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Abstract

Recently, unsupervised adversarial training (AT) has been highlighted as a means
of achieving robustness in models without any label information. Previous studies
in unsupervised AT have mostly focused on implementing self-supervised learn-
ing (SSL) frameworks, which maximize the instance-wise classification loss to
generate adversarial examples. However, we observe that simply maximizing the
self-supervised training loss with an untargeted adversarial attack often results
in generating ineffective adversaries that may not help improve the robustness of
the trained model, especially for non-contrastive SSL frameworks without neg-
ative examples. To tackle this problem, we propose a novel positive mining for
targeted adversarial attack to generate effective adversaries for adversarial SSL
frameworks. Specifically, we introduce an algorithm that selects the most confusing
yet similar target example for a given instance based on entropy and similarity,
and subsequently perturbs the given instance towards the selected target. Our
method demonstrates significant enhancements in robustness when applied to non-
contrastive SSL frameworks, and less but consistent robustness improvements with
contrastive SSL frameworks, on the benchmark datasets.

1 Introduction

Enhancing the robustness of deep neural networks (DNN) remains a crucial challenge for their
real-world safety-critical applications, such as autonomous driving. DNNs have been shown to be
vulnerable to various forms of attacks, such as imperceptible perturbations [14], various types of image
corruptions [20], and distribution shifts [25], which can lead DNNs to make incorrect predictions.
Many prior studies have proposed using supervised adversarial training (AT) [29, 40, 38, 37] to
mitigate susceptibility to imperceptible adversarial perturbation, exploiting class label information to
generate adversarial examples. However, achieving robustness in the absence of labeled information
has been relatively understudied, despite the recent successes of self-supervised learning across
various domains and tasks.

Recently, self-supervised learning (SSL) frameworks have been proposed to obtain transferable
visual representations by learning the similarity and differences between instances of augmented
training data. Such prior approaches include those utilizing contrastive learning between positive and
negative pairs (e.g., Chen et al. [6] (SimCLR), He et al. [19] (MoCo), Zbontar et al. [39] (Barlow-
twins)), as well as those utilizing similarity loss solely between positive pairs (e.g., Grill et al. [17]
(BYOL), Chen and He [7] (SimSiam)). To achieve robustness in these frameworks, Kim et al. [23]
and Jiang et al. [22] have proposed adversarial SSL methods using contrastive learning [6], which
generate adversarial examples that maximize the instance-wise classification loss.

Unfortunately, deploying this contrastive framework often becomes computationally expensive as it
requires a large batch size for training in order to attain a high level of performance [6]. Specifically,
when a given memory and computational budget is limited, such as with edge devices, performing
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(a) Supervised attack
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(b) Contrastive based attack

adversarial

after perturbation

!

target imageclean

clean

clean

maximize

negative pairs

Non-effective
adversarial

Effective
adversarial

positive pairsafter perturbation

maximizeNon-effective
adversarial

Effective
adversarial

maximize

target image

positive pairs!

minimizeminimize

(c) Positive-pair only attack

Figure 1: Motivation. In supervised adversarial learning (a), perturbation is generated to maximize the
cross-entropy loss, which pushes adversarial examples to the decision boundaries of other classes. In adversarial
contrastive SSL (b), perturbation is generated to minimize the similarity (red line) between positive pairs while
maximizing the similarity (blue lines) between negative pairs. In positive-only adversarial SSL (c), minimizing
the similarity (red) between positive pairs. However, adversarial examples in adversarial SSL impose weaker
constraints in generating effective adversarial examples than does supervised AT due to ineffective positive pairs.
To overcome this limitation, we suggest a selectively targeted attack for SSL that maximizes the similarity (blue)
to the most confusing target instance (yellow oval in (b) and (c)).

contrastive SSL becomes no longer viable or practical as an option, as it may not obtain sufficiently
high performance using a small batch size.

Alternatively, non-contrastive, positive-only SSL frameworks have been proposed resort to maxi-
mizing consistency across two differently augmented samples of the same instance, i.e., positive
pairs, [17, 7, 39], without the need of negative instances. These approaches improve the practicality
of SSL for those limited computational budget scenarios. However, leveraging prior adversarial
attacks that maximize the self-supervised learning loss in these frameworks results in extremely poor
performance compared to those of adversarial contrastive SSL methods (Table 1). The suboptimality
of the deployed attacks causes to learn limited robustness and leads to the generation of ineffective
adversarial examples, which fail to improve robustness in the SSL frameworks trained using them.
As shown in Figure 1c, the attack in the inner loop of the adversarial training loss, designed to
maximize the distance between two differently augmented samples, perturbs a given example to a
random position in the latent space. Thus, the generated adversarial samples have little impact on
the final robustness. The suboptimality of the attacks also can be occurred in contrastive adversarial
SSL that also contains positive pairs, when simply maximizing the contrastive loss. As shown in
Figure 1b, contrastive learning treats all positive and negative pairs equally regardless of their varying
importance in generating effective adversarial examples.

To address this issue, we propose Targeted Attack for RObust self-supervised learning (TARO).
TARO is designed to guide the generation of effective adversarial examples by conducting targeted
attacks that perturb a given instance toward a target instance to enhance the robustness of an SSL
framework (Figure 1). The direction of attacks is assigned using our target selection algorithm that
chooses the most confusing yet similar sample for a given instance based on the entropy and similarity.
By targeting the attacks toward specific latent spaces that are more likely to improve robustness on
positive-pairs, TARO improves the robustness of SSL, regardless of the underlying SSL frameworks.
Notably, as the positive-pair only SSL has gained attention in recent times, our proposed method
becomes crucial for the ongoing safe utilization of these frameworks in real-world applications.

The main contributions can be summarized as follows:

• We observe that simply maximizing the training loss of self-supervised learning (SSL)
may lead to suboptimality of attacks as the main cause of the limited robustness in SSL
frameworks, especially those that rely on maximizing the similarity between the single pair
of augmented instances.

• To address this issue, we propose a novel approach, Targeted Attack for RObust self-
supervised learning (TARO), which aims to improve the robustness of SSL by conducting
targeted attacks on the positive-pair that perturb the given instance toward the most confusing
yet similar latent space, based on entropy and similarity of the latent vectors.

• We experimentally show that TARO is able to obtain consistently improved robustness of
SSL, regardless of underlying SSL frameworks, including contrastive- and positive-pair
only SSL frameworks.
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2 Related Work

Adversarial training Szegedy et al. [34] showed that imperceptible perturbation to a given input
image may lead a DNN model to misclassify the input into a false label, demonstrating the vulnera-
bility of DNN models to adversarial attacks. Goodfellow et al. [14] proposed the fast gradient sign
method (FGSM), which perturbs a given input to add imperceptible noise in the gradient direction
of decreasing the loss of a target model. They also demonstrated that training a DNN model over
perturbed as well as clean samples improves the robustness of the model against FGSM attacks.
Follow-up works [27, 2] proposed diverse gradient-based strong attacks, and Madry et al. [29]
proposed a projected gradient descent (PGD) attack and a robust training algorithm leveraging a
minimax formulation; they find an adversarial example that achieves a high loss while minimizing the
adversarial loss across given data points. TRADES [40] proposed minimizing the Kullback-Leibler
divergence (KLD) over clean examples and their adversarial counterparts, thus enforcing consistency
between their predictions. Recently, leveraging additional unlabeled data [3] and conducting addi-
tional attacks [38] have been proposed. Carmon et al. [3] proposed using Tiny ImageNet [28] images
as pseudo labels, and Gowal et al. [16] proposed using generated images from generative models to
learn richer representations with additional data.

Self-supervised learning Due to the high annotation cost of labeling data, SSL has gained a wide
attention [11, 41, 35, 36]. Previously, SSL focused on solving a pre-task problem of collaterally
obtaining visual representation, such as solving a jigsaw puzzle [30], predicting the relative position
of two regions [11], or impainting a masked area [31]. However, more recently, SSL has shifted to
utilizing inductive bias to learn the invariant visual representation of paired transformed images. This
is accomplished through contrastive learning, which utilizes both positive pairs and negative pairs,
that is differently transformed images and other images from the same batch, respectively [6, 19].
Additionally, some studies have proposed using only positive pairs in SSL and have employed
techniques such as momentum networks [17] or stop-gradient [7]. In this paper, we annotate these
approaches as contrastive SSL, and positive-pair only SSL, respectively.

Adversarial self-supervised learning The early stage of adversarial SSL methods [23, 22] em-
ployed contrastive learning to achieve a high level of robustness without any class labels. Adversarial
self-supervised contrastive learning [23, 22] generated an instance-wise adversarial example that
maximizes the contrastive loss against its positive and negative samples by conducting untargeted
attacks. Both methods achieved robustness, but at the cost of requiring high computation power due
to the large batch size needed for contrastive learning. On the other hand, Gowal et al. [15] utilized
only positive samples to obtain adversarial examples by maximizing the similarity loss between the
latent vectors from the online and target networks, allowing this method greater freedom regarding
the batch size. However, it exhibited relatively worse robustness than the adversarial self-supervised
contrastive learning frameworks. Despite the advances in the SSL framework (i.e., positive-pair only
SSL), a simple combination of untargeted adversarial learning and advanced SSL does not guarantee
robustness. To overcome such a vulnerability in positive-pair only SSL, we propose a targeted attack
leveraging a novel score function designed to improve robustness.

3 Positive-Pair Targeted Attack in Adversarial Self-Supervised Learning

Adversarial SSL and supervised adversarial learning utilize adversarial examples in a similar manner.
Specifically, adversarial SSL generates instance-wise adversarial examples in the direction of maxi-
mizing the training loss for better robustness. However, this approach exhibits an insufficient level of
robustness especially in the positive-pair only self-supervised learning framework due to generating
highly suboptimal adversarial examples.

We argue that simply maximizing the training loss, dubbed as an untargeted attack, in positive-pair
only SSL limits the diversity of adversarial examples which eventually leads to limited robustness. We
theoretically show that range of perturbation is smaller when the positive-pair only SSL objective is
employed in an untargeted attack than the contrastive objective in simple two-class tasks. Furthermore,
we empirically demonstrate poorer robustness when we naively merge untargeted attack and positive-
pair only SSL approaches [17, 7], compared to contrastive-based adversarial SSL [23, 22].
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To remedy such a shortcoming, we propose a simple yet effective targeted adversarial attack to
increase the diversity of the generated attack. Moreover, we empirically suggest novel positive
mining the target for the targeted adversarial attack that contributes to generating more effective and
stronger adversarial examples, thus improving the robustness beyond that of previous adversarial SSL
approaches. In this section, we first recap supervised adversarial training, self-supervised learning,
and previous adversarial SSL methods. We then demonstrate theoretical intuition on our motivation
and describe our proposed targeted adversarial SSL framework, TARO, in detail.

3.1 Preliminary

Supervised adversarial training We first recap supervised adversarial training with our notations.
We denote the dataset D = {(xi, yi)}, where xi ∈ RD is a input, and yi ∈ RN is its corresponding
label from the N classes. In this supervised learning task, the model is fθ : X → Y , where θ is a set
of model parameters to train.

Given D and fθ, an adversarial attack perturbs a given source image that maximizes the loss within
a certain radius from it (e.g., ℓ∞ norm balls). For example, ℓ∞ attack is defined as follows:

δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δtLCE

(
f(θ, x+ δt), y

)))
, (1)

where B(0, ϵ) is the ℓ∞ norm-ball of radius ϵ, Π is the projection function to the norm-ball, α is the
step size of the attacks, and sign(·) is the sign of the vector. Also, δ represents the perturbations
accumulated by αsign(·) over multiple iterations t, and LCE is the cross-entropy loss. In the case
of PGD [29], the attack starts from a random point within the epsilon ball and performs t gradient
steps, to obtain a perturbed sample. Adversarial training (AT) is a straightforward way to improve the
robustness of a DNN model; it minimizes the training loss that embeds the adversarial perturbation
(δ) in the inner loop (Eq. 1).

Self-supervised learning Recent studies on self-supervised learning (SSL) have proposed methods
to allow their models to learn invariant features from transformed images, thus learning semantic
visual representations that are beneficial for diverse tasks [6, 19, 17, 7, 39]. In this paper, we aim at
improving the robustness of the two most popular types of SSL frameworks: positive-pair only SSL
(e.g., BYOL, SimSiam) and contrastive SSL (e.g., SimCLR) frameworks.

We start by briefly describing a representative contrastive SSL, SimCLR [6]. SimCLR is designed to
maximize the agreement between different augmentations of the same instance in the learned latent
space while minimizing the agreement between different instances. Differently augmented examples
from the same instance are defined as positive pairs, and all other instances in the same batch are
considered negative examples. Then, the training loss of SimCLR is defined as follows:

Lnt-xent(x, {xpos}, {xneg}) := − log

∑
zp∈{zpos} exp(sim(z, zp)/τ)∑

zp∈{zpos} exp(sim(z, zp)/τ) +
∑

zn∈{zneg} exp(sim(z, zn)/τ)
,

(2)

where z is the latent vector of input x, pos, neg stands for positive pair and negative pairs of x,
respectively, and sim denotes the cosine similarity function.

A representative positive-pair only SSL framework is SimSiam [7]. SimSiam consists of the encoder
f , followed by the projector g, and then the predictor h; both g and h are multi-layer perceptrons
(MLPs). Given the dataset D = {X} and the transformation function t ∼ T that augments the
images x ∈ X , it is designed to maximize the similarity between the differently transformed images
and avoid representational collapse by applying the stop-gradient operation to one of the transformed
images as follows:

Lss(x, xpos) = −1

2

p

||p||2
·

zpos
||zpos||2

− 1

2

ppos
||ppos||2

· z

||z||2
, (3)

where z = g ◦ f(t1(x)), zpos = g ◦ f(t2(x)), and p = h ◦ z, p = h ◦ zpos are output vectors of the
projector g and predictor h, respectively. Before calculating the loss, SimSiam detaches the gradient
on the z, which is called the stop-gradient operation. This stop-gradient operation helps the model
prevent representational collapse without any momentum networks, by making an encoder to act as a
momentum network.
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Adversarial SSL To achieve robustness in SSL frameworks, prior studies have proposed adversarial
SSL methods [22, 23, 15]. They generate adversarial examples by maximizing the training loss,
dubbed as an untargeted attack, of their base SSL frameworks. For example, the inner loop of an
adversarial attack for Kim et al. [23] is structured as follows:

δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δtL

(
t1(x) + δt, t2(x)

)))
, (4)

where the perturbation maximizes the L. For adversarial contrastive SSL approaches [22, 23],
L = Lnt-xent is the contrastive loss in Eq. 2, so that adversarial examples are generated to minimize
the similarity between positive pairs and maximize the similarity between negative pairs. For the
positive-pair only SSL, adversarial examples are generated to maximize the similarity loss, L = Lss

(Eq. 3), between positive-pairs only. However, as shown in Table 1, positive-pair only SSL results
in significantly poor robustness compared to the adversarial contrastive SSL approaches. This is
because using the naive training loss function of positive-pair only SSL in the attack hinders the
generation of effective attack images for robust representation, as we theoretically show the range of
perturbations is smaller (Section 3.2). To address this issue, we propose a targeted adversarial attack
that can select more effective examples to make more diverse perturbations.

3.2 Theoretical Motivation: Adversarial Perturbations in Positive-only SSL

Table 1: Comparison of different attack losses
on CIFAR-10 using PGD attack.

Attack loss Method Clean PGD

Contrastive ACL [22] 79.96 39.37
RoCL [23] 78.14 42.89

Positive-only
similarity

BYORL [15] 72.65 16.20
SimSiam* 71.78 32.28

*naı̈ve adversarial training applied in SimSiam

A model is considered to have a better general-
ization of adversarial robustness when the model
can maintain its performance across a wide range
of adversarial perturbations. Hence, the ability of
the attack loss to generate a diverse range of per-
turbations during training is a crucial factor that
influences the model’s final robust generalization.

However, we found the theoretical motivation that
positive-pair only SSL loss (Lss) could not provide
a wide range of adversarial perturbations as contrastive loss (Lnt-xent) does. We simplify the problem
into simple binary classification with the linear layer model to demonstrate our theoretical motivation.
Let us denote adversarial perturbations that are generated with both losses as follows,

xadv
ss = x+ argmax

δ

{
f(x+ δ)

∥f(x+ δ)∥
· f(x)

∥f(x)∥

}
subject to ∥δ∥ ≤ ϵ,

xadv
nt-xent = x+ argmax

δ

− log

(
exp

(
f(x+δ)

∥f(x+δ)∥ · f(x)
∥f(x)∥/τ

))
∑

exp
(

f(x+δ)
∥f(x+δ)∥ · f(xneg)

∥f(xneg)∥/τ
)
 subject to ∥δ∥ ≤ ϵ

(5)

where we approximate the loss of Lss in the ℓ1 distance function between the positive pair and the
loss of Lnt-xent into combination of two ℓ1 distance functions of one positive- and one negative- pair.
In both cases, a δ maximizes the respective loss, subject to the constraint that the norm of δ is less
than or equal to ϵ. The objective in positive-only SSL is to make the perturbed and original samples
dissimilar as follows,

δss = argmax
δ

|f(x)− f(x+ δ)|. (6)

while the objective of nt-xent is to make the perturbed sample dissimilar to the positive pair and
similar to the negative pair as follows,

δnt-xent = argmax
δ

|f(x)− f(x+ δ)| − |f(xneg)− f(x+ δ)|. (7)

Theorem 3.1 (Perturbation range of self-supervised learning loss). Given a model trained under
the positive-only distance loss, the adversarial perturbations δss are likely to be smaller than those
perturbations δnt-xent from a model trained under the positive-pair and negative-pair distance loss.
Formally, ∥δss∥∞ < ∥δnt-xent∥∞.

These theoretical insights are also supported by the empirical experiments in Table 1 that a model
trained with adversarial examples generated using positive- and negative- paired contrastive loss
(Lnt-xent) have better adversarial robustness generalization because it is exposed to a wider range of
perturbations during training than models that are trained with the positive-only similarity loss (Lss).
The detailed proof and the empirical analysis are in the Supplementary.
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3.3 Targeted Adversarial SSL

We propose a simple yet effective targeted adversarial attack to generate effective adversarial examples
in a positive-only SSL scenario. In this section, we first show the theoretical intuition of our approach
and describe our overall framework to further improve the robustness of the adversarial SSL method
by performing targeted attacks wherein targets are selected according to the proposed score function.

Targeted adversarial attack to different sample We argue that leveraging untargeted adversarial
attacks in positive pairs only SSL still leaves a large room for better robustness. To enlarge the
diversity of the attacks, we propose simple targeted adversarial attacks for positive-pair only SSL.
The loss for such adversarial attacks is as follows:

δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δtLtargeted-attack

(
x+ δt, x′)

)))
, (8)

where Ltargeted-attack is Lours-ss=−Lss, and x′ is a selected target within the batch.

Therefore, in the previous simplified scenario described in Section 3.2, conducting the randomly
selected targeted attack could increase the range of the perturbation that is generated with positive-pair
only similarity loss as follow,

δtargeted-attack = argmax
δ

|f(x+ δ)− f(xtarget)|. (9)

Through triangle inequality, the targeted attack may increase the range of the perturbation and
eventually leverage the overall robustness.
Theorem 3.2 (Perturbation range of targeted attack). Given a model trained under the Ltargeted-attack

loss, the adversarial perturbations δtargeted-attack are larger than the adversarial perturbations δss
from a model trained under the Lss. Formally, ∥δtargeted-attack∥∞ > ∥δss∥∞.

Table 2: Effect of random targeted attack in
positive-pair only SSL in CIFAR-5.

SSL Attack Type Clean PGD

BYOL untargeted attack 75.4 4.34
targeted attack 83.50 31.62

SimSiam untargeted attack* 66.36 36.53
targeted attack 77.08 47.58

*adversarial training applied in SimSiam

However, these are theoretical expectations in a
simplistic scenario. To further substantiate this,
we empirically observed that even a simple tar-
geted attack, with a random target in the batch,
significantly improves robustness in a positive-pair
only SSL scenario, as shown in Table 2. There-
fore, based on these theoretical and empirical in-
sights, we propose to search more effective target
for positive-pair targeted attack to boost the robust-
ness of the self-supervised learning frameworks
through experimental observations. The detailed proof of Theorem 3.2 is in the Supplementary.

Similarity and entropy-based target selection for targeted attack In our theoretical analysis
and empirical observations, we established that targeted attacks can significantly enhance overall
robustness in SSL, except for the target itself. To this end, we propose a score function, denoted as
S(x, ·), which aims to identify the most suitable target that is distinct from the input while effectively
contributing to improved robustness. Following the studies of Kim et al. [24], Ding et al. [10], Hitaj
et al. [21], we prioritize high-entropy examples or those located near decision boundaries as crucial
for generating effective adversarial examples in supervised adversarial training. Accordingly, we
recommend selecting a target distinct from itself, yet induces confusion, creating adversarial examples
that are located close to decision boundaries (Eq.11). The score function yields the most potent
target (x′) for a given base image (x). Subsequently, the targeted attack generates a perturbation,
maximizing the similarity to the target x′ for the base image x.

To this end, we design the score function based on the similarity and entropy values, without using
any class information, as follows:

Sentropy(x, x
′) = p′/τ log (p′/τ) , Ssimilarity(x, x

′) =
e

|e|2
· e′

|e′|2
, (10)

STARO(x, x
′) = Sentropy + Ssimilarity. (11)

where p = h ◦ g ◦ f(x) and e = f(x) are output vectors of predictor h and encoder f , respectively.
Overall, the score function S incorporates both cosine similarity and entropy. The cosine similarity
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Table 3: Experimental results against white-box attacks on CIFAR-10. To see the effectiveness, we
test TARO on positive-pair only self-supervised learning approaches, i.e., SimSiam, and BYOL.

Evaluation type SSL Attack Type Clean PGD AutoAttack

Self-supervised
linear evaluation

BYOL Lbyol 72.65 16.20 0.01
BYOL Lours-byol 84.52 31.20 22.01
SimSiam Lss 71.78 32.28 24.41
SimSiam Lours-ss 74.87 44.71 36.39

Self-supervised
robust linear evaluation

BYOL Lbyol 54.01 27.24 4.49
BYOL Lours-byol 74.33 40.84 29.91
SimSiam Lss 68.88 37.84 31.44
SimSiam Lours-ss 76.19 45.57 39.25

is calculated between features of base images and candidate images in the differently augmented
batch. The entropy is calculated with the assumption that the vector p represents the logit of an
instance as Caron et al. [4], Kim et al. [24]. Our score function is designed to select an instance (x′)
that is different but confused with the given image (x), thus facilitating the generation of effective
adversarial examples for targeted attack (Figure 1). The experimental results in Figure 2b verify that
the score function successfully selects such instances, as intended.

Robust self-supervised learning with targeted attacks The TARO framework starts by selecting
a target image based on the score function (S). It then generates adversarial examples using the
selected target and performs adversarial training with them.

For a positive pair, represented as differently transformed augmentations t1(x), t2(x), the tar-
get images t2(x

′) and t1(x
′) are selected respectively, as ones with the maximum score within

the batch from the score function (S) in Eq. 11. Then, we generate adversarial examples, i.e.,
t1(x)

adv, t2(x)
adv , for each transformed input with our proposed targeted attack (Eq. 8), where the

targeted loss Ltargeted-attack = −Lss maximizes the similarity to the selected target t2(x′) and
t1(x

′), respectively. Finally, we maximize the agreement between the representations of adversarial
images (t1(x)adv and t2(x)

adv) and the clean image t1(x) as follows:

LTARO = L(t1(x), t1(x)adv) + L(t1(x)adv, t2(x)adv) + L(t2(x)adv, t1(x)), (12)

where L is Eq. 3 for the SimSiam framework. Since all three instances have the same identity, we
maximize the similarity between the clean and adversarial examples.

TARO could be also applied to positive pairs in contrastive adversarial SSL methods (e.g., RoCL [23],
ACL [22]). Since contrastive SSL does not have a predictor, we use the output of the projector as
p in Eq. 10 to select the target for positive-pair. Then, when we apply our targeted attack to their
instance-wise attacks, as follows:

Lours-rocl = Lnt-xent(t1(x), {∅}, t1(x){neg}) + Lsimilarity(t1(x), t2(x)), (13)

where the adversarial loss is a sum of the modified nt-xent loss [6] and similarity loss. Since TARO
alters the untargeted attack of the positive pair with a targeted attack between the base image (t1(x))
and target image (t1(x′)), we eliminate the positive pair term in nt-xent loss and add similarity loss
instead. The similarity loss maximizes the cosine similarity between the t1(x) images and the t1(x

′)
images which are searched by the score function. Overall, we generate adversarial examples that
maximize the Lours-rocl loss as shown in Algorithm 1.

4 Experiment

In this section, we extensively evaluate the efficacy of TARO with both contrastive and positive-pair
only adversarial SSL frameworks. First, we compare the performance of our model to previous
adversarial SSL methods that do not utilize any targeted attacks in Section 4.1. Moreover, we evaluate
the robustness of the learned representations across different downstream domains in Section 4.2.
Finally, we analyze the reason behind the effectiveness of targeted attacks in achieving better robust
representations compared to models using untargeted attacks in Section 4.3.
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Experimental setup We compare TARO against previous contrastive and positive-pair only ad-
versarial SSL approaches. Specifically, we adapt TARO on top of two contrastive adversarial SSL
frameworks, RoCL [23], ACL [22] and a positive-pair only SSL framework, SimSiam [7], to demon-
strate its efficacy in enhancing their robustness. All models use the ResNet18 backbones that are
trained on CIFAR-10 and CIFAR-100 with ℓ∞ PGD attacks with the attack step of 10 and epsilon
8/255. We evaluate the robustness of our method against two types of attack, AutoAttack* [8] and
ℓ∞ PGD attacks, with the epsilon size of 8/255, using the attack step of 20 iterations. Clean denotes
the classification accuracy of the ResNet18 backbone on the original images. We further describe the
experimental details in Appendix B. Code is available in https://github.com/Kim-Minseon/TARO.git

4.1 Efficacy of Targeted Attacks in Adversarial SSL

We first validate whether the proposed targeted attacks in TARO contribute to improving the robustness
of positive-pair adversarial SSL frameworks. To evaluate the quality of the learned representations
with the SSL frameworks, we utilize linear and robust linear evaluation, as shown in Table 3. Then,
we validate the generality of TARO to contrastive-based adversarial SSL frameworks (Table 5).

Table 4: Ablation results on target selection.
Method Selection Clean PGD

RoCL
None 78.14 42.89
Random 79.26 43.45
Ours 80.06 45.37

SimSiam
None* 71.78 32.28
Random 73.25 42.85
Ours 74.87 44.71

*naı̈ve adversarial training applied in SimSiam

Robustness improvements in positive-pair only SSL
We evaluate the efficacy of TARO by comparing those
to untargeted attacks on positive-pair only SSL frame-
works, i.e., SimSiam and BYOL. As shown in Table 3,
when replacing untargeted attacks with TARO in the
positive-only SSL, TARO contributes to attaining sig-
nificant gains in both robustness accuracy against PGD
attacks and clean accuracy. This is due to the inherent
limitations of untargeted attacks in positive-pair only
SSL frameworks. In such frameworks, perturbations in
any direction away from the other pair of samples will
inevitably increase the SSL loss, making it challenging to generate effective adversarial examples.
However, with the guidance provided by TARO, the model is able to generate stronger attack images,
leading to meaningfully improved performance both on clean and adversarially perturbed images.
Furthermore, we show that the untargeted attacks are not only ineffective for learning robust features,
but also hinder the learning of good visual representation for clean images.

Switching from an untargeted to a targeted attack approach leads to a substantial increase in per-
formance across both contrastive-based and positive-pair only approaches, as shown in Table 4.
This advancement is particularly evident when addressing the challenge of selecting appropriate
targets within positive pairs. As we have discussed in the Limitations section, our empirical score
function may not be the absolute optimal algorithm for target selection. Nevertheless, it is clear
that concentrating on targeted attacks in the context of positive pairs is crucial for enhancing robust
representation, applicable to both clean and adversarial examples.

Robustness improvements in contrastive adversarial SSL The robustness gains through TARO
in contrastive adversarial SSL, specifically RoCL and ACL, are demonstrated in Table 5. Given
that our TARO algorithm mines the positive-pair in contrastive loss, its effects on contrastive-based
SSL might be more limited compared to positive-pair SSL. Despite this, TARO enhances RoCL’s
robustness against PGD attacks from 42.89% to 45.37% without compromising the clean accuracy. In
the case of ACL, TARO fortifies the robustness against PGD attacks while maintaining performance
comparable to AutoAttack.

4.2 Evaluation on CIFAR-100

Robustness on larger benchmarks datasets We further validate our method on a larger dataset,
CIFAR-100. In Table 6, TARO demonstrates consistent robust accuracy when compared with those
of the adversarial SSL frameworks using untargeted attacks, with notably significant robustness
improvements on the positive-pair only SSL. Although the clean and original robust accuracy of the
positive-only SSL method is noticeably lower than that of the contrastive learning method on this
particular dataset, it achieves significantly higher robust accuracy than the contrastive counterpart

*https://github.com/fra31/auto-attack
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Table 5: Experimental results against white-box attacks on ResNet18
trained on the CIFAR-10 dataset. To see the effectiveness, we test TARO
on contrastive adversarial SSL, i.e., RoCL, and ACL.

Evaluation type Method Attack Type Clean PGD AutoAttack

Self-supervised
linear evaluation

RoCL [23] Lrocl 78.14 42.89 27.19
+TARO Lours-rocl 80.06 45.37 27.95
ACL [22] Lacl 79.96 39.37 35.97
+TARO Lours-acl 78.45 39.71 35.81

Table 6: Results of lin-
ear evaluation in a larger
dataset, CIFAR-100.

Method Clean PGD

RoCL 45.99 17.17
+TARO 46.54 18.91

SimSiam* 24.43 13.34
+TARO 36.02 22.18

when using our targeted attack. The results further suggest that the proposed targeted attack plays a
crucial role in creating effective adversarial examples.

Table 7: Results of adversarial transfer
learning to CIFAR-10 from CIFAR-100.

Method Clean PGD

RoCL 73.93 18.62
+TARO 65.21 19.13

SimSiam* 53.34 11.24
+TARO 50.50 25.44

Transferable robustness The main objective of SSL is to
learn transferable representations for diverse downstream tasks.
Therefore, we further evaluate the transferable robustness of
the pretrained representations trained using our targeted at-
tack on novel tasks from a different dataset. We adopt the
experimental setting from the previous works on supervised
adversarial transfer learning [32] which freeze the encoder
and train only the fully connected layer. We pretrained the
model on CIFAR-100 and evaluate the robust transferability to
CIFAR-10. In Table 7, our model also shows impressive transferable robustness both with contrastive
and positive-pair only SSL, compared to those obtained by the representations learned with untargeted
adversarial SSL.

4.3 Effectiveness of TARO

In this section, we further analyze the effect of the targeted attacks in adversarial SSL to see how
and why it works. 1) Analysis of the selected images by S, 2) Visual representation of adversarial
examples that are generated with untargeted attack/targeted attack, and 3) ablation experiment on
each component of the score function.
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Figure 2: Analysis of target from score function (S)

(a) Untargeted attack (b) Targeted attack

Figure 3: Visualize embedding

Analysis of the selected target To analyze which
target images are selected by our score function
(S), we use a supervised adversarial training (AT)
model. We select the target images of a single
class (airplane) with the score function, and for-
ward them to the supervised AT model to obtain
their class distribution. To further examine which
are the most confusing classes for the original im-
ages, we forward the base airplane images to the
supervised AT model as well. As shown in Fig-
ure 2a, airplane images are easily confused with
the ship class and the bird class. Surprisingly, 1/3
of the target images are selected using our target
selection function for airplane images belonging to
either ship or the bird class, which are the most con-
fusing classes for the images belonging to the air-
plane class (See Figure 2b). These results strongly
support that our score function effectively selects
targets that are similar yet confused, as intended,
without using any label information.

Visualization of embedding space To examine the differences between images that are generated
with targeted and untargeted attacks, we visualize their embedding space. In Figure 3, black markers
represent adversarial examples, and light blue markers represent clean examples, both belonging to the
same class. As shown in Figure 3a, untargeted adversarial examples are located near clean examples,

*naı̈ve adversarial training applied in SimSiam
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and far from the class boundaries. On the other hand, targeted adversarial examples are located near
the class boundaries (Figure 3b), although it is generated in an unsupervised manner without any
access to class labels. This visualization shows that our targeted attack generates relatively more
effective adversarial examples than untargeted attacks, which is likely to push the decision boundary
to learn more discriminative representation space for instances belonging to different classes.

Table 8: Results of ablation study on score
function on CIFAR-10.

Clean PGD AutoAttack

Sentropy 78.43 40.35 32.51
Ssimilarity 72.90 44.59 36.12
STARO 74.06 44.71 36.39

Ablation study of the score function To demonstrate the
effect of each component in our score function, we conduct
an ablation study of the score function S. The score func-
tion consists of two terms: the entropy term and the cosine
similarity term (Eq. 10), which together contribute to find-
ing an effective target that is different but confusing. We
empirically validate each term by conducting an ablation
experiment using only a single term in the score function during adversarial SSL training in Eq. 11.
The experimental results in Table 8, suggest that the entropy term leads to good clean accuracy while
the similarity term focuses on achieving better robust performance. Thus the combined score function
enables our model to achieve good robustness while maintaining its accuracy on clean examples.

5 Conclusion

In this paper, we demonstrate that a simple combination of supervised adversarial training with
self-supervised learning is highly suboptimal due to the ineffectiveness of adversarial examples
generated by untargeted attacks in positive-pair only SSL, which perturb to random latent space
without considering decision boundaries. To address this limitation, we proposed an instance-wise
targeted attack scheme for adversarial self-supervised learning. This scheme selects the target instance
based on similarity and entropy, such that the given instance is perturbed to be similar to the selected
target. Our targeted adversarial self-supervised learning yields representations that achieve better
robustness when applied to any type of adversarial self-supervised learning, including positive-pair
only SSL and contrastive SSL. We believe that our work paves the way for future research in exploring
more effective attacks for adversarial self-supervised learning.

Limitations

Our method’s main constraint is that our score function’s design relies on empirical design based on
the previous works. Establishing the most optimal score function theoretically for a high-dimensional,
non-linear deep learning model is a complex task. Despite this, we’ve provided a theoretical basis for
how a targeted attack can improve robustness in a simple scenario for positive pairs. Our experimental
results also confirm our score function’s effectiveness, suggesting we’ve made various efforts to
counterbalance our limitations. Additionally, our method demands more computational time than
a simple untargeted adversarial training, given the need to select a target instance. Yet, this extra
computational time is less than 5% compared to original training time. Considering the significant
boost in robustness, we believe it’s a reasonable trade-off to implement our method. Despite these
limitations, we’ve identified a significant vulnerability in the untargeted attack method—an essential
discovery for adversarial self-supervised learning. Moreover, we suggest a simple yet effective way
to address this vulnerability in adversarial self-supervised learning.
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Effective Targeted Attack for
Adversarial Self-Supervised Learning

Supplementary Material

A Baselines.

• RoCL [23]. RoCL is SimCLR [6] based adversarial self-supervised learning methods. We
experiment with the official code†. To make a fair comparison, we set the attack step to
10 as other baselines. We train the model with 1,000 epochs under the LARS optimizer
with weight decay 2e− 6 and momentum with 0.9. For the learning rate schedule, we also
followed linear warmup with cosine decay scheduling. We set a batch size of 512 for all
datasets (CIFAR-10, CIFAR-100, STL10). For data augmentation, we use a random crop
with 0.08 to 1.0 size, horizontal flip with a probability of 0.5, color jitter with a probability
of 0.8, and grayscale with a probability of 0.2 for RoCL training.

• ACL [22]. ACL is SimCLR [6] based adversarial self-supervised learning methods. We
conduct the experiment with the official code‡. To make a fair comparison, we set the attack
step to 10 as other baselines. We train the model with 1,000 epochs. We set a batch size
of 512 for STL10 dataset. For CIFAR-10, and CIFAR-100, we use the official pretrained
checkpoints. For data augmentation, we use a random crop with 0.08 to 1.0 size, horizontal
flip with a probability of 0.5, color jitter with a probability of 0.8, and grayscale with a
probability of 0.2 for ACL training. We set PGD dual mode which calculates both clean and
adversarial during the training.

• BYORL [15] BYORL is BYOL [17] based adversarial self-supervised learning methods
for low label regime. Since there is no official code for BYORL we implement the BYORL
by ourselves. We implement based on BYOL from a self-supervised learning library §.
We use the same CIFAR-10 setting in the library except for normalization. We exclude
normalization in the data augmentation. To make a fair comparison, we implement on
the ResNet18 with attack step 10 of PGD. As shown in supplementary materials in [15],
when the model is trained with 10 steps in ResNet34 it shows 37.88% of robustness. We
conjecture that we have a different performance from the original paper because the original
paper employs 40 steps of PGD in WideResNet34 to obtain the reported robustness which
requires extraordinary computation power.

• AdvCL [12]. AdvCL is SimCLR [6] based adversarial self-supervised learning which
employ pseudo labels from the model that is pretrained on ImageNet [26] data. Even though
the outstanding performance of AdvCL, we exclude this model as our baseline because the
proposed methods require the model that is trained with the labels of ImageNet which we
assume to have no label information for training.

B Detailed description of experimental setups.

B.1 Resource description.

All experiments are conducted with a two NVIDIA RTX 2080 Ti, except for the experiments with
CIFAR-100 experiments. For CIFAR-100 experiments, two NVIDIA RTX 3080 are used. All
experiments are processed in Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz.

B.2 Training detail.

For all methods, we train on ResNet18 [18] with ℓ∞ attacks with attack strength of ϵ = 8/255 and
step size of α = 2/255, with the number of inner maximization iterations set to K = 10. For the
optimization, we train every model for 800 epochs using the SGD optimizer with the learning rate of

†https://github.com/Kim-Minseon/RoCL
‡https://github.com/VITA-Group/Adversarial-Contrastive-Learning
§https://github.com/vturrisi/solo-learn
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Algorithm 1 Targeted Attack Robust Self-Supervised Learning (TARO) for contrastive-based SSL

Input: Dataset D, transformation function t, model f , parameter of model θ, target score function S
for iter ∈ number of iteration do

for xi ∈ miniBatch B = {x1, . . . , xm} do
for n in 2 do

Transform input tn(xi)
Find target images tn(xk) from S(tn(xi), batch)
Generate targeted adversarial examples
Lcont-attack = Lnt-xent(t1(xi), {∅}, {t1(xi){neg}}) + Lsimilarity(t1(xi), t2(xk))

δt+1 = ΠB(0,ϵ)

(
δt + αsign

(
∇δt [Lcont-attack]

))
tn(xi)

adv = tn(xi) + δt

end for
Calculate training loss
LTARO = Lnt-xent(t1(xi), {t2(xi), t1(xi)

adv}, {t1(xi){neg}})
end for
θ ← θ − β∇θLTARO

end for

0.05, weight decay of 5e−4, and the momentum of 0.9. For data augmentation, we use a random
crop with 0.08 to 1.0 size, horizontal flip with a probability of 0.5, color jitter with a probability of
0.8, and grayscale with a probability of 0.2. We exclude normalization for adversarial training. We
set the weight of adversarial similarity loss w as 2.0. We use batch size 512 with two GPUs.

In the score function, we calculate the similarity score term and the entropy term as shown in
Equation 11. First, to exclude the positive pairs’ similarity score we set the similarity score between
positive pairs to −1. Then, to calculate the overall score, after obtaining the similarity score and
entropy of each sample, we normalize each component with Euclidean normalization to balance each
component to the score function. Further, the detailed algorithm of TARO for contrastive SSL is
described in Algorithm 1 and Eq. 14.

B.3 Evaluation details.

PGD ℓ∞ attack. For all PGD ℓ∞ attacks used in the test time, we use the projected gradient descent
(PGD) attack with the strength of ϵ = 8/255, with the step size of α = 8/2550, and with the number
of inner maximization iteration set to K = 20 with the random start.

AutoAttack. We further test against a strong gradient-based attack, i.e., AutoAttack (AA) [8].
AutoAttack is an ensemble attack of four different attacks (APGD-CE, APGD-T, FAB-T [9], and
Square [1]). AGPD-CE is an untargeted attack, APGD-T and FAB-T are targeted attacks. The Square
is a black-box attack. We use an official code to test models¶.

Self-supervised learning. For self-supervised learning, we denote linear evaluation when we use only
clean images to train the fully connected (fc) layer after the pretraining phase. When we denote robust
linear evaluation, we train the fc layer with adversarial examples. While ACL uses partial fine-tuning
to obtain their reported accuracy and robustness, to make a fair comparison, we freeze the encoder
and train only the fc layer. Robust fine-tuning is training all parameters including parameters of the
encoder with adversarial examples. For linear evaluation, we followed the baseline hyperparameters
for each model. We train the baseline models with 150 epochs, 25 epochs, and 50 epochs for RoCL,
and ACL, respectively. We also followed their learning rate of 0.1, 0.1, and 2× 10−3 for RoCL, and
ACL, respectively. On the other hand, we train our model with 100 epochs with a learning rate of 0.5
for linear evaluation. We use AT loss for robust linear evaluation except for ACL. For ACL, we use
TRADES loss as the official code.

C Experimental Details of Analysis.

Analysis the distribution of target class. To analyze the target from the score function (S), we
employ an adversarially supervised trained model. We calculate the score function that is trained
with our TARO on SimSiam. We use a train set. For each class, we calculate the mean predict
probability, which is the average of all softmax outputs of target images from the supervised trained

¶https://github.com/fra31/auto-attack
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model. Further, we also count the number of samples that are predicted for each class. In Figure 2,
the results are target images of the airplane as a base image. There is a similar tendency even though
we change the base class to other classes as shown in the following Figure 4.
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Figure 4: Analysis of target distribution in different classes

Visualization of embedding space. To visualize the embedding of our targeted attack and un-
targeted attack, we use t-Distributed Stochastic Neighbor Embedding (t-SNE) [5] with the cosine
similarity metric. Our TARO model is trained on CIFAR-10 as a feature extractor. We sample a few
examples and conduct two types of attack, the untargeted attack and the targeted attack. To visualize
more effectively we ignore the other seven classes in CIFAR-10. We visualize clean examples from
three classes and then visualize adversaries that are generated with our targeted attack and untargeted
attack, respectively, with dark blue.

D Additional Experiment

Contrastive based adversarial self-supervised learning with TARO. Our TARO could be also
applied to positive pairs in contrastive-based adversarial self-supervised learning (e.g., RoCL [23],
ACL [22]). We applied our TARO in instance-wise attack of the contrastive-based approaches as
follow,

Lattack = Lnt-xent(x, {∅}, {xneg}) + Lsimilarity(x, {xjTARO}) (14)

where attack loss is consists of original attack loss nt-xent loss [6] and similarity loss. The similarity
loss additionally constrains the positive pairs as the TARO that maximize the similarity between the
x with the jth index images which is searched by our TARO score function. Overall, we generate
adversarial examples that maximizes the Lattack loss. Surprisingly, when we apply TARO on the
contrastive learning based approach, previous work could achieve marginally better clean accuracy
and robustness. This shows that our empirical assumption also holds on contrastive-based SSL but
since there is (1/batch size) effects on the total loss the gain could be marginal.

Table 9: Results of black box attack. Mod-
els on the row are the tested models. Models
on the columns are the source models to gen-
erate black box adversaries.

AT RoCL Ours

AT - 59.73 60.92
RoCL 70.40 - 57.98
Ours 69.97 54.99 -

Robustness against black box attack We conduct black
box attack to verify our model is robust to gradient free
attacks. We generate black box adversaries with AT [29]
model, RoCL [23] model and our models. Then, we test
adversaries to each other. As show in the table, our model
is able to defend the black box attack from AT model than
the RoCL model. Moreover, our model generates stronger
black box adversaries than RoCL since AT model shows
more weak robustness.

Table 10: Results against diverse attacks.

Method PGD CW Pixle PIFGSM

RoCL 42.89 76.45 67.32 43.23
+TARO 45.37 72.75 68.40 44.56

SimSiam 32.28 68.14 54.56 28.31
+TARO 44.97 73.87 67.22 46.37

Robustness against diverse attacks We tested
our approach against diverse types of adversar-
ial attacks, including the Carlini-Wagner (CW) at-
tack [2], black-box attack, i.e., Pixle [33], and Patch-
attack, i.e., PIFGSM [13], as shown in Table 10.
Since our approach already showed improved per-
formance against Autoattack, which includes black-
box Square attacks, our approach is able to consistently demonstrates enhanced robustness against
both the CW attack and black-box attacks.
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E Proof of the Theorem

Let us consider the problem as a simple binary task using a linear layer model to demonstrate our
theoretical motivation. The dataset D = X, · consists of training examples, where x ∈ X represents
a training example without any class label. We assume there is a single positive pair and a single
negative pair. The linear model is denoted as f(·). The adversarial perturbations generated using both
losses are as follows:

xadv
ss = x+ argmax

δ

{
f(x+ δ)

∥f(x+ δ)∥
· f(x)

∥f(x)∥

}
subject to ∥δ∥ ≤ ϵ,

xadv
nt-xent = x+ argmax

δ

− log

(
exp

(
f(x+δ)

∥f(x+δ)∥ · f(x)
∥f(x)∥/τ

))
exp

(
f(x+δ)

∥f(x+δ)∥ · f(xneg)
∥f(xneg)∥/τ

)
 subject to ∥δ∥ ≤ ϵ

(15)

where we approximate the cosine similarity distance loss into ℓ1 distance function. In both cases,
a δ maximizes the respective loss, subject to the constraint that the norm of δ is less than or equal
to ϵ. The objective in positive-only SSL is to make the perturbed and original samples dissimilar as
follows,

δss = argmax
δ

|f(x)− f(x+ δ)|, (16)

δnt-xent = argmax
δ

|f(x)− f(x+ δ)| − |f(xneg)− f(x+ δ)|. (17)

The range of adversarial attack of each loss is then calculated as follow,
∥δss∥ =∥ argmax

δ
|f(x)− f(x+ δ)|∥

=argmax
δ

(|f(x)− f(x+ δ)|)2
(18)

∥δnt-xent∥ = ∥ argmax
δ

(|f(x)− f(x+ δ)| − |f(xneg)− f(x+ δ)|) ∥

= argmax
δ

(
|f(x)− f(x+ δ)|2 − 2|f(x)− f(x+ δ)| · |f(xneg)− f(x+ δ)|

+|f(xneg)− f(x+ δ)|2
)

≈ argmax
δ

(
|f(x)− f(x+ δ)|2 − 2|δ| · |f(xneg)− f(x+ δ)|+ |f(xneg)− f(x+ δ)|2

)
≈ argmax

δ

(
|f(x)− f(x+ δ)|2 + |f(xneg)− f(x+ δ)|2

)
∵ δ ≤ ϵ

≥ argmax
δ

|f(x)− f(x+ δ)|2.

(19)
If there are more negative pairs, the difference in perturbation range between positive-pair-only
attacks and contrastive attacks could become more pronounced.
Theorem E.1 (Perturbation range of self-supervised learning loss). Given a model trained under
the positive-only distance loss, the adversarial perturbations δss are likely to be smaller than those
perturbations δnt-xent from a model trained under the positive-pair and negative-pair distance loss.
Formally, ∥δss∥∞ < ∥δnt-xent∥∞.

When applying a random targeted attack within the positive-pair-only self-supervised learning
framework, we can effectively increase the range of perturbations. Let us assume that the target
instance xtarget is different from the original instance x, and the distance between them is greater
than the threshold δ. The perturbations generated through the targeted attack are as follows:

δtargeted-attack = argmax
δ

|f(x+ δ)− f(xtarget)|. (20)

Let us denote target instance xtarget as x′ for simple equations,

|f(x)− f(x+ δ)| < |f(x′)− f(x+ δ)|
∵ |x′ − x| > δ

= |f(x+ δ)− f(x′)|
∴ ∥ argmax

δ
|f(x)− f(x+ δ)|∥ < ∥ argmax

δ
|f(x+ δ)− f(x′)|∥

(21)
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The random targeted attack, which targets instances that are at a greater distance than δ from
the original input, can potentially increase the perturbation range and ultimately enhance overall
robustness.
Theorem E.2 (Perturbation range of targeted attack). Given a model trained under the
Ltargeted-attack loss, the adversarial perturbations δtargeted-attack are likely to be larger than those
from a model trained under the Lss. Formally, ∥δtargeted-attack∥∞ > ∥δss∥∞.

F Broader Impacts

The pursuit of adversarial robustness against malicious attacks within deep neural networks remains
an unsolved, yet fundamental area of deep learning research. To date, several self-supervised
adversarial training approaches have been proposed, primarily based on the contrastive learning
framework. However, the attainment of robustness via a ’positive-pair only’ self-supervised learning
approach is still under-explored. Consequently, self-supervised frameworks have evolved from large
batch contrastive learning to a focus on single ’positive-pair only’ learning paradigms. The area of
self-supervised learning that we are targeting aims to delve into the robustness of these new learning
frameworks through our tailored attacks. Furthermore, we believe that achieving superior robustness
in self-supervised learning is a crucial research path towards achieving authentic robustness in
representation. We hope that our work will inspire more research aimed at achieving generalizable
robustness in unseen domains and datasets by leveraging the potential of various self-supervised
frameworks.
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