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ABSTRACT

One of the most important properties of neural networks is the clustering of local
minima of the loss function near the global minimum, enabling efficient train-
ing. Though generative models implemented on quantum computers are known
to be more expressive than their traditional counterparts, it has empirically been
observed that these models experience a transition in the quality of their local min-
ima. Namely, below some critical number of parameters, all local minima are far
from the global minimum in function value; above this critical parameter count,
all local minima are good approximators of the global minimum. Furthermore,
for a certain class of quantum generative models, this transition has empirically
been observed to occur at parameter counts exponentially large in the problem
size, meaning practical training of these models is out of reach. Here, we give
the first proof of this transition in trainability, specializing to this latter class of
quantum generative models. We use techniques inspired by those used to study
the loss landscapes of classical neural networks. We also verify that our analytic
results hold experimentally even at modest model sizes.

1 INTRODUCTION

1.1 MOTIVATION

One of the great successes of neural networks is the efficiency at which they are trained via gradient-
based methods. Though training algorithms often involve the optimization of complicated, non-
convex, high-dimensional functions, training via gradient descent in many contexts manages to con-
verge to local minima that are good approximations of the global minimum in loss function value.
This phenomenon has begun to be understood in the context of random matrix theory, particularly
when applied to dense classifiers (Choromanska et al., 2015; Chaudhari & Soatto, 2017).

Quantum generative models hold great promise in their ability to sample from probability distri-
butions out of the reach of classical models (Arute et al., 2019; Gao et al., 2021). Though deep
quantum generative models are believed to be difficult to train due to vanishing gradients (McClean
et al., 2018; Cerezo et al., 2021; Marrero et al., 2020), the situation for shallow models is murkier.
Some shallow quantum models have empirically shown great promise in being trainable (Wiersema
et al., 2020; Kim et al., 2020; Kim & Oz, 2021), while others have empirically been shown to suffer
from poor distributions of local minima (Kiani et al., 2020; Campos et al., 2021). Numerically, all
of these models have been seen to experience a phase transition in trainability: below some critical
depth, local minima are poor approximators of the global minimum. Above this critical depth, they
are good approximators. This transition has been poorly understood analytically, as typically the dis-
tribution of local minima monotonically improves as the size of the model increases (Choromanska
et al., 2015; Chaudhari & Soatto, 2017).

1.2 OUR CONTRIBUTIONS

In this work, we are the first to analytically show the presence of a computational phase transition
in the training of a certain class of quantum generative models. To achieve this, we first show that
this class of randomized quantum models is approximated in distribution by a Wishart random field
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on the hypertorus. We are then able to use techniques from Morse theory to exactly calculate the
distribution of local minima (and general critical points) of this random field. Finally, we analyze this
distribution in the limit of large model size, and analytically show the presence of this trainability
phase transition. Roughly, we show that in this limit the expected density of local minima for a
model with p parameters and Hilbert space dimension ∼ m (exponential in the problem size) at loss
value 0 ≤ E ≤ 1

2 follows a generalization of the beta distribution (Gordy, 1998):

E [Crt0 (E)] ∼ e−mEEm−
p
2 (1− 2E)

p
. (1)

This distribution experiences a transition in behavior at p = 2m: when p < 2m, local minima
are exponentially concentrated (i.e. with width m−1) far away from the global minimum E =
0, implying poor optimization performance in this regime. When p ≥ 2m, this distribution is
exponentially concentrated at E = 0, implying good optimization performance. We also verify our
results numerically, demonstrating this concentration of minima even at small problem sizes.

For the class of quantum generative models we consider, our results mirror the empirical results
of Kiani et al. (2020); Campos et al. (2021) in that only unreasonably overparameterized quantum
models have good local minima. Though these results are pessimistic, we emphasize here that our
results only apply to a certain class of quantum generative models. We are also able to give a
heuristic explanation based on our proof techniques as to how one may be able to construct models
of a reasonable size that are still trainable at the expense of computational overhead in implementing
the model, as seen empirically in Wiersema et al. (2020); Kim et al. (2020); Kim & Oz (2021).

2 PRELIMINARIES

2.1 QUANTUM GENERATIVE MODELS

A quantum system of size n is naturally represented by a quantum state, which is a normalized vector
|ψ〉 ∈ C2n

. Here, we use the typical physics notation |·〉 to denote a vector, instead of (say)ψ, when
we are describing a quantum state. A quantum state in C2n

can be considered a generalization of
probability distributions over 2n states (i.e. over states described by n bits), where the norm squared
of entries of |ψ〉 give the distribution. The task in quantum generative modeling is to prepare a state
|ψ〉 that is close under some metric to a given target state |ψtarget〉.
As operations that map probability distributions to probability distributions are naturally described
by stochastic matrices, operations that map quantum states to quantum states are naturally described
by unitary matrices; equivalently, they are described by the matrix exponentials of 2n × 2n skew-
Hermitian matrices. Multiple quantum operations can then be described by the sequential matrix
multiplication of various matrix exponentials. It is then apparent that one can construct a quantum
generative model by parameterizing these matrix exponentials, giving rise to the layered structure:

|θ〉 ≡
q∏
i=1

Ui (θ) |ψ0〉 ≡
q∏
i=1

e−iθiQi |ψ0〉 , (2)

where here q is the depth of the model and Qi are fixed Hermitian matrices. Typically, q is poly-
nomial in n, i.e. logarithmic in the dimension of the initial state vector |ψ0〉. In most quantum
generative models, various θi are completely dependent, e.g. θi = θi+5 for all i (Romero et al.,
2018). For simplicity, we assume throughout this work that each independent parameter appears a
constant number r times in the model, and the total number of independent parameters is given by
p = q/r. Though the linear nature of the model may be surprising, this model structure (for large
enough depth q) is known to be a universal approximator of all (pure) quantum states, even for a
fixed number of allowed Qi (Solovay, 1995; Kitaev, 1997).

For completely general (i.e. dense) Qi in equation 2, the model is not efficient to implement on a
quantum computer. Thus, due to their efficiency in physical implementation, these Qi are typically
taken to be members of the n-qubit Pauli group Pn, which is a generating subset of the additive group
of all n × n Hermitian matrices. The Pauli group is also convenient to study analytically, as is the
normalizer of the group (called the Clifford group). The assumption that each Qi is a Pauli operator
also allows us to use a single parameter θi for each layer of the model without loss of generality; in
principle, more parameters can describe each layer by parameterizing sparse Qi. However, as the

2



Published as a conference paper at ICLR 2022

Pauli group generates Hermitian matrices, this is a special case of the class of models we consider
here (at the expense of larger q and new dependencies among the θi).

In quantum generative modeling, we are often not given the target state |ψtarget〉 directly. Instead,
we are in many cases given a 2n × 2n Hermitian matrix H (called the problem Hamiltonian) where
|ψtarget〉 is the eigenvector associated with the smallest eigenvalue of H (called the ground state). In
this formulation, optimization proceeds via the minimization of:

FVQA (θ) = 〈θ|H |θ〉 . (3)

In physics notation, 〈θ| is the conjugate transpose of the complex vector |θ〉. Assuming no degenera-
cies in the eigenspectrum ofH and a sufficiently expressive model, the minimizer |θ∗〉 of equation 3
is the ground state of H , up to an overall phase due to the quadratic nature of equation 3. Assuming
H is efficiently expressible as the weighted sum of O (poly (n)) Pauli matrices, equation 3 and its
gradients can be efficiently measured on a quantum computer (Peruzzo et al., 2014; Romero et al.,
2018). This and similar formulations of quantum generative modeling with equation 3 as the loss
function are called variational quantum algorithms (VQAs) (Peruzzo et al., 2014). Generally, the
goal of these algorithms is to find the state |θ〉 that optimizes equation 3, up to potentially some con-
stant additive error in loss. Though there are other formulations of quantum generative modeling,
we here focus on VQAs as they do not require coherent access to data |ψtarget〉, which is generally
believed to be difficult (Aaronson, 2015).

Typically, models in VQAs come in one of two flavors: Hamiltonian agnostic models, and Hamil-
tonian informed models. Hamiltonian agnostic models are constructed such that the Qi present in
the model definition are independent of H , and are generally more efficient to implement. This is
most analogous to the case in classical generative modeling, where the model structure is usually
independent from the specific choice of data distribution. We prove the existence of a computational
phase transition for a class of Hamiltonian agnostic models in this work. We also give some heuristic
and numerical evidence that a similar transition exists for Hamiltonian informed ansatzes, but that
the trainable phase is more easily reached.

2.2 RANDOM FIELDS ON MANIFOLDS

As in previous results on the loss landscapes of machine learning models (Choromanska et al., 2015;
Chaudhari & Soatto, 2017), we will map the distribution of a randomized class of quantum genera-
tive models to a random field on a manifold. This will then enable us to use standard mathematical
techniques to study the distribution of critical points of the model.

Though they can be expressed in many ways, here we will be interested in random fields of the form:

FRF (σ) ∝
Λ∑

i1,...,ir,i′1,...,i
′
r=1

σi1 . . . σirJi1,...,ir,i′1,...,i′rσi′1 . . . σi′r . (4)

Here, σ ∈M is some point on a manifold, and J is a random variable. In the context of most studies
of machine learning loss landscapes, M is typically the hypersphere and J a symmetric matrix of
i.i.d. Gaussian random variables, i.e. a Gaussian orthogonal ensemble (GOE) matrix.

We will instead find that VQAs are naturally described as Wishart hypertoroidal random fields
(WHRFs). For these models, the manifold M is a tensor product embedding of the hypertorus
into exponentially large Euclidean space; that is, points on this embedding are described by the
Kronecker product:

σ =
⊗
i

(
cos (θi)
sin (θi)

)
(5)

for angles −π ≤ θi ≤ π. Furthermore, in these models, J is drawn from a normalized complex
Wishart distribution. The complex Wishart distribution is a natural multivariate generalization of the
gamma distribution, and is given by the distribution of the square of a complex Gaussian random
matrix. Specifically, forX ∈ Cn×m a matrix with i.i.d. complex Gaussian columns with covariance
matrixΣ, the matrix

W =
1

m
X ·X† (6)
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is normalized complex Wishart distributed with scale matrixΣ and m degrees of freedom. We will
find that the degrees of freedom m will greatly affect the distribution of local minima of the WHRF,
and thus also of the class of quantum generative models that we consider.

3 QUANTUM GENERATIVE MODELS AS RANDOM FIELDS

We first show that a certain randomized class of Hamiltonian agnostic VQAs can be expressed as
WHRFs. This will allow us to more easily study the critical points of the model using techniques
from random matrix theory. Though we leave the full statement and proof for Appendix A, we give
an informal statement and discussion here.

Theorem 1 (VQAs as WHRFs, informal). Consider the class of models

|θ〉 ≡
q∏
i=1

Ui (θ) |ψ0〉 ≡
q∏
i=1

e−iθiQi |ψ0〉 , (7)

where eachQi is drawn uniformly from the Pauli group Pn and |ψ0〉 is the first column of a uniformly
random member of the Clifford group. Let p be the number of distinct θi, and let r = q/p. Under
reasonable assumptions on the eigenvalues ofH (with minimum eigenvalue λ1 and mean eigenvalue
λ), the random loss function

FH (θ) =
〈θ|H |θ〉 − λ1

λ− λ1

(8)

converges in distribution to the random field

FWHRF (θ) =

2p∑
i1,...,ir,i′1,...,i

′
r=1

wi1 . . . wirJi1,...,ir,i′1,...,i′rwi′1 . . . wi′r , (9)

where w are points on the hypertorus
(
S1
)×p

parameterized by θ and J is a complex Wishart
random matrix normalized by its number of degrees of freedom m.

Note that for convenience, we have shifted and scaled the typical VQA loss such that it is always
greater than zero and independent from overall scalings of the problem Hamiltonian.

In the course of this mapping, we find that the degrees of freedom of the Wishart matrix J (formally
a real number) is given by the ratio:

m ≡
‖H − λ1‖2∗∥∥H − λ∥∥2

F

. (10)

Here, ‖·‖∗ denotes the nuclear norm, and ‖·‖F the Frobenius norm. Generally, this ratio is exponen-
tial in n, particularly when modeling the class of ground states typically represented by VQAs (Pe-
ruzzo et al., 2014; Farhi et al., 2014; Romero et al., 2018). Though we are unable to prove Theorem 1
for Hamiltonian informed models, there are heuristic reasons to believe that they are described by a
similar random field with m = O (poly (n)), as opposed to equation 10 (see Appendix A.3 and em-
pirical evidence in Sec. 5). We will later find that a number of independent model parameters p that
is twice the degrees of freedom m of the matrix J marks the transition from the underparameterized
to the overparameterized regime of FWHRF, where the quality of local minima improves.

The general idea for showing this equivalence relies on the path integral expansion of the VQA loss
function. Effectively, this is just a Taylor expansion of the unitary matrices composing the model,
which is exact even at a finite number of terms. One can then show that terms in this expansion
can be assumed independent with negligible error in distribution, and then show that the resulting
random process is asymptotically a WHRF. The reasonable assumptions on the eigenvalues of H
are essentially just a requirement that the eigenvalues of H are not “unnaturally” spread out; for the
quantum states VQAs typically model, this is never the case. We give a full description of these
requirements with the full proof in Appendix A.
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4 THE LOSS LANDSCAPE OF WISHART HYPERTOROIDAL RANDOM FIELDS

4.1 EXACT RESULTS

Having shown that VQAs can be described as WHRFs, we now focus discussion entirely on WHRFs.
Our strategy for showing the distribution of critical points of this random field will be similar to that
in Auffinger et al. (2013), where similar results were shown for Gaussian spherical random fields.
Namely, we will lean heavily on the Kac–Rice formula, which gives the expected number of critical
points of a certain index at a given range of function values for random fields on manifolds. We give
an informal description of the Kac–Rice formula here, with the formal version given in Appendix B.
Lemma 1 (Kac–Rice formula (Adler & Taylor, 2009), informal). Let M be a compact, oriented
manifold. Assume a random field F (σ) on M is sufficiently nice. Then, the number of critical
points of index at most k with F (σ) ∈ B for an open set B ⊂ R is

E [Crtk (B)] =

∫
M

E
[∣∣det

(
∇2F (σ)

)∣∣1 {F (σ) ∈ B}1
{
ι
(
∇2F (σ)

)
≤ k

}
|∇F (σ) = 0

]
× pσ (∇F (σ) = 0) dσ ,

(11)
where ∇· is the covariant gradient, ι (·) is the index of ·, pσ is the probability density of ∇F (σ) at
σ, and dσ is the volume element on M .

From Lemma 1, we see that when the joint distribution of ∇2F , ∇F , and F is known, then the
expected number of critical points with function values in an open set B can be calculated. Per-
haps surprisingly, as in the Gaussian case, the joint distribution of these derivatives for WHRFs is
fairly simple. Once again leaving the full proof for Appendix C, we show the distribution of the
Hessian conditioned to be at a critical point of function value x can be described by the shifted sum
of a Wishart matrix with an independent GOE matrix. Similarly, the distribution of the gradient
conditioned on the function value being x is given by a normal distribution.
Lemma 2 (Hessian and gradient distributions, informal). The scaled Hessian m∂i∂jFWHRF (w)
conditioned on FWHRF (w) = x and ∂kFWHRF (w) = 0 is distributed as

mC̃ij (x) = −2rmxδij + rWij + r
√

2mxNij , (12)

where W is Wishart distributed with 2m degrees of freedom, N GOE distributed, and they are
independent. Furthermore, the scaled gradient m∂kFWHRF (w) conditioned on FWHRF (w) = x is
distributed as

mG̃k (x) =
√

2mrxNk, (13)
where Nk are i.i.d. standard normal distributions independent from all Wij and Nij .

With all of the pieces in place, we are able to explicitly calculate the expected distribution of local
minima in WHRFs via the Kac–Rice formula (with full calculations left for Appendix C). In Sec. 5
we find empirical evidence that these results hold not only in expectation, but in distribution; we
leave further analytic investigation of this to future work.
Theorem 2 (Distribution of critical points in WHRFs, informal). Let

µC(x) =
1

p

p∑
i=1

δ
(
λ
C(x)
i

)
(14)

be the empirical spectral measure of the random matrix

C (x) =
r

m

(
W +

√
2mxN

)
, (15)

where W is Wishart distributed with 2m degrees of freedom, N GOE distributed, and they are
independent. λCi (x) is the ith smallest eigenvalue of C (x). Then, the distribution of the expected
number of critical points of index k of a WHRF at a function value E > 0 is given by

E [Crtk (E)]

=
(π
r

) p
2

Γ (m)
−1
m(1+γ)mEC(E)

[
ep

∫
ln(|λ−2rE|)dµC(E)1

{
λ
C(E)
k+1 ≥ 2rE

}]
E(1−γ)m−1e−mE ,

(16)
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where
γ =

p

2m
. (17)

We call the parameter γ the overparameterization factor. It describes the ratio between the number
of parameters of the model p and twice the degrees of freedom m of the model. We will later find
that γ governs the phase transition between an underparameterized phase of the model—where local
minima are far from the global minimum—and an overparameterized phase—where local minima
are good approximators of the global minimum.

4.2 ASYMPTOTIC RESULTS AS p→∞

Though Theorem 2 gives the exact distribution of critical points, it is difficult to use in practice.
This difficulty comes from the expectation over eigenvalues of the sum of independent Wishart and
Gaussian matrices. Surprisingly, however, the eigenvalues of both Wishart and Gaussian orthogonal
matrices converge to fixed distributions. Essentially, asymptotically in the size of the matrix, the
eigenvalue distribution of all normalized Wishart matrices are the same (given by the Marchenko–
Pastur distribution) and the eigenvalue distribution of all Gaussian orthogonal matrices are the same
(given by the Wigner semicircle distribution).

Luckily, we can characterize the asymptotic distribution of eigenvalues of the sums of these matrices
using the tools of free probability theory. Roughly, free probability theory is the probability theory
of noncommutative random variables (e.g. random matrices). As the distribution of the sum of two
random variables in commutative probability theory can be described by the convolution of the dis-
tributions of the two independent random variables, so can the free convolution of the distributions of
two freely independent noncommutative random variables. Using the asymptotic free independence
of Wishart and Gaussian orthogonal random variables, we are able to show that asymptotically the
eigenvalue distribution of their sum weakly converges to the free convolution of a Marchenko–Pastur
distribution with a semicircle distribution.

However, weak convergence is not enough; due to the exponential factor in the expectation in The-
orem 2, any large deviations from the asymptotic convergence—even if they occur with exponen-
tially vanishing probability—can potentially cause large deviations from the naive application of free
probability theory. Thus, our results rely on using large deviations theory to show that to (logarith-
mic) leading order these deviations do not contribute to the final result. This is due to the contribu-
tion to the expectation from the deviations being dominated by what is predicted by free probability
theory. These results can be summarized via the following theorem (proved in Appendix D):
Theorem 3 (Logarithmic asymptotics of the local minima distribution, informal). Let dµ∗E be the
free convolution of a scaled Marchenko–Pastur and scaled Wigner semicircle distribution, with λ∗E,1
the infimum of its support. Let p,m � 1 with p

2m = γ = O (1). Then, the expected distribution of
local minima of a WHRF at a fixed function value E > 0 is given by

1

p
ln (E [Crt0 (E)]) =

1

2
ln

(
πq

2γ

)
+

1

2γ
(1− E) +

1

2

(
γ−1 − 1

)
ln (E)

+

∫
ln

(∣∣∣∣λr − 2E

∣∣∣∣1{λ∗E,1r ≥ 2E

})
dµ∗E + o (1) .

(18)

Note that, though we only prove the asymptotic distribution of local minima in Theorem 3, we
expect similar theorems to also hold for critical points of constant index k (taking λ∗E,1 7→ λ∗E,k
in the integrand). The only difference in the derivation is the exact form of the large deviations
of the kth smallest eigenvalue of C (x). This is similar to the case in Gaussian hyperspherical
random fields, which are often used to model neural network loss functions (Auffinger et al., 2013;
Choromanska et al., 2015; Chaudhari & Soatto, 2017).

4.3 DISCUSSION OF THE CRITICAL POINT DISTRIBUTION

Let us now discuss the implications of Theorem 3. Note first that the rescaled logarithmic number
of critical points diverges when q → ∞. Following the derivation closely, one finds that this is
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due to an exponentially suppressed (when m is exponential in n) gradient. We believe that this is
a manifestation of the “barren plateau” phenomenon, where for many deep VQA models it can be
shown that there is an exponentially vanishing variance of the gradient over the loss landscape (Mc-
Clean et al., 2018; Cerezo et al., 2021; Marrero et al., 2020). This interpretation suggests that these
barren plateau regions are filled with many small “bumps” that are exponentially shallow. Further-
more, note that this class of random fields exhibits banded behavior in the eigenvalues. That is, local
minima only exist in the band 0 ≤ E ≤ E0, where E0 is the solution to

λ∗E0,1 = 2rE0. (19)

This banded behavior is similar to that in the Gaussian spherical case. We will see, however, that
this does not give necessarily good guarantees on the distribution of local minima. This is due to E0

being generally far from 0 when γ < 1 as p,m→∞. To illustrate this, we focus now on two cases:
p ≥ 2m (the overparameterized regime) and p� m (the underparameterized regime).

4.3.1 p ≥ 2m

First, let us consider when p ≥ 2m, i.e. γ ≥ 1. In this limit, the Wishart term of C is low-rank,
and µ∗E has support on eigenvalues ≤ 0 for all E ≥ 0. Therefore, the condition λ∗E,1 ≥ 2Er
is never satisfied, and to leading order in p there are no local minima at a function value E > 0.
That is, all local minima are global minima in the p → ∞ limit when γ ≥ 1. Though the choice
of model is slightly different, we suspect that a related phenomenon may be what gives rise to the
phase transition in training numerically observed in Kiani et al. (2020); Wiersema et al. (2020); Kim
et al. (2020); Kim & Oz (2021); Campos et al. (2021).

4.3.2 p� m

When the number of distinct parameters p is poly (n) and considering a physically relevant problem
Hamiltonian such that the number of degrees of freedom m is exp (n), we have that p � m (i.e.
γ � 1) for large n. In this limit, the spectral distribution µ∗E is dominated by the Wishart term of
C, as its eigenvalues are O (1) while the eigenvalues of the GOE term are O

(√
γ
)
. Furthermore,

the Marchenko–Pastur distribution in this limit only has support at λ = 1 + O
(√
γ
)
. Therefore, the

expected number of local minima at a function value E will be proportional to

E [Crt0 (E)] ∝ e−mE+o(p)Em−
p
2 (1− 2E + O (

√
γ))

p
1

{
0 ≤ E + O (

√
γ) ≤ 1

2

}
. (20)

In particular, up to shifts on the order of
√
γ, the distribution of local minima is roughly that of a

compound confluent hypergeometric (CCH) distribution (Gordy, 1998). The CCH distribution can
be considered a generalization of the beta distribution, and for our parameters has mean on the order
of 1

2−γ and standard deviation on the order ofm−1. Restoring the overall scaling in equation 8, this
implies that in this limit the local minima of the variational loss function exponentially concentrate
(in expectation) near half the mean eigenvalue of H − λ1 instead of the smallest eigenvalue. Even
worse, the CCH distributed form of the local minima implies that, even when beginning at an initial
function value well below half of the mean eigenvalue of H − λ1, the found loss will only improve
by a fraction of the initial function value before the optimization algorithm finds a local minimum.
This is insufficient to find the optimal loss to constant additive error when beginning training at a
random point, as is often the goal in VQAs (Peruzzo et al., 2014). Empirically, we find that this
occurs not just in expectation but also for individual model instances in Sec. 5.

5 NUMERICAL EXPERIMENTS

We now test our analytic predictions using numerical simulations. First, we investigate the empirical
performance of the class of randomized models we study theoretically, and give numerical evidence
of things we were unable to prove. Then, we give numerical evidence that, for models dependent on
the objective Hamiltonian, the effective degrees of freedom parameter m can be much smaller than
predicted. In all cases, we numerically test the predictions of our results by modeling the ground
state of the 1D n site spinless Fermi–Hubbard Hamiltonian (Negele & Orland, 1998) at half filling.
Here, we take units such that the mean eigenvalue of the considered Hamiltonian (minus its smallest
eigenvalue) is E = 1. We give further details of our numerical simulations in Appendix E.
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5.1 EMPIRICAL PERFORMANCE OF RANDOM ANSATZES

0.0 0.2 0.4 0.6 0.80

10

20

30

(a)
1
2 ±

= 0.018
= 0.036
= 0.051

0.0 0.2 0.4 0.6 0.80

10

20

(b)
1
2 ±

= 0.006
= 0.013
= 0.019

Energy E

Cr
iti

ca
l p

oi
nt

 d
en

sit
y

Figure 1: Here we plot the distribution of found local minima found after 52 separate training
instances using the randomized model on (a) 2n = 64- and (b) 2n = 256-dimensional models.
Dashed lines denote the predicted region local minima will lie. Note the clustering of local minima
at a finite function value when γ � 1.
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Figure 2: Here we plot the distribution of found local minima found after 52 separate training
instances using the randomized model, with p = 48 and 2n = 64 model dimension. For even
a small model size, qualitatively the expected distribution of critical points and the distribution of
critical points for a fixed random ansatz are in agreement.

First, we analyzed the performance of a VQA on this loss function via the random model construc-
tion procedure defined in Theorem 1. Previous numerical results on related Hamiltonian agnostic
ansatzes have already shown the concentration of local minima far away in loss value from the
global minimum below some degrees-of-freedom transition, and concentration at the global mini-
mum above this transition (Kiani et al., 2020; Campos et al., 2021). Here, we tracked where our
analysis predicts the local minima to lie as a function of γ for γ � 1, up to deviations on the order
of
√
γ that arise from numerically considering the problem at finite size (as discussed in Sec. 4.3.2).

Concretely, for a given training instance and depth q = p, we generated an ansatz |θ〉 composed of p
layers of Pauli rotations, where each Pauli rotation was chosen uniformly from all nonidentity Pauli
matrices on n qubits. The numbers of model layers we consider are typical of current physical im-
plementations of Hamiltonian agnostic VQAs (Kandala et al., 2017). A summary of the normalized
distribution of found local minima for the randomized model with model dimension 2n = 64, 256 is
given in Figure 1, along with the predicted region in which all local minima should lie in the p→∞
limit as discussed in Theorem 3. See Appendix E for details on how this distribution was generated.

We see that almost all found local minima lie within the predicted region, even at small p, n. In
particular, for small γ, the distribution of local minima is almost entirely localized within

√
γ of the
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predicted 1
2 − γ (in units of the mean eigenvalue of H − λ1). Finally, we numerically observe that

the distribution of local minima are qualitatively similar in expectation and for a single choice of
random model in Figure 2.

5.2 EMPIRICAL PERFORMANCE OF A HAMILTONIAN INFORMED MODEL

Previous numerical results (Wiersema et al., 2020) on VQAs have shown that only a moderate num-
ber of model parameters suffices for efficient training when using a Hamiltonian informed model.
As discussed in Sec. 3, we believe this is due to this class of models effectively limiting the degrees
of freedom m of the associated WHRF model; to test this, we performed more numerical experi-
ments using a Hamiltonian informed ansatz. We once again tracked where our analysis predicts the
local minima to lie as a function of γ for γ � 1, up to deviations on the order of

√
γ.
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Figure 3: Here we plot the distribution of found local minima after 52 separate training instances
using a Hamiltonian informed model. Dashed lines denote the predicted region local minima will lie.
We see that the predicted region is overly pessimistic. We believe that this is due to the Hamiltonian
informed model lowering the effective degrees of freedomm of the WHRF instance the ansatz maps
to; see Sec. 3.

We show the empirical distribution of local minima in Fig. 3 for 2n = 256, along with the predicted
region local minima should lie as discussed in Sec. 4.3.2. The predicted local minima distribution
is overly pessimistic (particularly at larger p). We suspect this is due to the fact that the ansatz is
constructed in a way that minimizes the effective degrees of freedom of the WHRF m such that γ is
close to 1 for smaller p than is predicted analytically.

6 CONCLUSION

Though variational quantum algorithms are perhaps the most promising way to use the error-prone
quantum devices of today for practical computational tasks, there are many caveats with regard to
their trainability. In particular, previous work has shown that utilizing deep quantum models that
are independent of the problem Hamiltonian can introduce a vanishing gradient phenomenon where,
though the model is expressive enough to capture the ground state of interest, in practice optimizing
the loss function is infeasible (McClean et al., 2018; Cerezo et al., 2021; Marrero et al., 2020). We
extended these results by showing a particular class of random models independent of the problem
instance not only can exhibit these vanishing gradients at large depth, but also has a concentration of
local minima near the mean eigenvalue of the objective Hamiltonian. This is in contrast to the case
in traditional neural networks, where even generic model structure tends to lead to a concentration
of local minima in a band near the global minimum of the loss function.

Though our results may not seem encouraging for quantum generative models, we emphasize that we
expect our analytic results to hold only when the model is independent of the problem Hamiltonian.
Indeed, we found empirically (and heuristically) good performance for a particular Hamiltonian
informed ansatz, where our analytic results seem much too pessimistic. In principle, this new way of
thinking about variational quantum algorithms may inform future quantum generative model design;
we leave for future work the study of how various model choices may impact the distribution of
critical points of the loss function positively, and how practical considerations such as noisy model
implementations may play a role.
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REPRODUCIBILITY STATEMENT

The full statement of Theorem 1, along with all of its assumptions and its proof, is given in Ap-
pendix A. Similarly, Lemma 2 and Theorem 2 are fully stated and proved in Appendix C. These
results rely on the Kac–Rice formula, informally stated as Lemma 1; for completeness, we give the
full assumptions of this formula in Appendix B, and there also show the assumptions are met for
the model we consider. Furthermore, the full assumptions and proof of Theorem 3 is given in Ap-
pendix D, along with the proofs of supplementary lemmas needed to prove the statement. Finally,
full details of our numerical simulations and how to reproduce the results are given in Appendix E.
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Héctor Abraham et al. Qiskit: An open-source framework for quantum computing, 2019.

Robert J. Adler and Jonathan E. Taylor. Random Fields on Manifolds, pp. 301–330. Springer, New
York, NY, 2009. ISBN 978-0-387-48116-6. doi: 10.1007/978-0-387-48116-6 12.

G. Ben Arous and Alice Guionnet. Large deviations for Wigner’s law and Voiculescu’s non-
commutative entropy. Probab. Theory Relat. Fields, 108(4):517–542, 1997. doi: 10.1007/
s004400050119.

G. Ben Arous, Amir Dembo, and Alice Guionnet. Aging of spherical spin glasses. Probab. Theory
Relat. Fields, 120(1):1–67, 2001. doi: 10.1007/PL00008774.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak
Biswas, Sergio Boixo, Fernando G.S.L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun
Chen, Ben Chiaro, Roberto Collins, et al. Quantum supremacy using a programmable supercon-
ducting processor. Nature, 574(7779):505–510, 2019. doi: 10.1038/s41586-019-1666-5.
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A VARIATIONAL QUANTUM ALGORITHMS AS RANDOM FIELDS

A.1 VARIATIONAL QUANTUM ALGORITHMS

Variational quantum algorithms (VQAs) are a class of quantum generative model where one ex-
presses the solution of some problem as the smallest eigenvalue and its corresponding eigenvector
(typically called the ground state) of an objective Hermitian matrix H . Given a choice of generative
model—often called an ansatz in the quantum algorithms literature:

|θ〉 =

q∏
i=1

Ui (θi) |ψ0〉 (21)

that for some choice θ closely approximates the ground state of H , the solution is encoded as the
minimum of the loss function

F̃ (θ) = 〈θ|H |θ〉 . (22)

This loss function can be computed on a quantum computer efficiently, under some conditions on
the matrix H . For simplicity of analysis, throughout this paper we will consider the loss function

F (θ) =
〈θ|H |θ〉 − λ1

λ− λ1

, (23)

where λ1 is the smallest eigenvalue of H; this has the same loss landscape as equation 22, but
is minimized at F = 0 (assuming a sufficiently expressive |θ〉) and is normalized by the mean
eigenvalue of H − λ1. In equation 21, q is referred to as the depth of the circuit, and the initial
vector (i.e. quantum state) |ψ0〉 ∈ C2n

is fixed throughout the optimization procedure. Different
choices of Ui constitute different choices of ansatz for the ground state of H .

Ansatz design choice generally falls in one of two categories: Hamiltonian informed ansatzes, and
Hamiltonian agnostic ansatzes. Examples of Hamiltonian informed ansatzes include the chemistry-
inspired unitary coupled cluster ansatz (Peruzzo et al., 2014) and the adiabatically inspired quan-
tum approximate optimization algorithm (QAOA) ansatz (Farhi et al., 2014), known outside of the
context of combinitarial optimization as the Hamiltonian variational ansatz (HVA) (Wecker et al.,
2015). These ansatzes depend solely on the problem objective Hamiltonian H , and are usually
physically motivated ansatzes which, in some limit, have convergence guarantees. Hamiltonian ag-
nostic ansatzes, conversely, depend solely on the hardware the VQA is run on, and not at all on the
problem objective H . This class of ansatzes includes the hardware-efficient ansatz (Kandala et al.,
2017). These ansatzes are designed to eke out as much depth as possible in the objective ansatz |θ〉
by using Ui that can be easily implemented on the given quantum device.

Though hardware-efficient ansatzes generally can be run at larger depth q than Hamiltonian informed
ansatzes, the very generic nature of the ansatz circuit means this class of ansatz is more difficult to
train, often encountering barren plateaus in the optimization landscape that are difficult to escape
from when q is large (McClean et al., 2018; Cerezo et al., 2021; Marrero et al., 2020). Heuristi-
cally, this can be understood as Hamiltonian agnostic objective functions being so expressive that it
must explore essentially all of Hilbert space to find a local minimum, exponentially suppressing the
gradients of the loss function (Sim et al., 2019).

In this work we consider a class of ansatzes that, like the hardware-efficient ansatz, is independent
of the problem instance. In particular, we consider random parameterized ansatzes of the form:

Ui ≡ e−iθiQi (24)

for Pauli operators Qi, where each Qi is drawn uniformly and independently from the n-qubit Pauli
operators. Throughout this paper, we will use q to denote the total number of Pauli rotations in |θ〉
as in equation 21, p to denote the total number of independent parameters θi, and ri to denote the
number of Pauli rotations governed by a single independent parameter θi. For simplicity, we will
assume ri = rj ≡ r for all i, j, and thus take

r ≡ q

p
(25)

to be a natural number.
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A.2 MAPPING VARIATIONAL QUANTUM ALGORITHMS TO RANDOM WISHART FIELDS

With the background of VQAs in place, we will now show the asymptotic (weak) equivalence
of VQAs with the random choice of ansatz described in Appendix A.1 to Wishart random fields.
Throughout this section, we will consider a problem Hamiltonian H on n qubits, with ground state
energy λ1 and mean eigenvalue λ. We also define the degrees of freedom parameter

m ≡
‖H − λ1‖2∗∥∥H − λ∥∥2

F

, (26)

whose interpretation will be discussed in Appendix A.3. Twice the degrees of freedom parameter
m will turn out to govern the location of the transition from the underparameterized to the over-
parameterized regime (see Appendix C), and for physically relevant Hamiltonians is expected to be
exponential in n (see Appendix A.3). We will also consider the Pauli decomposition of the nontrivial
part of H:

H − λ =

A∑
i=1

αiRi, (27)

where A is the number of terms in the Pauli decomposition and α the Pauli coefficients.

We begin by showing the convergence of a class of randomized VQAs to a weighted sum of Wishart
random fields at a rate & log (n); the seemingly arbitrary shifts by the mean eigenvalue λ and the
ground state energy λ1 here will aid in future discussion, when we approximate the weighted sum of
Wishart random fields with a single random field. The wide variety of assumptions will be discussed
in detail in Appendix A.3.
Theorem 4 (VQAs as RFs). Let |ψ0〉 be an arbitrary stabilizer state (e.g. a computational basis
state) on n qubits. Fix a sequence of q angles θi ∈ [−π,π] such that each θi is present r times in
the sequence. We let p = q

r denote the number of distinct parameters. Select an ansatz

|θ〉 ≡
q∏
i=1

Ui (θ) |ψ0〉 ≡
q∏
i=1

e∓iθiQiC |ψ0〉 (28)

by independently at random drawing each ±Qi uniformly from the n-qubit Pauli group Pn and C
from the n-qubit Clifford group Cn. Consider the scaled and shifted

H̃ ≡ H − λ
λ− λ1

=
H − λ

2−n ‖H − λ1‖∗
, (29)

where ‖·‖∗ is the nuclear norm. Then, the random variational objective function

FVQA (θ) =
〈θ|H |θ〉 − λ1

λ− λ1

=
〈θ|H |θ〉 − λ1

2−n ‖H − λ1‖∗
(30)

has first two moments exponentially close in n as n→∞ to those of

FXHX (w) = 2−n

(
p⊗
i=1

wᵀ
i

)⊗r
·X · H̃ ·X† ·

 1⊗
i=p

wi

⊗r + 1, (31)

where wi are points on the circle parameterized by θi and X is a matrix of i.i.d. complex standard
jointly normal random variables. Furthermore, assuming

‖α‖∞
λ− λ1

≤ f (n)
−1 (32)

for some f (n) = Ω (1), their distributions are bounded in Lévy distance by Õ

((
lg(A)f(n)n

A

)−1
)

.

Proof. The Feynman path integral representation (i.e. the exact Taylor expansion of the matrix
exponentials using the fact that Pauli operators square to the identity) of the objective function
equation 30 is of the form

FVQA =
∑

γ,γ′∈{0,1}×q

w†γ′wγ 〈ψ0|C†Q†γ′H̃QγC |ψ0〉+ 1, (33)
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where γ labels a term in the path integral expansion of U ,

wγ ≡
q∏
i=1

{
cos (θi) , if γi = 0
sin (θi) , if γi = 1

(34)

is the amplitude, and

Qγ ≡ (−i)
‖γ‖0

q∏
i=1

Qi. (35)

We can rewrite the Feynman path integral as

FVQA =

(
p⊗
i=1

wᵀ
i

)⊗r
· X̃ · H̃ · X̃† ·

 1⊗
i=p

wi

⊗r + 1, (36)

where

wi ≡
(

cos (θi)
sin (θi)

)
(37)

and X̃ ∈ C2q×2n

is a random matrix with rows〈
X̃
∣∣∣
γ
≡ 〈ψ0|C†Q†γ . (38)

We will proceed as follows. First, we will bound the difference in the first two moments of equa-
tion 36 and its equivalent, where the rows of X̃ are i.i.d. Haar random, to be exponentially small
in n. As Haar random vectors have first three moments matching those of random Gaussian vec-
tors (scaled by 2−

n
2 ), this gives the desired convergence through second moments. Then, we will

show that the characteristic functions at x of equation 36 and its i.i.d. Haar random equivalent con-
verge exponentially quickly in n for small enough x, giving a convergence in distribution at a rate
Ω̃
(

lg(A)f(n)n
A

)
by Ushakov (2011). Finally, convergence in distribution to equation 31 will follow

as the error in the relevant higher-order moments between Haar random and scaled Gaussian vectors
exponentially decays in n by a generalization of Borel’s lemma (Jiang, 2005).

Obviously the first moment of equation 36 matches that of the i.i.d. Haar random case; off-diagonal
entries in the path integral average to zero, and the diagonal entries are correct as C is drawn from
a unitary 2-design (DiVincenzo et al., 2002). Let us now consider the second moments of the
nontrivial parts of both, where we are concerned with terms of the form:

cαβµν = E
[
〈ψ0|C†Q†γαHQγβC |ψ0〉 〈ψ0|C†Q†γµHQγνC |ψ0〉

]
, (39)

and how they differ from the i.i.d. Haar random equivalent

hαβµν = E
[
〈ψ0|U†αHUβ |ψ0〉 〈ψ0|U†µHUν |ψ0〉

]
. (40)

First, assume α = β = µ = ν; as C is drawn from a unitary 2-design (DiVincenzo et al., 2002), the
terms are equal. Similarly, if

γα ⊕ γβ ⊕ γµ ⊕ γν 6= 0, (41)

then both expectations are equal to zero; this is because cαβµν must have an odd number of some
Q, and hαβµν an odd number of some U (or U†).

Let us now consider when the above conditions are not satisfied. We consider simultaneously terms
of the form(

〈ψ0|C†Q†γαRQγβC |ψ0〉+ γαj ↔ γβj
) (
〈ψ0|C†Q†γµR

′QγνC |ψ0〉+ γµj ↔ γνj

)
, (42)

i.e. all terms summed where unequal components of γα and γβ (and γµ and γν ) are swapped.
Note that the parity of the permutation determines the sign of the term in equation 36 (and thus in
equation 42). Here, R and R′ are terms in the Pauli expansion of H̃ . Consider the largest j where
γα and γβ differ; consider the sum of each pair of terms in equation 42 that have component j
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permuted, but are equal at all k < j. Each pair of terms is of the form (with relative signs made
explicit)

〈ψ0|C†AQjA′RB′BC |ψ0〉 − 〈ψ0|C†AA′RB′QjBC |ψ0〉
= 2 〈ψ0|C†AQjA′RB′BC |ψ0〉1[Qj ,A′RB′] 6=0

(43)

for some A,A′, B,B′. For all Qj that commute with A′RB′, the two terms cancel. In particular,
QjA

′RB′ cannot be proportional to the identity. As H̃ is traceless, both R and R′ are also not
proportional to the identity. This can be done inductively for all j where γα and γβ differ.

Consider the case where γα + γβ 6= γµ + γν ; we must have that γα and γβ have a coordinate i
where they are both one, and where γµ and γν are both zero (assuming equation 41 is not satisfied).
By equation 43, WLOG we can consider the product of Pauli observables between the two Qi as
being not proportional to the identity. Then, averaging over Qi will yield zero. This is the same as
the i.i.d. Haar random case, as every term in the expansion of equation 42 must have only one of
some unitary when γα + γβ 6= γµ + γν .

Finally, consider the case where γα+γβ = γµ+γν . Under this constraint, we must have the same
number of terms in each sum in equation 42; we call this number of terms 2c. In the Pauli case, every
time we combine terms as in equation 43 introduces an overall factor of 4, and we average only over
the anticommuting Pauli operators. As the value of the expectation over C is independent of the
(nonidentity) Pauli in the expectation value, this introduces a factor of 1

2 every time we combine
terms. This gives

2cEC∼Cn

[
〈ψ0|C†SC |ψ0〉 〈ψ0|C†S′C |ψ0〉

]
, (44)

for some S and S′ that are equal if and only if R = R′. Similarly, in the i.i.d. Haar random case,
only products of terms with γα = γµ and γβ = γν are homogeneous in their unitaries and give
nonzero expectations, yielding

2cEU∼Cn

[
〈ψ0|U†αRUβ |ψ0〉 〈ψ0|U†βR

′Uα |ψ0〉
]
. (45)

If R 6= R′ (and S 6= S′), these are both zero. If R = R′ (and S = S′), the latter is equal to 2c−n

and the former to 2c−n (1 + O (2−n)). Putting everything together and explicitly writing the overall
factor of 2n

‖H−λ1‖∗
, we have that the error in the second moment is on the order of

ε2 =
22n

‖H − λ1‖2∗

2−n

√√√√ A∑
i=1

α2
i

2

, (46)

where αi are the coefficients of the Pauli expansion of H − λ. We also have that
A∑
i=1

α2
i = 2−n

∥∥H − λ∥∥2

F = m−12−n ‖H − λ1‖2∗ , (47)

where m is defined as in equation 26. Thus,

ε2 = 2−(n+lg(m)). (48)

Let us now consider the tth moment for t ≥ 3. We will bound the higher moments of both models,
and show that their characteristic functions have infinite radii of convergence. Then, by showing that
the difference in these characteristic functions vanishes exponentially in n for all x ≥ 0 bounded be-
low lg(A)f(n)n

A , we will show that the two models converge in distribution at a rate Ω̃
(

lg(A)f(n)n
A

)
.

By grouping terms as in equation 42, it is sufficient to only bound

bt =
(
λ− λ1

)−t EC∼Cn

 t∏
i=1

 A∑
j=1

αj 〈ψ0|C†SijC |ψ0〉

 , (49)

where Sij is not proportional to the identity, Sij 6= Si′j for all i 6= i′, and A is the number of terms
in the Pauli decomposition of H̃ . If a term in the expansion of equation 49 contains two Sij that
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anticommute, the contribution to the moment from that term is zero as C |ψ0〉 is a stabilizer state
for all C. Generally, the contribution to the moment is maximized when the Sij are “maximally
dependent”—that is, for d distinct Sij in a term, the contribution to the moment is maximized when
the Sij are generated by a cardinality blg (d) + 1c subset of them. Thus, the contribution to the
moment is bounded by 2−cblg(d)+1cn for some constant c (Aaronson & Gottesman, 2004). Note that
this also bounds the i.i.d. Haar random case. Putting everything together and using the multinomial
theorem, the tth moment of the nontrivial part of both distributions is bounded by

bt ≤
∑

∑
i
ki=t

2−cblg(‖k‖0)+1cn
(

t

k1, . . . , kA

) A∏
i=1

(
αi

λ− λ1

)ki
. (50)

This corresponds to the case where Sij = Sij′ ≡ Si, i.e. when there is maximal dependence
between the matrix elements. Here, ki indexes how many times Si appears in a term in equation 49,
and ‖·‖0 denotes the number of nonzero coordinates of ·. By equation 32, as t → ∞ for any given
A and n,

bt
t!
≤ (1 + o (1)) 2−t lg(t)− 1

2 lg(2πt)+t lg( eA
f(n) )−c lg(A)n. (51)

Thus, the Taylor series of the characteristic functions of both distributions have infinite radii of
convergence, and both are completely determined by their moments. Furthermore, equation 51
gives us that the difference in their characteristic functions at 0 ≤ x < c lg(A)f(n)n

A is on the

order of exp
(
Ax
f(n) − c lg (A)n

)
as n → ∞. As the two distributions have equal moments for

t ≤ 2, it can then be shown (Ushakov, 2011) that the error in Lévy distance between the two is

Õ

((
lg(A)f(n)n

A

)−1
)

.

Now that we have shown the weak convergence of our random class of VQAs to a random field on
the hypertorus, we can combine this result with a multidimensional generalization of the Welch–
Satterthwaite equation (Satterthwaite, 1946; Welch, 1947) to show that our distribution of VQAs
has first two moments matching that of a Wishart hypertoroidal random field (WHRF). Once again,
under further assumptions on the spectrum of H we will also bound the higher moments of the two
distributions to show convergence in distribution.
Theorem 5 (XHX RFs as WHRFs). The random field given by equation 31 has first two moments
equal to the Wishart hypertoroidal random field (WHRF)

FWHRF (θ) = m−1
2p∑

i1,...,ir,i′1,...,i
′
r=1

wi1 . . . wirJi1,...,ir,i′1,...,i′rwi′1 . . . wi′r , (52)

where J ∼ CW2q (m, I2q ) is a complex Wishart random matrix and the effective degrees of free-
dom defined in equation 26 is formally a real number, but can be rounded to the nearest natural
number with negligible error. Furthermore, assuming the largest eigenvalue of H̃ as defined in
equation 29 is at most 2cn for some constant c bounded below 1, their distributions are bounded in
Lévy distance by 2−Ω(min(n,lg(m))).

Proof. By the unitary invariance of random matrices with Gaussian entries, by diagonalizing H̃ we
can rewrite FXHX as the random field

FXHX (w) = ‖H − λ1‖−1
∗

(
p⊗
i=1

wi

)⊗r
·

2n∑
i=1

((
hi − λ

)
Xi ⊗ (Xi)

†
+ λ− λ1

)
·

 1⊗
i=p

wi

⊗r ,
(53)

where Xi is the ith column of X and hi are the eigenvalues of H . The sum over Kronecker
products of columns is just the weighted sum of (at most) 2n independent Wishart random variables,
each with a single degree of freedom. It is known (Khuri et al., 1994; 2011; Pivaro et al., 2017) that
the first two moments of this weighted sum of independent Wishart random variables is equal (up to
rounding of the degrees of freedom) to that of the single Wishart random variable

J ∼ CW2q

(
m,m−1I2q

)
, (54)
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where m is defined as in equation 26.

Let us now consider higher moments of both distributions. A useful property of both FXHX and
FWHRF is that they are invariant under rotations on the hypertorus w 7→ O ·w (for real orthogonal
O ∈ SO (2)

⊗p) due to the invariance of the Wishart distribution under orthogonal transforma-
tions (Eaton, 2007). Due to this property, we will often take

w = n ≡ (1, 0, . . . , 0)
ᵀ
, (55)

i.e. perform calculations at a fixed point θ = 0 on the hypertorus. For instance, by inspection of
the marginal distributions of the elements ofX ⊗X† and J (Srivastava, 2003; Yu et al., 2014), we
immediately see that (

p⊗
i=1

wi

)⊗r
·
(
X ⊗X†

)
·

 1⊗
i=p

wi

⊗r ∼ Γ (1, 1) (56)

and
FWHRF (w) ∼ m−1J(1,...,1),(1,...,1) ∼ Γ

(
m,m−1

)
; (57)

here, Γ (k, θ) is a gamma distributed random variable with shape k and scale θ. We therefore have
that the moment-generating function for FXHX (w) is

MXHX (x) = ex
2n∏
i=1

(
1− hi − λ
‖H − λ1‖∗

x

)−1

= ex det
(

1− 2−nH̃x
)−1

(58)

and for FWHRF (w) is

MWHRF (x) =
(

1− x

m

)−m
. (59)

Assuming the largest eigenvalue of H̃ is at most 2cn, we see that these moment generating functions
differ at any given 0 ≤ x < 2min((1−c)n,lg(m)) by at most O

(
2−3(1−c)nx3 +m−3x3

)
. As the two

distributions have equal first and second moments, it can then be shown (Ushakov, 2011) that the
error in Lévy distance between the two is bounded by 2−Ω(min(n,lg(m))).

Combining the two theorems, we roughly see that under reasonable assumptions on the spectrum
of H the random fields induced by the specific class of VQAs we consider can be approximated by

WHRFs up to an error on the order of Õ

((
lg(A)f(n)n

A

)−1

+m−1

)
as m,n→∞.

A.3 DISCUSSION OF THE MAPPING

Let us now briefly discuss the intuition and assumptions behind the results proved in Appendix A.2,
beginning with the random class of ansatzes we consider. Of course, in practice, VQA ansatzes are
not chosen at random. Indeed, VQA ansatzes have a layered structure that precludes any indepen-
dence between layers even if the layers were randomly chosen. Though this randomness assumption
is strong, heuristically deep enough circuits (that are independent of the problem Hamiltonian) will
still look roughly uniform over stabilizer states in the Feynman path integral expansion performed
in the proof of Theorem 4, giving qualitatively similar results. Furthermore, though throughout this
paper we consider results in expectation over this distribution of ansatzes, we find numerically in
Sec. 5.1 that our analytic results seem to also hold in distribution; we therefore suspect that our
analytic results in Appendix C hold more generally for individual ansatzes that are independent of
the problem Hamiltonian.

Given the randomized class of ansatzes, in Theorem 4 we show that the VQA loss function is close
in distribution to that of the random field given in equation 31 (the “XHX” model). Intuitively,
this just stems from the fact that different paths in the Feynman path integral are matrix elements
in uniformly random stabilizer states. We then show that the error induced in higher moments by
taking each of these paths to be independent vanishes as n→∞. To prove this formally, we rely on
the boundedness of equation 32 to bound higher moments of the distribution. Luckily, in practice
this bound holds; for extensive Hamiltonians, one expects f (n) & n.
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Theorem 5 extends Theorem 4 by showing that the XHX model can be written as a sum of Wishart
models weighted by the (scaled and shifted) eigenvalues ofH , which can then be approximated by a
single Wishart model. Heuristically, one can think of complex Wishart matrices as multidimensional
generalizations of the gamma distribution; then, the approximation used in Theorem 5 is just a
multidimensional generalization of the Welch–Satterthwaite approximation (Satterthwaite, 1946;
Welch, 1947). This approximation (in both the univariate and multivariate cases) is exact in the first
two moments of the distribution when the effective degrees of freedom m given in equation 26 is
allowed to be real. In practice, m is rounded to the nearest natural number, inducing a slight error in
the approximation. Generally, errors in higher moments in the Welch–Satterthwaite approximation
may be large when the moments of the approximated distribution is large, particularly when the
coefficients of the sum can have arbitrary sign and are at different scales (Satterthwaite, 1946; Khuri,
1994). However, for physically relevant Hamiltonians, the spectral radius is much smaller than 2n,
and the coefficients of the sum are approximately equal. We show that under such conditions, errors
in the moment generating functions vanish as m,n→∞ at the given rate.

The effective degrees of freedom m as in equation 26 can be interpreted as roughly a signal-to-noise
ratio of the mean eigenvalue ofH−λ1, and generically is at least exponentially large in n (for small
eigenvalue spacings, as is typically found in physical Hamiltonians studied with VQAs (Peruzzo
et al., 2014; Farhi et al., 2014; Romero et al., 2018)). We show in Sec. 4.3.1 that m sharply dictates
the variational loss landscape; for a number of independent parameters p ≥ 2m, local minima con-
centrate near the global minimum. Conversely, for p bounded below 2m, local minima concentrate
far away from the global minimum. This would imply that for the class of randomized ansatz we
consider here, training large instances is infeasible. However, consider an ansatz that is allowed to
depend on the problem instance H , such as in the Hamiltonian variational ansatz (HVA) (Wecker
et al., 2015). With a clever enough ansatz, one can in principle “reweigh” the coefficients of equa-
tion 53 by having a nonuniform distribution over stabilizer states in the Feynman path integral ex-
pansion of equation 36, effectively making m smaller. This would be consistent with what was
numerically investigated in prior work (Wiersema et al., 2020) (and in Sec. 5.2), where it was shown
that even for a modest number of parameters the distribution of local minima concentrate near the
global minimum for the HVA. We leave further investigation in this direction for future work.

Finally, we note that all of our asymptotic equivalence results so far have been shown to converge at
a rate

ρ ≡ lg (A) f (n)n/A, (60)
which is typically & lg (n) for physically relevant (i.e. two-local with arbitrary range, molecular
in the plane wave dual basis (Babbush et al., 2018), etc.) Hamiltonians. In Appendix D, we give
the loss landscape of WHRFs (equation 52) as p,m → ∞, taking into account large deviations
in p. If p grows as Ω (lg (ρ)), then in principle uncontrolled large deviations in the convergence
of VQAs to WHRFs will dominate the asymptotics of the landscape (equation 18). In particular,
with probability ∼ ρ−1, deviations of the eigenvalues of the Hessian on the order of the eigenvalues
themselves can occur, which are then “blown up” by a factor exponentially large in p if all deviations
constructively interfere. Thus, though equation 18 holds for WHRFs, it does not necessarily hold for
VQAs when p = Ω (lg (ρ)). If the deviations of eigenvalues of the Hessian due to the mapping from
VQAs to WHRFs are roughly independent between eigenvalues, however, then these deviations are
further exponentially suppressed in p, and the result holds independently of how p scales with n. We
believe in practice this is what occurs, and see numerically in Sec. 5.1 that our analytic results hold
well even when p� n.

B THE KAC–RICE FORMULA AND ITS ASSUMPTIONS

For completeness, we state the formal version of Lemma 1—with all assumptions—here. We borrow
heavily from (Adler & Taylor, 2009). By ∇f , we mean the covariant gradient of f .
Lemma 3 (Kac–Rice formula (Adler & Taylor, 2009)). Let M be a compact, oriented, N -
dimensional C1 manifold with C1 Riemannian metric g. Let B ⊂ RK be an open set such that
∂B has dimension K − 1. Let f : M → RK be a random field on M , and let ι (·) denote the index
of ·. Furthermore, assume that:

1. All components of f , ∇f , and ∇2f are almost surely continuous and have finite variances
over M .
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2. The marginal density pt (∇f (t)) of ∇f at t ∈M is continuous at ∇f = 0.

3. The conditional densities pt
(
∇f (t) | f (t) ,∇2f (t)

)
are bounded above and continuous

at ∇f = 0, uniformly in t ∈M .

4. The conditional densities pt
(
det
(
∇2f (t)

)
|∇f (t) = 0

)
are continuous in the neighbor-

hood of det
(
∇2f

)
= 0 and ∇f (t) = 0, uniformly in t ∈M .

5. The conditional densities pt (f (t) |∇f (t) = 0) are continuous for all f and for all ∇f
in a neighborhood of 0, uniformly in t ∈M .

6. The Hessian moments are bounded, i.e.

sup
t∈M

max
i,j

E
[∣∣∣(∇2f (t)

)
i,j

∣∣∣N] <∞. (61)

7. The moduli of continuity with respect to (the canonical metric induced by) g of each com-
ponent of f , ∇f , and ∇2f all satisfy

P [ω (η) > ε] = o
(
ηN
)

(62)

for all ε > 0 as η → 0+.

Then,

E
[
Crtfk (B)

]
=

∫
M

pσ (∇f (σ) = 0)

× E
[∣∣det

(
∇2f (σ)

)∣∣1 {f (σ) ∈ B}1
{
ι
(
∇2f (σ)

)
≤ k

}
|∇f (σ) = 0

]
dσ ,

(63)

where dσ is the volume element induced by g on M .

It is obvious by Lemma 4 that conditions 2-6 are satisfied by WHRFs given B = (0, u). Further-
more, as F is a polynomial in {cos (θi) , sin (θi)}, F and its derivatives are continuous for any value
of the components of m−1J , and all have finite variance. Similarly, it is easy to see that the mod-
ulus of continuity of f and its gradients go as Jηr as η → 0+, where J is the largest component
of m−1J . As the distributions of the components of a Wishart matrix have exponential tails, the
probability that J = Ω (η−r) is indeed o

(
ηN
)

and therefore all conditions are satisfied by WHRFs.

C THE LOSS LANDSCAPE OF WISHART HYPERTOROIDAL RANDOM FIELDS

C.1 THE JOINT DISTRIBUTION OF FWHRF AND ITS DERIVATIVES

In order to utilize the Kac–Rice formula (Lemma 3), we must calculate the joint distribution of the
random field

FWHRF (θ) = m−1
2p∑

i1,...,ir,i′1,...,i
′
r=1

wi1 . . . wirJi1,...,ir,i′1,...,i′rwi′1 . . . wi′r , (64)

with its derivatives. In the course of proving Theorem 5, we already have shown that the function
value is gamma distributed (see equation 57). Here, we explicitly calculate the distribution of the
Hessian when given the function value and that the covariant gradient is zero, and also calculate
the distribution of the gradient given the function value. We will heavily lean on the rotational
invariance property of the distribution discussed in the proof of Theorem 5, with n once again the
fixed point with all θi = 0. Note that for the given embedding of the hypertorus into R2p

, the
Christoffel symbols are zero (i.e. we are considering the Euclidean hypertorus) and thus for the
most part we can ignore the distinction between covariant and normal derivatives. Here, we choose
local coordinates θ such that:

wi =

(
cos (θi)
sin (θi)

)
. (65)
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Perhaps surprisingly, we will find that conditioned on being at a critical point at a specified energy,
the Hessian takes the simple form of a normalized and shifted Wishart matrix summed with a nor-
malized GOE matrix. The gradient conditioned on the function value is similarly simple, given by
independent Gaussian variables.
Lemma 4 (Hessian and gradient distributions). The scaled Hessian m∂i∂jFWHRF (w) conditioned
on FWHRF (w) = x and ∂kFWHRF (w) = 0 is distributed as

mC̃ij (x) = −2rmxδij + rWij + r
√

2mxNij , (66)

where W ∼ Wp (2m, Ip) and N ∼ GOEp are independent. Furthermore, the scaled gradient
m∂kFWHRF (w) conditioned on FWHRF (w) = x is distributed as

mG̃k (x) =
√

2mrxNk, (67)

where Nk are i.i.d. standard normally distributed random variables independent from all Wij and
Nij .

Proof. Without loss of generality we take w = n. Let i ∈ {1, 2}×p be the vector with the ith
component equal to 2 and all others equal to 1, (i, j) similar with both the ith and jth component,
and b the vector with all components equal to 1. Taking derivatives explicitly yields

m∂iFWHRF (n) = 2 Re
{
J(i,b,...,b),(b,...,b)

}
+ . . .+ 2 Re

{
J(b,...,i),(b,...,b)

}
(68)

and
m∂i∂jFWHRF (n) = −2rδijJ(b,...,b),(b,...,b)

+ 2 Re
{
J(i,b,...,b),(j,b,...,b)

}
+ 2 Re

{
J(i,b,...,b),(b,j,...,b)

}
+ . . .+ 2 Re

{
J(b,...,b,i),(b,...,b,j)

}
+ 2 Re

{
J((i,j),b,...,b),(b,...,b)

}
+ 2 Re

{
J(i,j,...,b),(b,...,b)

}
+ . . .+ 2 Re

{
J(b,...,b,(i,j)),(b,...,b)

}
.

(69)
As J is a Wishart matrix with identity scale matrix, it can be written as X ·X† for X a 2q ×m
matrix with i.i.d. standard complex normal entries. By performing an LQ decomposition of X ,
one can then by inspection determine the distributions of the entries of J (Srivastava, 2003; Yu
et al., 2014). For ease of notation, we let τ : {1, 2}×q → {1, . . . , 2q} be a mapping between
representations of the indices of J , with the convention τ ((b, . . . , b)) = 1. We then find (taking
τ ((i, . . . , 2)) < τ ((j, . . . , 2)) WLOG) that

2J(b,...,b),(b,...,b) = 2mFWHRF (n) , (70)

2 Re
{
J(i,...,b),(b,...,b)

}
=
√

2mFWHRF (n)M(b,...,b),(i,...,b), (71)

2 Re
{
J(i,j,...,b),(b,...,b)

}
=
√

2mFWHRF (n)M(b,...,b),(i,j,...,b); (72)

and, for τ ((i, . . . , b)) ≤ m,

2 Re
{
J(i,...,b),(j,...,b)

}
=
√

2Γ(i,...,b)M(i,...,b),(j,...,b)

+

τ((i,...,b))−1∑
µ=1

Mτ−1(µ),(i,...,b)Mτ−1(µ),(j,...,b) +

τ((i,...,b))−1∑
µ=1

M̃τ−1(µ),(i,...,b)M̃τ−1(µ),(j,...,b)

(73)
and otherwise

2 Re
{
J(i,...,b),(j,...,b)

}
=

m∑
µ=1

Mτ−1(µ),(i,...,b)Mτ−1(µ),(j,...,b)

+

m∑
µ=1

M̃τ−1(µ),(i,...,b)M̃τ−1(µ),(j,...,b).

(74)

Here, M and M̃ are symmetric with off-diagonal entries i.i.d. drawn from the standard normal
distribution, and Γτ−1(µ) ≡ M2

τ−1(µ),τ−1(µ) has entries i.i.d. drawn from Γ (m− µ+ 1, 1). Note

that each
√

2Γ is chi-square distributed with 2 (m− µ+ 1) degrees of freedom; therefore, equa-
tion 73 and equation 74 can be considered as elements of a real Wishart matrix W̃ with 2m degrees
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of freedom. Also, note that equation 73 and equation 74 are independent of ∂kFWHRF (n) when
conditioned on FWHRF (n) ≡ x = 0. If x 6= 0, the condition ∂kFWHRF (n) = 0 is equivalent to
taking each sum over the elements ofM from µ = 2 instead of µ = 1, which is equivalent to taking
the convention τ ((b, . . . , b)) = 2q and shifting the indices of M and M̃ . Therefore, the (scaled)
Hessian conditioned on FWHRF (n) = x and ∂kFWHRF (n) = 0 is distributed as

mC̃ij (x) = −2rmxδij +
(
O · W̃ ·Oᵀ

)
ij

+ r
√

2mxNij ; (75)

here, N ∼ GOEp (with the convention that diagonal entries ∼ N (0, 2) and off-diagonal en-
tries ∼ N (0, 1)), and O is a matrix such that Oiµ = 1 if and only if τ−1 (µ) is of the form
(b, . . . , i, . . . , b), and is otherwise equal to 0. The invariance of the Wishart distribution under
orthogonal transformations and partitioning (Eaton, 2007; Srivastava, 2003) leads to the final re-
sult.

C.2 THE EXACT DISTRIBUTION OF CRITICAL POINTS

Given the joint distribution of FWHRF, its gradient, and its Hessian, we are now equipped to calculate
the expected number of critical points of a given index k using the Kac–Rice formula (Lemma 3).
Theorem 6 (Distribution of critical points in WHRFs). Let

µC(x) =
1

p

p∑
i=1

δ
(
λ
C(x)
i

)
(76)

be the empirical spectral measure of the random matrix

C (x) =
r

m

(
W +

√
2mxN

)
, (77)

where W ∼ Wp (2m, Ip) and N ∼ GOEp are independent and λCi (x) is the ith smallest eigen-
value of C (x). Then, the distribution of the expected number of critical points of index k at an
energy E > 0 of FWHRF is given by
E [Crtk (E)]

=
(π
r

) p
2

Γ (m)
−1
m(1+γ)mEC(E)

[
ep

∫
ln(|λ−2rE|)dµC(E)1

{
λ
C(E)
k+1 ≥ 2rE

}]
E(1−γ)m−1e−mE ,

(78)
where

γ =
p

2m
. (79)

Proof. As discussed in Appendix B, the assumptions of the Kac–Rice formula (i.e. Lemma 3) are
satisfied. Furthermore, due to the invariance of the Wishart distribution with respect to rotations on
the hypertorus (Eaton, 2007; Srivastava, 2003), we can integrate out the volume element indepen-
dently; the volume of

(
S1
)×p

is ∫
(S1)×p

dw = (2π)
p
. (80)

Additionally, we have from Lemma 4 that the probability density of the gradient vector being zero
at any w conditioned on HWHRF (w) = x is

pw (∇HWHRF (w) = 0 | HWHRF (w) = x) =

(
4πrx

m

)− p
2

. (81)

Taking the expectation over x via equation 57 and using the Hessian distrribution from Lemma 4,
we have from Lemma 1 that

E [Crtk (B = (0, E))] =
(π
r

) p
2

Γ (m)
−1
m(1+γ)m

×
E∫

0

EC(x)

[
ep

∫
ln(|λ−2rx|)dµC(x)1

{
λ
C(x)
k+1 ≥ 2rx

}]
x(1−γ)m−1e−mx dx .

(82)

Taking the derivative of this cumulative distribution with respect to E yields the final result.
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D LOGARITHMIC ASYMPTOTICS VIA FREE PROBABILITY THEORY

Though equation 78 is exact, it is difficult to use in practice. Luckily, we are able to use a surprising
fact about the eigenvalue distributions of Wishart and GOE matrices; asymptotically, the empirical
spectral distributions of these matrices weakly converge to fixed distributions. Concretely, in the
limit p → ∞ where γ = p

2m is held constant, the eigenvalue distribution of W /2m where W ∼
Wp (2m, Ip) weakly converges to the Marchenko–Pastur distribution (Marčenko & Pastur, 1967):

dµM.P. =
(
1− γ−1

)
1 {γ > 1} δ (λ) dλ+

1

2πγλ

√(
(1 +

√
γ)

2 − λ
)(

λ− (1−√γ)
2
)

dλ . (83)

Similarly, the eigenvalue distribution ofN/
√
p whereN ∼ GOEp weakly converges to the Wigner

semicircle distribution (Wigner, 1958):

dµs.c. =
1

2π

√
4− λ2 dλ . (84)

Furthermore, by using free probability theory one can find the asymptotic distribution of eigenvalues
for a weighted sum of these matrices, given their eigenbases are in “generic position” with respect to
each other. We now give a brief review of free probability theory—at least in the context of random
matrix theory—here. Later, we will also briefly review large deviations theory, which we use to
bound the probability of large deviations from the weak convergence of the eigenvalue distributions
of Wishart and GOE matrices. Note that, as we are unable to control large deviations in Theorem 4,
in principle large deviations in the weak convergence of VQAs to WHRFs could dominate the large
deviations in WHRFs; however, as discussed in Appendix A.3, this provably does not occur at
shallow enough depths with respect to n, and there are reasons to believe it does not occur even at
large depths (which we additionally give numerical evidence for in Sec. 5).

We begin by reviewing the techniques in free probability theory and large deviations theory that we
use in studying the asymptotic behavior of equation 78.

D.1 FREE PROBABILITY THEORY

Free probability theory is the study of noncommutative random variables. Specializing to random
matrix theory on N ×N matrices, we define the unital linear functional

φ (X) ≡ 1

N
E [tr (X)] (85)

as the free analogue of the expectation. Note that the eigenvalues of a matrix A are completely
constrained by the trace of powers Ak—therefore, one can study the average distribution of the
eigenvalues of a random matrix A via the moments φ

(
Ak
)
. Free independence (or freeness) is a

generalization of the notion of independence in commutative probability theory to free probability
theory. In the context of random matrix theory, two N ×N random matrices A and B are said to be
freely independent if the mixed moments are identically zero; that is,

φ ((Am1 − φ (Am1)) (Bn1 − φ (Bn1)) . . . (Amk − φ (Amk)) (Bnk − φ (Bnk))) = 0 (86)

for all ni,mi ∈ N. Roughly, the free independence of two random matrices means that their eigen-
bases are in “generic position” from one another.

Taking the analogy with commutative probability theory further, the analogue of the moment-
generating function associated with the distribution of a random variable is the Stieltjes transform
of the measure µ:

Gµ (z) =

∫
dµ (t)

z − t
, (87)

which can be inverted via the Stieltjes inversion formula:

dµ (t) = − 1

π
lim
ε→0+

Im {Gµ (t+ iε)} dt . (88)

Similarly, the free analogue of the cumulant-generating function is the R-transform, which can be
defined via the Stieltjes transform as the solution to the implicit equation:

Rµ (Gµ (z)) +
1

Gµ (z)
= z. (89)
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The R-transform is important in that, if two random variables A and B are freely independent with
probability measures µA and µB respectively, the probability measure µA+B of A+B satisfies

RµA+B
= RµA

+RµB
. (90)

This can be interpreted as the free analog of the additivity of cumulants for commutative random
variables. The probability measure µA+B is called the free convolution of µA and µB , and is denoted
using the notation

µA+B = µA � µB . (91)
Thus, given the probability distributions of two free random variablesA andB, there is a prescription
for determining the probability distribution of their sum by taking their free convolution, just as
the convolution in commutative probability theory describes the distribution of the sum of random
variables.

D.2 LARGE DEVIATIONS THEORY

In order to bound the probability of large deviations from the weak convergence of the eigenvalue
distribution of C to its asymptotic limit we will use results from large deviations theory, which we
briefly review here. A sequence of measures {µn} is said to satisfy a large deviation principle in the
limit n → ∞ with speed s (n) and lower semicontinuous rate function I with codomain [0,∞] if
and only if (Dembo & Zeitouni, 2010)

− inf
x∈Γ◦

I (x) ≤ lim inf
n→∞

1

s (n)
ln (µn (Γ )) ≤ lim sup

n→∞

1

s (n)
ln (µn (Γ )) ≤ − inf

x∈Γ
I (x) (92)

for all Borel measurable sets Γ that all µn are defined on. Here, Γ denotes the closure of Γ and
Γ ◦ the interior of Γ . The rate function I is said to be good if all level sets of I are compact. Large
deviations theory will be useful for us to bound the probabilities of large deviations of the empirical
spectral distribution of µC(x) as p→∞, and show that they do not contribute to leading order in the
(logarithmic) asymptotic distribution of critical points. We do this using Varadhan’s lemma, which
we state now.
Lemma 5 (Varadhan’s lemma (Dembo & Zeitouni, 2010)). Suppose {µn} satisfies a large deviation
principle with speed s (n) and good rate function I and let φ be a real-valued continuous function.
Further assume either the tail condition

lim
M→∞

lim sup
n→∞

1

s (n)
ln
(
EXn∼µn

[
es(n)φ(Xn)1 {φ (Xn) ≥M}

])
= −∞, (93)

or the moment condition for some γ > 1

lim sup
n→∞

1

s (n)
ln
(
EXn∼µn

[
eγs(n)φ(Xn)

])
<∞. (94)

Then,

lim
n→∞

1

s (n)
ln
(
EXn∼µn

[
es(n)φ(Xn)

])
= sup

x
(φ (x)− I (x)) . (95)

D.3 LOGARITHMIC ASYMPTOTICS OF THE DISTRIBUTION OF CRITICAL POINTS

Equipped with these mathematical tools, we prove our first result on the asymptotic behavior of
µC(x), which is present in the expectation of equation 78.

Lemma 6 (Asymptotic behavior of µC(x)). Define G∗x (z) as the implicit solution of the equation

8r3γ2xG∗x (z)
3 − 2rγ (z + 2rx)G∗x (z)

2
+ (z − 2r (1− γ))G∗x (z)− 1 = 0 (96)

with the smallest imaginary part. Define

dµ∗x ≡ −
1

π
Im {G∗x} dλ . (97)

Let p,m → ∞ as γ = p
2m is held constant. Then, the empirical spectral measure µC(x) satisfies a

large deviation principle as p→∞ with speed p2 with good rate function uniquely minimized at µ∗x
with a value of 0.
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Proof. The empirical spectral measure of the random matrixN/
√
p satisfies a large deviation prin-

ciple at a scale p2, with good rate function minimized by Wigner’s semicircle law (Arous & Guion-
net, 1997). Similarly, the empirical spectral measure of the random matrix W /2m satisfies a large
deviation principle at a scale p2, with good rate function minimized by the Marchenko–Pastur distri-
bution (Hiai & Petz, 1998). As the R-transform of the empirical spectral distribution of A satisfies
the scaling property

RaA (z) = aRA (az) , (98)

the R-transform of the empirical spectral distribution of the weighted GOE term ofC is of the form

RGOE (z) = 4r2γxz (99)

and the R-transform of the weighted Wishart term is of the form

RWishart (z) =
2r

1− 2rγz
. (100)

By the asymptotic freeness of independent GOE and Wishart matrices (Hiai & Petz, 2006), µC(x)

converges weakly to the fixed measure µ∗ with R-transform

Rx (z) = RWishart (z) +RGOE (z) . (101)

Equation 96 and equation 97 now follow from inverting the R-transform Rx via equation 89 and
equation 88, respectively.

We now consider large deviations in the weak convergence µC(x)  µ∗x. Conditioning on the
empirical spectral distribution of W /2m and using the “strongest growth wins” principle (Dembo
& Zeitouni, 2010), we have that µC(x) satisfies a large deviation principle with speed p2 with rate
function given by

I (µ) = inf
µW/2m

(
JµW/2m

(µ) +K
(
µW /2m

))
; (102)

here, K is the rate function governing convergence of the empirical spectral distribution of the
Wishart ensemble (Hiai & Petz, 1998) and JµW/2m

is the rate function governing convergence of
the empirical spectral distribution of a fixed matrix with asymptotic eigenvalue distribution µW /2m

summed with a GOE matrix (Guionnet & Zeitouni, 2002). This sum is obviously uniquely mini-
mized by µ = µ∗, when I (µ∗) = 0.

Now, we examine the asymptotic behavior of the smallest eigenvalue λC(x)
1 of C (x). Unlike the

empirical spectral measure µC(x) which satisfies a large deviation principle at a speed p2, we will
see that this eigenvalue satisfies a large deviation principle at a speed p, with deviations at this speed
to the left of the asymptotic value λ∗x,1.

Lemma 7 (Asymptotic behavior of λC(x)
1 ). Let λ∗x,1 be the infimum of the support of µ∗x as defined in

equation 97. Then, the smallest eigenvalue λC(x)
1 of C (x) satisfies a large deviation principle with

speed p with good rate function that is infinite at y > λ∗x,1 and is uniquely minimized at y = λ∗x,1
with a value of 0.

Proof. The limiting smallest eigenvalues λW1 , λN1 of W /2m and N/
√
p both satisfy large devia-

tion principles with speed p that are infinite for λ1 in the bulk of their respective limiting empirical
spectral distributions (Johansson, 2000; Arous et al., 2001). As in the proof of Lemma 6, we condi-
tion on large deviations of these eigenvalues (Dembo & Zeitouni, 2010) and therefore have that the
rate function governing λC(x)

1 is

I (y) = inf
λW1 ,λN1

(
JλW1 ,λN1

(y) +K
(
λW1

)
+ L

(
λN1
))

; (103)

here, K is the rate function governing the convergence of λW1 , L that of λN1 , and J that of the
smallest eigenvalue C (x) conditioned on the eigenvalue distributions of W and N . Using known
results on the large deviations of the smallest eigenvalue of the sum of two matrices with fixed
eigenvalues (i.e. JλW1 ,λN1

) (Guionnet & Maı̈da, 2020), we see that I (y) is infinite for y > λ∗x,1 and
is uniquely minimized at y = λ∗x,1 with a value of 0.
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Using Lemmas 6 and 7, we can prove the following logarithmic asymptotics on the expectation term
in equation 78. We will find that neither the large deviations in the convergence µC(x) or λC(x)

1 will
contribute to leading order in the logarithmic asymptotics of Crtk (E), as at a speed p the only large
deviations are λC(x)

1 ≤ λ∗x,1 which are dominated by λC(x)
1 = λ∗x,1 in the expectation.

Lemma 8 (Logarithmic asymptotics of the determinant). Let dµ∗E be the spectral measure given in
equation 97, with λ∗E,1 the infimum of its support. Let p,m� 1 with p

2m = γ = O (1). Then,

1

p
ln
(
EC(E)

[
ep

∫
ln(|λ−2rE|)dµC(E)1

{
λ
C(E)
k+1 ≥ 2rE

}])
=

∫
ln
(
1
{
λ∗E,1 ≥ 2rE

}
|λ− 2rE|

)
dµ∗E + o (1) .

(104)

Proof. As µC(E) satisfies a large deviation principle with speed p2 with rate function minimized

at µ∗E by Lemma 6, and as 1
{
λ
C(E)
1 ≥ 2rE

}
≤ 1, we have that the tail condition of Varadhan’s

lemma at speed p is satisfied (Dembo & Zeitouni, 2010) and therefore

lim
p→∞

1

p
ln
(
EC(E)

[
ep

∫
ln(|λ−2rE|)dµC(E)1

{
λ
C(E)
1 ≥ 2rE

}])
= sup
λ∈R

(∫
ln (1 {λ ≥ 2rE} |λ− 2rE|) dµ∗E − I (λ)

)
.

(105)

Here, I is as in equation 103. The supremum over λ is obviously achieved when λ = λ∗E,1 by the
properties of I discussed in Lemma 7, giving the leading order term in equation 104. The result
being exact in the p→∞ limit gives the subleading o (1).

Using Lemma 8, we can therefore finally calculate the logarithmic asymptotic distribution of local
minima of a WHRF.

Theorem 7 (Logarithmic asymptotics of the local minima distribution). Let dµ∗E be the spectral
measure given in equation 97, with λ∗E,1 the infimum of its support. Let p,m � 1 with p

2m = γ =

O (1). Then, the expected distribution of local minima of FWHRF at a fixed energy E > 0 is given by

1

p
ln (E [Crt0 (E)]) =

1

2
ln

(
πq

2γ

)
+

1

2γ
(1− E) +

1

2

(
γ−1 − 1

)
ln (E)

+

∫
ln

(∣∣∣∣λr − 2E

∣∣∣∣1{λ∗E,1r ≥ 2E

})
dµ∗E + o (1) .

(106)

Proof. The result follows directly from applying Lemma 8 to Theorem 6.

Note that, though we only prove the asymptotic distribution of local minima in Theorem 7, we
expect similar theorems to also hold for critical points of constant index k (taking λ∗E,1 7→ λ∗E,k
in the integrand). The only difference in the derivation is the exact form of the large deviations of
the kth smallest eigenvalue of C (x). This is similar to the case in Gaussian hyperspherical random
fields (Auffinger et al., 2013).

E DETAILS OF THE NUMERICAL SIMULATIONS

We now give further details on the numerical simulations performed in Sec. 5. We performed all
simulations via Qiskit (Abraham et al., 2019), and used standard gradient descent (via the method
of finite differences) to optimize the VQA loss function

F (θ) = 〈θ|HT ,U |θ〉 (107)

26



Published as a conference paper at ICLR 2022

until convergence. HT,U is the 1D n site spinless Fermi–Hubbard Hamiltonian (Negele & Orland,
1998)

HT ,U = −
n−1∑
i=1

Ti

(
c†i ci+1 + c†i+1ci

)
+

n−1∑
i=1

Uic
†
i cic

†
i+1ci+1, (108)

where c is the fermionic annihilation operator. Ti and Ui are i.i.d. normally distributed in order to
break translational invariance. In our simulations, these random variables were centered at T = 1
and U = 2, respectively, and each had a variance of 10−2.

Our implementation of gradient descent used a learning rate of 0.05 and a momentum of 0.9,
and halted when either the function value improved by no more than 10−5 or after 106 iterations,
whichever came first. We initialized each instance at a uniformly random point in parameter space,
with each parameter initialized within [−2π, 2π].

To estimate the empirical distribution of local minima for the studied instances of the varitional
quantum eigensolver (VQE) (Peruzzo et al., 2014), we repeated this procedure 52 times, using a new
ansatz and uniformly random starting point for each training instance. We also verified numerically
that m as defined in equation 26 is at least on the order of 2n for H1,2, though we directly used
equation 26 when computing γ. In all plotted instances, we normalize the energy scale by a factor
of cVQA, where

cVQA = λ− λ1; (109)
this is just the overall factor of equation 8. These units are such that the mean eigenvalue of H − λ1

in the subspace of interest is at E = 1.

In Sec. 5.2, we tested our analytic results against a Hamiltonian informed ansatz. Specifically, we
used the Hamiltonian variational ansatz (HVA) (Wecker et al., 2015). For the Fermi–Hubbard
Hamiltonian of equation 108, each HVA layer is of the form

UT ,Ui (θi) = e−iθi,2HT,U,odde−iθi,2HT,U,evene−iθi,1HT,U,Coulomb . (110)

Here, HT ,U ,Coulomb is composed of the terms proportional to Ui in HT ,U , HT ,U ,even the hopping
terms on even links, and HT ,U ,odd the hopping terms on odd links. We took the starting state |ψ0〉
to be the computational basis state |1〉 on the first n2 qubits and |0〉 on the other n2 qubits. To observe
the effects of scaling the number of independent parameters p, we overparameterize our ansatz at
a fixed overall depth by fixing the total number of ansatz layers UT ,Ui to be 6, but introduce extra
parameters to govern each evolution. For instance, for a multiplicative factor f = 2, we double the
number of parameters by splitting into a sum of two terms

HT ,U ,Coulomb = H
(1)
T ,U ,Coulomb +H

(2)
T ,U ,Coulomb, (111)

HT ,U ,even = H
(1)
T ,U ,even +H

(2)
T ,U ,even, (112)

HT ,U ,odd = H
(1)
T ,U ,odd +H

(2)
T ,U ,odd, (113)

and parameterize the evolution under each term separately. For f = 1, this ansatz preserves the
fermion number of the initial state; thus, for these simulations we calculate m in this n

2 -fermion
subspace. For large f , this parameterization breaks the fermion number conservation of the ansatz,
but still preserves the parity of the fermion number. In practice, then, the γ we compute should be
considered an upper bound on the true γ, strengthening our empirical results.
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