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ABSTRACT

Shuffling-type gradient methods are favored in practice for their simplicity and
rapid empirical performance. Despite extensive development of convergence
guarantees under various assumptions in recent years, most require the Lipschitz
smoothness condition, which is often not met in common machine learning models.
We highlight this issue with specific counterexamples. To address this gap, we
revisit the convergence rates of shuffling-type gradient methods without assuming
Lipschitz smoothness. Using our stepsize strategy, the shuffling-type gradient
algorithm not only converges under weaker assumptions but also match the current
best-known convergence rates, thereby broadening its applicability. We prove
the convergence rates for nonconvex, strongly convex, and non-strongly convex
cases, each under both random reshuffling and arbitrary shuffling schemes, under a
general bounded variance condition. Numerical experiments further validate the
performance of our shuffling-type gradient algorithm, underscoring its practical
efficacy.

1 INTRODUCTION

Gradient-based optimization has always been a critical area due to its extensive practical applications
in machine learning, including reinforcement learning (Sutton and Barto, 2018), hyperparameter
optimization (Feurer and Hutter, 2019), and large language models (Radford et al., 2018). While
numerous gradient-based algorithms have been developed for convex functions (Nemirovskij and
Yudin, 1983; Nesterov, 2013; d’Aspremont et al., 2021), research on nonconvex functions has become
particularly active in recent years, driven by advances in deep learning. Notably, with unbiased
stochastic gradients and bounded variance, SGD achieves an optimal complexity ofO(ϵ−4) (Ghadimi
and Lan, 2013), which matches the lower bound established by Arjevani et al. (2023).

In practice, however, random shuffling-type methods have demonstrated superiority over SGD.
These methods are not only easier and faster to implement but also show faster convergence rates,
as evidenced by experiments cited in Bottou (2009; 2012). Theoretical studies on shuffling-type
methods have been conducted in various settings in recent years, presenting unique challenges due
to the lack of independence between most neighboring steps. While much of this research assumes
strong convexity (Gürbüzbalaban et al., 2021; HaoChen and Sra, 2019; Safran and Shamir, 2020),
studies such as Nguyen et al. (2021); Koloskova et al. (2023); Mishchenko et al. (2020) have also
explored applications in nonconvex scenarios.

Although theoretical analysis has been conducted in many settings of shuffling-type gradient algo-
rithms, most of these works require Lipschitz smoothness assumption, which requires restrictive
quadratic lower and upper bounds and thus cannot cover many popular machine learning mod-
els such as language model (Zhang et al., 2019), phase retrieval (Chen et al., 2023), distributionally
robust optimization (Chen et al., 2023), etc. We will demonstrate counterexamples in more detail in
Section 2. To fill this gap, in this paper, we aim at analyzing the convergence rate of shuffling-type
gradient algorithm under relaxed mild smoothness assumptions for both convex and nonconvex cases.

We consider the following finite sum minimization problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)

}
, (P)
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where f(·; i) : Rd → R is smooth and possibly nonconvex for i ∈ [n] := {1, . . . , n}. Problem (P)
covers empirical loss minimization as a special case, therefore can be viewed as formulation for many
machine learning models, such as logistic regression, reinforcement learning, and neural networks.

We summarize our main contributions as follows:

• We proved the convergence of the shuffling-type gradient algorithm under non-uniform
smoothness assumptions, where the Hessian norm is bounded by a sub-quadratic function
ℓ of the gradient norm. With specific stepsizes and a general bounded variance condition,
we achieved a total complexity of O(n

p+1
2 ϵ−3) gradient evaluations for the nonconvex case

with random reshuffling, and O(n
p
2+1ϵ−3) for arbitrary scheme, where 0 ≤ p < 2 is the

degree of ℓ. These results match those with Lipschitz smoothness assumptions in Nguyen
et al. (2021) when p = 0 and ℓ-smoothness degenerates to Lipschitz smoothness.

• For the strongly convex case, we established a complexity of Õ(n
p+1
2 ϵ−

1
2 ) for random

reshuffling. In the non-strongly convex case, the complexity is O(n
p+1
2 ϵ−

3
2 ) for random

reshuffling.

• Without assuming bounded variance, we established complexity of Õ(nϵ− 1
2 ) for arbitrary

scheme in strongly convex case, and O(nϵ− 3
2 ) in non-strongly convex case.

• We conducted numerical experiments to demonstrate that the shuffling-type gradient algo-
rithm converges faster than SGD on two important non-Lipschitz applications.

2 PRELIMINARIES

2.1 SHUFFLING-TYPE GRADIENT ALGORITHM

In practice, the random shuffling method has demonstrated its superiority over SGD, as shown in
Bottou (2009) and Bottou (2012). Specifically, Bottou (2009) shows that shuffling-type methods
achieve a convergence rate of approximately O(1/T 2), where T is the iteration count. Beyond
shuffling-type stochastic gradient methods, variants such as SVRG have been applied in various
scenarios, including decentralized optimization, as discussed in Shamir (2016) and De and Goldstein
(2016).

The analysis of shuffling-type methods has a long history. For convex cases, Gürbüzbalaban et al.
(2021) demonstrated that when the objective function is a sum of quadratics or smooth functions with
a Lipschitz Hessian, and with a diminishing stepsize, the average of the last update in each epoch of
RGA converges strictly faster than SGD with probability one. Additionally, they showed that when the
number of epochs T is sufficiently large, the Reshuffling Gradient Algorithm (RGA) asymptotically
converges at a rate of O(1/T 2). Similarly, Nguyen et al. (2021) established a convergence rate of
O(1/T 2) for strongly convex and globally L-smooth functions. Furthermore, with uniform sampling
and a bounded variance assumption or convexity on each component function, they showed that the
convergence rate can be improved to O(1/nT 2).

In contrast, there is not much research on nonconvex cases. For example, Nguyen et al. (2021)
demonstrated a convergence rate of O(T−2/3); Koloskova et al. (2023) proved a convergence rate of

O
(

1
T +min

{(
nσ
T

) 2
3 ,

(
nσ2

T

) 1
2

})
for single shuffling gradient method.

2.2 COUNTEREXAMPLES

In this section, we give some counterexamples to demonstrate the popularity of non-Lipschitz
functions. First we give two machine learning examples, then we mention some common non-
Lipschitz functions.

Example 1. The first example is distributionally robust optimization (DRO), which is a popular
optimization framework for training robust models. DRO is introduced to deal with the distribution

2
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shift between training and test datasets. In (Levy et al., 2020), it is formulated equivalently as follows.

min
w∈W,θ∈R

L(w, θ) := Eξ∼Pψ
∗
(
ℓ(w; ξ)− θ

λ

)
+ θ, (1)

wherew and θ are the parameters to be optimized, ξ is a sample randomly drawn from data distribution
P , ℓ(w; ξ) is the loss function, ψ∗ is the conjugate function of the divergence function ψ we choose to
measure the difference between distributions, and λ > 0 is the regularization coefficient. It is proved
in (Jin et al., 2021) that L(w, θ) is not always Lipschitz-smooth even if ℓ(w; ξ) is Lipschitz-smooth
and the variance is bounded.

Example 2. The second example is the phase retrieval problem. Phase retrieval is a nonconvex
problem in X-ray crystallography and diffraction imaging (Drenth, 2007; Miao et al., 1999). The
goal is to recover the structure of a molecular object from intensity measurements. Let x ∈ Rd be the
true object and yr = |a⊤r x|2 for r = 1, . . . ,m, where ar ∈ Rd. The problem is to solve:

min
z∈Rd

f(z) :=
1

2m

m∑
r=1

(yr − |a⊤r z|2)2. (2)

This objective function is a high-order polynomial in high-dimensional space, thus it does not belong
to the L-smooth function class.

Example 3. There are many common functions that are not Lipschitz smooth, including polynomial
functions with order > 2, exponential functions, logarithmic functions and rational functions.

2.3 RELAXATION OF LIPSCHITZ SMOOTHNESS

Because of the existence of these counterexamples, people have recently been investigating about
smoothness assumptions that are more general than the traditional Lipschitz smoothness. In Zhang
et al. (2019), (L0, L1)-smoothness was proposed as the first relaxed smoothness notion motivated by
language modeling. It is defined as below:

Definition 2.1. ((L0, L1)-smoothness) A real-valued differentiable function f is (L0, L1)-smooth if
there exist constants L0, L1 > 0 such that

∥∇2f(w)∥ ≤ L0 + L1∥∇f(w)∥.

Lipschitz smoothness can be viewed as a special case of (L0, L1) smoothness when L1 = 0. Under
(L0, L1)-smoothness assumption, various convergence algorithms have been developed including
clipped or normalized GD/SGD (Zhang et al., 2019), momentum accelerated clipped GD/SGD
(Zhang et al., 2020), ADAM (Wang et al., 2022) and variance-reduced clipping (Reisizadeh et al.,
2023) with optimal sample complexity on stochastic non-convex optimization.

Other relaxed smoothness assumptions include asymmetric generalized smoothness motivated by
distributionally robust optimization (Jin et al., 2021) and its extension to α-symmetric generalized
smoothness (Chen et al., 2023) and ℓ-smoothness (Li et al., 2023a). In this paper, we use the definition
of ℓ-smoothness as below:

Definition 2.2. (ℓ-smoothness) A real-valued differentiable function f is ℓ-smooth if there exists
some non-decreasing continuous function ℓ : [0,+∞) → (0,+∞) such that for any w ∈ dom(f)
and constant C > 0, B(w, C

ℓ(∥∇f(w)∥+C) ) ⊆ dom(f); and for any w1, w2 ∈ B(w, C
ℓ(∥∇f(w)∥+C) ),

∥∇f(w1)−∇f(w2)∥ ≤ ℓ(∥∇f(w)∥+ C) · ∥w1 − w2∥.

For nonconvex optimization problems, ℓ function is required to be sub-quadratic. (L0, L1)-
smoothness can be regarded as a special case of ℓ-smoothness. It is straightforward to verify that
both phase retrieval and DRO have ℓ-smooth loss functions. Notice that ℓ-smoothness degenerates to
traditional Lipschitz smoothness if ℓ is a constant function.
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3 ALGORITHM

As demonstrated in our counterexamples, the Lipschitz smoothness assumption does not always hold
in problem (P). In such non-Lipschitz scenarios, gradients can change drastically, posing a significant
challenge for these algorithms. To address this issue, we propose a new stepsize strategy, detailed
in Algorithm 1 and section 4, to improve performance under these challenging conditions. This
strategy aims to choose the stepsize to accommodate the variance and instability in gradients, thereby
enhancing the robustness of the optimization process.

In this algorithm, we start with an initial point w̃0. During each iteration t ∈ [T ], either all the samples
are shuffled, or we keep the order of the samples as in the last epoch. This reshuffling introduces
variance in the order of samples, which can help mitigate issues related to gradient instability. For
each step j ∈ [n], we use the gradient from a single sample with number π(t)

j to update the weights

w. The notation π(t)
j is used to denote the j-th element of the permutation π(t) for j ∈ [n]. Each

outer loop through the data is counted as an epoch, and our convergence analysis focuses on the
performance after the completion of each full epoch.

There are multiple strategies to determine π(t):

• If π(t) is a fixed permutation of [n], Algorithm 1 functions as an incremental gradient method.
This method maintains a consistent order of samples, which can simplify the analysis and
implementation.

• If π(t) is shuffled only once in the first iteration and then used in every subsequent iteration,
Algorithm 1 operates as a shuffle-once algorithm. This strategy introduces randomness at the
beginning but maintains a fixed order thereafter, providing a balance between randomness
and stability.

• If π(t) is regenerated in every single iteration, Algorithm 1 becomes a random reshuffling
algorithm. This approach maximizes the randomness in the sample order, potentially offering
the most robustness against the erratic behavior of non-Lipschitz gradients by constantly
changing the sample order.

Algorithm 1 Shuffling-type Gradient Algorithm

1: Initialization: Choose an initial point w̃0 ∈ dom (F ).
2: for t = 1, 2, · · · , T do
3: Set w(t)

0 := w̃t−1;
4: Generate permutation π(t) of [n].
5: Compute non-increasing stepsize ηt.
6: for j = 1, · · · , n do
7: Update w(t)

j := w
(t)
j−1 −

ηt

n∇f(w
(t)
j−1;π

(t)
j ).

8: end for
9: Set w̃t := w

(t)
n .

10: end for

Although the random reshuffling scheme is most used in practice, each of these strategies offers
distinct advantages and can be selected based on the specific requirements and characteristics of
the optimization problem at hand. For this reason, we will give convergence rates for random and
arbitrary shuffling scheme.

4 CONVERGENCE ANALYSIS

4.1 MAIN RESULTS

In this section, we present the main results of our convergence analysis. Our findings indicate that,
with proper stepsizes, it is possible to achieve the same convergence rate, up to a logarithm difference,
as under the Lipschitz smoothness assumption. First, we introduce the following assumptions
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regarding problem (P). Assumption 4.1 is a standard assumption, and Assumption 4.2 requires all F
and f(·; i) to be ℓ-smooth.
Assumption 4.1. dom (F ) := {w ∈ Rd : F (w) < +∞} ≠ ∅ and F ∗ := infw∈Rd F (w) > −∞.
Assumption 4.2. F and f(·; i) are ℓ-smooth for some sub-quadratic function ℓ, ∀i ∈ [n].

Here, we assume all functions share the same ℓ function without loss of generality, as we can always
choose the pointwise maximum of all their ℓ functions. We define p to be the degree of the ℓ function
such that p = supp≥0{p| limw→∞

ℓ(w)
wp > 0}. Since ℓ is sub-quadratic, we have 0 ≤ p < 2.

Next, we introduce our assumption about the gradient variances.
Assumption 4.3. There exist two constants σ,A ∈ (0,+∞) such that ∀i ∈ [n],

1

n

n∑
i=1

∥∇f(w; i)−∇F (w)∥2 ≤ A∥∇F (w)∥2 + σ2, a.s., ∀w ∈ dom(F ). (3)

If A = 0, Assumption 4.3 reduces to the standard bounded variance assumption.

4.1.1 NONCONVEX CASE

Let us denote ∆1 := F (w
(1)
0 )− F ∗. Under assumptions 4.1 to 4.3, we have the following result for

random shuffling scheme. Proofs can be found in Appendix A.1.1 and A.1.2.
Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold, Let {w̃t}Tt=1 be generated by Algorithm 1
with random reshuffling scheme. For any 0 < δ < 1, we denote H := 4∆1

δ , G := sup{u ≥ 0|u2 ≤

2ℓ(2u) ·H}, G′ :=
√

2(1 + n
√
A)G +

√
nσ, L := ℓ(2G′). For any 0 < ϵ = O( 1√

n
), choose ηt

and T such that

ηt ≤
1

2L
√

A
n + 1

,

T∑
t=1

η3t ≤
n∆1

L2σ2
, T ≥ 32∆1

ηT δϵ2
,

then with probability at least 1− δ, we have ∥∇F (w(t)
0 )∥ ≤ G for every 1 ≤ t ≤ T

1

T

T∑
t=1

∥∇F (w(t)
0 )∥2 ≤ ϵ2.

Remark 4.5. By choosing ηt = η = O( 3

√
n1−p

T ) = O(n
1−p
2 ϵ), we can achieve a complexity of

T = O(n
p−1
2

ϵ3 ) outer iterations andO(n
p+1
2

ϵ3 ) total number of gradient evaluations, ignoring constants,
where p is the order of the ℓ function in Definition 2.2. As p goes to 0, ℓ-smoothness degenerates to
the traditional Lipschitz smoothness, and our total number of gradient evaluations goes to O(

√
n

ϵ3 )
once again, which matches the complexity in Corollary 1 of Nguyen et al. (2021). If ϵ ≤ 1/

√
n, one

possible stepsize is η =
√
nϵ

2L
√

A
n +1

.

Our result here has polynomial dependency on 1
δ , T = O(δ−

3
2−

p
2−p ). It is important to note that, in

our setting, δ accounts for the probability that Lipschitz smoothness does not hold—a consideration
absent in standard Lipschitz smoothness settings. In fact, a polynomial dependency on δ is typical in
papers with similar smoothness assumptions, e.g. theorem 5.3 in Li et al. (2023a) and theorem 6.2 in
Li et al. (2023b). By requiring ϵ = O( 1√

n
) we make sure that ηt ≤ 1

2L
√

A
n +1

is achievable.

Next we consider arbitrary π(t) scheme in Algorithm 1.
Theorem 4.6. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let {w̃t}Tt=1 be generated by Al-
gorithm 1 with arbitrary scheme. Define H = 2∆1, G := sup{u ≥ 0|u2 ≤ 2ℓ(2u) · H},
G′ :=

√
2(1 + n

√
A)G+

√
nσ, L := ℓ(2G′). For any ϵ > 0, choose ηt and T such that

ηt ≤
1

L
√
2(3A+ 2)

,

T∑
t=1

η3t ≤
2∆1

3σ2L2
, T ≥ 8∆1

ηT ϵ2
,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

then we have ∥∇F (w(t)
0 )∥ ≤ G for every 1 ≤ t ≤ T and

1

T

T∑
t=1

∥∇F (w(t)
0 )∥2 ≤ ϵ2.

This theorem gives the convergence rate for arbitrary scheme in Algorithm 1. By choosing ηt =

η = O
(

3

√
1

npT

)
= O

(
ϵ

n
p
2

)
, we achieve a complexity of O

(
n

p
2

ϵ3

)
outer iterations and O

(
n

p
2
+1

ϵ3

)
total gradient evaluations, ignoring constants. Without the randomness in π in every iteration, the
complexity’s dependency on n is increased by O(

√
n). One possible stepsize is η = ϵ

L
√

2(3A+2)
.

4.1.2 STRONGLY CONVEX CASE

For strongly convex case, we give results for both random reshuffling scheme and arbitrary scheme,
with constant learning rate. Proof can be found in Appendix A.2.

Assumption 4.7. Function F in (P) is µ-strongly convex on dom(F ).

Theorem 4.8. Suppose Assumptions 4.1, 4.2, 4.3 and 4.7 hold. Let {w̃t}Tt=1 be generated by
Algorithm 1 with random reshuffling scheme. For any 0 < δ < 1, we denote H := max{ 3σ

2

4µ log 4
ϵ +

∆1,
4∆1

δ }, G := sup{u ≥ 0|u2 ≤ 2ℓ(2u) ·H}, G′ :=
√

2(1 + n
√
A)G+

√
nσ, L := ℓ(2G′). For

any 0 < ϵ = O( 1n ), if we choose ηt and T such that

ηt = η =
4 log(

√
nT )

µT
, T ≥ 4

√
∆1

nδϵ
,

T

log(
√
nT )

≥ 4

µ
max

2, L
√

2(3A+ 2), Lσ

√
8

nµδϵ
, 3

√
Tσ2L2

n∆1

 ,

then for any 0 < δ < 1, with probability at least 1− δ we have

F (w
(T+1)
0 )− F ∗ ≤ ϵ.

In Theorem 4.8, we can achieve a complexity of Õ
(
n

p−1
2 ϵ−

1
2

)
outer iterations and Õ

(
n

p+1
2 ϵ−

1
2

)
total gradient evaluations with η = Õ

(
n

1−p
2 ϵ

1
2

)
, ignoring constants. This matches the result in

Nguyen et al. (2021) with the same assumptions in the degenerate case of p = 0. The dependence on
δ is T = O(δ−

1
2−

p
2−p ).

In the following analysis for arbitrary shuffling scheme, we remove Assumption 4.3 to match the
corresponding result in Lipschitz smooth case.

Theorem 4.9. Suppose Assumptions 4.1, 4.2 and 4.7 hold. Let {w̃t}Tt=1 be generated by Algorithm 1
with arbitrary scheme. We denote S = {w|F (w) ≤ F (w(1)

0 )}, G′ = maxw{∥∇f(w; i)∥|w ∈ S, i ∈
[n]}, L := ℓ(2G′). For any ϵ > 0, choose ηt and T such that

ηt = η =
6 log(T )

µnT
≤ ∆1µ

2

9(µ2 + L2)σ2
∗
, T = Õ(ϵ− 1

2 ) ≥ 12L2 log(T )

µ2
,

where σ∗ is the standard deviation at w∗. Then we have ∥∇F (w(t)
0 )∥ ≤ G′ and

F (w
(T+1)
0 )− F ∗ ≤ ϵ.

In Theorem 4.9, we achieve a complexity of Õ
(
ϵ−1/2

)
outer iterations and Õ

(
nϵ−1/2

)
total gradient

evaluations with η = Õ
(
n−1ϵ

1
2

)
, ignoring constants.
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4.1.3 NON-STRONGLY CONVEX CASE

Next we consider the case where only non-strongly convexity are assumed. In the following theorem,

we denote the optimal solution as w∗, the standard deviation at w∗ as σ∗ :=
√

1
n

∑n
i=1 ∥∇f(w∗; i)∥2

and the average value of {w(t)
0 }Tt=1 as w̄T = 1

T

∑T
t=1 w

(t)
0 . Proof can be found in Appendix A.3.

Assumption 4.10. Functions f(·; i) in (P) are convex on dom(F ), for all i ∈ [n].
Theorem 4.11. Suppose Assumptions 4.1, 4.2, 4.3 and 4.10 hold. Let {w̃t}Tt=1 be generated by
Algorithm 1 with random reshuffling scheme. For any 0 < δ < 1, define H , G, G′, L as in Theorem
4.4. For any 0 < ϵ = O( 1n ), choose ηt and T such that

ηt = η ≤ min

 1

2L
√

A
n + 1

,
3

√
n∆1

Tσ2L2
,

3

√
3n∥w(1)

0 − w∗∥2
2LTσ2

∗

 ,

T ≥ 4∥w(1)
0 − w∗∥2

ηδϵ
,

then with probability at least 1− δ, we have ∥∇F (w(t)
0 )∥ ≤ G for every 1 ≤ t ≤ T and

F (w̄T )− F ∗ ≤ ϵ.

By choosing η = O
(

3

√
n1−p

T

)
= O

(
n

1−p
2 ϵ0.5

)
, we achieve a complexity of O

(
n

p−1
2

ϵ1.5

)
outer

iterations and O
(

n
p+1
2

ϵ1.5

)
total number of gradient evaluations, ignoring constants. The dependency

on δ is T = O(δ−
3
2−

p
2−p ). If ϵ ≤ 1/n, one possible stepsize is η =

√
nϵ

2L
√

A
n +1

.

Theorem 4.12. Suppose Assumptions 4.1, 4.2 and 4.10 hold. Let {w̃t}Tt=1 be generated by Algorithm
1 arbitrary scheme. Define S = {w|F (w) ≤ F (w

(1)
0 )}, G′ = maxw{∥∇f(w; i)∥|w ∈ S, i ∈

[n]} <∞, L = ℓ(2G′). For any ϵ > 0, choose ηt and T such that

ηt = η ≤ 1

G′

√
3ϵ

2L
, T = O(ϵ−1.5) ≥ ∥w

(1)
0 − w∗∥2

ηϵ
,

then we have ∥∇F (w(t)
0 )∥ ≤ G for every 1 ≤ t ≤ T and

min
t∈[T ]

F (wT )− F ∗ ≤ ϵ.

By choosing η = O( 3

√
1
T ), we have the complexity of O( 1

ϵ1.5 ) outer iterations and O( n
ϵ1.5 ) total

number of gradient evaluations, ignoring constants. One possible stepsize is η =
√
3ϵ

G′
√
L
.

4.2 PROOF SKETCH AND TECHNICAL NOVELTY

Broadly speaking, our approach involves two main goals: first, demonstrating that Lipschitz smooth-
ness is maintained with high probability along the training trajectory {w̃t}, and second, showing
that, conditioned on Lipschitz smoothness, the summation of gradient norms is bounded with high
probability.

For the first goal, in Lemma A.4, we prove by induction that when starting an iteration with a bounded
gradient, the entire training trajectory during this iteration will have bounded gradients. Consequently,
we only need to verify the Lipschitz smoothness condition at the start of each iteration. However, at
this point, the two goals become intertwined. We need Lipschitz smoothness to bound the gradient
differences, but we also need the gradient norm bounds to establish Lipschitz smoothness. Our
solution is to address both issues simultaneously.

Assuming that, before a stopping time τ , Lipschitz smoothness holds, we bound the gradient norm up
to that time in Lemma A.5. However, this process is nontrivial. Since we are examining behavior
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before a stopping time, every expectation is now conditioned on t < τ , rendering all previous
estimations for shuffling gradient algorithms inapplicable. This presents a contradiction: we want
to condition on t < τ when applying Lipschitz smoothness, but we do not want this condition
when estimating other quantities. In Lemma A.5, we find a method to separately handle these two
requirements, allowing us to achieve both goals simultaneously.

4.3 LIMITATIONS AND FUTURE WORKS

Although we have proved upper bounds for the complexity of shuffling gradient algorithms, there are
certain limitations in our work that we leave for future research:

• First, as is common with many optimization algorithms, it is challenging to verify that the
bounds presented are indeed the lower bounds. Future work could explore improving these
results, for instance, by reducing the dependency on δ to a logarithmic factor, or by proving
that the current bounds are, in fact, tight lower bounds.

• Second, although we showed results for arbitrary shuffling schemes, there are better results
for single shuffling under Lipschitz smoothness, for example Ahn et al. (2020) proved
O( 1

nT 2 ) convergence rate for strongly convex objectives. It is interesting to see whether we
can achieve the same convergence rate with ℓ smoothness as well.

• Lastly, shuffling gradient methods have been integrated with variance reduction techniques
(Malinovsky et al., 2023). Exploring the performance of these algorithms under relaxed
smoothness assumptions is another promising direction for future work.

5 NUMERICAL EXPERIMENTS

We compare reshuffling gradient algorithm (Algorithm 1) with SGD on multiple ℓ-smooth optimiza-
tion problems to prove its effectiveness. Experiments are conducted with different shuffling schemes,
on convex, strongly convex and nonconvex objective functions, including synthetic functions, phase
retrieval, distributionally robust optimization (DRO) and image classification.

5.1 CONVEX AND STRONGLY CONVEX SETTINGS

We first consider convex functions fi,k(x) = x4i + kxi of x ∈ R50 for all (i, k) ∈
E := {1, 2, . . . , 50} × {−10,−9, . . . , 9, 10}, as well as their sample average f(x) =

1
1050

∑
(k,i)∈E fi,k(x) = 1

50

∑50
i=1 x

4
i . It can be easily verified that f and all fi,k are convex

but not strongly convex, and ℓ-smooth (with ℓ(u) = 3u2/3) but not Lipschitz-smooth. Then we
compare reshuffling gradient algorithm (Algorithm 1) with SGD on the objective minx∈R50 f(x).
Specifically, for each SGD update x ← x − η∇fk,i(x), (k, i) ∈ E is obtained uniformly at
random. For Algorithm 1, we adopt three shuffling schemes as elaborated in Section 3. The
fixed-shuffling scheme and shuffling-once fix all permutations π(t) respectively to be the natural
sequence (1,−10), (1,−9), . . . (50, 10) and its random permutation at the beginning, while the
uniform-shuffling scheme obtains permutations π(t) uniformly at random and independently for
all iterations t. We implement each algorithm 100 times with initialization x0 = [1, . . . , 1] and
fine-tuned stepsizes 0.01 (i.e., η = 0.01 for SGD and ηt

n = 0.01 for Algorithm 1), which takes around
3 minutes in total. We plot the learning curves of f(xt) averaged among the 100 times, as well as
the 95% and 5% percentiles in the left of Figure 1, which shows that Algorithm 1 with all shuffling
schemes converges faster than SGD.

Then we consider strongly convex functions fj,k(x) = exp(xj − k) + exp(k − xj) + 1
2 ||x||

2 for
(i, k) ∈ E and their sample average below.

f(x) =
1

1050

∑
(k,i)∈E

fi,k(x) =
1

2
||x||2 + exp(n+ 1)− exp(−n)

1050[exp(1)− 1]

50∑
j=1

[exp(xj) + exp(−xj)].

All these functions fj,k and f are 1-strongly convex and ℓ-smooth (with ℓ(u) = 5u + 5) but not
Lipschitz-smooth. We repeat the experiment in the same procedure above, except that all the stepsizes
are fine-tuned to be 10−5. The result is shown in the right of Figure 1, which also shows that
Algorithm 1 with all shuffling schemes converges faster than SGD.
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Figure 1: Experimental Results on Convex (left) and Strongly-convex (right) Objective Functions.

Figure 2: Experimental Results on Phase Retrieval (left) and DRO (right).

5.2 APPLICATION TO PHASE RETRIEVAL AND DRO

We compare SGD with Algorithm 1 on phase retrieval and distributionally robust optimization (DRO),
which are ℓ-smooth but not Lipschitz smooth. We use similar setup as in (Chen et al., 2023).

In the phase retrieval problem (2), we select m = 3000 and d = 100, and generate independent
Gaussian variables x, ar ∼ N (0, 0.5Id), initialization z0 ∼ N (5, 0.5Id), as well as yi = |a⊤r z|2+ni
with noise ni ∼ N (0, 42) for i = 1, ...,m. We select constant stepsizes 2× 10−6 and η(t)j ≡ 0.007

m
for SGD and Algorithm 1 respectively by fine-tuning and implement each algorithm 100 times. For
Algorithm 1, we adopt three shuffling schemes as elaborated in Section 3. The fixed-shuffling scheme
and shuffling-once fix all permutations π(t) respectively to be the natural sequence 1, 2, . . . , 3000 and
its random permutation at the beginning, while the uniform-shuffling scheme obtains permutations
π(t) uniformly at random and independently for all iterations t. We plot the learning curves of the
objective function values averaged among the 100 times, as well as the 95% and 5% percentiles in
the left of Figure 2, which shows that Algorithm 1 with shuffle-once and uniform-shuffling schemes
converge faster than SGD.

In the DRO problem (1), we select λ = 0.01 and ψ∗(t) = 1
4 (t + 2)2+ − 1 (corresponding to ψ

being χ2 divergence). For the stochastic samples ξ, we use the life expectancy data1 designed for
regression task between the life expectancy (target) and its factors (features) of 2413 people, and
preprocess the data by filling the missing values with the median of the corresponding features,
censorizing and normalizing all the features2, removing two categorical features (“country” and
“status”), and adding standard Gaussian noise to the target to get robust model. We use the first 2000

1https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?
resource=download

2The detailed process of filling missing values and censorization can be seen in https://
thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/
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Figure 3: Experimental Results on Cifar 10 Dataset.

samples {xi, yi}2000i=1 with features xi ∈ R34 and targets yi ∈ R for training. We use the loss function
ℓξ(w) =

1
2 (yξ−x

⊤
ξ w)

2+0.1
∑34

j=1 ln
(
1+ |w(j)|)

)
of w = [w(1); . . . ;w(34)] ∈ R34 for any sample

xξ, yξ. We use initialization η0 = 0.1 and w0 ∈ R34 from standard Gaussian distribution.

Then similar to phase retrieval, we implement both SGD and the three sampling schemes of Algorithm
1 100 times with stepsizes η(t)j = ηt

n=10−7.We evaluate Ψ(xt) :=minη∈R L(xt, η) every 10 iterations.
The average, 5% and 95% percentiles of Ψ(xt) among the 100 implementations are plotted in the
right of Figure 2, which shows that Algorithm 1 with fixed shuffling converges faster than SGD.

5.3 APPLICATION TO IMAGE CLASSIFICATION

We train Resnet18 (He et al., 2016) with cross-entropy loss for image classification task on Cifar 10
dataset (Krizhevsky, 2009), using SGD and Algorithm 1 with three shuffling schemes. We implement
each algorithm 100 times with batchsize 200 and stepsize 10−3. After every 250 iterations, we
evaluate the sample-average loss value as well as classification accuracy on the whole training dataset
and test dataset. The average, 5% and 95% percentiles of these evaluated metrics among the 100
implementations are plotted in Figure 3, which shows that Algorithm 1 with fixed-shuffling scheme
outperforms SGD on both training and test data, and Algorithm 1 with the other two shuffling schemes
outperforms SGD on training data.

6 CONCLUSION

In this paper, we have advanced the understanding of shuffling-type gradient algorithms under non-
uniform smoothness assumptions and improved these algorithms with specific learning rates. We
provided counterexamples to illustrate the existence and divergence of non-Lipschitz functions for
(P). Our results show that these algorithms converge efficiently under a general bounded variance
assumption. Additionally, we established robust convergence rates for both strongly convex and
non-strongly convex cases, demonstrating the versatility and effectiveness of our approach. These
convergence results outperform SGD also when Lipschitz smoothness is violated, which is demon-
strated by numerical experiments. Future research can build on these findings to explore further
generalizations and applications in various optimization contexts.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 NONCONVEX CASE ANALYSIS

In this section we prove the theorems in section 4.1.1.

A.1.1 LEMMAS

In this part we use notations as defined in Theorem 4.4, for completeness we repeat them here:

H :=
4∆1

δ
,G := sup{u ≥ 0|u2 ≤ 2ℓ(2u) ·H} <∞,

G′ :=

√
2(1 + n

√
A)G+

√
nσ, L := ℓ(2G′).

We first state some lemmas that are useful in our proof. The following lemma is a natural corollary of
Definition 2.2, by the fact that ℓ is non-decreasing.

Lemma A.1. If F is ℓ-smooth, for any w ∈ dom(F ) satisfying ∥∇F (w)∥ ≤ G, we have
B(w,G/ℓ(2G)) ⊆ dom(F ). For any w1, w2 ∈ B(w,G/ℓ(2G))),

∥∇F (w1)−∇F (w2)∥ ≤ ℓ(2G)∥w1 − w2∥,

F (w1) ≤ F (w2) + ⟨∇F (w2), w1 − w2⟩+
ℓ(2G)

2
∥w1 − w2∥2.

The following lemma gives relationship between ∥∇f(w; i)∥ and ∥∇F (w)∥.
Lemma A.2. If Assumption 4.3 is true, we have

∥∇f(w; i)∥ ≤
√

2(1 + n
√
A)∥∇F (w)∥+

√
2nσ.

Proof. From Assumption 4.3 we have that

∥∇f(w; i)∥2 ≤ 2∥∇f(w; i)−∇F (w)∥2 + 2∥∇F (w)∥2

≤ 2

n∑
i=1

∥∇f(w; i)−∇F (w)∥2 + 2∥∇F (w)∥2

≤ 2nA∥∇F (w)∥2 + 2nσ2 + 2∥∇F (w)∥2

= 2(1 + nA)∥∇F (w)∥2 + 2nσ2.

Taking square root on both sides and notice that ∥∇F (w)∥ ≥ 0, σ > 0 we have the conclusion.

According to Lemma A.2, for w such that ∥∇F (w)∥ ≤ G is true, we have

∥∇f(w; i)∥ ≤
√
2(1 + n

√
A)G+

√
nσ = G′

holds for all i ∈ [n].

In our proof, we want that with high probability, Lipschitz smoothness in Lemma A.1, for both F (w)
and f(w; i), between w(t)

0 and w(t)
j is true, for t ∈ [T ], i, j ∈ [n]. For that purpose, we can prove the

following inequalities with high probability, for t ∈ [T ]:

∥∇F (w(t)
0 )∥ ≤ G;

∥w(t)
0 − w

(t+1)
0 ∥ ≤ G′/ℓ(G+G′);

∥∇f(w(t)
0 ; i)∥ ≤ G′,∀i ∈ [n];

∥w(t)
0 − w

(t)
j ∥ ≤ G

′/ℓ(2G′),∀j ∈ [n]. (4)
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By Lemma A.2 we know that the third inequality in (4) holds if the first inequality is true. Noticing
that ℓ(G+G′) ≤ ℓ(2G′), it suffices to prove that, for t ∈ [T ],

∥∇F (w(t)
0 )∥ ≤ G, ∥w(t)

0 − w
(t)
j ∥ ≤ G

′/ℓ(2G′),∀j ∈ [n]. (5)

For the first inequality, it can be hard to bound the gradient norm directly. The following lemma
states the connection between gradient norm and function value of an ℓ-smooth function.
Lemma A.3. (Lemma 3.5 in Li et al. (2023a)) If F is ℓ-smooth, then

∥∇F (w)∥2 ≤ 2ℓ(2∥∇F (w)∥) · (F (w)− F ∗)

for any w ∈ dom(F ).

Since ℓ is sub-quadratic, with Lemma A.3 we can bound the gradient norm by bounding the difference
between the function value and the optimal value. To ease the proof, let us define the following
stopping time:

τ := min{t|F (w(t)
0 )− F ∗ > H} ∧ (T + 1).

For t < τ , we have ∥∇F (w(t)
0 )∥ ≤ G based on the definition of τ and Lemma A.3, so the first

inequality in (5) is satisfied. The following lemma proves that the other inequality in (5) is true for
t < τ as well, therefore guarantees the Lipschitz smoothness before τ .

Lemma A.4. For t < τ , ηt ≤ 1
2L , we have for all k ∈ [n] and t ∈ [T ], ∥w(t)

0 −w
(t)
k ∥2 ≤ G′/ℓ(2G′).

Proof. We use induction to prove that

w
(t)
j ∈ B(w

(t)
0 ,

G′

ℓ(2G′)
), j = 0, 1, . . . , n.

First of all, this claim is true for j = 0. Now suppose the claim is true for j ≤ k − 1, i.e.,

∥w(t)
0 − w

(t)
j ∥ ≤

G′

ℓ(2G′)
, j = 0, 1, . . . , k − 1,

we try to prove it for w(t)
k . From Lemma A.1, we have Lipschitz smoothness, for all f(w; i), between

w
(t)
0 and w(t)

j , if j ≤ k − 1.

Since we have
∥∇f(w(t)

0 ; i)∥ ≤ G′, ∀i ∈ [n],

for any i ∈ [n] and j ∈ [k − 1] we have

∥∇f(w(t)
j ; i)∥ ≤ ∥∇f(w(t)

0 ; i)∥+ ∥∇f(w(t)
j ; i)−∇f(w(t)

0 ; i)∥ ≤ G′ + L∥w(t)
j − w

(t)
0 ∥ ≤ 2G′.

Hence, by the algorithm design we have

∥w(t)
k −w

(t)
0 ∥ =

∥∥∥∥∥∥
k−1∑
j=0

ηt
n
∇f(w(t)

j ;π
(t)
j )

∥∥∥∥∥∥ ≤
k−1∑
j=0

ηt
n
∥∇f(w(t)

j ;π
(t)
j )∥ ≤

k−1∑
j=0

2G′ηt
n
≤ G′

L
=

G′

ℓ(2G′)
,

where the third inequality uses k ≤ n and ηt ≤ 1
2L . By induction, the claim is true.

Therefore, we have the desired Lipschitz smoothness property in Lemma A.1 for t < τ . The only
thing left to prove is P(τ ≤ T ) ≤ δ/2.
To simplify the notations, let us define

ϵ
(t)
k :=

1

n

k−1∑
j=0

(∇f(w(t)
j ;π

(t)
j+1)−∇f(w

(t)
0 ;π

(t)
j+1))

as the average of differences between the gradients at the start of iteration t and the actual gradients
we used until step j in the t-th outer iteration. It is worth mentioning that the actual step in t-th outer
iteration is −ηt[∇F (w(t)

0 ) + ϵ
(t)
n ].

Now we bound the probability of event {τ ≤ T} by bounding the expectation of function value at
the stopping time.
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Lemma A.5. With parameters chosen in Theorem 4.4, we have

E[F (w(τ)
0 )− F ∗] ≤ 2∆1.

Proof. For any t < τ ,

F (w
(t+1)
0 )− F (w(t)

0 )

≤⟨∇F (w(t)
0 ), w

(t+1)
0 − w(t)

0 ⟩+
L

2
∥w(t+1)

0 − w(t)
0 ∥2

=− ηt⟨∇F (w(t)
0 ),∇F (w(t)

0 ) + ϵ(t)n ⟩+
Lη2t
2
∥∇F (w(t)

0 ) + ϵ(t)n ∥2

=− ηt
2
(∥∇F (w(t)

0 )∥2 + ∥∇F (w(t)
0 ) + ϵ(t)n ∥2 − ∥ϵ(t)n ∥2) +

Lη2t
2
∥∇F (w(t)

0 ) + ϵ(t)n ∥2

≤− ηt
2
∥∇F (w(t)

0 )∥2 + ηt
2
∥ϵ(t)n ∥2

≤− ηt
2
∥∇F (w(t)

0 )∥2 + ηtL
2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2. (6)

Here the first and last inequality is from Lemma A.1 and the second is because ηt ≤ 1
2L . Taking

summation from t = 1 to t = τ − 1 and taking expectation we have

E[F (w(τ)
0 )− F ∗] ≤ ∆1 − E[

τ−1∑
t=1

ηt
2
∥∇F (w(t)

0 )∥2] + E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2]. (7)

Now let us get a bound for the last term on the right hand side. For any t ∈ [T ], k ∈ [n], from
Algorithm 1 and Cauchy-Schwarz inequality we have

∥w(t)
k − w

(t)
0 ∥2 =

k2η2t
n2

∥∥∥1
k

k−1∑
j=0

∇f(w(t)
j ;π

(t)
j+1)

∥∥∥2
≤3k2η2t

n2
∥1
k

k−1∑
j=0

(∇f(w(t)
0 ;π

(t)
j+1)−∇F (w

(t)
0 ))∥2 + 3k2η2t

n2
∥∇F (w(t)

0 )∥2

+
3kη2t
n2

k−1∑
j=0

∥∇f(w(t)
j ;π

(t)
j+1)−∇f(w

(t)
0 ;π

(t)
j+1)∥

2.

Let us denote the 3 terms on the RHS as A1(t, k), A2(t, k) and A3(t, k), i.e. ∥w(t)
k − w

(t)
0 ∥2 ≤

A1(t, k) +A2(t, k) +A3(t, k). Since we are interested in E[
∑τ−1

t=1
ηtL

2

2n

∑n−1
k=0 ∥w

(t)
k −w

(t)
0 ∥2], we

need to bound E[
∑τ−1

t=0
ηtL

2

2n

∑n−1
k=1 Ai(t, k)] for i = 1, 2, 3.

For A1(t, k), since π(t) is randomly chosen, let Ft := σ(π(1), · · · , π(t)) be the σ-algebra generated
in Algorithm 1, for t ∈ [T ] we have

E[
ηtL

2

2n

n−1∑
k=0

A1(t, k)|Ft−1] =
ηtL

2

2n

n−1∑
k=0

3k2η2t
n2

E[∥1
k

k−1∑
j=0

∇f(w(t)
0 ;π

(t)
j+1)−∇F (w

(t)
0 )∥2|Ft]

=
ηtL

2

2n

n−1∑
k=0

3k2η2t
n2

n− k
k(n− 1)

1

n

n−1∑
i=0

∥∇f(w(t)
0 ; i+ 1)−∇F (w(t)

0 )∥2

≤ ηtL
2

2n

n−1∑
k=0

3η2t k(n− k)
n2(n− 1)

(A∥∇F (w(t)
0 )∥2 + σ2)

≤ η3tL
2

2n
(A∥∇F (w(t)

0 )∥2 + σ2).
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Here the second equation comes from variance of randomized reshuffling variables, (Lemma 1 in
Mishchenko et al. (2020)); the first inequality is from assumption 4.3; the last inequality is because∑n−1

k=0 k(n− k) =
(n−1)n(n+1)

6 ≤ n2(n−1)
3 .

Let {Zt}t≤T be a sequence such that Z1 = 0 and for any t ∈ [2, T ],

Zt − Zt−1 = −η
3
tL

2

2n
(A∥∇F (w(t)

0 )∥2 + σ2) +
ηtL

2

2n

n−1∑
k=0

A1(t− 1, k).

We know {Zt} is a supermartingale. Since τ is a bounded stopping time, by optional stopping
theorem, we have E[Zτ ] ≤ E[Z1], which leads to

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

A1(t, k)] ≤ E[
τ−1∑
t=1

η3tL
2

2n
(A∥∇F (w(t)

0 )∥2 + σ2)].

ForA2(t, k), for any t ∈ [T ], taking summation over k we have
∑n−1

k=0 A2(t, k) ≤ nη2t ∥∇F (w
(t)
0 )∥2,

therefore

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

A2(t, k)] ≤ E[
τ−1∑
t=1

η3tL
2

2
∥∇F (w(t)

0 )∥2].

For A3(t, k), for any t < τ , by Lemma A.1 we have

A3(t, k) ≤
3kL2η2t
n2

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2.

Taking summation over k, taking expectation we have

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

A3(t, k)] ≤ E[
τ−1∑
t=1

3η3tL
4

4n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2].

Now putting these together, we have

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2] ≤E[

τ−1∑
t=1

η3tL
2

2n
(A∥∇F (w(t)

0 )∥2 + σ2)] + E[
τ−1∑
t=1

η3tL
2

2
∥∇F (w(t)

0 )∥2]

+ [

τ−1∑
t=1

3η3tL
4

4n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2].

Since ηt ≤ 1
2L < 1√

3L
we have 3η3

tL
4

4n ≤ ηtL
2

4n , rearranging the terms we have

E[
τ−1∑
t=1

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2] ≤ E[

τ−1∑
t=1

2η2t σ
2] + 2nE[

τ−1∑
t=1

η2t (
A

n
+ 1)∥∇F (w(t)

0 )∥2]. (8)

Put this into (7) we have,

E[F (w(τ)
0 )− F ∗]

≤∆1 + E
[ τ−1∑

t=1

(
− ηt

2
∥∇F (w(t)

0 )∥2 + ηtL
2

2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2

)]
(8)

≤∆1 + E
[ τ−1∑

t=1

L2σ2η3t
n

−
τ−1∑
t=1

(
(
ηt
2
− (

A

n
+ 1)η3tL

2)∥∇F (w(t)
0 )∥2

)]
≤∆1 + E

[ τ−1∑
t=1

L2σ2η3t
n

−
τ−1∑
t=1

(ηt
4
∥∇F (w(t)

0 )∥2
)]

(9)

≤∆1 +
L2σ2

n

T∑
t=1

η3t .
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Here the third inequality is from ηt ≤ 1

2L
√

A
n +1

and the last inequality is because ηt > 0 and

τ ≤ T + 1.

Since
∑T

t=1 η
3
t ≤ n∆1

σ2L2 , we have E[F (w(τ)
0 )− F ∗] ≤ 2∆1.

Now we can bound the probability that τ = T + 1.
Lemma A.6. With the parameters in Theorem 4.4, we have

P(τ ≤ T ) ≤ δ/2.

Proof. From Lemma A.5 and the value of H we have

P(τ ≤ T ) ≤ P(F (w(τ)
0 )− F ∗ > H) ≤ E[F (w(τ)

0 )− F ∗]

H
≤ 2∆1

H
=
δ

2
.

A.1.2 PROOF FOR THEOREMS IN NONCONVEX CASES

Proof for Theorem 4.4

Proof. From (9) we have

E[F (wτ
0 )− F ∗] + E

[ τ−1∑
t=1

ηt
4
∥∇F (w(t)

0 )∥2
]
≤ ∆1 +

L2σ2

n

T∑
t=1

η3t ≤ 2∆1. (10)

Therefore, since δ ≤ 1 we have

8∆1

ηT
≥ E

[ τ−1∑
t=1

∥∇F (w(t)
0 )∥2

]
≥ P(τ = T + 1)E

[ T∑
t=1

∥∇F (w(t)
0 )∥2|τ = T + 1]

≥ 1

2
E
[ T∑

t=1

∥∇F (w(t)
0 )∥2|τ = T + 1

]
.

By Markov’s inequality and our choice of T , we have

P
( 1

T

T∑
t=1

∥∇F (w(t)
0 )∥2 > ϵ2|τ = T + 1

)
≤ 16∆1

ηTTϵ2
≤ δ

2
.

From Lemma (A.6) we have P(τ ≤ T ) ≤ δ
2 . Therefore,

P
(
{ 1
T

T∑
t=1

∥∇F (w(t)
0 )∥2 > ϵ2} ∪ {τ ≤ T}

)
≤P(τ ≤ T ) + P

( 1

T

T∑
t=1

∥∇F (w(t)
0 )∥2 > ϵ2|τ = T + 1)

≤δ
2
+
δ

2
= δ.

Since L = ℓ(2G′) = Ω(G′p) = Ω(n
p
2 ), with η = O( 3

√
n1−p

T ) and T = O(n
p−1
2

ϵ3 ) we have the
complexity.

The following lemma is useful in the proof of arbitrary scheme.
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Lemma A.7. (lemma 6 in (Nguyen et al., 2021)) For t < τ and 0 < ηt ≤ 1
L
√
3

, we have
n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 ≤ nη2t [(3A+ 2)∥∇F (w(t)

0 )∥2 + 3σ2].

Proof for Theorem 4.6

Proof. From inequality (6) we have for any t < τ ,

F (w
(t+1)
0 )− F (w(t)

0 )

≤− ηt
2
∥∇F (w(t)

0 )∥2 + ηtL
2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2

≤− ηt
2
∥∇F (w(t)

0 )∥2 + η3tL
2[(3A+ 2)∥∇F (w(t)

0 )∥2 + 3σ2]

2

≤− ηt
4
∥∇F (w(t)

0 )∥2 + 3η3tL
2σ2

2
,

where the second inequality is from Lemma A.7 and the last inequality is from ηt ≤ 1

L
√

2(3A+2)
.

Now taking summation of t from 1 to τ − 1 we have

F (w
(τ)
0 )− F ∗ ≤ F (w(τ)

0 )− F ∗ +

τ−1∑
t=1

ηt
4
∥∇F (w(t)

0 )∥2 ≤ ∆1 +
3L2σ2

2

τ−1∑
t=1

η3t ≤ 2∆1,

where the last inequality is because τ ≤ T + 1 and the choice of ηt. Therefore we have τ = T + 1
since H ≥ 2∆1. On the other hand, we also have

8∆1

ηT
≥

τ−1∑
t=1

∥∇F (w(t)
0 )∥2

=

T∑
t=1

∥∇F (w(t)
0 )∥2.

Therefore, we have
1

T

T∑
t=1

∥∇F (w(t)
0 )∥2 ≤ 8∆1

TηT
≤ ϵ2

from our choice of T .

A.2 STRONGLY CONVEX CASE ANALYSIS

Lemma A.8. If we let H ≥ 3σ2

4µ log( 4ϵ ) + ∆1 for some large enough C > 0 and ηt = η, we have
τ ≥ 2

µη log( 4ϵ ).

Proof. From inequality (6) we have for t < τ

F (w
(t+1)
0 )− F (w(t)

0 ) ≤ −η
2
∥∇F (w(t)

0 )∥2 + ηL2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2

≤ −η
2
∥∇F (w(t)

0 )∥2 + η3L2[(3A+ 2)∥∇F (w(t)
0 )∥2 + 3σ2]

2

≤ 3ησ2

8
,

where the last inequality is from η ≤ 1

L
√

2(3A+2)
≤ 1

2L . From the definition of τ we have

τ ≥ 1 +
8(H −∆1)

3ησ2
≥ 2

µη
log(

4

ϵ
).
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Proof for Theorem 4.8

Proof. From Lemma A.6 and the parameter choices we have P(τ ≤ T ) ≤ δ
2 .

Now we try to bound F (w(τ)
0 )− F ∗. In the strongly convex case, for t < τ we have

F (w
(t+1)
0 ) ≤ F (w(t)

0 )− ηt
2
∥∇F (w(t)

0 )∥2 + L2ηt
2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2

≤ F (w(t)
0 )− µηt

2
(F (w

(t)
0 )− F ∗)− ηt

4
∥∇F (w(t)

0 )∥2 + L2ηt
2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2,

here the first inequality is from (6) and the second one is from strongly convexity. We can rearrange
the items and write the above inequality as

F (w
(t+1)
0 )− F ∗ ≤

(
1− µηt

2

)
(F (w

(t)
0 )− F ∗) +

L2σ2η3t
n

+A(t), (11)

where A(t) is defined as

A(t) :=
L2ηt
2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 −

ηt
4
∥∇F (w(t)

0 )∥2 − L2σ2η3t
n

. (12)

Let ηt = η := 4 log(
√
nT )

µT , we want 1− µη
2 > 0, therefore we need T

log(
√
nT )
≥ 2. Taking expectation

and summation we have

E[F (w(τ)
0 )− F ∗] ≤ E[(1− µη

2
)τ−1∆1] +

2L2σ2η2

nµ
[1− (1− µη

2
)τ−1]

+ E[
τ−1∑
t=1

(1− µη

2
)τ−1−tA(t)]

≤ ∆1E[exp(−µητ/2)] +
2L2σ2η2

nµ
+ E[

τ−1∑
t=1

A(t)]

≤ δϵ

8
+

1

nT 2

(
∆1 +

L2σ2 log2(
√
nT )

µ3

)
+ E[

τ−1∑
t=1

A(t)],

where the second inequality is from 1− x ≤ exp(−x) for x ∈ (0, 1) and the last inequality is from
Lemma A.8, P(τ ≤ T ) ≤ δ/2 and the value of η. Now if we look at the last item, we can notice
from (8), by using η ≤ 1

L
√

2(3A+2)
≤ 1

2L
√

A
n +1

, that we already have

E[
τ−1∑
t=1

A(t)] ≤ 0.

Therefore, we have
δϵ

8
+

1

nT 2

(
∆1 +

8L2σ2 log2(
√
nT )

µ3

)
≥ E[F (w(τ)

0 )− F ∗]

≥ P(τ = T + 1)E[F (w(T+1)
0 )− F ∗|τ = T + 1]

≥ 1

2
E[F (w(T+1)

0 )− F ∗|τ = T + 1].

P(F (w(T+1)
0 )− F ∗ > ϵ|τ = T + 1) ≤ E[F (w(T+1)

0 )− F ∗|τ = T + 1]

ϵ

≤ δ

4
+

2

ϵnT 2

(
∆1 +

8L2σ2 log2(
√
nT )

µ3

)
≤ δ

4
+
δ

8
+
δ

8
=
δ

2
,
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where the last line is from the constraint on T.

Proof for Theorem 4.9

Proof. The algorithm starts from w
(1)
0 and we define S = {w|F (w) ≤ F (w

(1)
0 )}. Since F is

strongly-convex, we have S being compact. Therefore, we can define G′ = maxw{∥∇f(w; i)∥|w ∈
S, i ∈ [n]} <∞.

If we have w(t)
0 ∈ S for all t ∈ [T ], we have ∥∇f(w(t)

0 ; i)∥ ≤ G′ for t ∈ [T ] and i ∈ [n]. On the
other hand, by definition of F we have ∥∇F (w(t)

0 )∥ ≤ G′ for t ∈ [T ]. Therefore, by Lemma A.4 we
have Lipschitz smoothness between w(t)

0 and w(t)
j , for both F (w) and f(w; i), for t ∈ [T ], i, j ∈ [n].

The rest of the proof then follows the one in Lipschitz smoothness case (theorem 1 in Nguyen et al.
(2021)).

Now we prove that w(t)
0 ∈ S, for t ∈ T. The statement is obviously true for t = 1. Now for t ∈ [2, T ],

assume that we already proved the conclusion for 1, · · · , t− 1, we can use Lipschitz smoothness in
the first t− 1 iterations. Therefore, from theorem 1 in Nguyen et al. (2021) we have that

F (w
(t)
0 )− F (w∗) ≤ (1− ρη)t−1∆1 +

Dη2

ρ
,

where ρ = µ
3 , D = (µ2 + L2)σ2

∗. On the other hand, since η ≤ ∆1ρ
2

D we have

(1− ρη)t−1∆1 +
Dη2

ρ
≤ (1− ρη)∆1 +

Dη2

ρ
≤ ∆1.

Therefore, we have F (w(t)
0 ) ≤ F (w(1)

0 ), which means w(t)
0 ∈ S.

A.3 NON-STRONGLY CONVEX CASE ANALYSIS

Proof for theorem 4.11

Proof. From Lemma A.6 we know P(τ ≤ T ) < δ
2 .

For t < τ , if ηt = η, from lemma 7 in (Nguyen et al., 2021) we have that

∥w(t+1)
0 − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 − 2η[F (w
(t)
0 )− F ∗] +

2Lη3

n3

n−1∑
i=1

∥
n−1∑
j=i

∇f(w∗;π
(t)
j+1)∥

2, (13)

where w∗ is the optimal solution. If we denote A(t) :=
∑n−1

i=1 ∥
∑n−1

j=i ∇f(w∗;π
(t)
j+1)∥2 and let

σ∗ :=
√

1
n

∑n
i=1 ∥∇f(w∗; i)∥2, we have that for any t ∈ [T ]

E[A(t)] =
n−1∑
i=0

(n− i)2E


∥∥∥∥∥∥ 1

n− i

n−1∑
j=i

∇f(w∗;π
(t)
j+1 −∇F (w∗)

∥∥∥∥∥∥
2


=

n−1∑
i=0

(n− i)2i
n(n− i)(n− 1)

n−1∑
j=0

∥∇f(w∗;π
(t)
j+1)∥

2

=
n(n+ 1)σ2

∗
6

.

By optional stopping theorem we know that

E
[ τ−1∑

t=1

(
A(t)− n(n+ 1)σ2

∗
6

)]
= 0.
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Taking summation from t = 0 to τ − 1 for (13) and taking expectation we have

2ηE[
τ−1∑
t=1

(F (w
(t)
0 )− F ∗)] ≤ ∥w(1)

0 − w∗∥2 +
2Lη3

n3
E[

τ−1∑
t=1

n(n+ 1)σ2
∗

6
]

≤ ∥w(1)
0 − w∗∥2 +

2LTη3σ2
∗

3n
,

where the second inequality uses τ ≤ T + 1. Therefore, we have

1

2η

(
∥w(1)

0 − w∗∥2 +
2LTη3σ2

∗
3n

)
≥ E[

τ−1∑
t=1

(F (w
(t)
0 )− F ∗)]

≥ 1

2
E[

T∑
t=1

(F (w
(t)
0 )− F ∗)|τ = T + 1].

If we define w̄T = 1
T

∑T
t=1 w

(t)
0 , from convexity we have

F (w̄T )− F ∗ ≤ 1

T

T∑
t=1

[F (w
(t)
0 )− F ∗].

Consider the event F := {F (w̄T )− F ∗ > ϵ}, we have

P(F|τ = T + 1) ≤ P(
1

T

T∑
t=1

(F (w
(t)
0 )− F ∗) > ϵ|τ = T + 1)

≤
E
[∑T

t=1(F (w
(t)
0 )− F ∗)|τ = T + 1

]
Tϵ

≤ 1

ηTϵ

(
∥w(1)

0 − w∗∥2 +
2LTη3σ2

∗
3n

)
≤ 2

ηTϵ
∥w(1)

0 − w∗∥2

≤ δ

2
,

where the last two inequalities are from the choices of η and T , separately.

Proof for Theorem 4.12

Proof. Similar to Theorem 4.9, if we have w(t)
0 ∈ S for t ∈ [T ], we have the desired Lipschitz

smoothness.

Now we prove the conclusion by trying to prove that w(t)
0 ∈ S for t ∈ [T ]. The statement is obviously

true for t = 1. Now for t ∈ [2, T ], assume that we already proved the conclusion for 1, · · · , t− 1,
we can use Lipschitz smoothness in the first t− 1 iterations. Therefore, from (13) we have

∥w(t)
0 − w∗∥2 ≤ ∥w(t−1)

0 − w∗∥2 − 2η[F (w
(t−1)
0 )− F ∗] +

2Lη3

n3

n−1∑
i=1

∥
n−1∑
j=i

∇f(w∗;π
(t−1)
j+1 )∥2.

If F (w(t−1)
0 )− F ∗ ≤ ϵ, we have the desired conclusion.

If F (w(t−1)
0 )− F ∗ > ϵ, since η ≤ 1

G′

√
3ϵ
L , we have

∥w(t+1)
0 − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 − 2ηϵ+
2Lη3

n3

n−1∑
i=1

(n− i)2G′2

≤ ∥w(t)
0 − w∗∥2 − 2ηϵ+

2Lη3

n3
n3

3
G′2

≤ ∥w(t)
0 − w∗∥2.
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Therefore, if F (w(t)
0 ) − F ∗ ≥ ϵ for t ∈ [T ], we have w(t)

0 ∈ S for t ∈ [T ]. Taking summation we
have that

2η

T∑
t=1

[F (w
(t)
0 )− F (w∗)] ≤ ∥w(1)

0 − w∗∥2 +
2LG′2η3T

3
.

Therefore we have

1

T

T∑
t=1

[F (w
(t)
0 )− F (w∗)] ≤

1

2ηT

(
∥w(1)

0 − w∗∥2 +
2LG′2η3T

3

)
≤ ϵ.

However, this contradict the assumption that F (w(t)
0 )− F ∗ ≥ ϵ for t ∈ [T ]. Therefore, there must be

t ∈ [T ] such that F (w(t)
0 )− F ∗ ≤ ϵ.

22


	Introduction
	Preliminaries
	Shuffling-Type Gradient Algorithm
	Counterexamples
	Relaxation of Lipschitz Smoothness

	Algorithm
	Convergence Analysis
	Main Results
	Nonconvex Case
	Strongly Convex Case
	Non-strongly Convex Case

	Proof Sketch and Technical Novelty
	Limitations and Future works

	Numerical Experiments
	Convex and Strongly Convex Settings
	Application to Phase Retrieval and DRO
	Application to Image Classification

	Conclusion
	Appendix / supplemental material
	Nonconvex Case Analysis
	Lemmas
	Proof for Theorems in Nonconvex cases

	Strongly Convex Case Analysis
	Non-strongly Convex Case Analysis


