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Abstract

We present OLMO 2, the next generation of our fully open language models.
OLMO 2 includes a family of dense autoregressive language models at
7B, 13B and 32B scales with fully released artifacts—model weights, full
training data, training code and recipes, training logs and thousands of
intermediate checkpoints. In this work, we describe our modified model
architecture and training recipe, focusing on techniques for achieving better
training stability and improved per-token efficiency. Our updated pretrain-
ing data mixture introduces a new, specialized data mix called DOLMINO
MIX 1124, which significantly improves model capabilities across many
downstream task benchmarks when introduced via late-stage curriculum
training (i.e. specialized data during the annealing phase of pretraining).
Finally, we incorporate best practices from Tülu 3 to develop OLMO 2-
INSTRUCT, focusing on permissive data and extending our final-stage re-
inforcement learning with verifiable rewards (RLVR). Our OLMO 2 base
models sit at the Pareto frontier of performance to training compute, often
matching or outperforming open-weight only models like Llama 3.1, Qwen
2.5, and Gemma 2 while using fewer FLOPs and with fully transparent
training data, code, and recipe. Our fully open OLMO 2-INSTRUCT models
are competitive with open-weight only models of comparable size and even
some proprietary models like GPT-3.5 Turbo and GPT 4o Mini.

allenai/olmo-2 allenai/olmo-core allenai.org/olmo

1 Introduction

The open language model ecosystem has grown rapidly in the past year. We’ve seen a surge
in open weights models from established developers—Llama 3 (Grattafiori et al., 2024),

OLMo was a team effort. marks core contributors; see Author Contributions for full details.
Contact olmoteam@allenai.org.
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Figure 1: Performance to pretraining FLOPs (≈ 6 × training tokens × model size; Kaplan
et al., 2020) for OLMO 2 and comparable models. We see that the fully open OLMO 2 lies
on the Pareto frontier of training efficiency, competitive with other models of varying levels
of openness at multiple sizes. For full results, see Table 3.

DBRX (Databricks, 2024), Yi 1.5 (Young et al., 2024), Qwen 2 (Yang et al., 2024a), Falcon (TII,
2024a;b), Mistral (Mistral, 2024a), Ministral (Mistral, 2024b), Phi (Abdin et al., 2024a;b)—
and new contributors— Gemma (Gemma Team et al., 2024a;b; Team et al., 2025), Grok (X.AI,
2023), Command R (Cohere, 2024a;c;b) —substantially closing the gap between publicly
available and closed systems (Cottier et al., 2024). Yet, these open-weights models are
only the final artifacts of sophisticated language model recipes and complex development
pipelines, and by themselves are not sufficient to support diverse forms of research into
language model behaviors and uses.

In response, prior works including our first OLMO (Groeneveld et al., 2024), Pythia (Bider-
man et al., 2023), Amber (Liu et al., 2023c), DCLM (Li et al., 2024), MAP Neo (Zhang et al.,
2024a) and SmolLM (Allal et al., 2024a;b) have adopted a fully open approach, releasing
not just model weights but also training data, training code and well-documented recipes to
support reproduction. Artifacts from fully open language modeling efforts have played a
crucial role in studying training dynamics (Land & Bartolo, 2024; Jin & Ren, 2024), concept
acquisition (Chang et al., 2024), and memorization (Antoniades et al., 2024; Shaib et al., 2024)
in language models. Despite these developments, a gap remains between the models with
the best reported performance and that of open models.

We introduce OLMO 2, a new family of fully open 7B, 13B and 32B models trained on up to
6T tokens. On English academic benchmarks, these models are competitive with the open
weight Llama 3.1, Qwen 2.5, and Gemma 2 families of models (Figure 1). We further validate
our pretrained model is an effective base model for downstream post-training by applying
our Tülu 3 recipe (Lambert et al., 2024). The resulting family of models, called OLMO
2-INSTRUCT, are competitive with powerful open-weights only models and even some
popular proprietary models like GPT-3.5 Turbo and GPT 4o Mini. In addition to describing
our full modeling, training, and data recipes, we focus on two key areas that proved critical
during the development of OLMO 2—pretraining stability (§4) and mid-training recipes
(§5). Finally, we release all model weights, data, training and evaluation code, intermediate
checkpoints, and recipes openly for the broader research community. A full version of our
work, including additional details about post-training and our training infrastructure, can
be found at OLMo et al. (2024).

2



Published as a conference paper at COLM 2025

2 The OLMO 2 Family

Model Architecture We adopt a decoder-only transformer architecture based on Vaswani
et al. (2017), and deliver 7B, 13B and 32B parameter variants (Table 1) Our architecture
is very similar to OLMO 1 (Groeneveld et al., 2024) and OLMO-0424 (Ai2, 2024) and
make modifications aimed at improving training stability and performance. For space
considerations, we present a full list of architecture departures in Appendix E, and discuss
several key interventions in §4. Throughout this work, we also reference a 1B parameter
variant used for ablation studies that inform development of our larger model targets; its
details are in Appendix B.

Tokenizer While OLMO 1 and OLMO-0424 use the GPT-NeoX-20B tokenizer vocabu-
lary (Black et al., 2022), we adopt cl100k, which was developed for GPT-3.5 (OpenAI, 2023a)
and GPT-4 (OpenAI, 2023b). The larger vocabulary is more suited to the parameter count of
the OLMO 2 family (Tao et al., 2024). In an ablation study with 1B models trained to 100B
tokens, the new vocabulary slightly improves performance on a suite of downstream tasks
(+0.3 to +0.8 points); further details in Appendix §C.

OLMO 2 7B OLMO 2 13B OLMO 2 32B
Layers 32 40 64
Hidden Size (dmodel) 4096 5120 5120
Attention Heads (Q/KV) 32/32 (MHA) 40/40 (MHA) 40/8 (GQA)
Batch Size 1024 2048 2048
Sequence Length 4096 4096 4096
Gradient Clipping 1.0 1.0 1.0
Peak LR 3.0 ⋅ 10E−4 9.0 ⋅ 10E−4 6.0 ⋅ 10E−4
LR Warmup 2000 steps 2000 steps 2000 steps
LR Schedule (Cosine) 5T tokens 5T tokens 6.5T tokens
LR Schedule Truncation (after 4T) n/a after 6T

Table 1: OLMO 2 hyperparameters.

2.1 Training OLMO 2

Following recent advances in curriculum learning (Blakeney et al., 2024; Ibrahim et al., 2024;
Feng et al., 2024), OLMO 2 models are trained in two stages, each with its corresponding
data mix. In total, OLMO 2 7B is trained on 4.05 trillion tokens (3.90 trillion for pretraining
stage), OLMO 2 13B is trained on 5.6 trillion tokens (5 trillion for pretraining stage), and
OLMO 2 32B is trained on 6.6 trillion tokens (6.06 trillion for pretraining stage).

2.1.1 Stage 1: Pretraining

Training The first stage—pretraining—is the longest (90–95% of training FLOPs). We report
key architecture and training details in Table 1. Key details include our switch from multi-
head attention (MHA) to grouped query attention (GQA) (Ainslie et al., 2023) to scale the
32B model, inspired by its use in concurrent work Qwen 3 (Yang et al., 2025). OLMO 2
training used random initialization from a truncated normal distribution with a mean of 0
and a standard deviation of 0.02 and a learning rate schedule that warms up the learning
rate from 0 to the peak learning rate over 2000 steps, followed by a cosine decay calibrated
to reach 10% of the peak learning rate after a specified max tokens. We describe these and
other methods in detail in §4.

Data We adopt the pretraining data used in OLMOE (Muennighoff et al., 2024)—a mix of
documents from DCLM (Li et al., 2024) (Common Crawl), Dolma 1.7 (Soldaini et al., 2024)
(knowledge-rich documents from scientific papers, Wikipedia, etc.), and StarCoder (Li et al.,
2023) (code repositories). This data mix consists of ≈ 3.9 trillion tokens. We provide a full
breakdown in Appendix D.
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2.1.2 Stage 2: Mid-training

Training We refer to the shorter second stage as mid-training (5–10% of training FLOPs),
where we linearly decay the learning rate to zero over the remaining length of the run.1

Data We curated a smaller, focused mixture—DOLMINO MIX 1124—to imbue the model
with domain knowledge from increased exposure to STEM references and high quality text
as well as skills that remained lacking after the initial pretraining stage (e.g. math-solving
capabilities). We up-sample high-quality web documents and curated non-web sources; we
also employ synthetic data crafted to patch math capabilities of the model. We present a full
breakdown of DOLMINO MIX 1124 sources in Table 6 and discuss details in §5.2.

Model Merging or “Souping” To get the most out of this high-quality data, and to find
a better local minimum, we perform this step multiple times with different random data
orders, and then average the resulting models (Matena & Raffel, 2022; Wortsman et al.,
2022). For OLMO 2 7B, we anneal three separate times for 50B tokens each, with different
randomized data orders; we average the resulting models to produce the final model. For
both OLMO 2 13B and OLMO 2 32B, we train three separate times for 100B tokens each
(same number of update steps as the 7B), and then a fourth time for 300B tokens. The
final model is the average of all four models. Table 14 in Appendix §H summarizes data
composition of the 50B, 100B and 300B sets.

Overall Despite minimal compute, mid-training provides a significant downstream per-
formance boost to a pretrained base model: +18.7% for the 7B model, +15.9% for the 13B
model, and +12.3% for the 32B model; see Table 2. To ensure we aren’t harming our base
model’s potential for post-training, we also train and evaluate OLMO 2-INSTRUCT using
our Tülu 3 post-training recipe (see §3).

Dev Benchmarks Held-out Evals

Model Stage Avg MMLU ARCC HS WG NQ DROP AGI GSM MMLUP TQA

7B 1 53.0 59.8 72.6 81.3 75.8 29.0 40.7 44.6 24.1 27.4 74.6

2 62.9 63.7 79.8 83.8 77.2 36.9 60.8 50.4 67.5 31.0 78.0

13B 1 58.9 63.4 80.2 84.8 79.4 34.6 49.6 48.2 37.3 31.2 80.3

2 68.3 67.5 83.5 86.4 81.5 46.7 70.7 54.2 75.1 35.1 81.9

32B 1 64.9 72.9 88.7 86.5 82.4 40.6 57.3 56.8 56.2 42.0 85.5

2 72.9 74.9 90.4 89.7 83.0 50.2 74.3 61.0 78.8 46.9 88.0

Table 2: Impact of our mid-training recipe on downstream tasks.

3 Evaluation and Results

OLMO 2 is evaluated via standard language model benchmarks. Further, we apply post-
training to OLMO 2 and evaluate the result—OLMO 2-INSTRUCT—on a diverse set of tasks
to assess the adaptation potential of our base model.

Base Model Evaluation: We evaluated OLMO 2 and other baseline models using the OLMES
evaluation suite (Gu et al., 2024), which includes a range of benchmark datasets for both
multiple-choice and generative tasks, using standardized prompts and in-context examples
for few shot predictions. Full descriptions of benchmark tasks in Appendix A.1. For
multiple-choice tasks, we evaluate accuracy; for generative tasks, we evaluate F1 to account
for partial matches. Additionally, to avoid overfitting our recipe to these benchmarks, we
maintained a held-out suite of tasks which were not used for model development decisions;

1While the concept of multiple stages of self-supervised training is not new (e.g., Gururangan et al.
2020), we adopt the term mid-training from Abdin et al. (2024a) and OpenAI (2024).
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Dev Benchmarks Held-out Evals

Model Avg FLOPs MMLU ARCC HS WG NQ DROP AGI GSM MMLUP TQA

Open-weights models 7-14B Parameters

Llama 3.1 8B 61.8 7.2 66.9 79.5 81.6 76.6 33.9 56.4 51.3 56.5 34.7 80.3

Qwen 2.5 7B 67.4 8.2 74.4 89.5 89.7 74.2 29.9 55.8 63.7 81.5 45.8 69.4

Gemma 2 9B 67.8 4.4 70.6 89.5 87.3 78.8 38.0 63.0 57.3 70.1 42.0 81.8

Llama 2 13B 54.1 1.6 55.7 67.3 83.9 74.9 38.4 45.6 41.5 28.1 23.9 81.3

Qwen 2.5 14B 72.3 16.0 79.3 94.0 94.0 80.0 37.3 51.5 71.0 83.4 52.8 79.2

Open-weights models 24-32B Parameters

Gemma 2 27B 71.3 21.0 75.7 90.7 88.4 74.5 44.7 70.1 61.5 75.7 44.7 87.4

Qwen 2.5 32B 74.9 16.0 83.1 95.6 96.0 84.0 37.0 53.1 78.0 83.3 59.0 79.9

Gemma 3 27B 74.7 23.0 79.5 93.4 88.2 75.0 45.4 73.2 69.5 80.4 52.9 89.1

Fully-open models

Amber 7B 35.2 0.5 24.7 44.9 74.5 65.5 18.7 26.1 21.8 4.8 11.7 59.3

OLMO 1 7B 38.3 1.0 28.3 46.4 78.1 68.5 24.8 27.3 23.7 9.2 12.1 64.1

MAP Neo 7B 49.6 2.1 58.0 78.4 72.8 69.2 28.9 39.4 45.8 12.5 25.9 65.1

OLMO-0424 7B 50.7 1.0 54.3 66.9 80.1 73.6 29.6 50.0 43.9 27.7 22.1 58.8

DCLM 7B 56.9 1.0 64.4 79.8 82.3 77.3 28.8 39.3 47.5 46.1 31.3 72.1

StableLM 2 12B 62.2 2.9 62.4 81.9 84.5 77.7 37.6 55.5 50.9 62.0 29.3 79.9

OLMO 2 7B 62.9 1.8 63.7 79.8 83.8 77.2 36.9 60.9 50.4 67.5 31.0 78.0

OLMO 2 13B 68.3 4.6 67.5 83.5 86.4 81.5 46.7 70.7 54.2 75.1 35.1 81.9

OLMO 2 32B 73.3 13.0 74.9 90.4 89.7 78.7 50.2 74.3 61.0 78.8 46.9 88.0

Table 3: OLMO 2 vs. comparable models (size, architecture) with known pretraining FLOPs,
which are reported relative to 10E23. For example, OLMO 2 7B training took 1.8 ⋅ 10E23
FLOPs.

we advocate for a standard practice of declaring development vs held-out evaluation tasks
for model developers.2

Table 3 contains overall results. We find our OLMO 2 models are competitive with the best
open-weights models of comparable size, despite OLMO 2 requiring far fewer training
FLOPs (see Figure 1) and maintaining full openness (e.g. training data). We find that gains
observed on development metrics largely translate to our unseen evaluation suite, indicative
of a generalizable training recipe. Curiously, while we’ve found our recipe developed using
1B model ablations has generalized well to the 7B, 13B and 32B scales, our recipe may not
be optimal for training smaller models (even 1B scale); we discuss this limitation in the
Appendix I.

Post-Training Recipe and Evaluation For post-training we apply our Tülu 3 (Lambert et al.,
2024) recipe with supervised finetuning, on-policy preference tuning, and reinforcement
learning with verifiable rewards (RLVR).3 The resulting models—OLMO 2-INSTRUCT—
are evaluated in Table 4 on general and precise instruction following, math, knowledge

2GSM8k (Cobbe et al., 2021) was only partially held-out, as we subsampled 200 of 1319 GSM8k
examples for mid-training data development when we noticed poor math capabilities after pretraining;
we call this dev set GSM∗. The remaining 1119 GSM8k examples we reserve as held-out and report
final performance on them only.

3We made minor modifications to the preference data to use generations from permissively-licensed
models and added a multi-stage RLVR training protocol to optimize final performance, but otherwise
followed the recipe as-is.
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Model Avg AE2 BBH DROP GSM IFE MATH MMLU Safety PQA TQA
Closed API models

GPT-3.5 Turbo 0125 60.5 38.7 66.6 70.2 74.3 66.9 41.2 70.2 69.1 45.0 62.9
GPT 4o Mini 0724 65.7 49.7 65.9 36.3 83.0 83.5 67.9 82.2 84.9 39.0 64.8

Open weights models 7-14B Parameters
Llama 3.1 8B 59.1 25.8 71.9 61.7 83.4 80.6 42.5 71.3 70.2 28.4 55.1
Gemma 2 9B 58.1 43.7 64.9 58.8 79.7 69.9 29.8 69.1 75.5 28.3 61.4
Qwen 2.5 7B 61.6 29.7 70.2 54.4 83.8 74.7 69.9 76.6 75.0 18.1 63.1
Qwen 2.5 14B 65.3 34.6 78.4 50.5 83.9 82.4 70.6 81.1 79.3 21.1 70.8

Open weights models 24-32B Parameters
Gemma 2 27B 61.3 49.0 72.7 67.5 80.7 63.2 35.1 70.7 75.9 33.9 64.6
Mistral Small 24B 67.5 43.2 80.1 78.5 87.2 77.3 65.9 83.7 66.5 24.4 68.1
Qwen 2.5 32B 68.1 39.1 82.3 48.3 87.5 82.4 77.9 84.7 82.4 26.1 70.6
Gemma 3 27B 71.3 63.4 83.7 69.2 91.1 83.4 76.2 81.8 69.1 30.9 63.9

Fully-open models
SmolLM2 1.7B 34.2 5.8 39.8 30.9 45.3 51.6 20.3 34.3 52.4 16.4 45.3
OLMo 7B 0424 33.1 8.5 34.4 47.9 23.2 39.2 5.2 48.9 49.3 18.9 55.2
OLMO 2 7B 56.5 29.1 51.4 60.5 85.1 72.3 32.5 61.3 93.3 23.2 56.5
OLMO 2 13B 63.5 39.5 63.0 71.5 87.4 82.6 39.2 68.5 89.7 28.8 64.3
OLMO 2 32B 68.8 42.8 70.6 78.0 87.6 85.6 49.7 77.3 85.9 37.5 73.2

Table 4: OLMO 2-INSTRUCT’s performance vs closed and open-weights only models.

reasoning, and safety tasks from the same evaluation suite used by Lambert et al. (2024).
Full descriptions of benchmark tasks in Appendix A.2.

Table 4 contains downstream results. We find OLMO 2-INSTRUCT models are competitive
with the best instruction-tuned open-weights models and even some popular proprietary
models. This shows the usefulness of OLMO 2 as a powerful base model that serves as an
excellent starting point for fully open post-training research.

4 Pretraining Stability

In OLMO 2, we implemented and validated a number of techniques for mitigating training
instability characterized by the presence of sudden spikes in the loss and gradient norm
and slow growth in the magnitude of the gradient norm. We present the cumulative impact
of these measures in Figure 2. We summarize the main interventions and their intuitions
below, and for space, link to experimental results validating each choice.

Removing repeated n-grams: In prior experimental runs, we found a high
prevalence of instances containing long, repeated n-gram sequences within train-
ing batches at which spikes occurred. An example of one such sequence is
g4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4OD... To mitigate, we filter
our training data to remove documents with a sequence of 32 or more repeated n-grams,
where an n-gram is any span of 1 to 13 tokens. We also implement an additional safeguard
in the trainer that detects these sequences during data loading and masks them when
computing the loss. We found this intervention results in a clear mitigation—though not
complete elimination—of gradient spikes, and no effect on the slow growth in gradient
norm. See further details and experimental results in Figure 4 in Appendix §F.1.

Initialization: Prior work used scaled initialization (Zhang et al., 2019; Gururangan
et al., 2023; Ai2, 2024) that scaled input projections by 1/

√
dmodel, and output projections

by 1/
√

2 ⋅ dmodel ⋅ layeridx at every layer. In other words, later layers were initialized to
smaller values. In OLMO 2, we instead initialize all parameters with a mean of 0 and a
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Figure 2: Training loss and gradient norm curves (over training steps) for OLMO 2 vs
OLMO. The OLMO training run was marked by frequent loss spikes (top), often preceded
by more frequent spikes in the gradient norm, which grew over time (bottom). We note that
the training loss for OLMO 2 is higher because the underlying training data are different.

standard deviation of 0.02. We found empirically that this (1) better preserves the scale of
activations and gradients across layers, allowing deep models to be trained more stably, and
(2) this initialization transfers well across models of different widths. See further details and
experimental results in Figure 5 in Appendix §F.2.

Reordered norm and QK-norm Following Liu et al. (2021) and Chameleon Team (2024),
we apply layer normalization to the outputs of the MLP and attention blocks instead of the
inputs. We also adopt QK-norm (Dehghani et al., 2023) which applies another normalization
to the queries and keys in the attention block. Empirically, we found that, while neither
of these changes yield stability improvements in isolation, together they improve both the
growth and the spikiness of the L2 norm of the gradient. See further details and experimental
results in Figure 8 in Appendix §F.3.1.

ϵ in AdamW In OLMO 2, we decreased the ϵ term in AdamW from 10E−5, a value com-
monly used in many LM training code bases (e.g. Megatron, OLMO), to 10E−8, the default
value in PyTorch. We found the lower value allows for larger updates early in training, and
helps the model learn faster during a period where we’ve typically seen more instability. As
a result, the gradient norm settles much more quickly and remains permanently lower. See
further details and experimental results in Figure 10 in Appendix §F.4.1.

Weight decay on embeddings A standard formulation of weight decay multiplies every
parameter by 1 − (0.1 ⋅ lr) at every step, a regularization term that discourages parameters
from growing too large. We found in the case of token embeddings, it is too aggressive and
results in very small embeddings. As discussed by Takase et al. (2024), small embeddings
can produce large gradients in early layers because the Jacobian of layer_norm(x) w.r.t. x
is inversely proportional to ∥x∥, and, in early layers, the norm of the residual stream is
essentially the norm of the embeddings. In OLMO 2, we experiment with the full range of
remedies discussed in Takase et al. (2024), but found that they negatively impacted the speed
of convergence. Instead, we simply turn off weight decay for embeddings and observe that
embedding norms settle in a healthy region as training progresses. See further details and
experimental results in Figure 11 in Appendix §F.4.2.
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Figure 3: Higher learning rates perform better at first but are eventually overtaken by lower
rates. However, linearly decaying the learning rate to zero over 50B or 100B tokens results
in equivalent training loss.

5 Mid-training Recipe Development

As described in §2.1.2, our mid-training phase involves both linearly decaying learning rate
to zero while changing the data curriculum. We discuss how we developed our final recipe.

5.1 Learning Rate Annealing

To determine how to set our learning rate schedule, including peak learning rate during
Stage 1 (cosine decay) and training duration of Stage 2 (linear decay to zero), we trained
identical 7B parameter models up to 300B tokens (Stage 1) with learning rates 6 ⋅ 10E−4,
9 ⋅ 10E−4, 12 ⋅ 10E−4, and 30 ⋅ 10E−4. Then, we annealed each model’s learning rate linearly
to zero over 50B or 100B tokens.

Figure 12 shows training loss under both stages. First, we found too high a learning rate
(30 ⋅ 10E−4) leads to training instability and loss spikes. Second, we found higher learning
rates initially resulted in faster loss reduction, but lower learning rates eventually performed
better. Yet, once we apply linear learning rate decay to zero, the differences between the
choice of learning rates largely disappear as all paths result in similar final training loss,
suggesting a trade-off between pretraining and mid-training performance. We find this
result is consistent even when extending our experiments to 2T training tokens; see further
details in Appendix §F.5. Overall, this contradicts common machine learning assumptions
on the benefits of high learning rates (McCandlish et al., 2018), and aligns with observations
from Wortsman et al. (2023) that training loss is not always improved by higher learning
rates and smaller models’ performance is largely invariant to learning rate when trained to
the end of a cosine schedule.

5.2 Data Curriculum: DOLMINO MIX 1124

In this section, we describe our experimental process for curating our mid-training data.

DOLMINO MIX 1124 High Quality Subset: We first experiment with different data mixes by
performing mid-training starting from an OLMO 2 7B checkpoint trained up to 4T tokens,
switching to a candidate data mix (subsampled to 50B tokens). Candidate mixes were
curated following these steps; exact mix specifications are in Table 13 in Appendix §G.1:

1. Start with knowledge-rich documents (e.g. scientific papers, books, Wikipedia, Stack
Exchange), as seen in OLMO-0424 (Ai2, 2024),

2. Ablate different amounts of instruction data like Flan (Wei et al., 2021) (Ins) or math
pretraining data like OpenWebMath (Paster et al., 2023) (Math),

3. Ablate different quality filters applied to DCLM, including choice of quality classifiers
from DCLM (Li et al., 2024) (FT) or FineWeb (Penedo et al., 2024) (FW) and choice of
threshold (e.g. FT7 selects documents ≥ 0.7, FW2 selects documents ≥ “2” rating). This
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Mid-training mix OLMES (MCF) OLMES-Gen MMLU (MCF) GSM∗

n/a (pretrain checkpoint) 69.6 63.2 59.8 28.5

PT Mix 74.0 64.5 61.8 27.0

Web FT7 73.5 64.1 61.9 24.5

Web FT7
FW3

73.5 63.0 62.4 30.5

Web FT7
FW2

75.2 63.8 63.1 28.5

Web FT7
FW2

+ Ins 74.2 64.1 63.0 46.0

Web FT7
FW2

+ Math 75.7 69.7 62.3 52.0

Web FT7
FW2

+ Math + Ins 75.7 70.2 63.1 46.5

Table 5: Ablation experiments for mid-training mixes (high quality subset); exact details on
mixes in Appendix §G.1. Scores macro-averaged over OLMES benchmark tasks, grouped
into multiple-choice (MCF), generative (Gen), MMLU, and our GSM∗ dev set.

always results in more data than needed for mid-training, so subsample until reach target
token total (50B).

Table 5 presents ablation results. First, performing any mid-training without changing the
pretraining data (PT Mix) improves on all tasks except math. Second, including higher
quality web data further improves performance. Including instruction and math data yields
the best performance. Our final choice for our high quality set combines all these elements.

DOLMINO MIX 1124 Math Mix: Even after mid-training on our best high-quality subset,
OLMO 2 still showed weak math abilities. We address this with a specialized math mix
focusing on instruction-based math problems rather than rely on general math pretraining
corpora (e.g. OpenWebMath). Table 6 summarizes the mix. Our strategy is as follows:

• Use existing data TuluMath (Lambert et al., 2024) and GSM8K train (Cobbe et al., 2021),

• Filter synthetic textbooks from open repos4,5 and M-A-P Matrix (Zhang et al., 2024a)
using a fastText classifier we distilled from 10k GPT-4o predicted labels categorizing
OpenWebMath documents as math/non-math; this filtering procedure follows from Math-
Coder2 (Lu et al., 2024).

• Filter existing data Metamath (Yu et al., 2023) and CodeSearchNet (Husain et al., 2019)
using our same classifier,

• Create TinyGSM-MIND, 6.5B tokens of synthetic math data from rewritten versions
of Tiny-GSM (Liu et al., 2023a), a collection of 11M synthetic GSM8K-like questions
and Python code answers. To do this, we (1) filter to QA pairs including answers with
executable code and only include variable assignment statements, (2) annotate each line of
code with an assignment operator with the numerical value of the resulting variable, and
(3) use Qwen2.5-7B-Instruct to rewrite annotated examples in the style of MIND (Akter
et al., 2024) using the ‘Two Students’ and ‘Problem Solving’ prompts.

• Create DOLMINOSYNTHMATH, 28M synthetic math tokens for solving raw math calcu-
lations and simple math problems. It’s comprised of three subsets: (1) 11M generated
tokens of basic math QA pairs (e.g., “77 * 14 = 1078”) and diverse natural language
prompts. (2) 7,924 examples synthetically perturbing numbers in GSM8K training exam-
ples using a custom computational graph parser. (3) MIND-rewriting (Akter et al., 2024)
of each of the GSM8K training examples using Qwen2.5-7B-Instruct (Qwen et al., 2024).

Microannealing: Experimentation with many small data sources, especially while also
iterating on synthetic pipeline parameters (e.g. prompts, filters), requires a reliable experi-
mental procedure for rapid decision-making. We develop a procedure called microannealing

4
datasets/ajibawa-2023/Maths-College

5
datasets/ajibawa-2023/Education-College-Students

9

https://huggingface.co/datasets/ajibawa-2023/Maths-College
https://huggingface.co/datasets/ajibawa-2023/Education-College-Students


Published as a conference paper at COLM 2025

Source Type Tokens Words Bytes Docs
High Quality Subset

DCLM-Baseline High quality web 752B 670B 4.56T 606M

FLAN Instruction data 17.0B 14.4B 98.2B 57.3M

peS2o Academic papers 58.6B 51.1B 413B 38.8M

Wikipedia & Wikibooks Encyclopedic 3.7B 3.16B 16.2B 6.17M

Stack Exchange Q&A 1.26B 1.14B 7.72B 2.48M

Subtotal 832.6B 739.8B 5.09T 710.8M
Math Mix

TuluMath Synthetic math 230M 222M 1.03B 220K

GSM8K Train Math 2.74M 3.00M 25.3M 17.6K

Filtered Synth Books Synthetic Math 3.87B 3.71B 18.4B 2.83M

Filtered Metamath Math 84.2M 76.6M 741M 383K

Filtered CodeSearchNet Code 1.78M 1.41M 29.8M 7.27K

TinyGSM-MIND Synthetic math 6.48B 5.68B 25.52B 17M
DOLMINOSYNTHMATH Synthetic math 28.7M 35.1M 163M 725K
Subtotal 10.7B 9.73B 45.9B 21.37M

Table 6: Composition of OLMO 2 mid-training data (DOLMINO MIX 1124).

that performs mid-training on 100% of a candidate dataset, validating whether the candi-
date data source provides nonzero performance improvement on our math dev set GSM∗.
Similar procedures have been seen in Blakeney et al. (2024) and Grattafiori et al. (2024), but
we differ in two key ways: (1) using only the candidate data instead of more commonly-seen
70/30 or 50/50 mixes with web data and (2) not restricting to a target training length
(e.g. 50B tokens). This maximizes chances for us to see signal in even small yet impactful
datasets.6

Conclusion

We introduce OLMO 2 and OLMO 2-INSTRUCT, a family of fully open 7B, 13B and 32B
parameter language models trained on up to 6T tokens. Both the base and instruct models
are competitive with other open-weight models in their size categories such as Qwen 2.5,
Gemma 2, and Llama 3.1. We detail the substantial contributions required to build competi-
tive language models including architecture improvements for stability and innovations in
late-stage training data. We release all training and evaluation code, datasets, checkpoints,
and logs required to reproduce and expand on the models. OLMO 2 marks continued
progress in open-source language models, building an ecosystem for research, one where
new training methods and techniques can be understood and shared.

Author Contributions

A successful team project like OLMO would not be possible without the fluid contributions
of many teammates across formal team boundaries. As not all of these can be captured,
we indicate each authors’ primary contributing role in OLMO 2. Authors are listed in
alphabetical order:

• For base model development, including training and data curation: Shane Arora, Akshita
Bhagia, Christopher Clark, Allyson Ettinger, Dirk Groeneveld, Yuling Gu, David Heine-

6For example, mid-training from a 7B checkpoint at 4T tokens on original TinyGSM data actually
degraded performance on GSM∗, which motivated us to explore MIND-style rewriting.
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man, Matt Jordan, Jiacheng Liu, Kyle Lo, William Merrill, Tyler Murray, Jake Poznanski,
Dustin Schwenck, Luca Soldaini, Oyvind Tafjord, David Wadden, and Pete Walsh.

• For instruct model development, including training and data curation: Faeze Brahman,
Pradeep Dasigi, Nouha Dziri, Yuling Gu, Shengyi Huang, Hamish Ivison, Nathan Lam-
bert, Saumya Malik, Lester James V. Miranda, Jacob Morrison, Valentina Pyatkin, Oyvind
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Authorship for this work was determined by those making direct contributions to the
OLMO 2 models, related artifacts, and their release. Core contributors are recognized for
their sustained, significant contributions critical to the success of the OLMO 2 project.
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A Evaluation Framework

We evaluate OLMO 2 using OLMES (Gu et al., 2024), a unified, standardized evaluation
suite and toolkit to guide the development and assess performance of language models.

A.1 Base Model Eval

The OLMO 2 base models are evaluated on 20 tasks, consisting of 10 multiple-choice tasks,
5 generative tasks, and 5 additional held-out tasks not utilized during model development.
See Table 7 for the list of tasks along with details of the task formulations following the
principles of the OLMES standard, described further below. For this version of the paper,
due to space constraints, we report results for only 10 of these tasks; for full results see
OLMo et al. (2024).

task split # inst (total) # shots metric reference
Multiple-choice tasks

ARC-Challenge (ARCC) Test 1172 5 pmi (Clark et al., 2018)
ARC-Easy Test 1000 (2376) 5 char (Clark et al., 2018)
BoolQ Val 1000 (3270) 5 none (Clark et al., 2019)
CommonsenseQA Val 1221 5 pmi (Talmor et al., 2019)
HellaSwag (HS) Val 1000 (10042) 5 char (Zellers et al., 2019)
MMLU† Test 14042 5 char (Hendrycks et al., 2021a)
OpenbookQA Test 500 5 pmi (Mihaylov et al., 2018)
PIQA Val 1000 (1838) 5 char (Bisk et al., 2020)
Social IQa Val 1000 (1954) 5 char (Sap et al., 2019)
WinoGrande (WG) Val 1267 5 none (Sakaguchi et al., 2020)

Generative tasks
CoQA Val 7983 0 F1 (Reddy et al., 2019)
DROP Val 1000 (9536) 5 F1 (Dua et al., 2019)
Jeopardy Test 2117 5 F1 (MosaicML, 2024)
Natural Questions (NQ) Val 1000 (3610) 5 F1 (Kwiatkowski et al., 2019)
SQuAD Val 1000 (10570) 5 F1 (Rajpurkar et al., 2016)

Held-out tasks
AGIEval English (AGI) Test 2646 1 MCF (Zhong et al., 2024)
BBH Test 6511 3 (CoT) EM (Suzgun et al., 2022)
GSM8K (GSM) Test 1319 8 (CoT) EM (Cobbe et al., 2021)
MMLU-Pro (MMLUP) Test 12032 5 MCF (Wang et al., 2024)
TriviaQA (TQA) Val 7993 5 F1 (Joshi et al., 2017)

Table 7: Details of OLMES benchmarks used to evalute OLMO 2, with standardized choices
of dataset split, number of instances to use, along with total number if sampling was
used. For multiple-choice tasks, when using the Cloze/Completion Formulation (CF),
the “metric” column specifies which normalization scheme to use. Following the OLMES
standard, we evaluate each model using both the MCF (Multiple-Choice Formulation) and
CF formulations, and the best performing one is used. For efficiency reasons, we limit
MMLU and held-out multiple-choice evaluations to MCF only as all the relevant models
strongly prefer that format for these tasks.

Multiple-choice tasks We use the formulation of the 10 multiple-choice tasks defined in the
OLMES evaluation standard (Gu et al., 2024). OLMES (Open Language Model Evaluation
Standard) is a set of principles and associated standard (with a reference implementation
in the OLMES system framework) for reproducible LM evaluations that is open, practical,
and documented, providing recommendations guided by experiments and results from the
literature (Biderman et al., 2024; Gao et al., 2023). For multiple-choice tasks it is designed
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to support comparisons between smaller base models that require the cloze/completion
formulation of multiple-choice questions (score each answer completion separately) against
larger models that can utilize the multiple-choice formulation. To make our evaluations
reproducible, we follow the OLMES standard in prompt formatting, choice of in-context
examples, probability normalization, and all other details. We report the exact evaluation
splits and numbers of instances in Table 7.

Generative tasks Following the principles of OLMES (Gu et al., 2024), such as prompt
formatting and having 5-shot curated in-context examples, we also evaluated on a suite
of generative tasks, OLMES-Gen. This suite covers factual knowledge tasks (Natural
Questions (Kwiatkowski et al., 2019) and Jeopardy (MosaicML, 2024)) and tasks testing
reading comprehension (SQuAD (Rajpurkar et al., 2016), DROP (Dua et al., 2019), and CoQA
(Reddy et al., 2019)). For CoQA, the task comprises presenting a passage followed by a
conversation so far, where each turn in the conversation contains a question and an answer.
In this case, the previous question and answer pairs serve to guide the model in terms of
the output format, and we do not include additional few-shot examples. For all other tasks,
we follow OLMES in using 5-shot curated in-context examples. As the list of gold answers
for these tasks are often incomplete, we use F1 as the primary metric to give partial credit
when models produce answers that partially match. The task details of OLMES-Gen are
summarized in Table 7.

Held-out tasks We also evaluate on a held-out suite of tasks that were not used when
making decisions during model development. This suite includes advanced admission and
qualification exams (AGIEval English7 (Zhong et al., 2024)), tasks believed to be challenging
to LMs (BigBenchHard, BBH; Suzgun et al., 2022), math reasoning (GSM8K; Cobbe et al.,
2021), a more challenging and reasoning-focused extension of MMLU (MMLU Pro; Wang
et al., 2024), and an unseen factual knowledge task (TriviaQA; Joshi et al., 2017). We use
existing in-context examples where available - for GSM8K, we use the 8-shot CoT examples
from Wei et al. (2022); for BBH we use the 3-shot CoT prompts from the original dataset;
in evaluating MMLU-Pro, we used 5-shot examples from the original dataset. We use a
1-shot (with passage context, no CoT) prompt for AGIEval English, and a manually curated
5-shot examples from the train set for TriviaQA. Note that for the case of GSM8K, we never
evaluated our models on the entire test set during the development stage, instead we use
200 examples to inform choices during development (e.g., choices of annealing mixtures); in
Section 5 we refer to this 200-example subset as GSM*.

A.2 Instruct Model Eval

Instruct tasks We perform instruct model evaluation based on existing practices in current
literature using the OLMES benchmark suite (Gu et al., 2024) using the configuration
reported in Lambert et al. (2024).

See Table 8 for a list of instruct tasks along with their configurations. These tasks include
chat variations of our held-out tasks (GSM8k; Cobbe et al., 2021, BBH; Suzgun et al., 2022),
additional long-tail knowledge (PopQA; Mallen et al., 2022), misconception (TruthfulQA;
Lin et al., 2021) and instruction-following tasks (IFEval; Zhou et al., 2023, AlpacaEval 2;
Dubois et al., 2024). For our MMLU instruct evaluation, we use the CoT version from
Lambert et al. (2024) using their prompt asking the model to “summarize” its reasoning
before answering the question. We evaluate Python code completion (HumanEval; Chen
et al., 2021, HumanEval+; Liu et al., 2023b) and competition MATH (Hendrycks et al., 2021b)
with the same setup and answer extraction in OLMES.

7Specifically these 8 tasks: aqua-rat, logiqa-en, lsat-ar, lsat-lr, lsat-rc, sat-en, sat-math, gaokao-
english
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Category Task CoT # shots Chat Multiturn
ICL Metric

Instruct tasks
Knowledge
Recall MMLU ✓ 0 ✓ ✗ EM

PopQA ✗ 15 ✓ ✓ EM

TruthfulQA ✗ 6 ✓ ✗ MC2

Reasoning BigBenchHard ✓ 3 ✓ ✓ EM

DROP ✗ 3 ✗ N/A F1

Math GSM8K ✓ 8 ✓ ✓ EM

MATH ✓ 4 ✓ ✓ Flex EM

Coding HumanEval ✗ 0 ✓ N/A Pass@10

HumanEval+ ✗ 0 ✓ N/A Pass@10

Instruction
Following IFEval ✗ 0 ✓ N/A

Pass@1
(prompt;

loose)

AlpacaEval 2 ✗ 0 ✓ N/A LC
Winrate

Safety Tülu 3 Safety ✗ 0 ✓ N/A Average∗

Table 8: Details of OLMES benchmarks used for to evaluate OLMO 2-INSTRUCT. CoT are
evaluations run with chain of thought prompting (Wei et al., 2022). #Shots is the number
of in-context examples in the evaluation template. Chat refers to whether we use a chat
template while prompting the model. Multiturn ICL refers to a setting where we present
each in-context example as a separate turn in a conversation (applicable only when a chat
template is used and # Shots is not 0). ∗Average over multiple sub-evaluations

B OLMO 2 1B

While the goal of this work is to develop development recipes for our target 7B, 13B and 32B
sizes, often it is useful to perform experimentation at the 1B model size. We define OLMO 2
1B similar to OLMO 2 7B, but with the following departures:

• Layers: 16 instead of 32
• Hidden Size (dmodel : 2048 instead of 4096
• Attention Heads (Q/KV): 16/16 (MHA) instead of 32/32 (MHA)
• Batch Size: 512 instead of 1024
• Peak LR: 4.0 ⋅ 10E−4 instead of 3.0 ⋅ 10E−4

C OLMO 2 Tokenizer

Tokenizer OLMES (CF) OLMES Gen MMLU (CF)
OLMO 1 tokenizer 59.8 42.4 34.8
OLMO 2 tokenizer 60.6 42.7 35.2

Table 9: Comparison of OLMO 1 and OLMO 2 tokenizers on a 1B model pretrained for
100B tokens from DCLM baseline. Following Gu et al. (2024), OLMES and MMLU use CF
format, which is more informative for small models.

Comparing OLMO 1 and OLMO 2 tokenizers at a smaller scale in Table 9, we notice
measurable gains even in downstream tasks, even not accounting for the disadvantage
imposed on the larger tokenizer given this smaller model experiment (Tao et al. (2024)).
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This result gave us confidence to proceed with the switch to the new tokenizer as we expect
improvement coming from larger vocabulary to be more decisive at larger scales and for
models trained on more tokens.

D OLMO 2 Stage 1 Data: Pretraining

Source Type Tokens Words Bytes Docs
Pretraining

DCLM-Baseline Web pages 3.71T 3.32T 21.32T 2.95B

StarCoder Code 83.0B 70.0B 459B 78.7M

peS2o Academic papers 58.6B 51.1B 413B 38.8M

arXiv STEM papers 20.8B 19.3B 77.2B 3.95M
OpenWebMath Math web pages 12.2B 11.1B 47.2B 2.89M
Algebraic Stack Math proofs code 11.8B 10.8B 44.0B 2.83M

Wikipedia & Wikibooks Encyclopedic 3.7B 3.16B 16.2B 6.17M

Total 3.90T 3.48T 22.38T 3.08B

Table 10: Composition of the pretraining data for OLMO 2. The OLMO 2 MIX 1124 is
composed of StarCoder (Li et al., 2023; Kocetkov et al., 2022), peS2o (Soldaini & Lo, 2023),
web text from DCLM (Li et al., 2024) and Wiki come from Dolma 1.7 (Soldaini et al., 2024).
arXiv comes from Red-Pajama (Together AI, 2023), while OpenWebMath (Paster et al., 2023)
and Algebraic Stack come from ProofPile II (Azerbayev et al., 2023).

We adopt the pretraining data mix in OLMOE (Muennighoff et al., 2024). This section
describes the content of this data in further detail. See Table 10 for exact counts.

• From DCLM, we use the “baseline 1.0” mix.8

• From Dolma 1.7 (Soldaini et al., 2024), we use the arXiv (Together AI, 2023), OpenWeb-
Math (Paster et al., 2023), Algebraic Stack, peS2o (Soldaini & Lo, 2023), and Wikipedia
subsets. arXiv, OpenWebMath, and Algebraic Stack were originally part of ProofPile
II (Azerbayev et al., 2023).

• From StarCoder (Li et al., 2023), we use permissively-licensed repositories from
GitHub (Kocetkov et al., 2022) with any document from a repository with fewer than 2
stars on GitHub removed.

Through manual inspection of the StarCoder mix from OLMOE, we discovered numerous
documents encoded in binary format or containing mostly numerical content. Thus, we
perform an additional round of heuristic filtering to remove this low quality items, discard-
ing documents whose most frequent word constitutes over 30% of the document, or whose
top-2 most frequent words constitute over 50% of the document.

E OLMO 2 Model Architecture

In OLMO (Groeneveld et al., 2024), we modified the decoder-only transformer architec-
ture (Vaswani et al., 2017) with:

• No biases: We exclude all bias terms following (Groeneveld et al., 2024; Chowdhery et al.,
2022, inter alia).

• SwiGLU activation function: We use the SwiGLU activation function (Shazeer, 2020)
and set the corresponding hidden size to approximately 8

3 d, but increased to the closest
multiple of 128 (11, 008 for our 7B model) to improve throughput.

8Available at mlfoundations/dclm-baseline-1.0
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• Rotary positional embeddings (RoPE): We replace absolute positional embeddings with
rotary positional embeddings (RoPE; Su et al., 2021).

In OLMO-0424 (Ai2, 2024), we made further modifications for training stability and down-
stream performance:

• QKV Clipping: For training stability, also as seen in DBRX (Databricks, 2024).
• Increased context: From 2048 to 4096.

For OLMO 2, we start from a similar architecture but then depart from these prior architec-
tures with modifications:

• RMSNorm: We use the RMSNorm (Zhang & Sennrich, 2019) variant of LayerNorm
(Ba et al., 2016) without a bias term to normalize activations, instead of nonparametric
LayerNorm.

• Reordered norm: We normalize the outputs to the attention and feedforward (MLP)
layers within each transformer block, instead of the inputs. So the formula for each block
becomes:

hhh ∶= xxx + RMSNorm(Attention(xxx)) (1)
hhhout ∶= hhh + RMSNorm(MLP(xxx)) (2)

where xxx is the input to the layer, hhh is an intermediate hidden state, and hhhout is the output.
This strategy was first proposed by Liu et al. (2021) to stabilize training.

• QK-norm: Following Dehghani et al. (2023) we normalize the key and query projections
with RMSNorm before calculating attention. This avoids attention logits being too large,
which can lead to training loss divergence.

• Z-Loss: Following Chowdhery et al. (2022), Chameleon Team (2024), and Wortsman et al.
(2023), we adopt z-loss regularization, as it has been empirically shown to improve run
stability.

• RoPE value: We increase the RoPE θ to 500,000 from 10,000. This approach increases the
resolution of positional encoding, matching Grattafiori et al. (2024).

OLMO 1 (0224) OLMO-0424 OLMO 2
Biases None None None
Activation SwiGLU SwiGLU SwiGLU
RoPE θ 1 ⋅ 10E4 1 ⋅ 10E4 5 ⋅ 10E5
QKV Normalization None Clip to 8 QK-Norm
Layer Norm non-parametric non-parametric RMSNorm
Layer Norm Applied to Inputs Inputs Outputs
Z-Loss Weight 0 0 10E−5
Weight Decay on Embeddings Yes Yes No

Table 11: Summary of how OLMO 2’s model architecture differs from OLMO.

F Pretraining Stability

F.1 Repeated n-Grams

Figure 4 shows the effect of masking the loss of input sequences containing repeated n-
grams on the gradient norm, demonstrating that broad removal of such sequences across
training decreases the frequency of spikes, on average.

While we have found these sequences are often associated with spikes, we note that this
relationship is not deterministic:
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Figure 4: Comparison of the gradient norm for two runs, one without n-gram filter, and one
with. Ignoring long repetitive sequences of n-grams eliminates many spikes.

• The same n-gram sequence may spike for a larger model but not for a smaller model
trained on the same data.

• The same n-gram sequence may spike for one data training ordering, but not after the
data is reshuffled.

• The same n-gram sequence associated with a spike can also be found elsewhere in training
batches that did not spike.
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Figure 5: The older initialization shows instabilities quickly, while OLMO 2 stays stable.

F.2 Model Initialization

Figure 5 shows improved training stability from OLMO 2’s initialization scheme. In OLMO
2, we initialize every parameter from a normal distribution with a mean of 0 and a standard
deviation of 0.02.

We perform several analyses to study the impact of initialization, showing that OLMO 2’s
initialization is superior to scaled initialization. Our empirical analysis suggests it better
preserves the scale of activations and gradients across layers, allowing deep models to be
trained more stably, and it exhibits properties associated with hyperparameter transfer
across models of different widths. These two properties together give us confidence that
deep models will train stably and that the initialization hyperparameters of our smaller
models could transfer to larger scales.
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Figure 6: Across widths, growth exponents for the OLMO 2 initialization are closer to 0
compared to the OLMO-0424 initialization, which suggests deeper models will train more
stably.

Gradient and activation growth A fundamental concern for training deep networks is
ensuring that the activations and gradients do not blow up or vanish across layers, caus-
ing learning to become unstable or stagnate. Rather, we want the scale of the activations
and gradients to remain roughly the same from layer to layer. Inspired by recent related
work (Cowsik et al., 2024), we evaluate different candidate initializations in terms of how
they affect the 2-norm of the activations and gradients across layers. Concretely, we ran-
domly initialize a model, pass 50 random documents from The Pile (Gao et al., 2021) through
it, and collect the activations and gradients (of loss with respect to the activations) at the
initial and final layers (ignoring embeddings). We then average these tensors across doc-
uments and time steps to get vectors vvv at the initial layer and v′v′v′ at the final layer, both of
length dmodel. Finally, we compute the following measure of expansion or contraction across
layers, which we call the growth exponent:

λ =
1

nlayers
log

⎛
⎜
⎝

ÂÂÂÂÂv′v′v′ÂÂÂÂÂ
∥vvv∥

⎞
⎟
⎠

We compute λ for both the activations and gradients. Ideally, both λ’s remain near 0,
indicating that the activations and gradients do not explode or vanish across layers. Figure 6
plots the growth exponents for different randomly initialized models as a function of their
widths (4096 corresponds to a full 7B model). Crucially, the growth exponent for OLMO
2 is closer to 0 than for OLMO-0424 across model widths. This suggests the OLMO 2
initialization will be more stable when training deep models in low precision, as both the
activations and the gradients are more resistant to exploding or vanishing across layers
compared to the OLMO-0424 initialization.

Hyperparameter transfer across width Another appealing property of the new initialization
is that it scales the activation and gradient norms with width (dmodel) in a way that has been
argued theoretically to be important for hyperparameter transfer across different widths.
Specifically, Yang et al. (2024b) suggest that a sufficient condition for hyperparameter
transfer across width is that the magnitude of each activation scalar value and its update
(learning rate times gradient) remain fixed as width increases. Equivalently, the norms of
the activations and their update vectors should positively correlate with

√
dmodel. We plot

the activation and gradient norms at initialization against
√

dmodel in Figure 7. Crucially,
the gradient norm is more positively correlated with

√
dmodel for OLMO 2 compared to

OLMO-0424. Combined with Yang et al. (2024b), this suggests that, with an initial learning
rate independent of model width, the new OLMO 2 initialization will transfer better across
different model widths compared to the OLMO-0424 initialization.

Spike score Since fast spikes are difficult to understand with contemporary graphing tools,
we compute a spike score as an objective measure. Concretely, We define the spike score as
the percentage of values in a time series that are at least seven standard deviations away
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Figure 7: Activation and gradient norms vs.
√

dmodel for the OLMO-0424 and OLMO 2
initializations. Crucially, the gradient norms for OLMO 2 positively correlate with

√
dmodel,

which they did not for the OLMO-0424 initialization. This suggests the OLMO 2 initializa-
tion will show better hyperparameter transfer across widths (Yang et al., 2024b).

from a rolling average of the last 1, 000 values9. We use spike score primarily on training
loss and L2 norm of the gradient, but the measure can be computed on any time series.

Empirical results To experiment with model initialization, we first create a baseline rune
that reproduces spikes quickly. We do so by mainly reducing the warmup period. The effect
was immediate and dramatic (Figure 5), and persists across model scales and token counts.
In our ablation, the new initialization had no loss spikes, and the spike score for the L2 norm
of the gradient went from 0.40 to 0.03. The new initialization converges slightly slower; we
make up for this difference by improving other hyperparameter settings (Section §F.4).

F.3 Architecture Improvements

F.3.1 Reordered norm and QK-norm

Figure 8 shows the effect of applying the layer normalization to the outputs of the MLP
and attention blocks instead of the inputs. We further apply another normalization, also
RMSNorm, to the queries and keys in the attention block. In isolation, neither of these
changes yield good results, but together they improve both the growth and the spikiness of
the L2 norm of the gradient. The following table summarizes the difference in the location
of the layer normalization:

OLMO-0424 OLMO 2
hhh ∶= xxx + Attention(LN(xxx)) hhh ∶= xxx + RMSNorm(Attention(xxx))
hhhout ∶= hhh + MLP(LN(hhh)) hhhout ∶= hhh + RMSNorm(MLP(hhh))

xxx is the input to the layer, hhh is an intermediate hidden state, and hhhout is the output.

Liu et al. (2021) first introduced layer norm the idea of reordering layer norm. It was subse-
quently picked up by Chameleon Team (2024). QK-norm was first developed in Dehghani
et al. (2023).

F.3.2 Z-Loss

Following Chowdhery et al. (2022), Chameleon Team (2024), and Wortsman et al. (2023),
we apply z-loss regularization by adding 10E−4 ⋅ log2 Z to our loss function, where Z is the

9Spike score is conceptually similar to spike mitigation proposed by Karpathy (2024).
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Figure 8: Applying layer norm after the attention and feedforward layers along with a
QK-norm improves stability compared to a more standard pre-attention layer norm. These
changes reduce the spike score of the gradients from 0.108 to 0.069 when applied together.

denominator in the softmax over the logits. This discourages the activations in the final
softmax from growing too large, improving the stability of the model.

Figure 9 shows a stark difference between the z-loss implementation of the popular Flash
Attention library (Dao, 2024), and an implementation using only Python primitives. Apart
from the attention mechanism it is known for, Flash Attention also provides an optimized
implementation of cross-entropy loss, which includes a version of z-loss. To retain flexibility
in settings that are not compatible with Flash Attention, we have a separate implementation
written in PyTorch. Both implementations produce the same result in the forward pass, but
exhibit different behavior in the backward pass. We suspect the root cause lies in differences
in precision. In our experiments, this does not affect cross entropy loss during training, or
the model’s performance on downstream tasks. However, out of an abundance of caution
we abandon the fork with custom z-loss implementation and re-train from the original point
of divergence. During a training run we cannot switch implementations safely, so we avoid
doing so as much as possible.
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Figure 9: Flash Attention’s implementation of z-loss does not match a manual implemen-
tation in PyTorch. While the forward pass produces the same number, differences in the
backwards pass cause the curves to diverge.

F.4 Hyperparameter Improvements

F.4.1 ϵ in AdamW

Figure 10 shows the result of decreasing the AdamW ϵ from 10E−5 to 10E−8. 10E−8 is the
default in PyTorch, but some popular LM training code bases come with a default of 10E−5.
The lower value allows for larger updates early in training, and helps the model learn faster
during a period where we’ve typically seen a lot of instability. As a result, the gradient
norm settles much more quickly and remains permanently lower.

32



Published as a conference paper at COLM 2025

0 2000 4000 6000 8000

101

3 × 100

4 × 100

6 × 100
lo

ss

AdamW  = 1 10 8

AdamW  = 1 10 5

0 2000 4000 6000 8000

10 1

100

L2
 n

or
m

 o
f t

he
 g

ra
di

en
t

Figure 10: Setting AdamW’s ϵ to 10E−8 lowers and stabilizes the norm of the gradient early
in training. The training loss also improves faster. This trend continues even with runs that
are longer than what is shown here.

F.4.2 Weight decay on embeddings

Figure 11 shows the change in training dynamics following a decision to exclude weight
decay for embeddings. OLMO uses a standard formulation of weight decay, where every
parameter is multiplied by 1 − (0.1 ⋅ lr) at every step. This regularization term discourages
parameters from growing too large, but in the case of token embeddings it overshoots
the mark and results in very small embeddings. As discussed by Takase et al. (2024),
small embeddings can produce large gradients in early layers because the Jacobian of
layer_norm(x) w.r.t. x is inversely proportional to ∥x∥, and, in early layers, the norm of the
residual stream is essentially the norm of the embeddings. We experiment with the full
range of remedies discussed in Takase et al. (2024), but found that they impacted the speed
of convergence. Instead, we simply turn off weight decay for embeddings and observe that
embedding norms settle in a healthy region as training progresses.
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Figure 11: Weight decay applied to token embeddings leads to a gradual decrease in the
embedding norm and a corresponding increase in the gradient norm. Decaying embeddings
also has a modest negative impact on stability, producing more spikes than a comparable
run without (spike scores of 0.16 and 0.092 respectively).

F.5 Studying the impact of learning rate

Our starting point for learning rate experiments was the setting from Grattafiori et al. (2024).
To initialize the optimizer state for the 7B variant, we linearly warm up the learning rate
to its peak of 3 ⋅ 10E−4 over the first 2000 steps. Then, we use a standard cosine decay
over 5T tokens. In OLMO-0424 (Ai2, 2024), we suggested that the last part of a cosine
decay schedule can be cut off and replaced by a linear decay to zero with little loss of
performance. Accordingly, for the 7B variant, we stop the schedule at 4T tokens and then
switch to mid-training as described in Section §5. The 13B ran with a higher peak learning
rate from the start, so we decided to run it to 5T tokens before moving to the mid-training
stage.
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Figure 12 shows different runs with four additional learning rate values: 6 ⋅ 10E−4, 9 ⋅ 10E−4,
12 ⋅ 10E−4, and 30 ⋅ 10E−4. In particular, we tried double, triple, quadruple, 10×, and 30×
the original learning rate. The last, 30 ⋅ 10E−4, showed training instabilities already during
learning rate warm-up, with several loss spikes that did not recover fully, so we abandoned
this variant quickly. The other values trained normally and showed an interesting pattern.
Looking purely at training loss, higher learning rates universally perform better early on (as
long as they avoid loss spikes), but eventually the lower learning rate setting overtakes the
others (Figure 12). Notably, when comparing 3 ⋅ 10E−4 and 6 ⋅ 10E−4, the cross-over point
is well past 200B tokens. A shorter hyperparameter experiment might come to the wrong
conclusion.
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Figure 12: Higher learning rates perform better at first but are eventually overtaken by
lower rates. However, linearly decaying the learning rate to zero over 50B or 100B tokens
results in equivalent training loss.

One of the motivations for this line of experimentation was to find out whether a higher
learning rate would make the annealing step more effective. The conjecture is that the
worse training loss during pretraining is compensated for when the learning rate decays to
zero. To test this hypothesis, we took a checkpoint from each of our four variants after 300B
tokens, and decayed the learning rate to zero over 50B tokens. To account for the possibility
that the effect of higher learning rates needs more steps to unfold, we tried the three higher
settings and decayed the learning rate over 100B tokens, for a total of seven experiments.
The results show that a higher learning rate does make mid-training more effective, but
it does so by exactly the amount that the pretraining is worse. All four variants show the
same training loss at the end of the procedure, though the lowest setting lags behind the
others by a small amount.

Table 12 shows that the result is consistent for longer training runs as well. We took two
variants, 3 ⋅ 10E−4 and 6 ⋅ 10E−4, and repeated the experiment after training for 1T and
for 2T tokens. We chose these variants because 3 ⋅ 10E−4 is the baseline from Grattafiori
et al. (2024), and 6 ⋅ 10E−4 showed, by a slim margin, the best training loss. Our results
show virtually no difference between the two settings, both on training loss and a mix of
nine downstream tasks from the OLMES suite shown in Table 12. Evaluating the models on
downstream tasks is noisier, but mirrors the findings based on training loss only.

Finally, we wanted to see if a higher learning rate during the pretraining stage would result
in a more effective mid-training stage when switching to higher quality data. To match
our training setup as much as possible within the available compute budget, we took the
same two settings (3 ⋅ 10E−4 and 6 ⋅ 10E−4), and linearly decayed the learning rate to 0 over
100B high quality tokens. Once again, the results show little difference. The final scores on
the OLMES evaluation suite are within 0.1 points of each other. However, looking at other
metrics may still reveal a meaningful difference between the two settings. The mix of high
quality tokens targets math specifically, and on GSM8K (which is not part of the OLMES
suite), the high learning rate setting is 2.8 points better than the lower learning rate. More
study is needed to turn this interesting data point into a dependable result.

This finding contradicts machine learning folk wisdoms such as “higher learning rates
are always better” or “area under the learning curve matters” (McCandlish et al., 2018).
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Learning Rate Pretraining Stage Mid-training Stage OLMES (CF, valid)
3 ⋅ 10E−4 300B tokens 50B tokens 62.5
6 ⋅ 10E−4 300B tokens 50B tokens 63.9
9 ⋅ 10E−4 300B tokens 50B tokens 64.1
12 ⋅ 10E−4 300B tokens 50B tokens 63.6
6 ⋅ 10E−4 300B tokens 100B tokens 64.6
9 ⋅ 10E−4 300B tokens 100B tokens 64.5
12 ⋅ 10E−4 300B tokens 100B tokens 64.2
3 ⋅ 10E−4 2T tokens 100B high quality tokens 73.8
6 ⋅ 10E−4 2T tokens 100B high quality tokens 73.9

Table 12: Results on 9 multiple-choice tasks from the validation subset of OLMES (cloze
formulation format) for various peak learning rates and schedule lengths. Average scores
vary by less than two points across all variants, with most scores within half a point of each
other.

It expands on Wortsman et al. (2023), who observed that smaller models’ performance is
largely invariant to learning rate over several orders of magnitude when trained to the end
of a cosine schedule, and further found that QK-norm (§F.3.1) and z-loss (§F.3.2), which we
use as well, enhance this effect. We find that these results still hold even at much larger
scales of tokens and parameters, and, crucially for our training efforts, with our modified
learning rate schedule.

Due to cost concerns we did not explore the full range of learning rates. This is the main
limitation of this line of experimentation. It would be interesting to run a wider sweep of
learning rates to accurately define the boundaries of the plateau we appear to be training in.

G DOLMINO MIX 1124

G.1 DOLMINO MIX 1124 High Quality Sources

We start by curating a higher quality subset of Stage 1 data, and expand it with more
academic and encyclopedic material. In particular, we consider the following sources:

High Quality Web: To filter the web subset used in pretraining, we experiment with two
existing quality classifiers:

• FastText classifier from Li et al. (2024). To train this model10, Li et al. sampled positive
documents from the Reddit subset in ELI5 (Fan et al., 2019), and demonstrations from
Open Hermes 2.511. Negatives are sampled at random from the DCLM pipeline.

• FineWeb Edu classifier from Penedo et al. (2024). This model12 is fine-tuned from the
Arctic Embed M13 encoder (Merrick et al., 2024) on over 400,000 web pages14 labeled by
Llama 3 70B Instruct. This classifier scores documents from 0 to 5 according to adherence
to academic topics and polished content.

Following Li et al. (2024), we use the DCLM FastText classifier with a threshold of 0.03311014,
which retains approximately 65.6% of the web subset. We combine this filter with the the

10
mlfoundations/fasttext-oh-eli5

11
datasets/teknium/OpenHermes-2.5

12
HuggingFaceFW/fineweb-edu-classifier

13
Snowflake/snowflake-arctic-embed-m

14
datasets/HuggingFaceFW/fineweb-edu-llama3-annotations
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Source
Mix %

PT Mix Web FT7 Web FT7
FW3

Web FT7
FW2

Web FT7
FW2+ Math

Web FT7
FW2+ Ins

Web FT7
FW2+ Math

+ Ins
DCLM 95.2 57.1 54.2 57.9 61.8 75.5 57.5
Flan - - - - - 8.8 6.7

IN
ST

Stack Exchange - - - - - 0.7 0.5
Starcoder 2.1 19.5 20.9 19.2 - - -

C
O

D
E

CodeSearchNet - - - - 0.1 0.2 0.1
Gutenberg Books - 1.2 1.3 1.2 - - -
peS2o 1.5 6.6 7.1 6.5 10.7 13.0 9.9
Wikipedia 0.1 0.9 0.9 0.9 1.6 1.9 1.4
StackExchange - 4.0 4.3 4.0 - - -R

EF
ER

EN
C

E

ArXiv 0.5 4.9 5.2 4.8 - - -
Algebraic Stack 0.3 2.8 3.0 2.7 - - -
OpenWebMath 0.3 2.9 3.1 2.8 5.2 - 4.8
GSM8k - - 0.003 0.003 0.003 - 0.003
Mathpile - - - - 2.1 - 1.9

M
A

T
H

AutoMathText - - - - 18.5 - 17.2

Table 13: A summary of high-quality sources we evaluate for mid-training. We experiment
with mixing these sources in 6 mixes, each consisting of 50 billion tokens. Percentages on
the table indicate the fraction of each 50B mix that is comprised by data from the respective
source. PT Mix is sampled (with repetition) from the pretraining stage.

scores from FineWeb Edu classifier; we experiment by retaining documents with score over
3 (5.8% retained), as well as a more relaxed threshold of 2 (20.3% retained).

Instruction data and Q&A pairs We leverage the same subset of FLAN Wei et al. (2021);
Longpre et al. (2023) from DOLMA 1.7 (Soldaini et al., 2024). We decontaminated this source
by extracting training, validation, and test instances from all tasks in our evaluation suite
(Section §3) and removed FLAN documents with 10% or more overlapping ngrams with
any task instance.

We source question and answer pairs from the Stack Exchange network, a collection of 186
forums dedicated to a wide variety of topics. Content on Stack Exchange network is licensed
under various commercial-friendly Creative Common licenses. We use the latest database
dump (September 30th, 2024) at the time of writing, which is distributed by the Internet
Archive15. We filter questions to those that have an accepted answer; further, we Q&A pairs
whose questions have fewer than 3 votes or answers have fewer than 5 votes. Once filtered,
we concatenate questions and answers together using a sequence of new lines that contains
one more \n than longest sequence of newlines in either the question or answer.

Code We evaluate retaining the same subset of code used during pretraining; furthermore,
we consider smaller, curated sources of code interleaved with natural supervision, such as
docstrings in CodeSearchNet (Husain et al., 2019); Q&A pairs from StackExchange described
in the paragraph above also contain code.

Academic, encyclopedic and other reference content We source high-quality non-web
datasets from Dolma 1.7 (Soldaini et al., 2024). This includes peS2o (Soldaini & Lo, 2023),
Wikipedia, and Wikibooks, Gutenberg books, arXiv and StackExchange (from Red-Pajama
v1; Together AI, 2023), Algebraic Stack (ProofPile II; Azerbayev et al., 2023).

Math In parallel to developing the math subset of DOLMINO MIX 1124, we consider
preliminary math subset to gauge how math documents combine with the non-math portion
of the mix. In particular, we used OpenWebMath (Paster et al., 2023), the train split of

15
archive.org/details/stackexchange_20240930
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GSM8K (Cobbe et al., 2021), the train split of the permissively licensed (“commercial”)
subset of MathPile (Wang et al., 2023), and AutoMathText (Zhang et al., 2024b).

H DOLMINO MIX 1124 Subsamples

To perform model souping, we subsample DOLMINO MIX 1124 to create 50B, 100B, and 300B
subsets. We perform mid-training on each to realize the model soup ingredient checkpoints.
We summarize these subsamples in Table 14.

Source Tokens 50B 100B 300B
Source % Mix % Source % Mix % Source % Mix %

Filtered DCLM 752B 3.23 47.2 6.85 50.2 20.78 51.9
Decontam. FLAN 17.0B 50.0 16.6 100 16.7 200 11.3
StackExchange Q&A 1.26B 100 2.45 200 2.47 400 1.68
peS2o 58.6B 5.15 5.85 16.7 9.52 100 19.4
Wikipedia/Wikibooks 3.7B 100 7.11 100 3.57 400 4.86
DOLMINO MIX 1124 Math Mix 10.7B 100 20.8 200 17.5 400 10.8

Table 14: DOLMINO MIX 1124 compositions. The Source % column indicates the fraction of
the source that was used in the DOLMINO MIX 1124 mix. Numbers in this column greater
than 100 indicate we used the data, e.g. 400 indicates a 4x repeat. The Mix % column
describes the proportion of the DOLMINO MIX 1124 mix that is composed of this source,
i.e., this column should sum to 100%.

I Difficulties with OLMO 2 1B

We developed our OLMO 2 recipe developed using the OLMO 2 1B model (Appendix B)
and have found findings to generalize well to the 7B, 13B and 32B scales, as seen by our
competitive results in Table 3. Yet, we have found scaling the number of training tokens for
OLMO 2 1B to be difficult.

Training We pretrain OLMO 2 1B to 4 trillion tokens on OLMO 2 MIX 1124 and perform a
single 50B token anneal on DOLMINO MIX 1124. Similar to OLMO 2 7B, we use 2000 steps
of warmup, set the schedule to 5 trillion tokens but truncate at the 4 trillion mark. We use a
higher peak learning rate of 4.0 ⋅ 10E−4.

Base Results Table 15 presents experimental results on our main base model evaluation
suite. We find that while OLMO 2 remains competitive with other similarly-sized models
like SmolLM 2, it lags behind the smaller Gemma 2 and Qwen 2.5 base models.

Dev Benchmarks Held-out Evals

Model Avg FLOPs MMLU ARCC HS WG NQ DROP AGI GSM MMLUP TQA

Open-weights models 1-2B Parameters

Qwen 2.5 1.5B 51.5 1.7 61.4 77.3 67.0 65.4 17.7 36.4 47.9 63.2 29.9 49.1

Gemma 2 2B 47.9 0.2 53.1 67.4 74.4 70.8 24.1 36.9 38.4 26.8 22.2 65.2

Fully-open models

SmolLM 2 1.7B 44.7 1.1 50.9 62.0 73.3 66.9 19.1 26.5 35.3 30.3 22.0 60.6

OLMO 2 1B 43.7 0.4 44.3 51.3 69.5 66.5 20.8 34.0 36.3 43.8 16.1 54.7

Table 15: OLMO 2 1B vs. comparable models (size, architecture) with known pretraining
FLOPs (relative to 10E23).

Analysis We postulate that our OLMO 2 1B may struggle with pretraining token efficiency
due to model capacity. OLMO 2 is smaller than the smallest variants of other competitive
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Model Avg AE2 BBH DROP GSM IFE MATH MMLU Safety PQA TQA
Open weights models 1–2B Parameters

Gemma 3 1B 38.3 20.4 39.4 25.1 35.0 60.6 40.3 38.9 70.2 9.6 43.8
Llama 3.2 1B 39.3 10.1 40.2 32.2 45.4 54.0 21.6 46.7 87.2 13.8 41.5
Qwen 2.5 1.5B 41.7 7.4 45.8 13.4 66.2 44.2 40.6 59.7 77.6 15.5 46.5

Fully-open models
SmolLM2 1.7B 34.2 5.8 39.8 30.9 45.3 51.6 20.3 34.3 52.4 16.4 45.3
OLMO 2 1B 42.7 9.1 35.0 34.6 68.3 70.1 20.7 40.0 87.6 12.9 48.7

Table 16: OLMO 2-INSTRUCT 1B’s performance vs open-weights models of comparable size.

model families like Qwen 2.5 or Gemma 2. We hypothesize that below a certain model
size, the optimal pretraining recipe may require the inclusion of task-specific data, such as
that seen in supervised fine-tuning (SFT) to achieve non-random performance over more
challenging tasks in our evaluation suite. Better performance could also be achieved by
distilling from a more powerful model, a strategy used by the smaller Gemma 2 models.

For example, Table 17 shows the benefit of DOLMINO MIX 1124 is higher with smaller
base models: +37.0% for the 1B model, +18.7% for the 7B model, +15.9% for the 13B model,
and +12.3% for the 32B model. These results also show that OLMO 2 1B with only Stage 1
pretraining struggles to break out of random performance for multiple-choice formatted
tasks (25% for MMLU and ARC Challenge, 10% for MMLU Pro).

As further evidence of this, Table 16 shows that applying our same OLMO 2-INSTRUCT
post-training recipe to OLMO 2 1B results in OLMO 2-INSTRUCT 1B with highly competitive
performance to even Qwen 2.5 and even Gemma 3.

Dev Benchmarks Held-out Evals

Model Stage Avg MMLU ARCC HS WG NQ DROP AGI GSM MMLUP TQA

1B 1 31.9 26.9 26.1 67.5 67.8 16.1 25.1 24.5 3.3 11.1 50.1

2 43.7 44.3 51.3 69.5 66.5 20.8 34.0 36.3 43.8 16.1 54.7

7B 1 53.0 59.8 72.6 81.3 75.8 29.0 40.7 44.6 24.1 27.4 74.6

2 62.9 63.7 79.8 83.8 77.2 36.9 60.8 50.4 67.5 31.0 78.0

13B 1 58.9 63.4 80.2 84.8 79.4 34.6 49.6 48.2 37.3 31.2 80.3

2 68.3 67.5 83.5 86.4 81.5 46.7 70.7 54.2 75.1 35.1 81.9

32B 1 64.9 72.9 88.7 86.5 82.4 40.6 57.3 56.8 56.2 42.0 85.5

2 72.9 74.9 90.4 89.7 83.0 50.2 74.3 61.0 78.8 46.9 88.0

Table 17: OLMO 2 1B requires our mid-training recipe to break out of near-random perfor-
mance on multiple-choice tasks like MMLU, ARC Challenge, and MMLU Pro.

J Comparison with Qwen 3 Base

Concurrent with this work is Qwen 3 (Yang et al., 2025). Table 18 presents evaluation results
for Qwen 3 base model, following the presentation used in Table 3. We omit pretraining
FLOPs as Qwen 3’s use of mixture-of-experts is not directly comparable to OLMO 2 au-
toregressive model family. We find that Qwen 3’s base model overall performs similarly
to Qwen 2.5’s base model but Qwen 3 takes some design decisions (possibly to support
newer research threads around reasoning) that may be incompatible with performing well
on base model evaluations (see drop in GSM8k performance likely due to format mismatch).
This motivates future work for us to refine our base model evaluation suite to reflect these
growing trends in language model research.
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Dev Benchmarks Held-out Evals

Model Avg MMLU ARCC HS WG NQ DROP AGI GSM MMLU+ TQA

Qwen 2.5 7B 67.4 74.4 89.5 89.7 74.2 29.9 55.8 63.7 81.5 45.8 69.4

Qwen 3 8B 66.6 76.8 91.2 89.5 69.9 21.8 61.8 64.3 74.8 50.6 66.5

OLMO 2 7B 62.9 63.7 79.8 83.8 77.2 36.9 60.9 50.4 67.5 31.0 78.0

Qwen 2.5 14B 72.3 79.3 94.0 94.0 80.0 37.3 51.5 71.0 83.4 52.8 79.2

Qwen 3 14B 73.6 80.7 93.4 92.3 76.4 31.8 75.0 70.3 87.3 55.7 73.2

OLMO 2 13B 68.3 67.5 83.5 86.4 81.5 46.7 70.7 54.2 75.1 35.1 81.9

Qwen 2.5 32B 74.9 83.1 95.6 96.0 84.0 37.0 53.1 78.0 83.3 59.0 79.9

Qwen 3 32B 68.9 83.3 94.9 93.5 79.0 31.9 67.4 72.4 34.0 60.7 72.2

OLMO 2 32B 73.3 74.9 90.4 89.7 78.7 50.2 74.3 61.0 78.8 46.9 88.0

Table 18: OLMO 2 vs Qwen base models.
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