
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REVISITING CONVERGENCE: A STUDY ON SHUFFLING-
TYPE GRADIENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Shuffling-type gradient methods are favored in practice for their simplicity and
rapid empirical performance. Despite extensive development of convergence
guarantees under various assumptions in recent years, most require the Lipschitz
smoothness condition, which is often not met in common machine learning models.
We highlight this issue with specific counterexamples. To address this gap, we
revisit the convergence rates of shuffling-type gradient methods without assuming
Lipschitz smoothness. Using our stepsize strategy, the shuffling-type gradient
algorithm not only converges under weaker assumptions but also match the current
best-known convergence rates, thereby broadening its applicability. We prove
the convergence rates for nonconvex, strongly convex, and non-strongly convex
cases, each under both random reshuffling and arbitrary shuffling schemes, under a
general bounded variance condition. Numerical experiments further validate the
performance of our shuffling-type gradient algorithm, underscoring its practical
efficacy.

1 INTRODUCTION

Gradient-based optimization has always been a critical area due to its extensive practical applications
in machine learning, including reinforcement learning (Sutton and Barto, 2018), hyperparameter
optimization (Feurer and Hutter, 2019), and large language models (Radford et al., 2018). While
numerous gradient-based algorithms have been developed for convex functions (Nemirovskij and
Yudin, 1983; Nesterov, 2013; d’Aspremont et al., 2021), research on nonconvex functions has become
particularly active in recent years, driven by advances in deep learning. Notably, with unbiased
stochastic gradients and bounded variance, SGD achieves an optimal complexity ofO(ϵ−4) (Ghadimi
and Lan, 2013), which matches the lower bound established by Arjevani et al. (2023).

In practice, however, random shuffling-type methods have demonstrated superiority over SGD.
These methods are not only easier and faster to implement but also show faster convergence rates,
as evidenced by experiments cited in Bottou (2009; 2012). Theoretical studies on shuffling-type
methods have been conducted in various settings in recent years, presenting unique challenges due
to the lack of independence between most neighboring steps. While much of this research assumes
strong convexity (Gürbüzbalaban et al., 2021; HaoChen and Sra, 2019; Safran and Shamir, 2020),
studies such as Nguyen et al. (2021); Koloskova et al. (2023); Mishchenko et al. (2020) have also
explored applications in nonconvex scenarios.

Although theoretical analysis has been conducted in many settings of shuffling-type gradient algo-
rithms, most of these works require Lipschitz smoothness assumption, which requires restrictive
quadratic lower and upper bounds and thus cannot cover many popular machine learning mod-
els such as language model (Zhang et al., 2019), phase retrieval (Chen et al., 2023), distributionally
robust optimization (Chen et al., 2023), etc. We will demonstrate counterexamples in more detail in
Section 2. To fill this gap, in this paper, we aim at analyzing the convergence rate of shuffling-type
gradient algorithm under relaxed mild smoothness assumptions for both convex and nonconvex cases.

We consider the following finite sum minimization problem:

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

f(w; i)

}
, (P)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

where f(·; i) : Rd → R is smooth and possibly nonconvex for i ∈ [n] := {1, . . . , n}. Problem (P)
covers empirical loss minimization as a special case, therefore can be viewed as formulation for many
machine learning models, such as logistic regression, reinforcement learning, and neural networks.

We summarize our main contributions as follows:

• We proved the convergence of the shuffling-type gradient algorithm under non-uniform
smoothness assumptions, where the Hessian norm is bounded by a sub-quadratic function
ℓ of the gradient norm. With specific stepsizes and a general bounded variance condition,
we achieved a total complexity of O(n

p+1
2 ϵ−3) gradient evaluations for the nonconvex case

with random reshuffling, and O(n
p
2+1ϵ−3) for arbitrary scheme, where 0 ≤ p < 2 is the

degree of ℓ. These results match those with Lipschitz smoothness assumptions in Nguyen
et al. (2021) when p = 0 and ℓ-smoothness degenerates to Lipschitz smoothness.

• For the strongly convex case, we established a complexity of Õ(n
p+1
2 ϵ−

1
2) for random

reshuffling. In the non-strongly convex case, the complexity is O(n
p+1
2 ϵ−

3
2) for random

reshuffling.

• Without assuming bounded variance, we established complexity of Õ(nϵ− 1
2) for arbitrary

scheme in strongly convex case, and O(nϵ− 3
2) in non-strongly convex case.

• We conducted numerical experiments to demonstrate that the shuffling-type gradient algo-
rithm converges faster than SGD on two important non-Lipschitz applications.

2 PRELIMINARIES

2.1 SHUFFLING-TYPE GRADIENT ALGORITHM

In practice, the random shuffling method has demonstrated its superiority over SGD, as shown in
Bottou (2009) and Bottou (2012). Specifically, Bottou (2009) shows that shuffling-type methods
achieve a convergence rate of approximately O(1/T 2), where T is the iteration count. Beyond
shuffling-type stochastic gradient methods, variants such as SVRG have been applied in various
scenarios, including decentralized optimization, as discussed in Shamir (2016) and De and Goldstein
(2016).

The analysis of shuffling-type methods has a long history. For convex cases, Gürbüzbalaban et al.
(2021) demonstrated that when the objective function is a sum of quadratics or smooth functions with
a Lipschitz Hessian, and with a diminishing stepsize, the average of the last update in each epoch of
RGA converges strictly faster than SGD with probability one. Additionally, they showed that when the
number of epochs T is sufficiently large, the Reshuffling Gradient Algorithm (RGA) asymptotically
converges at a rate of O(1/T 2). Similarly, Nguyen et al. (2021) established a convergence rate of
O(1/T 2) for strongly convex and globally L-smooth functions. Furthermore, with uniform sampling
and a bounded variance assumption or convexity on each component function, they showed that the
convergence rate can be improved to O(1/nT 2).

In contrast, there is not much research on nonconvex cases. For example, Nguyen et al. (2021)
demonstrated a convergence rate of O(T−2/3); Koloskova et al. (2023) proved a convergence rate of

O
(

1
T +min

{(
nσ
T

) 2
3 ,

(
nσ2

T

) 1
2

})
for single shuffling gradient method.

2.2 COUNTEREXAMPLES

In this section, we give some counterexamples to demonstrate the popularity of non-Lipschitz
functions. First we give two machine learning examples, then we mention some common non-
Lipschitz functions.

Example 1. The first example is distributionally robust optimization (DRO), which is a popular
optimization framework for training robust models. DRO is introduced to deal with the distribution

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

shift between training and test datasets. In (Levy et al., 2020), it is formulated equivalently as follows.

min
w∈W,θ∈R

L(w, θ) := Eξ∼Pψ
∗
(
ℓ(w; ξ)− θ

λ

)
+ θ, (1)

wherew and θ are the parameters to be optimized, ξ is a sample randomly drawn from data distribution
P , ℓ(w; ξ) is the loss function, ψ∗ is the conjugate function of the divergence function ψ we choose to
measure the difference between distributions, and λ > 0 is the regularization coefficient. It is proved
in (Jin et al., 2021) that L(w, θ) is not always Lipschitz-smooth even if ℓ(w; ξ) is Lipschitz-smooth
and the variance is bounded.

Example 2. The second example is the phase retrieval problem. Phase retrieval is a nonconvex
problem in X-ray crystallography and diffraction imaging (Drenth, 2007; Miao et al., 1999). The
goal is to recover the structure of a molecular object from intensity measurements. Let x ∈ Rd be the
true object and yr = |a⊤r x|2 for r = 1, . . . ,m, where ar ∈ Rd. The problem is to solve:

min
z∈Rd

f(z) :=
1

2m

m∑
r=1

(yr − |a⊤r z|2)2. (2)

This objective function is a high-order polynomial in high-dimensional space, thus it does not belong
to the L-smooth function class.

Example 3. There are many common functions that are not Lipschitz smooth, including polynomial
functions with order > 2, exponential functions, logarithmic functions and rational functions.

2.3 RELAXATION OF LIPSCHITZ SMOOTHNESS

Because of the existence of these counterexamples, people have recently been investigating about
smoothness assumptions that are more general than the traditional Lipschitz smoothness. In Zhang
et al. (2019), (L0, L1)-smoothness was proposed as the first relaxed smoothness notion motivated by
language modeling. It is defined as below:

Definition 2.1. ((L0, L1)-smoothness) A real-valued differentiable function f is (L0, L1)-smooth if
there exist constants L0, L1 > 0 such that

∥∇2f(w)∥ ≤ L0 + L1∥∇f(w)∥.

Lipschitz smoothness can be viewed as a special case of (L0, L1) smoothness when L1 = 0. Under
(L0, L1)-smoothness assumption, various convergence algorithms have been developed including
clipped or normalized GD/SGD (Zhang et al., 2019), momentum accelerated clipped GD/SGD
(Zhang et al., 2020), ADAM (Wang et al., 2022) and variance-reduced clipping (Reisizadeh et al.,
2023) with optimal sample complexity on stochastic non-convex optimization.

Other relaxed smoothness assumptions include asymmetric generalized smoothness motivated by
distributionally robust optimization (Jin et al., 2021) and its extension to α-symmetric generalized
smoothness (Chen et al., 2023) and ℓ-smoothness (Li et al., 2023a). In this paper, we use the definition
of ℓ-smoothness as below:

Definition 2.2. (ℓ-smoothness) A real-valued differentiable function f is ℓ-smooth if there exists
some non-decreasing continuous function ℓ : [0,+∞) → (0,+∞) such that for any w ∈ dom(f)
and constant C > 0, B(w, C

ℓ(∥∇f(w)∥+C)) ⊆ dom(f); and for any w1, w2 ∈ B(w, C
ℓ(∥∇f(w)∥+C)),

∥∇f(w1)−∇f(w2)∥ ≤ ℓ(∥∇f(w)∥+ C) · ∥w1 − w2∥.

For nonconvex optimization problems, ℓ function is required to be sub-quadratic. (L0, L1)-
smoothness can be regarded as a special case of ℓ-smoothness. It is straightforward to verify that
both phase retrieval and DRO have ℓ-smooth loss functions. Notice that ℓ-smoothness degenerates to
traditional Lipschitz smoothness if ℓ is a constant function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 ALGORITHM

As demonstrated in our counterexamples, the Lipschitz smoothness assumption does not always hold
in problem (P). In such non-Lipschitz scenarios, gradients can change drastically, posing a significant
challenge for these algorithms. To address this issue, we propose a new stepsize strategy, detailed
in Algorithm 1 and section 4, to improve performance under these challenging conditions. This
strategy aims to choose the stepsize to accommodate the variance and instability in gradients, thereby
enhancing the robustness of the optimization process.

In this algorithm, we start with an initial point w̃0. During each iteration t ∈ [T], either all the samples
are shuffled, or we keep the order of the samples as in the last epoch. This reshuffling introduces
variance in the order of samples, which can help mitigate issues related to gradient instability. For
each step j ∈ [n], we use the gradient from a single sample with number π(t)

j to update the weights

w. The notation π(t)
j is used to denote the j-th element of the permutation π(t) for j ∈ [n]. Each

outer loop through the data is counted as an epoch, and our convergence analysis focuses on the
performance after the completion of each full epoch.

There are multiple strategies to determine π(t):

• If π(t) is a fixed permutation of [n], Algorithm 1 functions as an incremental gradient method.
This method maintains a consistent order of samples, which can simplify the analysis and
implementation.

• If π(t) is shuffled only once in the first iteration and then used in every subsequent iteration,
Algorithm 1 operates as a shuffle-once algorithm. This strategy introduces randomness at the
beginning but maintains a fixed order thereafter, providing a balance between randomness
and stability.

• If π(t) is regenerated in every single iteration, Algorithm 1 becomes a random reshuffling
algorithm. This approach maximizes the randomness in the sample order, potentially offering
the most robustness against the erratic behavior of non-Lipschitz gradients by constantly
changing the sample order.

Algorithm 1 Shuffling-type Gradient Algorithm

1: Initialization: Choose an initial point w̃0 ∈ dom (F).
2: for t = 1, 2, · · · , T do
3: Set w(t)

0 := w̃t−1;
4: Generate permutation π(t) of [n].
5: Compute non-increasing stepsize ηt.
6: for j = 1, · · · , n do
7: Update w(t)

j := w
(t)
j−1 −

ηt

n∇f(w
(t)
j−1;π

(t)
j).

8: end for
9: Set w̃t := w

(t)
n .

10: end for

Although the random reshuffling scheme is most used in practice, each of these strategies offers
distinct advantages and can be selected based on the specific requirements and characteristics of
the optimization problem at hand. For this reason, we will give convergence rates for random and
arbitrary shuffling scheme.

4 CONVERGENCE ANALYSIS

4.1 MAIN RESULTS

In this section, we present the main results of our convergence analysis. Our findings indicate that,
with proper stepsizes, it is possible to achieve the same convergence rate, up to a logarithm difference,
as under the Lipschitz smoothness assumption. First, we introduce the following assumptions

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

regarding problem (P). Assumption 4.1 is a standard assumption, and Assumption 4.2 requires all F
and f(·; i) to be ℓ-smooth.
Assumption 4.1. dom (F) := {w ∈ Rd : F (w) < +∞} ≠ ∅ and F ∗ := infw∈Rd F (w) > −∞.
Assumption 4.2. F and f(·; i) are ℓ-smooth for some sub-quadratic function ℓ, ∀i ∈ [n].

Here, we assume all functions share the same ℓ function without loss of generality, as we can always
choose the pointwise maximum of all their ℓ functions. We define p to be the degree of the ℓ function
such that p = supp≥0{p| limw→∞

ℓ(w)
wp > 0}. Since ℓ is sub-quadratic, we have 0 ≤ p < 2.

Next, we introduce our assumption about the gradient variances.
Assumption 4.3. There exist two constants σ,A ∈ (0,+∞) such that ∀i ∈ [n],

1

n

n∑
i=1

∥∇f(w; i)−∇F (w)∥2 ≤ A∥∇F (w)∥2 + σ2, a.s., ∀w ∈ dom(F). (3)

If A = 0, Assumption 4.3 reduces to the standard bounded variance assumption.

4.1.1 NONCONVEX CASE

Let us denote ∆1 := F (w
(1)
0)− F ∗. Under assumptions 4.1 to 4.3, we have the following result for

random shuffling scheme. Proofs can be found in Appendix A.1.1 and A.1.2.
Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold, Let {w̃t}Tt=1 be generated by Algorithm 1
with random reshuffling scheme. For any 0 < δ < 1, we denote H := 4∆1

δ , G := sup{u ≥ 0|u2 ≤

2ℓ(2u) ·H}, G′ :=
√

2(1 + n
√
A)G +

√
nσ, L := ℓ(2G′). For any 0 < ϵ = O(1√

n
), choose ηt

and T such that

ηt ≤
1

2L
√

A
n + 1

,

T∑
t=1

η3t ≤
n∆1

L2σ2
, T ≥ 32∆1

ηT δϵ2
,

then with probability at least 1− δ, we have ∥∇F (w(t)
0)∥ ≤ G for every 1 ≤ t ≤ T

1

T

T∑
t=1

∥∇F (w(t)
0)∥2 ≤ ϵ2.

Remark 4.5. By choosing ηt = η = O(3

√
n1−p

T) = O(n
1−p
2 ϵ), we can achieve a complexity of

T = O(n
p−1
2

ϵ3) outer iterations andO(n
p+1
2

ϵ3) total number of gradient evaluations, ignoring constants,
where p is the order of the ℓ function in Definition 2.2. As p goes to 0, ℓ-smoothness degenerates to
the traditional Lipschitz smoothness, and our total number of gradient evaluations goes to O(

√
n

ϵ3)
once again, which matches the complexity in Corollary 1 of Nguyen et al. (2021). If ϵ ≤ 1/

√
n, one

possible stepsize is η =
√
nϵ

2L
√

A
n +1

.

Our result here has polynomial dependency on 1
δ , T = O(δ−

3
2−

p
2−p). It is important to note that, in

our setting, δ accounts for the probability that Lipschitz smoothness does not hold—a consideration
absent in standard Lipschitz smoothness settings. In fact, a polynomial dependency on δ is typical in
papers with similar smoothness assumptions, e.g. theorem 5.3 in Li et al. (2023a) and theorem 6.2 in
Li et al. (2023b). By requiring ϵ = O(1√

n
) we make sure that ηt ≤ 1

2L
√

A
n +1

is achievable.

Next we consider arbitrary π(t) scheme in Algorithm 1.
Theorem 4.6. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Let {w̃t}Tt=1 be generated by Al-
gorithm 1 with arbitrary scheme. Define H = 2∆1, G := sup{u ≥ 0|u2 ≤ 2ℓ(2u) · H},
G′ :=

√
2(1 + n

√
A)G+

√
nσ, L := ℓ(2G′). For any ϵ > 0, choose ηt and T such that

ηt ≤
1

L
√
2(3A+ 2)

,

T∑
t=1

η3t ≤
2∆1

3σ2L2
, T ≥ 8∆1

ηT ϵ2
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

then we have ∥∇F (w(t)
0)∥ ≤ G for every 1 ≤ t ≤ T and

1

T

T∑
t=1

∥∇F (w(t)
0)∥2 ≤ ϵ2.

This theorem gives the convergence rate for arbitrary scheme in Algorithm 1. By choosing ηt =

η = O
(

3

√
1

npT

)
= O

(
ϵ

n
p
2

)
, we achieve a complexity of O

(
n

p
2

ϵ3

)
outer iterations and O

(
n

p
2
+1

ϵ3

)
total gradient evaluations, ignoring constants. Without the randomness in π in every iteration, the
complexity’s dependency on n is increased by O(

√
n). One possible stepsize is η = ϵ

L
√

2(3A+2)
.

4.1.2 STRONGLY CONVEX CASE

For strongly convex case, we give results for both random reshuffling scheme and arbitrary scheme,
with constant learning rate. Proof can be found in Appendix A.2.

Assumption 4.7. Function F in (P) is µ-strongly convex on dom(F).

Theorem 4.8. Suppose Assumptions 4.1, 4.2, 4.3 and 4.7 hold. Let {w̃t}Tt=1 be generated by
Algorithm 1 with random reshuffling scheme. For any 0 < δ < 1, we denote H := max{ 3σ

2

4µ log 4
ϵ +

∆1,
4∆1

δ }, G := sup{u ≥ 0|u2 ≤ 2ℓ(2u) ·H}, G′ :=
√

2(1 + n
√
A)G+

√
nσ, L := ℓ(2G′). For

any 0 < ϵ = O(1n), if we choose ηt and T such that

ηt = η =
4 log(

√
nT)

µT
, T ≥ 4

√
∆1

nδϵ
,

T

log(
√
nT)

≥ 4

µ
max

2, L
√

2(3A+ 2), Lσ

√
8

nµδϵ
, 3

√
Tσ2L2

n∆1

 ,

then for any 0 < δ < 1, with probability at least 1− δ we have

F (w
(T+1)
0)− F ∗ ≤ ϵ.

In Theorem 4.8, we can achieve a complexity of Õ
(
n

p−1
2 ϵ−

1
2

)
outer iterations and Õ

(
n

p+1
2 ϵ−

1
2

)
total gradient evaluations with η = Õ

(
n

1−p
2 ϵ

1
2

)
, ignoring constants. This matches the result in

Nguyen et al. (2021) with the same assumptions in the degenerate case of p = 0. The dependence on
δ is T = O(δ−

1
2−

p
2−p).

In the following analysis for arbitrary shuffling scheme, we remove Assumption 4.3 to match the
corresponding result in Lipschitz smooth case.

Theorem 4.9. Suppose Assumptions 4.1, 4.2 and 4.7 hold. Let {w̃t}Tt=1 be generated by Algorithm 1
with arbitrary scheme. We denote S = {w|F (w) ≤ F (w(1)

0)}, G′ = maxw{∥∇f(w; i)∥|w ∈ S, i ∈
[n]}, L := ℓ(2G′). For any ϵ > 0, choose ηt and T such that

ηt = η =
6 log(T)

µnT
≤ ∆1µ

2

9(µ2 + L2)σ2
∗
, T = Õ(ϵ− 1

2) ≥ 12L2 log(T)

µ2
,

where σ∗ is the standard deviation at w∗. Then we have ∥∇F (w(t)
0)∥ ≤ G′ and

F (w
(T+1)
0)− F ∗ ≤ ϵ.

In Theorem 4.9, we achieve a complexity of Õ
(
ϵ−1/2

)
outer iterations and Õ

(
nϵ−1/2

)
total gradient

evaluations with η = Õ
(
n−1ϵ

1
2

)
, ignoring constants.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.1.3 NON-STRONGLY CONVEX CASE

Next we consider the case where only non-strongly convexity are assumed. In the following theorem,

we denote the optimal solution as w∗, the standard deviation at w∗ as σ∗ :=
√

1
n

∑n
i=1 ∥∇f(w∗; i)∥2

and the average value of {w(t)
0 }Tt=1 as w̄T = 1

T

∑T
t=1 w

(t)
0 . Proof can be found in Appendix A.3.

Assumption 4.10. Functions f(·; i) in (P) are convex on dom(F), for all i ∈ [n].
Theorem 4.11. Suppose Assumptions 4.1, 4.2, 4.3 and 4.10 hold. Let {w̃t}Tt=1 be generated by
Algorithm 1 with random reshuffling scheme. For any 0 < δ < 1, define H , G, G′, L as in Theorem
4.4. For any 0 < ϵ = O(1n), choose ηt and T such that

ηt = η ≤ min

 1

2L
√

A
n + 1

,
3

√
n∆1

Tσ2L2
,

3

√
3n∥w(1)

0 − w∗∥2
2LTσ2

∗

 ,

T ≥ 4∥w(1)
0 − w∗∥2

ηδϵ
,

then with probability at least 1− δ, we have ∥∇F (w(t)
0)∥ ≤ G for every 1 ≤ t ≤ T and

F (w̄T)− F ∗ ≤ ϵ.

By choosing η = O
(

3

√
n1−p

T

)
= O

(
n

1−p
2 ϵ0.5

)
, we achieve a complexity of O

(
n

p−1
2

ϵ1.5

)
outer

iterations and O
(

n
p+1
2

ϵ1.5

)
total number of gradient evaluations, ignoring constants. The dependency

on δ is T = O(δ−
3
2−

p
2−p). If ϵ ≤ 1/n, one possible stepsize is η =

√
nϵ

2L
√

A
n +1

.

Theorem 4.12. Suppose Assumptions 4.1, 4.2 and 4.10 hold. Let {w̃t}Tt=1 be generated by Algorithm
1 arbitrary scheme. Define S = {w|F (w) ≤ F (w

(1)
0)}, G′ = maxw{∥∇f(w; i)∥|w ∈ S, i ∈

[n]} <∞, L = ℓ(2G′). For any ϵ > 0, choose ηt and T such that

ηt = η ≤ 1

G′

√
3ϵ

2L
, T = O(ϵ−1.5) ≥ ∥w

(1)
0 − w∗∥2

ηϵ
,

then we have ∥∇F (w(t)
0)∥ ≤ G for every 1 ≤ t ≤ T and

min
t∈[T]

F (wT)− F ∗ ≤ ϵ.

By choosing η = O(3

√
1
T), we have the complexity of O(1

ϵ1.5) outer iterations and O(n
ϵ1.5) total

number of gradient evaluations, ignoring constants. One possible stepsize is η =
√
3ϵ

G′
√
L
.

4.2 PROOF SKETCH AND TECHNICAL NOVELTY

Broadly speaking, our approach involves two main goals: first, demonstrating that Lipschitz smooth-
ness is maintained with high probability along the training trajectory {w̃t}, and second, showing
that, conditioned on Lipschitz smoothness, the summation of gradient norms is bounded with high
probability.

For the first goal, in Lemma A.4, we prove by induction that when starting an iteration with a bounded
gradient, the entire training trajectory during this iteration will have bounded gradients. Consequently,
we only need to verify the Lipschitz smoothness condition at the start of each iteration. However, at
this point, the two goals become intertwined. We need Lipschitz smoothness to bound the gradient
differences, but we also need the gradient norm bounds to establish Lipschitz smoothness. Our
solution is to address both issues simultaneously.

Assuming that, before a stopping time τ , Lipschitz smoothness holds, we bound the gradient norm up
to that time in Lemma A.5. However, this process is nontrivial. Since we are examining behavior

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

before a stopping time, every expectation is now conditioned on t < τ , rendering all previous
estimations for shuffling gradient algorithms inapplicable. This presents a contradiction: we want
to condition on t < τ when applying Lipschitz smoothness, but we do not want this condition
when estimating other quantities. In Lemma A.5, we find a method to separately handle these two
requirements, allowing us to achieve both goals simultaneously.

4.3 LIMITATIONS AND FUTURE WORKS

Although we have proved upper bounds for the complexity of shuffling gradient algorithms, there are
certain limitations in our work that we leave for future research:

• First, as is common with many optimization algorithms, it is challenging to verify that the
bounds presented are indeed the lower bounds. Future work could explore improving these
results, for instance, by reducing the dependency on δ to a logarithmic factor, or by proving
that the current bounds are, in fact, tight lower bounds.

• Second, although we showed results for arbitrary shuffling schemes, there are better results
for single shuffling under Lipschitz smoothness, for example Ahn et al. (2020) proved
O(1

nT 2) convergence rate for strongly convex objectives. It is interesting to see whether we
can achieve the same convergence rate with ℓ smoothness as well.

• Lastly, shuffling gradient methods have been integrated with variance reduction techniques
(Malinovsky et al., 2023). Exploring the performance of these algorithms under relaxed
smoothness assumptions is another promising direction for future work.

5 NUMERICAL EXPERIMENTS

We compare reshuffling gradient algorithm (Algorithm 1) with SGD on multiple ℓ-smooth optimiza-
tion problems to prove its effectiveness. Experiments are conducted with different shuffling schemes,
on convex, strongly convex and nonconvex objective functions, including synthetic functions, phase
retrieval, distributionally robust optimization (DRO) and image classification.

5.1 CONVEX AND STRONGLY CONVEX SETTINGS

We first consider convex functions fi,k(x) = x4i + kxi of x ∈ R50 for all (i, k) ∈
E := {1, 2, . . . , 50} × {−10,−9, . . . , 9, 10}, as well as their sample average f(x) =

1
1050

∑
(k,i)∈E fi,k(x) = 1

50

∑50
i=1 x

4
i . It can be easily verified that f and all fi,k are convex

but not strongly convex, and ℓ-smooth (with ℓ(u) = 3u2/3) but not Lipschitz-smooth. Then we
compare reshuffling gradient algorithm (Algorithm 1) with SGD on the objective minx∈R50 f(x).
Specifically, for each SGD update x ← x − η∇fk,i(x), (k, i) ∈ E is obtained uniformly at
random. For Algorithm 1, we adopt three shuffling schemes as elaborated in Section 3. The
fixed-shuffling scheme and shuffling-once fix all permutations π(t) respectively to be the natural
sequence (1,−10), (1,−9), . . . (50, 10) and its random permutation at the beginning, while the
uniform-shuffling scheme obtains permutations π(t) uniformly at random and independently for
all iterations t. We implement each algorithm 100 times with initialization x0 = [1, . . . , 1] and
fine-tuned stepsizes 0.01 (i.e., η = 0.01 for SGD and ηt

n = 0.01 for Algorithm 1), which takes around
3 minutes in total. We plot the learning curves of f(xt) averaged among the 100 times, as well as
the 95% and 5% percentiles in the left of Figure 1, which shows that Algorithm 1 with all shuffling
schemes converges faster than SGD.

Then we consider strongly convex functions fj,k(x) = exp(xj − k) + exp(k − xj) + 1
2 ||x||

2 for
(i, k) ∈ E and their sample average below.

f(x) =
1

1050

∑
(k,i)∈E

fi,k(x) =
1

2
||x||2 + exp(n+ 1)− exp(−n)

1050[exp(1)− 1]

50∑
j=1

[exp(xj) + exp(−xj)].

All these functions fj,k and f are 1-strongly convex and ℓ-smooth (with ℓ(u) = 5u + 5) but not
Lipschitz-smooth. We repeat the experiment in the same procedure above, except that all the stepsizes
are fine-tuned to be 10−5. The result is shown in the right of Figure 1, which also shows that
Algorithm 1 with all shuffling schemes converges faster than SGD.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 1: Experimental Results on Convex (left) and Strongly-convex (right) Objective Functions.

Figure 2: Experimental Results on Phase Retrieval (left) and DRO (right).

5.2 APPLICATION TO PHASE RETRIEVAL AND DRO

We compare SGD with Algorithm 1 on phase retrieval and distributionally robust optimization (DRO),
which are ℓ-smooth but not Lipschitz smooth. We use similar setup as in (Chen et al., 2023).

In the phase retrieval problem (2), we select m = 3000 and d = 100, and generate independent
Gaussian variables x, ar ∼ N (0, 0.5Id), initialization z0 ∼ N (5, 0.5Id), as well as yi = |a⊤r z|2+ni
with noise ni ∼ N (0, 42) for i = 1, ...,m. We select constant stepsizes 2× 10−6 and η(t)j ≡ 0.007

m
for SGD and Algorithm 1 respectively by fine-tuning and implement each algorithm 100 times. For
Algorithm 1, we adopt three shuffling schemes as elaborated in Section 3. The fixed-shuffling scheme
and shuffling-once fix all permutations π(t) respectively to be the natural sequence 1, 2, . . . , 3000 and
its random permutation at the beginning, while the uniform-shuffling scheme obtains permutations
π(t) uniformly at random and independently for all iterations t. We plot the learning curves of the
objective function values averaged among the 100 times, as well as the 95% and 5% percentiles in
the left of Figure 2, which shows that Algorithm 1 with shuffle-once and uniform-shuffling schemes
converge faster than SGD.

In the DRO problem (1), we select λ = 0.01 and ψ∗(t) = 1
4 (t + 2)2+ − 1 (corresponding to ψ

being χ2 divergence). For the stochastic samples ξ, we use the life expectancy data1 designed for
regression task between the life expectancy (target) and its factors (features) of 2413 people, and
preprocess the data by filling the missing values with the median of the corresponding features,
censorizing and normalizing all the features2, removing two categorical features (“country” and
“status”), and adding standard Gaussian noise to the target to get robust model. We use the first 2000

1https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?
resource=download

2The detailed process of filling missing values and censorization can be seen in https://
thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/

9

https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?resource=download
https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who?resource=download
https://thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/
https://thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Figure 3: Experimental Results on Cifar 10 Dataset.

samples {xi, yi}2000i=1 with features xi ∈ R34 and targets yi ∈ R for training. We use the loss function
ℓξ(w) =

1
2 (yξ−x

⊤
ξ w)

2+0.1
∑34

j=1 ln
(
1+ |w(j)|)

)
of w = [w(1); . . . ;w(34)] ∈ R34 for any sample

xξ, yξ. We use initialization η0 = 0.1 and w0 ∈ R34 from standard Gaussian distribution.

Then similar to phase retrieval, we implement both SGD and the three sampling schemes of Algorithm
1 100 times with stepsizes η(t)j = ηt

n=10−7.We evaluate Ψ(xt) :=minη∈R L(xt, η) every 10 iterations.
The average, 5% and 95% percentiles of Ψ(xt) among the 100 implementations are plotted in the
right of Figure 2, which shows that Algorithm 1 with fixed shuffling converges faster than SGD.

5.3 APPLICATION TO IMAGE CLASSIFICATION

We train Resnet18 (He et al., 2016) with cross-entropy loss for image classification task on Cifar 10
dataset (Krizhevsky, 2009), using SGD and Algorithm 1 with three shuffling schemes. We implement
each algorithm 100 times with batchsize 200 and stepsize 10−3. After every 250 iterations, we
evaluate the sample-average loss value as well as classification accuracy on the whole training dataset
and test dataset. The average, 5% and 95% percentiles of these evaluated metrics among the 100
implementations are plotted in Figure 3, which shows that Algorithm 1 with fixed-shuffling scheme
outperforms SGD on both training and test data, and Algorithm 1 with the other two shuffling schemes
outperforms SGD on training data.

6 CONCLUSION

In this paper, we have advanced the understanding of shuffling-type gradient algorithms under non-
uniform smoothness assumptions and improved these algorithms with specific learning rates. We
provided counterexamples to illustrate the existence and divergence of non-Lipschitz functions for
(P). Our results show that these algorithms converge efficiently under a general bounded variance
assumption. Additionally, we established robust convergence rates for both strongly convex and
non-strongly convex cases, demonstrating the versatility and effectiveness of our approach. These
convergence results outperform SGD also when Lipschitz smoothness is violated, which is demon-
strated by numerical experiments. Future research can build on these findings to explore further
generalizations and applications in various optimization contexts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

K. Ahn, C. Yun, and S. Sra. Sgd with shuffling: optimal rates without component convexity and large
epoch requirements. Advances in Neural Information Processing Systems, 33:17526–17535, 2020.

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth. Lower bounds for
non-convex stochastic optimization. Mathematical Programming, 199(1):165–214, 2023.

L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. 2009. URL
https://api.semanticscholar.org/CorpusID:16822133.

L. Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_25. URL
https://doi.org/10.1007/978-3-642-35289-8_25.

Z. Chen, Y. Zhou, Y. Liang, and Z. Lu. Generalized-smooth nonconvex optimization is as efficient as
smooth nonconvex optimization. arXiv preprint arXiv:2303.02854, 2023.

S. De and T. Goldstein. Efficient distributed SGD with variance reduction. In F. Bonchi, J. Domingo-
Ferrer, R. Baeza-Yates, Z. Zhou, and X. Wu, editors, IEEE 16th International Conference on Data
Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, pages 111–120. IEEE Computer
Society, 2016. doi: 10.1109/ICDM.2016.0022. URL https://doi.org/10.1109/ICDM.
2016.0022.

J. Drenth. Principles of protein X-ray crystallography. Springer Science & Business Media, 2007.

A. d’Aspremont, D. Scieur, A. Taylor, et al. Acceleration methods. Foundations and Trends® in
Optimization, 5(1-2):1–245, 2021.

M. Feurer and F. Hutter. Hyperparameter optimization. Automated machine learning: Methods,
systems, challenges, pages 3–33, 2019.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming. SIAM journal on optimization, 23(4):2341–2368, 2013.

M. Gürbüzbalaban, A. E. Ozdaglar, and P. A. Parrilo. Why random reshuffling beats stochastic
gradient descent. Math. Program., 186(1):49–84, 2021. doi: 10.1007/S10107-019-01440-W. URL
https://doi.org/10.1007/s10107-019-01440-w.

J. Z. HaoChen and S. Sra. Random shuffling beats SGD after finite epochs. In K. Chaudhuri
and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2624–2633. PMLR, 2019. URL http://proceedings.
mlr.press/v97/haochen19a.html.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

J. Jin, B. Zhang, H. Wang, and L. Wang. Non-convex distributionally robust optimization: Non-
asymptotic analysis. Advances in Neural Information Processing Systems, 34:2771–2782, 2021.

A. Koloskova, N. Doikov, S. U. Stich, and M. Jaggi. Shuffle sgd is always better than sgd: improved
analysis of sgd with arbitrary data orders. arXiv preprint arXiv:2305.19259, 2023.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

D. Levy, Y. Carmon, J. C. Duchi, and A. Sidford. Large-scale methods for distributionally robust
optimization. Advances in Neural Information Processing Systems, 33:8847–8860, 2020.

H. Li, J. Qian, Y. Tian, A. Rakhlin, and A. Jadbabaie. Convex and non-convex optimization under
generalized smoothness. In Thirty-seventh Conference on Neural Information Processing Systems,
2023a.

H. Li, A. Rakhlin, and A. Jadbabaie. Convergence of adam under relaxed assumptions, 2023b.

11

https://api.semanticscholar.org/CorpusID:16822133
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1109/ICDM.2016.0022
https://doi.org/10.1109/ICDM.2016.0022
https://doi.org/10.1007/s10107-019-01440-w
http://proceedings.mlr.press/v97/haochen19a.html
http://proceedings.mlr.press/v97/haochen19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

G. Malinovsky, A. Sailanbayev, and P. Richtárik. Random reshuffling with variance reduction: New
analysis and better rates. In Uncertainty in Artificial Intelligence, pages 1347–1357. PMLR, 2023.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre. Extending the methodology of x-ray crystallography
to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400(6742):342–344,
1999.

K. Mishchenko, A. Khaled, and P. Richtárik. Random reshuffling: Simple analysis with vast
improvements. Advances in Neural Information Processing Systems, 33:17309–17320, 2020.

A. S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimization.
1983.

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical programming,
140(1):125–161, 2013.

L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, and M. Van Dijk. A unified convergence
analysis for shuffling-type gradient methods. The Journal of Machine Learning Research, 22(1):
9397–9440, 2021.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by
generative pre-training. 2018.

A. Reisizadeh, H. Li, S. Das, and A. Jadbabaie. Variance-reduced clipping for non-convex optimiza-
tion. arXiv preprint arXiv:2303.00883, 2023.

I. Safran and O. Shamir. How good is SGD with random shuffling? In J. D. Abernethy and
S. Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event
[Graz, Austria], volume 125 of Proceedings of Machine Learning Research, pages 3250–3284.
PMLR, 2020. URL http://proceedings.mlr.press/v125/safran20a.html.

O. Shamir. Without-replacement sampling for stochastic gradient methods: Convergence results and
application to distributed optimization. CoRR, abs/1603.00570, 2016. URL http://arxiv.
org/abs/1603.00570.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

B. Wang, Y. Zhang, H. Zhang, Q. Meng, Z.-M. Ma, T.-Y. Liu, and W. Chen. Provable adaptivity in
adam. arXiv preprint arXiv:2208.09900, 2022.

B. Zhang, J. Jin, C. Fang, and L. Wang. Improved analysis of clipping algorithms for non-convex
optimization. Advances in Neural Information Processing Systems, 33:15511–15521, 2020.

J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training: A theoretical
justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

12

http://proceedings.mlr.press/v125/safran20a.html
http://arxiv.org/abs/1603.00570
http://arxiv.org/abs/1603.00570

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 NONCONVEX CASE ANALYSIS

In this section we prove the theorems in section 4.1.1.

A.1.1 LEMMAS

In this part we use notations as defined in Theorem 4.4, for completeness we repeat them here:

H :=
4∆1

δ
,G := sup{u ≥ 0|u2 ≤ 2ℓ(2u) ·H} <∞,

G′ :=

√
2(1 + n

√
A)G+

√
nσ, L := ℓ(2G′).

We first state some lemmas that are useful in our proof. The following lemma is a natural corollary of
Definition 2.2, by the fact that ℓ is non-decreasing.

Lemma A.1. If F is ℓ-smooth, for any w ∈ dom(F) satisfying ∥∇F (w)∥ ≤ G, we have
B(w,G/ℓ(2G)) ⊆ dom(F). For any w1, w2 ∈ B(w,G/ℓ(2G))),

∥∇F (w1)−∇F (w2)∥ ≤ ℓ(2G)∥w1 − w2∥,

F (w1) ≤ F (w2) + ⟨∇F (w2), w1 − w2⟩+
ℓ(2G)

2
∥w1 − w2∥2.

The following lemma gives relationship between ∥∇f(w; i)∥ and ∥∇F (w)∥.
Lemma A.2. If Assumption 4.3 is true, we have

∥∇f(w; i)∥ ≤
√

2(1 + n
√
A)∥∇F (w)∥+

√
2nσ.

Proof. From Assumption 4.3 we have that

∥∇f(w; i)∥2 ≤ 2∥∇f(w; i)−∇F (w)∥2 + 2∥∇F (w)∥2

≤ 2

n∑
i=1

∥∇f(w; i)−∇F (w)∥2 + 2∥∇F (w)∥2

≤ 2nA∥∇F (w)∥2 + 2nσ2 + 2∥∇F (w)∥2

= 2(1 + nA)∥∇F (w)∥2 + 2nσ2.

Taking square root on both sides and notice that ∥∇F (w)∥ ≥ 0, σ > 0 we have the conclusion.

According to Lemma A.2, for w such that ∥∇F (w)∥ ≤ G is true, we have

∥∇f(w; i)∥ ≤
√
2(1 + n

√
A)G+

√
nσ = G′

holds for all i ∈ [n].

In our proof, we want that with high probability, Lipschitz smoothness in Lemma A.1, for both F (w)
and f(w; i), between w(t)

0 and w(t)
j is true, for t ∈ [T], i, j ∈ [n]. For that purpose, we can prove the

following inequalities with high probability, for t ∈ [T]:

∥∇F (w(t)
0)∥ ≤ G;

∥w(t)
0 − w

(t+1)
0 ∥ ≤ G′/ℓ(G+G′);

∥∇f(w(t)
0 ; i)∥ ≤ G′,∀i ∈ [n];

∥w(t)
0 − w

(t)
j ∥ ≤ G

′/ℓ(2G′),∀j ∈ [n]. (4)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

By Lemma A.2 we know that the third inequality in (4) holds if the first inequality is true. Noticing
that ℓ(G+G′) ≤ ℓ(2G′), it suffices to prove that, for t ∈ [T],

∥∇F (w(t)
0)∥ ≤ G, ∥w(t)

0 − w
(t)
j ∥ ≤ G

′/ℓ(2G′),∀j ∈ [n]. (5)

For the first inequality, it can be hard to bound the gradient norm directly. The following lemma
states the connection between gradient norm and function value of an ℓ-smooth function.
Lemma A.3. (Lemma 3.5 in Li et al. (2023a)) If F is ℓ-smooth, then

∥∇F (w)∥2 ≤ 2ℓ(2∥∇F (w)∥) · (F (w)− F ∗)

for any w ∈ dom(F).

Since ℓ is sub-quadratic, with Lemma A.3 we can bound the gradient norm by bounding the difference
between the function value and the optimal value. To ease the proof, let us define the following
stopping time:

τ := min{t|F (w(t)
0)− F ∗ > H} ∧ (T + 1).

For t < τ , we have ∥∇F (w(t)
0)∥ ≤ G based on the definition of τ and Lemma A.3, so the first

inequality in (5) is satisfied. The following lemma proves that the other inequality in (5) is true for
t < τ as well, therefore guarantees the Lipschitz smoothness before τ .

Lemma A.4. For t < τ , ηt ≤ 1
2L , we have for all k ∈ [n] and t ∈ [T], ∥w(t)

0 −w
(t)
k ∥2 ≤ G′/ℓ(2G′).

Proof. We use induction to prove that

w
(t)
j ∈ B(w

(t)
0 ,

G′

ℓ(2G′)
), j = 0, 1, . . . , n.

First of all, this claim is true for j = 0. Now suppose the claim is true for j ≤ k − 1, i.e.,

∥w(t)
0 − w

(t)
j ∥ ≤

G′

ℓ(2G′)
, j = 0, 1, . . . , k − 1,

we try to prove it for w(t)
k . From Lemma A.1, we have Lipschitz smoothness, for all f(w; i), between

w
(t)
0 and w(t)

j , if j ≤ k − 1.

Since we have
∥∇f(w(t)

0 ; i)∥ ≤ G′, ∀i ∈ [n],

for any i ∈ [n] and j ∈ [k − 1] we have

∥∇f(w(t)
j ; i)∥ ≤ ∥∇f(w(t)

0 ; i)∥+ ∥∇f(w(t)
j ; i)−∇f(w(t)

0 ; i)∥ ≤ G′ + L∥w(t)
j − w

(t)
0 ∥ ≤ 2G′.

Hence, by the algorithm design we have

∥w(t)
k −w

(t)
0 ∥ =

∥∥∥∥∥∥
k−1∑
j=0

ηt
n
∇f(w(t)

j ;π
(t)
j)

∥∥∥∥∥∥ ≤
k−1∑
j=0

ηt
n
∥∇f(w(t)

j ;π
(t)
j)∥ ≤

k−1∑
j=0

2G′ηt
n
≤ G′

L
=

G′

ℓ(2G′)
,

where the third inequality uses k ≤ n and ηt ≤ 1
2L . By induction, the claim is true.

Therefore, we have the desired Lipschitz smoothness property in Lemma A.1 for t < τ . The only
thing left to prove is P(τ ≤ T) ≤ δ/2.
To simplify the notations, let us define

ϵ
(t)
k :=

1

n

k−1∑
j=0

(∇f(w(t)
j ;π

(t)
j+1)−∇f(w

(t)
0 ;π

(t)
j+1))

as the average of differences between the gradients at the start of iteration t and the actual gradients
we used until step j in the t-th outer iteration. It is worth mentioning that the actual step in t-th outer
iteration is −ηt[∇F (w(t)

0) + ϵ
(t)
n].

Now we bound the probability of event {τ ≤ T} by bounding the expectation of function value at
the stopping time.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Lemma A.5. With parameters chosen in Theorem 4.4, we have

E[F (w(τ)
0)− F ∗] ≤ 2∆1.

Proof. For any t < τ ,

F (w
(t+1)
0)− F (w(t)

0)

≤⟨∇F (w(t)
0), w

(t+1)
0 − w(t)

0 ⟩+
L

2
∥w(t+1)

0 − w(t)
0 ∥2

=− ηt⟨∇F (w(t)
0),∇F (w(t)

0) + ϵ(t)n ⟩+
Lη2t
2
∥∇F (w(t)

0) + ϵ(t)n ∥2

=− ηt
2
(∥∇F (w(t)

0)∥2 + ∥∇F (w(t)
0) + ϵ(t)n ∥2 − ∥ϵ(t)n ∥2) +

Lη2t
2
∥∇F (w(t)

0) + ϵ(t)n ∥2

≤− ηt
2
∥∇F (w(t)

0)∥2 + ηt
2
∥ϵ(t)n ∥2

≤− ηt
2
∥∇F (w(t)

0)∥2 + ηtL
2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2. (6)

Here the first and last inequality is from Lemma A.1 and the second is because ηt ≤ 1
2L . Taking

summation from t = 1 to t = τ − 1 and taking expectation we have

E[F (w(τ)
0)− F ∗] ≤ ∆1 − E[

τ−1∑
t=1

ηt
2
∥∇F (w(t)

0)∥2] + E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2]. (7)

Now let us get a bound for the last term on the right hand side. For any t ∈ [T], k ∈ [n], from
Algorithm 1 and Cauchy-Schwarz inequality we have

∥w(t)
k − w

(t)
0 ∥2 =

k2η2t
n2

∥∥∥1
k

k−1∑
j=0

∇f(w(t)
j ;π

(t)
j+1)

∥∥∥2
≤3k2η2t

n2
∥1
k

k−1∑
j=0

(∇f(w(t)
0 ;π

(t)
j+1)−∇F (w

(t)
0))∥2 + 3k2η2t

n2
∥∇F (w(t)

0)∥2

+
3kη2t
n2

k−1∑
j=0

∥∇f(w(t)
j ;π

(t)
j+1)−∇f(w

(t)
0 ;π

(t)
j+1)∥

2.

Let us denote the 3 terms on the RHS as A1(t, k), A2(t, k) and A3(t, k), i.e. ∥w(t)
k − w

(t)
0 ∥2 ≤

A1(t, k) +A2(t, k) +A3(t, k). Since we are interested in E[
∑τ−1

t=1
ηtL

2

2n

∑n−1
k=0 ∥w

(t)
k −w

(t)
0 ∥2], we

need to bound E[
∑τ−1

t=0
ηtL

2

2n

∑n−1
k=1 Ai(t, k)] for i = 1, 2, 3.

For A1(t, k), since π(t) is randomly chosen, let Ft := σ(π(1), · · · , π(t)) be the σ-algebra generated
in Algorithm 1, for t ∈ [T] we have

E[
ηtL

2

2n

n−1∑
k=0

A1(t, k)|Ft−1] =
ηtL

2

2n

n−1∑
k=0

3k2η2t
n2

E[∥1
k

k−1∑
j=0

∇f(w(t)
0 ;π

(t)
j+1)−∇F (w

(t)
0)∥2|Ft]

=
ηtL

2

2n

n−1∑
k=0

3k2η2t
n2

n− k
k(n− 1)

1

n

n−1∑
i=0

∥∇f(w(t)
0 ; i+ 1)−∇F (w(t)

0)∥2

≤ ηtL
2

2n

n−1∑
k=0

3η2t k(n− k)
n2(n− 1)

(A∥∇F (w(t)
0)∥2 + σ2)

≤ η3tL
2

2n
(A∥∇F (w(t)

0)∥2 + σ2).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Here the second equation comes from variance of randomized reshuffling variables, (Lemma 1 in
Mishchenko et al. (2020)); the first inequality is from assumption 4.3; the last inequality is because∑n−1

k=0 k(n− k) =
(n−1)n(n+1)

6 ≤ n2(n−1)
3 .

Let {Zt}t≤T be a sequence such that Z1 = 0 and for any t ∈ [2, T],

Zt − Zt−1 = −η
3
tL

2

2n
(A∥∇F (w(t)

0)∥2 + σ2) +
ηtL

2

2n

n−1∑
k=0

A1(t− 1, k).

We know {Zt} is a supermartingale. Since τ is a bounded stopping time, by optional stopping
theorem, we have E[Zτ] ≤ E[Z1], which leads to

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

A1(t, k)] ≤ E[
τ−1∑
t=1

η3tL
2

2n
(A∥∇F (w(t)

0)∥2 + σ2)].

ForA2(t, k), for any t ∈ [T], taking summation over k we have
∑n−1

k=0 A2(t, k) ≤ nη2t ∥∇F (w
(t)
0)∥2,

therefore

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

A2(t, k)] ≤ E[
τ−1∑
t=1

η3tL
2

2
∥∇F (w(t)

0)∥2].

For A3(t, k), for any t < τ , by Lemma A.1 we have

A3(t, k) ≤
3kL2η2t
n2

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2.

Taking summation over k, taking expectation we have

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
k=0

A3(t, k)] ≤ E[
τ−1∑
t=1

3η3tL
4

4n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2].

Now putting these together, we have

E[
τ−1∑
t=1

ηtL
2

2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2] ≤E[

τ−1∑
t=1

η3tL
2

2n
(A∥∇F (w(t)

0)∥2 + σ2)] + E[
τ−1∑
t=1

η3tL
2

2
∥∇F (w(t)

0)∥2]

+ [

τ−1∑
t=1

3η3tL
4

4n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2].

Since ηt ≤ 1
2L < 1√

3L
we have 3η3

tL
4

4n ≤ ηtL
2

4n , rearranging the terms we have

E[
τ−1∑
t=1

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2] ≤ E[

τ−1∑
t=1

2η2t σ
2] + 2nE[

τ−1∑
t=1

η2t (
A

n
+ 1)∥∇F (w(t)

0)∥2]. (8)

Put this into (7) we have,

E[F (w(τ)
0)− F ∗]

≤∆1 + E
[τ−1∑

t=1

(
− ηt

2
∥∇F (w(t)

0)∥2 + ηtL
2

2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2

)]
(8)

≤∆1 + E
[τ−1∑

t=1

L2σ2η3t
n

−
τ−1∑
t=1

(
(
ηt
2
− (

A

n
+ 1)η3tL

2)∥∇F (w(t)
0)∥2

)]
≤∆1 + E

[τ−1∑
t=1

L2σ2η3t
n

−
τ−1∑
t=1

(ηt
4
∥∇F (w(t)

0)∥2
)]

(9)

≤∆1 +
L2σ2

n

T∑
t=1

η3t .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Here the third inequality is from ηt ≤ 1

2L
√

A
n +1

and the last inequality is because ηt > 0 and

τ ≤ T + 1.

Since
∑T

t=1 η
3
t ≤ n∆1

σ2L2 , we have E[F (w(τ)
0)− F ∗] ≤ 2∆1.

Now we can bound the probability that τ = T + 1.
Lemma A.6. With the parameters in Theorem 4.4, we have

P(τ ≤ T) ≤ δ/2.

Proof. From Lemma A.5 and the value of H we have

P(τ ≤ T) ≤ P(F (w(τ)
0)− F ∗ > H) ≤ E[F (w(τ)

0)− F ∗]

H
≤ 2∆1

H
=
δ

2
.

A.1.2 PROOF FOR THEOREMS IN NONCONVEX CASES

Proof for Theorem 4.4

Proof. From (9) we have

E[F (wτ
0)− F ∗] + E

[τ−1∑
t=1

ηt
4
∥∇F (w(t)

0)∥2
]
≤ ∆1 +

L2σ2

n

T∑
t=1

η3t ≤ 2∆1. (10)

Therefore, since δ ≤ 1 we have

8∆1

ηT
≥ E

[τ−1∑
t=1

∥∇F (w(t)
0)∥2

]
≥ P(τ = T + 1)E

[T∑
t=1

∥∇F (w(t)
0)∥2|τ = T + 1]

≥ 1

2
E
[T∑

t=1

∥∇F (w(t)
0)∥2|τ = T + 1

]
.

By Markov’s inequality and our choice of T , we have

P
(1

T

T∑
t=1

∥∇F (w(t)
0)∥2 > ϵ2|τ = T + 1

)
≤ 16∆1

ηTTϵ2
≤ δ

2
.

From Lemma (A.6) we have P(τ ≤ T) ≤ δ
2 . Therefore,

P
(
{ 1
T

T∑
t=1

∥∇F (w(t)
0)∥2 > ϵ2} ∪ {τ ≤ T}

)
≤P(τ ≤ T) + P

(1

T

T∑
t=1

∥∇F (w(t)
0)∥2 > ϵ2|τ = T + 1)

≤δ
2
+
δ

2
= δ.

Since L = ℓ(2G′) = Ω(G′p) = Ω(n
p
2), with η = O(3

√
n1−p

T) and T = O(n
p−1
2

ϵ3) we have the
complexity.

The following lemma is useful in the proof of arbitrary scheme.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Lemma A.7. (lemma 6 in (Nguyen et al., 2021)) For t < τ and 0 < ηt ≤ 1
L
√
3

, we have
n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 ≤ nη2t [(3A+ 2)∥∇F (w(t)

0)∥2 + 3σ2].

Proof for Theorem 4.6

Proof. From inequality (6) we have for any t < τ ,

F (w
(t+1)
0)− F (w(t)

0)

≤− ηt
2
∥∇F (w(t)

0)∥2 + ηtL
2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2

≤− ηt
2
∥∇F (w(t)

0)∥2 + η3tL
2[(3A+ 2)∥∇F (w(t)

0)∥2 + 3σ2]

2

≤− ηt
4
∥∇F (w(t)

0)∥2 + 3η3tL
2σ2

2
,

where the second inequality is from Lemma A.7 and the last inequality is from ηt ≤ 1

L
√

2(3A+2)
.

Now taking summation of t from 1 to τ − 1 we have

F (w
(τ)
0)− F ∗ ≤ F (w(τ)

0)− F ∗ +

τ−1∑
t=1

ηt
4
∥∇F (w(t)

0)∥2 ≤ ∆1 +
3L2σ2

2

τ−1∑
t=1

η3t ≤ 2∆1,

where the last inequality is because τ ≤ T + 1 and the choice of ηt. Therefore we have τ = T + 1
since H ≥ 2∆1. On the other hand, we also have

8∆1

ηT
≥

τ−1∑
t=1

∥∇F (w(t)
0)∥2

=

T∑
t=1

∥∇F (w(t)
0)∥2.

Therefore, we have
1

T

T∑
t=1

∥∇F (w(t)
0)∥2 ≤ 8∆1

TηT
≤ ϵ2

from our choice of T .

A.2 STRONGLY CONVEX CASE ANALYSIS

Lemma A.8. If we let H ≥ 3σ2

4µ log(4ϵ) + ∆1 for some large enough C > 0 and ηt = η, we have
τ ≥ 2

µη log(4ϵ).

Proof. From inequality (6) we have for t < τ

F (w
(t+1)
0)− F (w(t)

0) ≤ −η
2
∥∇F (w(t)

0)∥2 + ηL2

2n

n−1∑
k=0

∥w(t)
k − w

(t)
0 ∥2

≤ −η
2
∥∇F (w(t)

0)∥2 + η3L2[(3A+ 2)∥∇F (w(t)
0)∥2 + 3σ2]

2

≤ 3ησ2

8
,

where the last inequality is from η ≤ 1

L
√

2(3A+2)
≤ 1

2L . From the definition of τ we have

τ ≥ 1 +
8(H −∆1)

3ησ2
≥ 2

µη
log(

4

ϵ
).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Proof for Theorem 4.8

Proof. From Lemma A.6 and the parameter choices we have P(τ ≤ T) ≤ δ
2 .

Now we try to bound F (w(τ)
0)− F ∗. In the strongly convex case, for t < τ we have

F (w
(t+1)
0) ≤ F (w(t)

0)− ηt
2
∥∇F (w(t)

0)∥2 + L2ηt
2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2

≤ F (w(t)
0)− µηt

2
(F (w

(t)
0)− F ∗)− ηt

4
∥∇F (w(t)

0)∥2 + L2ηt
2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2,

here the first inequality is from (6) and the second one is from strongly convexity. We can rearrange
the items and write the above inequality as

F (w
(t+1)
0)− F ∗ ≤

(
1− µηt

2

)
(F (w

(t)
0)− F ∗) +

L2σ2η3t
n

+A(t), (11)

where A(t) is defined as

A(t) :=
L2ηt
2n

n−1∑
j=0

∥w(t)
j − w

(t)
0 ∥2 −

ηt
4
∥∇F (w(t)

0)∥2 − L2σ2η3t
n

. (12)

Let ηt = η := 4 log(
√
nT)

µT , we want 1− µη
2 > 0, therefore we need T

log(
√
nT)
≥ 2. Taking expectation

and summation we have

E[F (w(τ)
0)− F ∗] ≤ E[(1− µη

2
)τ−1∆1] +

2L2σ2η2

nµ
[1− (1− µη

2
)τ−1]

+ E[
τ−1∑
t=1

(1− µη

2
)τ−1−tA(t)]

≤ ∆1E[exp(−µητ/2)] +
2L2σ2η2

nµ
+ E[

τ−1∑
t=1

A(t)]

≤ δϵ

8
+

1

nT 2

(
∆1 +

L2σ2 log2(
√
nT)

µ3

)
+ E[

τ−1∑
t=1

A(t)],

where the second inequality is from 1− x ≤ exp(−x) for x ∈ (0, 1) and the last inequality is from
Lemma A.8, P(τ ≤ T) ≤ δ/2 and the value of η. Now if we look at the last item, we can notice
from (8), by using η ≤ 1

L
√

2(3A+2)
≤ 1

2L
√

A
n +1

, that we already have

E[
τ−1∑
t=1

A(t)] ≤ 0.

Therefore, we have
δϵ

8
+

1

nT 2

(
∆1 +

8L2σ2 log2(
√
nT)

µ3

)
≥ E[F (w(τ)

0)− F ∗]

≥ P(τ = T + 1)E[F (w(T+1)
0)− F ∗|τ = T + 1]

≥ 1

2
E[F (w(T+1)

0)− F ∗|τ = T + 1].

P(F (w(T+1)
0)− F ∗ > ϵ|τ = T + 1) ≤ E[F (w(T+1)

0)− F ∗|τ = T + 1]

ϵ

≤ δ

4
+

2

ϵnT 2

(
∆1 +

8L2σ2 log2(
√
nT)

µ3

)
≤ δ

4
+
δ

8
+
δ

8
=
δ

2
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

where the last line is from the constraint on T.

Proof for Theorem 4.9

Proof. The algorithm starts from w
(1)
0 and we define S = {w|F (w) ≤ F (w

(1)
0)}. Since F is

strongly-convex, we have S being compact. Therefore, we can define G′ = maxw{∥∇f(w; i)∥|w ∈
S, i ∈ [n]} <∞.

If we have w(t)
0 ∈ S for all t ∈ [T], we have ∥∇f(w(t)

0 ; i)∥ ≤ G′ for t ∈ [T] and i ∈ [n]. On the
other hand, by definition of F we have ∥∇F (w(t)

0)∥ ≤ G′ for t ∈ [T]. Therefore, by Lemma A.4 we
have Lipschitz smoothness between w(t)

0 and w(t)
j , for both F (w) and f(w; i), for t ∈ [T], i, j ∈ [n].

The rest of the proof then follows the one in Lipschitz smoothness case (theorem 1 in Nguyen et al.
(2021)).

Now we prove that w(t)
0 ∈ S, for t ∈ T. The statement is obviously true for t = 1. Now for t ∈ [2, T],

assume that we already proved the conclusion for 1, · · · , t− 1, we can use Lipschitz smoothness in
the first t− 1 iterations. Therefore, from theorem 1 in Nguyen et al. (2021) we have that

F (w
(t)
0)− F (w∗) ≤ (1− ρη)t−1∆1 +

Dη2

ρ
,

where ρ = µ
3 , D = (µ2 + L2)σ2

∗. On the other hand, since η ≤ ∆1ρ
2

D we have

(1− ρη)t−1∆1 +
Dη2

ρ
≤ (1− ρη)∆1 +

Dη2

ρ
≤ ∆1.

Therefore, we have F (w(t)
0) ≤ F (w(1)

0), which means w(t)
0 ∈ S.

A.3 NON-STRONGLY CONVEX CASE ANALYSIS

Proof for theorem 4.11

Proof. From Lemma A.6 we know P(τ ≤ T) < δ
2 .

For t < τ , if ηt = η, from lemma 7 in (Nguyen et al., 2021) we have that

∥w(t+1)
0 − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 − 2η[F (w
(t)
0)− F ∗] +

2Lη3

n3

n−1∑
i=1

∥
n−1∑
j=i

∇f(w∗;π
(t)
j+1)∥

2, (13)

where w∗ is the optimal solution. If we denote A(t) :=
∑n−1

i=1 ∥
∑n−1

j=i ∇f(w∗;π
(t)
j+1)∥2 and let

σ∗ :=
√

1
n

∑n
i=1 ∥∇f(w∗; i)∥2, we have that for any t ∈ [T]

E[A(t)] =
n−1∑
i=0

(n− i)2E

∥∥∥∥∥∥ 1

n− i

n−1∑
j=i

∇f(w∗;π
(t)
j+1 −∇F (w∗)

∥∥∥∥∥∥
2

=

n−1∑
i=0

(n− i)2i
n(n− i)(n− 1)

n−1∑
j=0

∥∇f(w∗;π
(t)
j+1)∥

2

=
n(n+ 1)σ2

∗
6

.

By optional stopping theorem we know that

E
[τ−1∑

t=1

(
A(t)− n(n+ 1)σ2

∗
6

)]
= 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Taking summation from t = 0 to τ − 1 for (13) and taking expectation we have

2ηE[
τ−1∑
t=1

(F (w
(t)
0)− F ∗)] ≤ ∥w(1)

0 − w∗∥2 +
2Lη3

n3
E[

τ−1∑
t=1

n(n+ 1)σ2
∗

6
]

≤ ∥w(1)
0 − w∗∥2 +

2LTη3σ2
∗

3n
,

where the second inequality uses τ ≤ T + 1. Therefore, we have

1

2η

(
∥w(1)

0 − w∗∥2 +
2LTη3σ2

∗
3n

)
≥ E[

τ−1∑
t=1

(F (w
(t)
0)− F ∗)]

≥ 1

2
E[

T∑
t=1

(F (w
(t)
0)− F ∗)|τ = T + 1].

If we define w̄T = 1
T

∑T
t=1 w

(t)
0 , from convexity we have

F (w̄T)− F ∗ ≤ 1

T

T∑
t=1

[F (w
(t)
0)− F ∗].

Consider the event F := {F (w̄T)− F ∗ > ϵ}, we have

P(F|τ = T + 1) ≤ P(
1

T

T∑
t=1

(F (w
(t)
0)− F ∗) > ϵ|τ = T + 1)

≤
E
[∑T

t=1(F (w
(t)
0)− F ∗)|τ = T + 1

]
Tϵ

≤ 1

ηTϵ

(
∥w(1)

0 − w∗∥2 +
2LTη3σ2

∗
3n

)
≤ 2

ηTϵ
∥w(1)

0 − w∗∥2

≤ δ

2
,

where the last two inequalities are from the choices of η and T , separately.

Proof for Theorem 4.12

Proof. Similar to Theorem 4.9, if we have w(t)
0 ∈ S for t ∈ [T], we have the desired Lipschitz

smoothness.

Now we prove the conclusion by trying to prove that w(t)
0 ∈ S for t ∈ [T]. The statement is obviously

true for t = 1. Now for t ∈ [2, T], assume that we already proved the conclusion for 1, · · · , t− 1,
we can use Lipschitz smoothness in the first t− 1 iterations. Therefore, from (13) we have

∥w(t)
0 − w∗∥2 ≤ ∥w(t−1)

0 − w∗∥2 − 2η[F (w
(t−1)
0)− F ∗] +

2Lη3

n3

n−1∑
i=1

∥
n−1∑
j=i

∇f(w∗;π
(t−1)
j+1)∥2.

If F (w(t−1)
0)− F ∗ ≤ ϵ, we have the desired conclusion.

If F (w(t−1)
0)− F ∗ > ϵ, since η ≤ 1

G′

√
3ϵ
L , we have

∥w(t+1)
0 − w∗∥2 ≤ ∥w(t)

0 − w∗∥2 − 2ηϵ+
2Lη3

n3

n−1∑
i=1

(n− i)2G′2

≤ ∥w(t)
0 − w∗∥2 − 2ηϵ+

2Lη3

n3
n3

3
G′2

≤ ∥w(t)
0 − w∗∥2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Therefore, if F (w(t)
0) − F ∗ ≥ ϵ for t ∈ [T], we have w(t)

0 ∈ S for t ∈ [T]. Taking summation we
have that

2η

T∑
t=1

[F (w
(t)
0)− F (w∗)] ≤ ∥w(1)

0 − w∗∥2 +
2LG′2η3T

3
.

Therefore we have

1

T

T∑
t=1

[F (w
(t)
0)− F (w∗)] ≤

1

2ηT

(
∥w(1)

0 − w∗∥2 +
2LG′2η3T

3

)
≤ ϵ.

However, this contradict the assumption that F (w(t)
0)− F ∗ ≥ ϵ for t ∈ [T]. Therefore, there must be

t ∈ [T] such that F (w(t)
0)− F ∗ ≤ ϵ.

22

	Introduction
	Preliminaries
	Shuffling-Type Gradient Algorithm
	Counterexamples
	Relaxation of Lipschitz Smoothness

	Algorithm
	Convergence Analysis
	Main Results
	Nonconvex Case
	Strongly Convex Case
	Non-strongly Convex Case

	Proof Sketch and Technical Novelty
	Limitations and Future works

	Numerical Experiments
	Convex and Strongly Convex Settings
	Application to Phase Retrieval and DRO
	Application to Image Classification

	Conclusion
	Appendix / supplemental material
	Nonconvex Case Analysis
	Lemmas
	Proof for Theorems in Nonconvex cases

	Strongly Convex Case Analysis
	Non-strongly Convex Case Analysis

