number of neuron of one, which takes 𝑥𝑇𝐴 as input, and
generates the anomaly confidence 𝐴. Another branch is an align-
ment branch (A-Branch), which takes video features and textual
embedding of labels as input, and yields the anomaly category prob-
ability 𝑀 . To be specific, we create the image feature by adding
the original CLIP feature 𝑥𝐶𝐿𝐼𝑃 and the output of temporal adapter
𝑥𝑇𝐴 together, combining the pre-trained knowledge from CLIP and
newly learned contextual information. For the textual embedding
of labels, we take inspiration from CoOp [80], we add a learnable
prefix prompt embedding into the category embeddings, where
the category embeddings are created by transforming original text
categories, e.g, Fighting, Shooting, Car accident, into class tokens
through CLIP Tokenizer, and then put them into text encoder of
CLIP. Mathematically, we concatenate the category embedding for
class 𝑖 , 𝑡𝑐𝑖 , with the learnable embedding {𝑒1, ..., 𝑒𝑙 } that consists of
𝑙 context tokens to form a complete sentence token, and thus, the
input of text encoder for one class is presented as {𝑒1, · · · , 𝑒𝑙 , 𝑡𝑐𝑖 }.
The overall label prompt embedding 𝑃𝑟𝑜𝑚𝑝𝑡 ∈ R (1+𝐶 )×𝐷 is the
CLS token output of text encoder. With 𝑃𝑟𝑜𝑚𝑝𝑡 and 𝑥𝐶𝐿𝐼𝑃 + 𝑥𝑇𝐴
in hands,𝑀 is generated by,

𝑀 =
[𝑥𝐶𝐿𝐼𝑃 + 𝑥𝑇𝐴]𝑃𝑟𝑜𝑚𝑝𝑡⊤

∥𝑥𝐶𝐿𝐼𝑃 + 𝑥𝑇𝐴∥2 · ∥𝑃𝑟𝑜𝑚𝑝𝑡 ∥2
. (5)
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3.2.4 Objective function. Following the setup of [71], TopK-based
classification objective function is adopted for classification branch,
which can be presented as follows,

𝑝𝑏 = 𝑀𝑒𝑎𝑛(𝑇𝑜𝑝𝐾 (𝐴)),
L𝑐𝑙𝑎𝑠𝑠 = −𝑦𝑏𝐿𝑜𝑔𝑝𝑏 − (1 − 𝑦𝑏 )𝐿𝑜𝑔(1 − 𝑝𝑏 ),

(6)

where 𝑇𝑜𝑝𝐾 means select the set of 𝑘-max frame-level confidences
in 𝐴 for the video 𝑣 . L𝑐𝑙𝑎𝑠𝑠 is the binary cross-entropy between 𝑝𝑏
and video-level binary labels 𝑦𝑏 .

MIL-Align based objective function is used for alignment branch,
which is based on anomaly category probability𝑀 . For each column
of 𝑀 , we select 𝑘-max similarities and compute the average to
measure the alignment degree between 𝑣 and the current class.
Then we can obtain a vector 𝑆 = {𝑠1, ..., 𝑠 (1+𝐶 ) } that represents
the similarity between 𝑣 and all classes. Then we compute the loss
L𝑎𝑙𝑖𝑔𝑛 as follows,

𝑝𝑐𝑖 =
𝑒𝑥𝑝 (𝑠𝑖/𝜏)∑
𝑗 𝑒𝑥𝑝

(
𝑠 𝑗/𝜏

) , (7)

L𝑎𝑙𝑖𝑔𝑛 = −
1+𝐶∑︁
𝑖

𝑦𝑐𝑖𝐿𝑜𝑔𝑝𝑐𝑖 , (8)

where 𝑝𝑐𝑖 is the prediction of the 𝑖-th class, and 𝜏 refers to the
temperature hyper-parameter for scaling.

To learn discriminative prompt embeddings, we also introduce a
contrastive loss to make all textual embeddings more dispersible.
Specifically, we calculate cosine similarity between label prompt
embeddings, and compute the contrastive loss L𝑐𝑜𝑛𝑠𝑡 as follows,

L𝑐𝑜𝑛𝑠𝑡 =
∑︁
𝑖

∑︁
𝑗

𝑚𝑎𝑥

(
0,

𝑃𝑟𝑜𝑚𝑝𝑡⊤𝑐𝑖𝑃𝑟𝑜𝑚𝑝𝑡𝑐 𝑗𝑃𝑟𝑜𝑚𝑝𝑡𝑐𝑖 2 · 𝑃𝑟𝑜𝑚𝑝𝑡𝑐 𝑗 2
)
. (9)

The final objective function is the weighted sum of the above
three loss functions:

L = L𝑐𝑙𝑎𝑠𝑠 + 𝛼L𝑎𝑙𝑖𝑔𝑛 + 𝛽L𝑐𝑜𝑛𝑠𝑡 . (10)

3.3 LLM-Enabled Text Prompting for Spatial
Anomaly Localization

The core of this operation is that how to locate anomaly regions.
Thanks to the emerging paradigm of pre-trained VLMs, we take a
step forward to training-free spatial anomaly localization. Inspired
by CLIP-based industrial defect detection works [23, 81, 82], we
regard the spatial anomaly localization as a spatial patch retrieval
process given text queries. Specifically, we suppose a test video
frame is deemed as an anomaly frame due to its high anomaly score.
We then obtain its patch-level feature map 𝑥𝑃 ∈ R𝐻×𝑊 ×𝐷 by the
sliding window scheme, in which the patches are generated in the
same way as 𝑥𝑃𝐴𝑇𝐶𝐻 . Here the sliding windows scheme means that
we first generate a set of image patches with a fixed-size window of
𝑃×𝑃 by sliding the windowwith a stride of 𝑆 , i.e., a operation similar
to convolutions, and then feed these image patches into the image
encoder of CLIP to obtain the corresponding embedding of the CLS
token. Notably, we do not adopt the natural dense representations,
i.e., the penultimate feature maps in CLIP, though its generation
is simpler than the sliding-window based scheme. This is because
those features are not directly supervised with language in CLIP,
and moreover, these patch features have already aggregated the

global context due to self-attention, hindering the modeling of local
region details for localization [23].

As for text queries, we generate several normal and abnormal
descriptions. For the normal generation, the specifics are as follows,
compared to industrial defect detection tasks, using textual labels to
describe normal behavior under WSVAD task is more challenging.
This is because videos in WSVAD task typically include multiple
scenes, especially numerous real-world scenarios that are difficult
to accurately summarize with textual labels directly. On the other
hand, in terms of spatial fine-grained description, there may be
semantic ambiguities between normal and abnormal behaviors due
to the limited coverage range of spatial patches. Considering that
most anomalies target intense human behavior, we believe it is more
appropriate to use textual captions that describe the background
of the image as normal descriptions. Therefore, we query LLMs
about common indoor and outdoor items and selected 12 of the
most common text descriptions as normal text descriptions. For
example, “a picture of sky, a picture of ground, a picture of road, a
picture of grass, a picture of building, a picture of wall, a picture of
tree, a picture of floor tile, a picture of desk, a picture of cabinet, a
picture of chair, a picture of door”.

For abnormal descriptions, in addition to the original abnormal
categories, we also use LLMs with a template “Provide phrases
similar to [abnormal category]” to obtain augmented descriptions.
For example, “[abnormal category]” can be set as “people knockout
someone” for the category Fighting, “people lying on the ground”
for Car accident, “someone ignite fire” for Arson, “people shooting
someone” for Shooting. The augmented prompts, along with the
original textual categories, are used as final abnormal prompts for
spatial anomaly localization.

With 𝑥𝑃 and text queries 𝑞𝑇 in hands, we perform a patch-level
retrieval process, namely, using normal descriptions and abnor-
mal descriptions to locate the background regions and potential
abnormal regions, respectively. Mathematically, this process can be
represented as,

𝑀𝑠 [𝑖, 𝑗] =
∑︁

𝑞𝑇 [𝑙 ]∈𝐴𝑛𝑜𝑚𝑎𝑙𝑦

(
𝑒𝑥𝑝 (𝑥𝑃 [𝑖, 𝑗]𝑞𝑇 [𝑙]⊤/𝜏)∑
𝑘 𝑒𝑥𝑝 (𝑥𝑃 [𝑖, 𝑗]𝑞𝑇 [𝑘]⊤/𝜏

)
(11)

A spatial heat map of anomalous events 𝑀𝑠 with size of 𝐻 ×𝑊
is created, and it is resized to the size of original frames, and can
generate the predicted bounding box by shape detection algorithm.
Notably, we create two different scale feature maps for 𝑥𝑃 with
𝑃&𝑆 set to 32&32 and 80&48, and use a fusion hyper-parameter 𝜆
to average their detection results as the final result.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. We conduct extensive experiments on three pop-
ular WSVAD benchmarks in which the spatio-temporal anomaly
annotations of test videos are provided. UCF-Crime is a large-
scale benchmark for WSVAD task. It consists of 1900 long and
untrimmed real-world surveillance videos, where the total duration
is 128 hours, and the number of training videos and test videos
is 1610 and 290, respectively. ShanghaiTech is a medium-scale
dataset of 437 videos, including 130 abnormal videos on 13 scenes.
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This dataset is originally designed for semi-supervised video anom-
aly detection, and we follow Zhong et al. [78] and reorganize the
dataset into 238 training videos and 199 test videos. UBnormal is
a synthesized dataset. There are total 543 videos with 22 abnormal
event types, in which 6 types are visible in the training set, and 12
types are visible in the test set. Following WSVAD settings, only
video-level labels are available during the training stage.

4.1.2 Evaluation metrics. For the temporal anomaly detection, we
follow previous works [52], and utilize the area under the curve
(AUC) of the frame-level receiver operating characteristics (ROC).
The higher AUC indicates the better performance. For the spatial
anomaly localization, following the previous work [33], we use
TIoU (Temporal Intersection-over-Union) as the evaluation metric,
which can be formulated as the following equation:

𝑇 𝐼𝑜𝑈 =
1
𝑁

𝑗=1∑︁
𝑁

𝐴𝑟𝑒𝑎𝑝 ∩𝐴𝑟𝑒𝑎𝑔
𝐴𝑟𝑒𝑎𝑝 ∪𝐴𝑟𝑒𝑎𝑔

· 𝐼 [𝑃 𝑗 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑], (12)

where the indicator 𝐼 [.] ∈ {0, 1} indicates whether the given anom-
aly frame is predicted as anomaly according to the anomaly score
𝑃 𝑗 , 𝐴𝑟𝑒𝑎𝑝 and 𝐴𝑟𝑒𝑎𝑔 represent the area of prediction bounding box
and the ground truth bounding box respectively, and 𝑁 represents
the total number of all anomaly frames. We report both frame-level
detection and pixel-level localization accuracy.

4.2 Implementation Details
We use the frozen CLIP (ViT-B/16) to extract features of video
frames. Specifically, we process 1 out of 16 frames on UCF-Crime
dataset, and 1 out of 4 frames on ShanghaiTech and UBnormal thus
higher sampling frequency can slightly improve the performance.
During the training stage, the maximum length of training videos
is set to 256, videos with length exceeding the limit will be sam-
pled to the maximum length. For all datasets, we set the length of
the learnable prompts prefixed to text labels as 8. For the hyper-
parameters of total loss function, 𝛼 is set to 1 on UBnormal and 0.9
on UCF-Crime and ShanghaiTech, 𝛽 is set as 2 on all datasets. 𝑘 is
set to [𝑇 /16] + 1 on all datasets. For 𝑥𝑃𝐴𝑇𝐶𝐻 , we resize the image
to 224 × 224, then use a sliding-window of size 32 × 32 with the
stride of 32 to generate multiple patches, with both 𝐻 and𝑊 equal
to 7. Besides, 𝐾 in SA2 is set to 12. For model optimization, we use
AdamW optimizer with learning rate of 1e-4 to train the model on
a single RTX3090 GPU, and batch size is set to 64.

4.3 Comparison with State-of-the-art Methods
To ensure fairness in comparison, we re-implement most methods
using the same CLIP features as ours, given that several works
utilize different feature extractors.

4.3.1 Temporal anomaly detection results. As listed in Tables 1
to 3, our method demonstrates superior performance on the UCF-
Crime and UBnormal benchmarks, while also achieving competitive
results on ShanghaiTech. Specifically, our method attains 88.08%
AUC on UCF-Crime, outperforming other comparison counterparts
without using CLIP features by a wide margin, and also excelling
CLIP-based methods by a clear margin. Compared to the best com-
petitor VadCLIP [71], although our STPrompt only utilizes the
spatial attention aggregation instead of multi-crop augmentation,

Table 1: Comparison of different methods on UCFCrime.

Method Feature AUC(%) TIoU(%)
Two Stream [50] Two-stream 51.20 2.20
TSN [60] TSN 53.20 2.60
C3D [56] C3D 70.10 7.20
T-C3D [32] C3D 74.50 10.20
ARTNet [58] ARTNets 75.10 11.40
3DResNet [16] I3D-ResNet 77.50 10.30
NLN [62] I3D-ResNet 78.90 12.20
Liu et al. [33] I3D-ResNet 82.00 16.40
SVM baseline CLIP 50.10 N/A
OCSVM [49] CLIP 63.20 N/A
Hasan et al. [17] CLIP 51.20 N/A
Ju et al. [25] CLIP 84.72 N/A
Sultani et al. [52] CLIP 84.14 N/A
Sultani et al.† [52] CLIP 67.11 16.82
Wu et al. [67] CLIP 84.57 N/A
AVVD [68] CLIP 82.45 N/A
RTFM [55] CLIP 85.66 N/A
DMU [79] CLIP 86.75 N/A
UMIL [39] CLIP 86.75 N/A
CLIP-TSA [24] CLIP 87.58 N/A
VadCLIP [71] CLIP 88.02 22.05
STPrompt CLIP 88.08 23.90

Table 2: Comparison of different methods on ShanghaiTech.

Method Feature AUC(%) TIoU(%)

Sultani et al. [52] CLIP 91.72 N/A
Sultani et al.† [52] CLIP 80.25 2.46
Wu et al. [67] CLIP 95.24 N/A
RTFM [55] CLIP 96.76 N/A
DMU [79] CLIP 97.57 N/A
UMIL [39] X-CLIP[41] 96.78 N/A
MSL [30] VideoSwin[36] 97.20 N/A
SSRL [28] CLIP 96.22 N/A
CLIP-TSA [24] CLIP 98.32 N/A
VadCLIP [71] CLIP 97.49 4.09
STPrompt CLIP 97.81 9.77

it easily achieves a performance improvement. Besides, our method
obtains 97.81% AUC, a competitive result on ShanghaiTech dataset.
On UBnormal dataset, our method achieves 63.98% AUC, achieving
an absolute gain of 1.0% in terms of AUC over the best competitor
OPVAD [70]. The above results demonstrate the compelling ability
of our method for WSVAD task, which can outperform current
competition counterparts on three commonly-used benchmarks.

4.3.2 Spatial anomaly localization results. On the other hand, our
method exhibits superior performance in spatial anomaly local-
ization. Since there are few works exploring spatial anomaly lo-
calization, we modify a classical method [13] and an emerging
method [71] as baselines, where the former is a variant of Sultani et
al. [52], a simple patch-level detection, and the latter employs the
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Table 3: Comparison of different methods on UBnormal.

Method Feature AUC(%) TIoU(%)

Georgescu et al. [12] None 59.30 N/A
Georgescu et al. [12]+anomalies None 61.30 N/A
Sultani et al. [52] CLIP 53.23 N/A
Sultani et al.† [52] CLIP 51.95 5.04
Wu et al. [67] CLIP 53.70 N/A
RTFM [55] CLIP 60.94 N/A
DMU [79] CLIP 59.91 N/A
OPVAD [70] CLIP 62.94 N/A
VadCLIP [71] CLIP 62.32 3.67
STPrompt CLIP 63.98 8.17

learned label prompt embeddings to locate spatial anomalies. From
Tables 1 to 3, we found that STPrompt achieves best performance
in terms of TIoU on all the three benchmarks. For example, com-
pared to fully-supervised method Liu et al. [33] and the baseline
Sultani et al. [52], our STPrompt can achieve a substantial improve-
ment of 7.5% and 7.2% TIoU on UCF-Crime. Besides, STPrompt also
comprehensively outperforms VadCLIP, showing the advantages
of purpose-built prompts created by LLMs with respect to vanilla
learnable label prompts for the spatial anomaly localization.

4.4 Ablation Studies
To investigate the influence of designed modules, we perform ex-
tensive ablation studies with frame-level AUC and spatio-temporal-
level TIoU on UCF-Crime and UBnormal benchmarks .

4.4.1 Effectiveness of dual-branch structure. As the result shown
in Table 4, we investigate the performance of dual-branch struc-
ture in various situations. It is evident that employing both the
C-branch and A-branch leads to improved performance compared
to using a single branch. After adding other modules, A-branch
has sustainable advantages over C-branch, which indicates that
A-branch possesses superior capabilities in temporal anomaly de-
tection, Consequently, we use the results generated from A-branch
(1 minus the similarity between the video and normal class) as the
final frame-level anomaly score.

4.4.2 Effectiveness of spatial aggregation attention. We employ the
spatial aggregation attention not only for aggregating spatial fea-
tures for temporal detection but also for assisting spatial anomaly
location. According to the result in Table 4, using spatial features
yields a notable improvement of 2.0% AUC on UCF-Crime and
1.0% AUC on UBnormal, respectively. This underscores the effi-
cacy of spatial information in enhancing the ability of model to
distinguish anomalies from normal events or background within
the same frame. Consequently, abnormal regions are highlighted
while redundant background is suppressed. Table 5 shows the ef-
fects of using different strategies to integrate spatial features. We
observe that simply using the average features or attention-based
weighted average features can slightly improve the performance
on UCF-Crime, but leads to a performance drop on UBnormal. Us-
ing motion-based selection strategy can reduce redundant spatial
features and achieves a improvement on both UCF-Crime and UB-
normal. Our SA2 is the combination of motion-based selection

Table 4: Effectiveness of each module.

Components AUC(%)
SA2 TemAdapter C-Branch A-Branch UCF-Crime UBnormal√

84.03 60.91√
84.54 59.07√ √
84.78 61.52√ √ √
85.73 61.87√ √ √
86.13 63.00√ √ √
86.52 62.14√ √ √
87.40 62.43√ √ √ √
88.08 63.98

Table 5: Ablation studies on spatial modeling.

Method AUC(%)
UCF-Crime UBnormal

w/o SA2 86.13 63.00
Average only 86.91 62.93
Attention only 86.67 62.64
Selection+Average 87.79 63.69
Selection+Attention (SA2) 88.08 63.98

and attention-based weighted average. Such a simple yet effective
operation can contribute to clear improvements.

4.4.3 Effectiveness of temporal adapter. Previous works have
proven the effectiveness of temporal relation modeling on WSVAD
task. As presented in Table 4, temporal adapter gets significant per-
formance boosts both with or without SA2. Furthermore, we also
perform ablation studies on how to learn temporal modeling. From
Table 6, we found that the vanilla transformer that performs well
when being trained on large-scale datasets with full-supervised
supervision, however, is not suitable for WSVAD task. Besides, ex-
perimental results reveal that transformer based on fixed distance
relation performs better than traditional self-attention transformer.
This indicates that salient priors are required for WSVAD task with
insufficient supervisory signals.

4.4.4 Impact of fusion factor 𝜆. As aforementioned, we employ
two patch-level feature maps with different size for spatial anomaly
localization, which allow our model to cover spatial anomalies from
different window perspectives. To further investigate the balance
point between these two feature maps, we perform an ablation
experiment and show the results in Table 7. For UCF-Crime, only
using the feature map of size 7 × 7 (𝜆=1.0) can achieve the best
performance. For another benchmark UBnormal, when two feature
maps make the same contributions, i.e., setting 𝜆 to 0.5, our model
achieves the best performance. Therefore, we adopt 𝜆 = 0.7 to
achieve a favorable trade-off.

4.5 Computational Complexity
We conduct a detailed analysis of the parameter count and com-
putational cost of our model, juxtaposing it with previous related
works in Table 8. Upon reviewing the comparison results, we note
that our method, particularly when compared to spatio-temporal
modeling based VADmethod SSRL [28], exhibits lighter weight and

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACMMM’24, 28 October-1 November, 2024, Melbourne, Australia Anon. Submission Id: 433

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Ablation studies on temporal modeling.

Method AUC(%)
UCF-Crime UBnormal

Transformer 86.32 61.24
Transformer+Distance Transformer 86.97 61.30
Distance Transformer 88.08 63.98

Table 7: Ablation studies on fusion factor.

𝜆
TIoU(%)

UCF-Crime UBnormal

0.0 20.16 7.31
0.3 19.85 7.96
0.5 21.55 8.18
0.7 23.90 8.17
1.0 24.45 8.14

Table 8: Computational complexity comparison.

Method Feature Parameter FLOPS

Zhong et al. [78] C3D 78M 386.2G
RTFM [55] I3D 28M 186.9G
SSRL [28] I3D 191M 214.6G
SSRL∗ [28] I3D 136M 214.6G
STPrompt CLIP 31.5M 44.8G

greater efficacy. It is worth highlighting that, despite the presence
of shared parameters between different modules in SSRL denoted
by the symbol ∗, the parameter count and computational cost of
our model are notably lower. In general, the comparison results
presented in Tables 1 to 3 underscore the accurate anomaly de-
tection and localization capabilities of our method. Furthermore,
these findings underscore the favorable balance between speed and
accuracy achieved by our approach in spatio-temporal modeling.

4.6 Qualitative Analyses
4.6.1 Qualitative results of temporal anomaly detection. We illus-
trate qualitative results of temporal anomaly detection in Figure 3.
The top row depicts the results of UCF-Crime, the first two sam-
ples in the bottom row present the results of ShanghaiTech, and
the remaining samples show the results of UBnormal. It is clear
that STPrompt can detect different types of anomalies on three
public benchmarks, including human-centric anomalies, e.g., Fight-
ing and Robbery, and scenario-centric anomalies such as Explosion,
showcasing the effectiveness of STPrompt in anomaly detection.

4.6.2 Qualitative results of spatial anomaly localization. We illus-
trate qualitative results of spatial anomaly localization in Figure 4.
For each sample, the left column is the heat map of abnormal re-
gions, and the right column is the corresponding localization bound-
ing boxes (red) and the ground truth bounding boxes (green). We
observe that STPrompt can localize major abnormal events at the

       Arson                 Explosion        Road Accident           Shooting          

Riding Bike               Fighting           Laying Down        Car Accident       

Figure 3: Qualitative results of temporal anomaly detection
on UCF-Crime, ShanghaiTech, and UBnormal.

Fighting033   

01_0053 

Scene4_1         

Arrest001   

04_001

Scene17_7         

Figure 4: Qualitative results of spatial anomaly localization
on UCF-Crime, ShanghaiTech, and UBnormal.

pixel level for these abnormal video frames, but it also produce sev-
eral false alarms at the same frame. Such results demonstrate that
on the one hand spatial anomaly localization is more challenging
than temporal anomaly detection, and on the other, our method
can better perceive anomalies at the pixel level, thereby increasing
the interpretability for temporal anomaly detection.

5 CONCLUSION
In this work, we present STPrompt, a novel approach utilizing
frozen vision-language models, for weakly supervised video anom-
aly detection and localization. To tackle this challenging task, we
adopt a divide-and-conquer strategy by decomposing this task into
two distinct sub-tasks: temporal anomaly detection and spatial
anomaly localization. For the former task, we design a spatial at-
tention aggregation strategy and temporal adapter to efficiently
capture potential spatial anomaly information as well as contex-
tual information, and then employ a dual-branch network to detect
anomalies by binary classification and cross-modal alignment. For
the latter task, we devise a training-free query-and-retrieve method
based on the pre-trained concept knowledge from VLMs. Without
bells and whistles, our STPrompt achieves state-of-the-art perfor-
mance on three benchmarks in both temporal anomaly detection
and spatial anomaly localization. In the future, how to further re-
duce the spatial false alarm rate and improve spatial localization
accuracy is a problem worthy of long-standing research.
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