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Abstract

This paper considers the clustering problem in the Labeled Stochastic Block
Model (LSBM) from the observations of labels. For this model, we assume that
the cluster size increases linearly with the number of nodes n. Our goal is to de-
velop an efficient algorithm to identify the clusters based on the observed labels.
We reexamine instance-specific lower bounds on the expected number of misclas-
sified items. These bounds must be satisfied by any clustering algorithm. We
propose Instance-Adaptive Clustering (IAC), the first algorithm that matches the
lower bounds in expectation. IAC combines a one-time spectral clustering method
with an iterative likelihood-based cluster assignment refinement procedure. This
technique relies on the instance-specific lower bound and does not necessitate any
model parameters, including the number of clusters. IAC retains an overall com-
putational complexity of O(npolylog(n)). We demonstrate the efficacy of our
approach through numerical experiments.

1 Introduction

Community detection or clustering refers to the task of gathering similar items into a few groups
from the data that, most often, correspond to observations of pair-wise interactions between items
Newman and Girvan [2004]. A benchmark commonly used to assess the performance of clustering
algorithms is the celebrated Stochastic Block Model (SBM) Holland et al. [1983], where pair-wise
interactions are represented by a random graph. In this graph, the vertices correspond to items, and
the presence of an edge between two items indicates their interaction. The SBM has been extensively
studied over the last two decades; for a recent survey, see Abbe [2018]. However, it provides a rela-
tively simplistic view of how items may interact. In real applications, interactions can be of different
types (e.g., represented by ratings in recommender systems or a level of proximity between users in
a social network). To capture this richer information about item interactions, the Labeled Stochastic
Block Model (LSBM), proposed and analyzed in Heimlicher et al. [2012], Lelarge et al. [2013], Yun
and Proutiere [2016], describes interactions by labels drawn from an arbitrary collection. The ob-
jective of this paper is to devise a clustering algorithm that, based on the observation of these labels,
reconstructs the clusters of items while minimizing the expected number of misclassified items. In
the following, we formally introduce LSBMs and outline our results.

The Labeled Stochastic Block Model. In the LSBM, the set I consisting of n items or nodes is
randomly partitioned into K unknown disjoint clusters I1, . . . , IK . The cluster index of the item
i is denoted by σ(i). Let α = (α1, α2, . . . , αK) represent the probabilities of items belonging to
each cluster, i.e., for all k ∈ [K] and i ∈ I, P(i ∈ Ik) = αk. We assume that α1, . . . , αK are
strictly positive constants and that K and α are fixed as n grows large. Without loss of generality,
we also assume that α1 ≤ . . . ≤ αK . Let L = {0, 1, . . . , L} be the finite set of labels. For each
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edge (v, w) ∈ Ii × Ij , the learner observes the label ℓ with probability p(i, j, ℓ), independently
of the labels observed in other edges. The number of clusters K is initially unknown. We have
∀i, j ∈ [K]2,

∑
ℓ∈[L] p(i, j, ℓ) = 1. Without loss of generality, 0 is the most frequent label:

0 = arg max
ℓ

∑K
i=1

∑K
j=1 αiαjp(i, j, ℓ). Let p̄ = maxi,j,ℓ≥1 p(i, j, ℓ) be the maximum probability

of observing a label different from 0. We will mostly consider the challenging sparse regime where
p̄ = O((log n)/n) and p̄n → ∞ as n → ∞, but we will precise the assumptions made on n and p̄
for each of our results. We further assume for all i, j, k ∈ [K]:

(A1) ∀ℓ ∈ L, p(i, j, ℓ)

p(i, k, ℓ)
≤ η and (A2)

∑K
k=1(

∑L
ℓ=1 (p(i, k, ℓ)− p(j, k, ℓ)))2

p̄2
≥ ε,

where η and ε are positive constants independent of n. (A1) imposes some homogeneity on the edge
existence probability, and (A2) implies a certain separation among the clusters. In summary, the
LSBM is parametrized by α and p := (p(i, j, ℓ))1≤i,j≤K,0≤ℓ≤L. We denote p(i) as the K× (L+1)
matrix whose element on j-th row and (ℓ+ 1)-th column is p(i, j, ℓ) and denote p(i, j) ∈ [0, 1]L+1

the vector describing the probability of the label of a pair of items in Ii and Ij .

Main results. We design a computationally efficient algorithm that recovers the clusters in the
LSBM with a minimal error rate. By minimal, we mean that for any given LSBM, the algorithm
achieves the best possible error rate for this specific LSBM. This contrasts with the minimax guar-
antees and demonstrates that the algorithm adapts to the hardness of the LSBM it is applied. We
first present an instance-specific lower bound on the expected number of misclassified items satis-
fied by any algorithm. Let PK×(L+1) denote the set of all K × (L + 1) matrices such that each
row represents a probability distribution and define the divergence D(α, p) of the parameter (α, p)
as follows:

D(α, p) = min
i,j∈[K]:i̸=j

DL+(α, p(i), p(j)) (1)

with DL+(α, p(i), p(j)) = min
y∈PK×(L+1)

max

{
K∑

k=1

αk kl(y(k), p(i, k)),
K∑

k=1

αk kl(y(k), p(j, k))

}
,

where kl is the Kullback-Leibler divergence between two label distributions, i.e., kl(y(k), p(i, k)) =∑L
ℓ=0 y(k, ℓ) log

y(k,ℓ)
p(i,k,ℓ) . DL+(α, p(i), p(j)) can be interpreted as the hardness in distinguishing

whether an item belongs to cluster i or cluster j based on the data. Consider a clustering algorithm π.
Let επ(n) denote the number of misclassified items for a given clustering algorithm π, with E[επ(n)]
representing its expected value. This quantity is defined up to a permutation. Specifically, if π

returns (Îk)k, then επ(n) is calculated as minθ |∪k Îk\Iθ(k)|, where θ denotes a permutation of [K].
To simplify the notation throughout the remainder of the paper, we assume that the permutation
achieving the minimum is given by θ(k) = k for all k ∈ [K]. We present the following theorem that
provides a lower bound on E[επ(n)]:

Theorem 1.1. Let s = o(n). Under the assumptions of (A1), (A2), and p̄n = ω(1), for any
clustering algorithm π that satisfies lim supn→∞

E[επ(n)]
s ≤ 1,

lim inf
n→∞

nD(α, p)

log(n/s)
≥ 1. (2)

The proof of Theorem 1.1 is based on the change-of-measure argument frequently used in online
stochastic optimization and multi-armed bandit problems Lai and Robbins [1985], Kaufmann et al.
[2016]. It is presented in Yun and Proutiere [2016] and in Appendix C for completeness. The main
contribution of this paper is an algorithm with performance guarantees that match those of the above
lower bound and with computational complexity scaling as npolylog(n). This algorithm, referred
to as Instance-Adaptive Clustering (IAC) and presented in Section 3, first applies a spectral clus-
tering algorithm to initially guess the clusters and then runs a likelihood-based local improvement
algorithm to refine the estimated clusters. To analyze the performance of the algorithm, we make
the following assumption.

(A3) np(j, i, ℓ) ≥ (np̄)κ for all i, j and ℓ ≥ 1, for some constant κ > 0.
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Assumption (A3) excludes the existence of labels that are too sparse compared to p̄. The following
theorem establishes the optimality of IAC:

Theorem 1.2. Assume that (A1), (A2), and (A3) hold, and that p̄ = O(log n/n), p̄n = ω(1). Let
s = o(n). If the parameters (α, p) of the LSBM satisfy (2), then IAC misclassifies at most s items in
high probability and in expectation, i.e., limn→∞ P[εIAC(n) ≤ s] = 1 and lim supn→∞

E[εIAC(n)]
s ≤

1. IAC requires O(n(log n)3) floating-point operations.

As far as we know, IAC is the first algorithm achieving performance that matches the lower bound
presented in Theorem 1.1. It improves the previous results on the LSBM [Yun and Proutiere, 2016],
moving beyond high-probability performance guarantees. More precisely, the algorithm presented
by Yun and Proutiere [2016] misclassifies less than s items with a probability that tends to 1 as n
grows large, provided that s satisfies (2). However, the probability of the failure event (when the
algorithm misclassifies more than s items) is not quantified in their work. It is necessary to quantify
this probability for guarantees in expectation. To achieve this goal, we have to significantly revisit
the analysis presented in Yun and Proutiere [2016]. (i) We need to re-design some of the compo-
nents of the algorithm. (ii) Moreover, in every step of the performance analysis, it is necessary to
provide a small enough upper bound for the probability of the failure event. The analysis of the
error rate after the first step of the algorithm (essentially a spectral clustering algorithm) requires
establishing an upper bound on the spectral norm of the noise matrix associated with the obser-
vations. To accomplish this, we leverage arguments from the spectral analysis of sparse random
graphs, as demonstrated in, for example, Feige and Ofek [2005]. Unfortunately, these arguments
hold with a high probability that does not suffice to establish guarantees in expectation. We extend
the arguments so that they hold with probability at least 1 − 1/nc for any c > 0, which is enough
to obtain guarantees in expectation. Such an extension was also proposed in Gao et al. [2017], Le
et al. [2017] for the SBM (we compare our results to those of Gao et al. [2017] in Section 2), but our
spectral clustering algorithm is different, and our results apply to the general LSBM. The analysis of
the likelihood-based improvement step has to be significantly modified to prove that all intermediate
statements (e.g., the lower bound of the rate at which the error rate decreases) hold with a sufficiently
high probability, typically again 1− 1/nc for any c > 0. Obtaining such a guarantee is challenging
due to the correlations created by the initial clustering, which affect the likelihood-based local im-
provement. However, we have made it possible by using a set of items with desirable properties in
the LSBM (set H in Section 3.2.2) and then conducting deterministic proofs on that set.

2 Related Work

2.1 Community Detection in the SBM

Community detection in the SBM and its extensions have received a lot of attention over the last
decade. We first briefly outline existing results below and then zoom in on a few papers that are the
most relevant for our analysis. The results of the SBM can be categorized depending on the targeted
performance guarantees. We distinguish three types of guarantees: (a) detectability, (b) asymptot-
ically accurate recovery, and (c) exact recovery. Most results are concerned with the simple SBM,
which is obtained as LSBM characterized by L = 1 and the intra- and inter-cluster probabilities
p(i, i, 1) and p(i, j, 1) for i ̸= j ∈ [K].

(a) Detectability refers to the requirement of returning estimated clusters that are positively corre-
lated with the true clusters. It is typically studied in the sparse binary SBM where K = 2, α1 = α2,
p(1, 1, 1) = p(2, 2, 1) = a/n and p(1, 2, 1) = p(2, 1, 1) = b/n, for some constants a > b indepen-
dent of n. For such SBM, detectability can be achieved if and only if (a− b) >

√
2(a+ b) [Decelle

et al., 2011, Mossel et al., 2015a, Massoulié, 2013]. Detectability conditions in more general sparse
SBMs have been investigated in Krzakala et al. [2013], Bordenave et al. [2015]. In the sparse SBM,
when the edge probabilities scale as O(1/n), there is a positive fraction of isolated items, and we
cannot do much better than merely detecting the clusters.

(b) In this paper, we are interested in scenarios where the edge probabilities are ω(1/n), allowing
us to achieve an asymptotically accurate recovery of the clusters. This means that the proportion of
misclassified items tends to 0 as n grows large. A necessary and sufficient condition for asymptoti-
cally accurate recovery in the SBM (with any number of clusters of different but linearly increasing
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sizes) has been derived in Yun and Proutiere [2014b] and Mossel et al. [2015b]. In our work, we con-
duct more precise analysis and derive the minimal expected proportion of misclassified items. This
minimal proportion is characterized by our divergence D(α, p) and is, therefore, instance-specific.
Our analysis thus provides more accurate results than those derived in a minimax framework [Gao
et al., 2017]. An extensive comparison with Gao et al. [2017] is provided below.

(c) An algorithm achieves an asymptotically exact recovery if it only misclassifies o(1) items. Con-
ditions for such exact recovery have also been recently studied in the binary symmetric SBM [Yun
and Proutiere, 2014a, Abbe et al., 2016, Mossel et al., 2015b, Hajek et al., 2016] and in more general
SBM [Abbe and Sandon, 2015a,b, Wang et al., 2021]. In Yun and Proutiere [2016], these conditions
were further extended to the even more general LSBM.

2.2 Optimal Recovery Rate

Next, we discuss two papers Zhang and Zhou [2016], Gao et al. [2017] that are directly related to
our analysis. These papers study the standard SBM and present the minimal expected number of
misclassified items but in a minimax setting, in the regime where an asymptotically accurate re-
covery is possible. To simplify the exposition here, we assume that all clusters are of equal size
(refer to Zhang and Zhou [2016], Gao et al. [2017] for more details). The authors of Zhang and
Zhou [2016], Gao et al. [2017] characterize the minimal expected number of misclassified items
in the worst possible SBM within the class Θ(n, a, b) of SBMs satisfying, using our notation,
p(i, i, 1) ≥ a

n and p(i, j, 1) ≤ b
n for all i ̸= j ∈ [K], for some positive constants a, b depend-

ing on n1. The minimal expected number of misclassified items is defined through the Rényi di-
vergence of order 1

2 between the Bernoulli random variables of respective means a
n and b

n , given

by I∗(n, a, b) = −2 log(
√

a
n

√
b
n +

√
1− a

n

√
1− b

n ). When nI∗(n, a, b) = ω(1), it is equal

to n exp(−(1 + o(1))nI
∗(n,a,b)
K ). Zhang and Zhou [2016] established that the so-called penalized

Maximum Likelihood Estimator (MLE) achieves this minimax optimal recovery rate but does not
provide any algorithm to compute it. The authors of Gao et al. [2017] present an algorithm that
achieves this minimax lower bound in the following sense (see Theorem 4 in Gao et al. [2017]):

sup
(α,p)∈Θ(n,a,b)

P(α,p)

(
επ(n) ≥ n exp

(
−(1 + o(1))

nI∗(n, a, b)

K

))
→ 0,

where P(α,p) denotes the distribution of the observations generated under the SBM (α, p). One
could argue that the above guarantee does not match the minimax lower bound valid for the expected
number of misclassified items. However, by carefully inspecting the proof of Theorem 4 in Gao et al.
[2017], it is easy to see that the guarantee also holds in expectation:
Corollary 2.1. Assume that a/b = Θ(1), (a − b)2/a = ω(1), and a = O(log(n)). Let Auv be
the observation for the pair of items (u, v). Under Algorithm 1 in Gao et al. [2017] initialized with
USC(τ) in Gao et al. [2017] for τ = C 1

n

∑
u∈[n]

∑
v∈[n] Auv with some large enough constant

C > 0,

sup
(α,p)∈Θ(n,a,b)

E(α,p)[ε
π(n)] ≤ n exp

(
−(1 + o(1))

nI∗(n, a, b)

K

)
.

The proof is presented in Appendix F.10. The assumptions of Corollary 2.1 are satisfied when our
assumptions (A1) and (A2) hold.

The algorithm presented in Gao et al. [2017], which has established performance guarantees, comes
with a high computational cost. It requires applying spectral clustering n times, where for each item
u, the algorithm builds a modified adjacency matrix by removing the u-th column and the u-th row
and then computes a spectral clustering of this matrix. In contrast, our algorithm performs spectral
clustering only once. Gao et al. [2017] also proposed an algorithm with reduced complexity (run-
ning in Ω(n2)), but without performance guarantees. Our algorithm not only performs the spectral
clustering once but also requires just O(n(log n)3) operations. Additionally, our algorithm empiri-
cally exhibits better classification accuracy than the penalized local maximum likelihood estimation
algorithm Gao et al. [2017] in several scenarios.

1Refer to Gao et al. [2017] for a precise definition of the class of SBMs considered. Compared to our
assumptions (A1)-(A2)-(A3) specialized to SBMs, this class of SBMs is slightly more general.
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To conclude, compared to Gao et al. [2017], our analysis provides an instance-specific lower bound
for the classification error probability (rather than minimax) and introduces a low-complexity algo-
rithm that matches this lower bound. Additionally, our analysis is applicable to the generic Labeled
SBMs. It is worth noting, however, that Gao et al. [2017] derives upper bounds for classification
error probability under slightly more general assumptions than ours for the SBMs.

3 The Instance-Adaptive Clustering Algorithm and its Optimality

3.1 Algorithms

The Instance-Adaptive Clustering (IAC), whose pseudo-code is presented in Algorithm 1, consists
of two phases: a spectral clustering initialization phase and a likelihood-based improvement phase.

(i) Spectral clustering initialization. The algorithm relies on simple spectral techniques to obtain
rough but global estimates of the clusters. For details, refer to lines 1-4 in Algorithm 1. The al-
gorithm first constructs an observation matrix Aℓ = (Aℓ

uv)u,v for each label ℓ (where Aℓ
uv = 1 iff

label ℓ is observed on edge (u, v)), and sums these matrices to create the aggregated matrix A. After
trimming (to eliminate rows and columns corresponding to items with too many observed labels –
as these would perturb the spectral properties of A), we apply spectral clustering to A, as shown in
Algorithm 2. Specifically, we use the iterative power method (instead of using a direct SVD, which
has high complexity) combined with singular value thresholding [Chatterjee, 2015]. This approach
allows us to control the algorithm’s computational complexity and accurately estimate the number
of clusters. Notable differences compared to the spectral clustering in Yun and Proutiere [2016]
include modifications to the number of matrix multiplications in the iterative power method (we re-
quire approximately (log n)2 multiplications) and an enlargement of the set of centroid candidates in
the k-means algorithm (this set now comprises (log n)2 randomly selected items) for tighter control
of the failure event probability, leading to guarantees in expectation.

(ii) Likelihood-based improvements. Using the initial cluster estimates Si, we can also estimate p

from the data. For any i, j, ℓ, we calculate p̂(i, j, ℓ) =

∑
u∈Si

∑
v∈Sj

Aℓ
uv

|Si||Sj | . Based on p̂, the log-

likelihood of item v belonging to cluster Sk is computed as
∑

i∈[K̂]

∑
w∈Si

∑L
ℓ=0 A

ℓ
vw log p̂(k, i, ℓ).

Subsequently, v is assigned to the cluster that maximizes this log-likelihood over [K̂]. This process
is applied to all items and iterated for log n times.

3.2 Performance analysis

We sketch below the proof of Theorem 1.2. The complete proof is postponed to the appendix.

3.2.1 Spectral clustering initialization

The following theorem establishes performance guarantees for the cluster estimates returned by the
spectral clustering algorithm (Algorithm 2). Specifically, we show that the number of clusters is
correctly predicted as K̂ = K, and the number of misclassified items is O(1/p̄).
Theorem 3.1. Assume that (A1) and (A2) hold. After Algorithm 2, for any c > 0, there exists a
constant C > 0 such that(

K̂ = K and min
θ

∣∣∣∣∣
K⋃

k=1

Sk \ Iθ(k)

∣∣∣∣∣ ≤ C

p̄

)
with probability at least 1− exp(−cnp̄),

where the minimization is performed over the permutation θ of [K].

Sketch of proof of Theorem 3.1. Let M ℓ denote the expectation of the matrix Aℓ: M ℓ
uv = p(i, j, ℓ)

when u ∈ Vi and v ∈ Vj . Let M =
∑L

ℓ=1 M
ℓ, and MΓ ∈ [0, 1]n×n be the corresponding trimmed

matrix: (MΓ)wv = Mwv1{w,v∈Γ}.

(a) The main ingredient of the proof is an upper bound on the norm of the noise matrix Xℓ
Γ =

Aℓ
Γ −M ℓ

Γ that holds with a sufficiently high probability, as stated in the following lemma.
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Algorithm 1: Instance-Adaptive Clustering

Input: Observed adjacency matrices Aℓ for each label ℓ (Aℓ
uv = 1 if ℓ is observed between u

and v)

1. Estimated average degree. p̃←
∑L

ℓ=1

∑
v,w∈I:v>w Aℓ

vw

n(n−1)

2. Aggregated Matrix. A←
∑L

ℓ=1 A
ℓ.

3. Trimming.
Compute AΓ, where Γ is the set of items with the top-⌊n exp(−np̃)⌋ largest values of∑L

ℓ=1

∑
w∈I Aℓ

vw.
(AΓ)wv = Awv when w, v ∈ Γ and
(AΓ)wv = 0 when w, v ∈ Γc .
4. Spectral Clustering.
Run Algorithm 2 with input AΓ, p̃ and output {Sk}k=1,...,K̂ .
5. Estimation of the Statistical Parameters.
p̂(i, j, ℓ)←

∑
u∈Si

∑
v∈Sj

Aℓ
uv

|Si||Sj | for all 1 ≤ i, j ≤ K̂ and 0 ≤ ℓ ≤ L.
6. Likelihood-based local improvements.
S
(0)
k ← Sk for all k ∈ [K̂]

for t = 1 to log n do
S
(t)
k ← ∅ for all k ∈ [K̂]

for v ∈ I do
k∗ ← arg max

1≤k≤K̂

{∑
i∈[K̂]

∑
w∈S

(t−1)
i

∑L
ℓ=0 A

ℓ
vw log p̂(k, i, ℓ)

}
(tie broken uniformly

at random)
S
(t)
k∗ ← S

(t)
k∗ ∪ {v}

end
end
Îk ← S

(logn)
k for all k ∈ [K̂]

Output: (Îk)k=1,...,K̂ .

Lemma 3.2. For any ℓ ∈ [L], for any C > 0, there exists C ′ > 0 such that: ||Xℓ
Γ||2 ≤ C ′√np̄ ,

with probability at least 1− exp(−Cnp̄).

The proof, detailed in Appendix F.5, leverages and extends techniques developed for the spectral
analysis of random graphs Feige and Ofek [2005], Coja-Oghlan [2010]. Based on the above lemma,
we deduce that for any C > 0, there exists C ′ > 0 such that: ∥XΓ∥ ≤

∑L
ℓ=1 ∥Xℓ

Γ∥ ≤ C ′√np̄, with
probability at least 1− exp(−Cnp̄).

(b) The second ingredient of the proof is the following lemma, whose proof is provided in Ap-
pendix F.6. The lemma provides a lower bound on the distance between two columns of MΓ corre-
sponding to two items in distinct clusters.

Lemma 3.3. There exists a constant C ′ > 0 such that with probability at least 1 − exp(−ω(n)),
||MΓ,v −MΓ,w||22 ≥ C ′np̄2 , uniformly over all v, w ∈ Γ with σ(v) ̸= σ(w).

(c) The final proof ingredient concerns the performance of the iterative power method with singular
value thresholding and is proved in Appendix F.7.

Lemma 3.4. For any c > 0, there exists a constant C > 0 such that with probability at least
1− 1/nc, ∥AΓ − Â∥2 ≤ CσK+1, where σK+1 is the (K + 1)-th singular value of the matrix AΓ.

The first two lemmas may resemble those presented in Yun and Proutiere [2016]; however, we
needed to extend the analysis so that these results hold with a higher probability. We can now pro-
ceed with proving the theorem. We first explain why the number of clusters is accurately estimated.
It is straightforward to verify that there exist two strictly positive constants, C1 and C2, such that
with probability at least 1 − exp(−ω(n)), C1p̄ ≤ p̃ ≤ C2p̄ (refer to Lemma D.5). Consequently,
from Lemma 3.2, we deduce that for any C > 0, with probability at least 1 − exp(−Cnp̄), the
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Algorithm 2: Spectral Clustering
Input: AΓ, p̃
1. Iterative Power Method with Singular Value Thresholding
χ← n, k ← 0, and Û ← 0n×1

while χ ≥
√
np̃ log(np̃) do

k ← k + 1, U0 ← n× 1 Gaussian random vector
(Iterative power method) Ut ← (AΓ)

2⌈(logn)2⌉+1U0

(Orthonormalizing) Ûk ←
Ut−Û1:k−1(Û

⊤
1:k−1Ut)

∥Ut−Û1:k−1(Û⊤
1:k−1Ut)∥2

(The estimated k-th singular value) χ← ∥AΓÛk∥2
end
K̂ ← k − 1, Â← Û⊤

1:K̂
AΓ

2. k-means Clustering
IR ← a subset of Γ obtained by randomly selecting ⌈(log n)2⌉ items.
for t = 1 to ⌈log n⌉ do

Q
(t)
v ←

{
w ∈ I : ∥Âw − Âv∥22 ≤ t p̃

100

}
for all v ∈ IR

T
(t)
k ← ∅ for all k ∈ [K̂]

for k = 1 to K̂ do
v∗k ← arg max

v∈IR

∣∣∣Q(t)
v \ ∪k−1

i=1 T
(t)
i

∣∣∣
T

(t)
k ← Q

(t)
v∗
k
\ ∪k−1

i=1 T
(t)
i

ξ
(t)
k ←

∑
v∈T

(t)
k

Âv

|T (t)
k |

end
for v ∈ I \ ∪K̂k=1T

(t)
k do

k∗ ← arg min
1≤k≤K̂

∥Âv − ξ
(t)
k ∥22

T
(t)
k∗ ← T

(t)
k∗ ∪ {v}

end
rt ←

∑K̂
k=1

∑
v∈T

(t)
k

∥Âv − ξ
(t)
k ∥22

end
t∗ ← arg min

1≤t≤⌈logn⌉
rt

Sk ← T
(t∗)
k for all k ∈ [K̂]

Output: {Sk}k=1,...,K̂ .

(K + 1)-th singular value of AΓ is significantly smaller than
√
p̃n log(np̃). In conjunction with

Lemma 3.4, this indicates that K = K̂ with probability at least 1− exp(−Cnp̄). Therefore, we can
assume in the remainder of the proof that K = K̂.

Without loss of generality, let us denote γ as the permutaion of [K] such that the set of misclassified
items is

⋃K
k=1 Sk \ Iγ(k). Based on Lemma 3.3, we can prove that: with probability at least 1 −

exp(ω(n)),∣∣∣ K⋃
k=1

Sk \ Iγ(k)
∣∣∣C ′np̄2 ≤

K∑
k=1

∑
v∈Sk\Iγ(k)

||MΓ,v −MΓ,γ(k)||22 ≤ 8||MΓ − Â||2F + 8rt∗ ,

where MΓ,γ(k) = MΓ,w for w ∈ Iγ(k), and where rt∗ is defined in Algorithm 2. Furthermore, for
any C > 0, using Lemmas 3.2 and 3.4, we can establish that there exists a constant C0 > 0 such
that ||MΓ − Â||2F ≤ C0np̄ with probability at least 1− exp(−Cnp̄). Through a refined analysis of
the k-means algorithm, we can also prove the existence of a constant C1 > 0 such that rt∗ ≤ C1np̄.
For details, please refer to Appendix E.
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3.2.2 Likelihood-based improvements

To complete the proof of Theorem 1.2, we analyze the likelihood-based improvement phase of the
IAC algorithm. For this purpose, we define a set of well-behaved items H as the largest set of items
v ∈ I that meet the following three conditions for some constant CH1 > 0:

(H1) e(v, I) ≤ CH1np̄;

(H2) when v ∈ Ik,
∑K

i=1

∑L
ℓ=0 e(v, Ii, ℓ) log

p(k,i,ℓ)
p(j,i,ℓ) ≥

np̄
log4 np̄

for all j ̸= k;

(H3) e(v, I \H) ≤ 2np̄
log5(np̄)

.

In these conditions, we use the following notation: for any v ∈ I, S ⊂ I, and ℓ ∈ [L], e(v, S, ℓ) =∑
w∈S Aℓ

vw, and e(v, S) =
∑L

ℓ=1 e(v, S, ℓ). We will show that all items in H are correctly clustered
with high probability, and the expected number of items not in H matches the lower bound on the
expected number of misclassified items. Each condition in the definition of H can be interpreted
as follows: (H1) imposes some regularity in the degree of the item, (H2) implies that v ∈ H is
correctly classified when using the likelihood, and the last condition (H3) implies that the item does
not have too many labels pointing outside of the set H .

First, we show that the expected number of items not in H can be upper bounded by a number s that
is of the same order as n exp(−nD(α, p)).

Proposition 3.5. When s ≥ n exp
(
−nD(α, p) + np̄

log3 np̄

)
,

E[|I \H|]
s

≤ 1 + exp

(
− 3np̄

4 log3 np̄

)
+ exp(−ω(np̄)).

Moreover, limn→∞ P(|I \H| ≤ s) = 1.

The proof of Proposition 3.5 can be found in Appendix D.3. This proof shows that the probability
of an item satisfying (H2) is dominant compared to the probabilities of the other two conditions and
is of the order of exp(−nD(α, p)).

Next, we examine the performance of the likelihood-based improvement step (Line 6 in the IAC
algorithm) for items in H . In the following proposition, we quantify the improvement achieved with
one iteration of this step.
Proposition 3.6. Assume that there exists a constant C > 0, such that
|
⋃K

k=1(S
(0)
k \ Ik) ∩H|+ |I \H| ≤ C 1

p̄ . Then, for any constant C ′ > 0, with probability
at least 1− exp (−C ′np̄), the following statement holds

|
⋃K

k=1(S
(t+1)
k \ Ik) ∩H|

|
⋃K

k=1(S
(t)
k \ Ik) ∩H|

≤ 1√
np̄

for all t ≥ 0.

The proof of Proposition 3.6 can be found in Appendix D.4 and takes advantage of the fact that a
likelihood-based test using the estimator p̂(j, i, ℓ) matches the test that would use the true likelihood,
with high probability.

Proof of Theorem 1.2. we can now complete the proof by observing that from Proposition 3.6, after
the ⌈log n⌉ iterations of the likelihood-based improvement step, | ∪Kk=1 (S

(⌈logn⌉)
k \ Ik) ∩H| = 0,

with probability at least 1 − exp(−Cnp̄) for any constant C > 0. Combining this result with
Proposition 3.5, when nD(α, p)− np̄

log(np̄)3 ≥ log(n/s),

E[εIAC(n)] ≤ 1

1− o(1)
E[|I \H|] + o(1)

≤ s

1− o(1)

(
1 + exp

(
− 3np̄

4 log3 np̄

)
+ exp(−ω(np̄))

)
+ o(1)

and εIAC(n) ≤ s+ o(1), with high probability.
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4 Numerical Experiments

In this section, we evaluate the proposed algorithm through empirical analysis. Our experiments
are based on the code of Wang et al. [2021], and we consider three scenarios from Gao et al.
[2017] as well as one additional scenario. The focus of our comparison is on the IAC algorithm
(Algorithm 1) and the computationally light version of the penalized local maximum likelihood es-
timation (PLMLE) algorithm (Algorithm 3 in Gao et al. [2017]). While PLMLE has no analytical
performance guarantees, it requires Ω(n2) floating-point operations. We consider simple SBMs with
L = 1.

Model 1: Balanced Symmetric. First, consider the SBM corresponding to the “Balanced case” in
Gao et al. [2017]. Assume that n = 2500, K = 10, and L = 1. We fix the community size to be
equal as ∀k ∈ [10], |Ik| = 250. We set the observation probability as p(k, k, 1) = 0.48 for all k and
p(i, k, 1) = 0.32 for all i ̸= k.

Model 2: Imbalanced. The next SBM corresponds to the “Imbalanced case” in Gao et al. [2017].
We set n = 2000, K = 4, and L = 1. The sizes of the clusters are heterogenous: |I1| = 200,
|I2| = 400, |I3| = 600, and |I4| = 800.

Model 3: Sparse Symmetric. The last experimental setting from Gao et al. [2017] is the sparse and
symmetric case. We generate networks with n = 4000, K = 10, and L = 1. Clusters are of equal
sizes: ∀k ∈ [10], |Ik| = 400. We set the statistical parameter as p(k, k, 1) = 0.032 for all k and
p(i, k, 1) = 0.005 for all i ̸= k.

Model 4: Sparse Asymmetric. Lastly, we consider the cluster recovery problem with a sparse and
asymmetric statistical parameter. We set n = 1200, K = 4, and L = 1. Clusters are of equal sizes:
∀k ∈ [4], |Ik| = 300. We fix the statistical parameter (p(i, k, 1))i,k as

(p(i, k, 1))i,k =

0.032 0.005 0.008 0.005
0.005 0.028 0.005 0.008
0.008 0.005 0.032 0.005
0.005 0.008 0.005 0.028

 . (3)

The results of our experiments are presented in Table 1. The IAC algorithm consistently performs
slightly better than Algorithm 3 in Gao et al. [2017]. For additional figures and details, please refer
to Appendix G.

Table 1: Number of misclassified items. IAC and PLMLE indicate Algorithm 1 and Algorithm 3 in
Gao et al. [2017], respectively. Means and standard deviations are calculated from the results of 100
experiment instances.

Model 1 Model 2 Model 3 Model 4
Algorithm Mean Std Mean Std Mean Std Mean Std
IAC 2.8800 1.5909 0.0000 0.0000 29.4100 4.9789 45.5600 9.2489
PLMLE 2.9700 1.6542 0.1850 0.4262 31.0400 5.1775 54.7400 10.5329

5 Conclusion

In this paper, we have investigated the problem of recovering hidden communities in the Labeled
Stochastic Block Model (LSBM) with a finite number of clusters. We revisited instance-specific
lower bounds on the expected number of misclassified items. We proposed IAC, an algorithm whose
performance matches these lower bounds both in expectation and with high probability. IAC con-
sists of a one-time spectral clustering algorithm followed by an iterative likelihood-based cluster
assignment improvement. This approach is based on the instance-specific lower bound and does not
require any model parameters, including the number of clusters. By performing a spectral clustering
only once, IAC maintains an overall computational complexity of O(npolylog(n)).
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