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Abstract

Long-range graph tasks — those dependent on
interactions between ‘distant’ nodes — are an
open problem in graph neural network research.
Real-world benchmark tasks, especially the Long
Range Graph Benchmark, have become popular
for validating the long-range capability of pro-
posed architectures. However, this is an empirical
approach that lacks both robustness and theoret-
ical underpinning; a more principled characteri-
zation of the long-range problem is required. To
bridge this gap, we formalize long-range interac-
tions in graph tasks, introduce a range measure
for operators on graphs, and validate it with syn-
thetic experiments. We then leverage our measure
to examine commonly used tasks and architec-
tures, and discuss to what extent they are, in fact,
long-range. We believe our work advances efforts
to define and address the long-range problem on
graphs, and that our range measure will aid evalu-
ation of new datasets and architectures.

1. Introduction

Graphs have emerged as a rich data modality, capable of
modeling pairwise relationships between entities in diverse
applications. Graph neural networks (GNNs) have become
the dominant paradigm for learning from such data, with
message passing neural networks (MPNNSs) (Gilmer et al.,
2020) standing out as the most widely used framework.
MPNNSs operate by iteratively updating a node’s representa-
tion based on information aggregated from its local neigh-
borhood. This local message-passing mechanism has been
highly effective in a wide range of tasks, such as social net-
works (Monti et al., 2019), computational chemistry (Gilmer
et al., 2017) and recommendation systems (Fan et al., 2019).
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However, MPNNSs struggle to capture long-range depen-
dencies, where interactions between distant nodes are criti-
cal. These difficulties stem from various well-documented
pathologies, such as the difficulty building deep GNNs often
attributed to over-smoothing and vanishing gradients (Nt &
Maehara, 2019; Oono & Suzuki, 2019; Li et al., 2019), or
the inability to propagate information through graph bottle-
necks attributed to over-squashing (Alon & Yahav, 2020).
These limitations hinder the ability of MPNNs to model
tasks that depend on global or long-range interactions.

Various strategies have been proposed to address these is-
sues, but a common theme is the effective reduction of dis-
tance on a graph — either via explicit static rewiring (Top-
ping et al., 2021; Gasteiger et al., 2019; Barbero et al., 2023),
or rewiring of the computational graph via architectural com-
ponents such as virtual/latent nodes (Gilmer et al., 2017;
Southern et al., 2024), fully connected or multi-hop message
passing layers (Alon & Yahav, 2020; Abu-El-Haija et al.,
2019; Gutteridge et al., 2023), and global attention (Vaswani
et al., 2017; Wu et al., 2021; Rampasek et al., 2022). For
many of these methods, the argument that they improve per-
formance on long-range tasks is based solely on empirical
performance on synthetic and real-world benchmarks.

However, most synthetic long-range tasks (Bodnar et al.,
2021; Rampések & Wolf, 2021) are simplistic and depend
on long-range interactions only, such that a simple rewiring
converts them into short-range tasks. Few synthetic tasks
acknowledge that graph-structured data and graph tasks are,
by design, locally biased: solutions should capture long-
range interactions, but should usually prioritize local ones.

Real-world benchmarks face similar problems. While some
recent works have introduced and motivated long-range
tasks more systematically (Liang et al., 2025), the Long
Range Graph Benchmark (LRGB) (Dwivedi et al., 2022)
remains ubiquitous. LRGB establishes task long-rangedness
via graph size/diameter and domain-specific intuition. These
are necessary, but not sufficient conditions for qualifying
a task as long-range. Furthermore, LRGB’s sensitivity to
hyperparameter tuning has recently come under scrutiny
(Tonshoff et al., 2023), raising doubts about the extent to
which its tasks are truly long-range. These issues stem from
a lack of theoretical characterization of the long-range issue,
which hampers efforts in measuring and addressing it.
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Figure 1. Illustration of the range measure on an example grid graph. The distance (left) and influence (center) relative to nodes v (top)
and u (bottom) are indicated by node opacity. Taking the node-wise product of distance and influence and then aggregating over the entire
graph yields the node-level range (right; also represented by opacity), e.g. p,, p,. All node ranges can then be aggregated to obtain a
graph range p¢. See Table 1 for details on the range measure at different granularities. We use different influence distributions for v and

v to show that influence is task-dependent.

In this work, we address these gaps by formalizing, for the
first time, the notion of the ‘long-range problem’ on graphs.
Our main contributions are three-fold.

* We introduce a formal definition of long-range interac-
tions in graph tasks, grounded in first principles rather
than empirical heuristics. This provides a systematic
foundation for analyzing both tasks and architectures.

* We derive a family of principled, quantitative measures
of a GNN’s range — the extent to which it captures
long-range dependencies. These measures apply to
node- and graph-level tasks, support evaluation at mul-
tiple granularities — node, graph, and dataset — and
function in both inductive and transductive settings.

* We validate our approach through synthetic experi-
ments designed to capture long-range interactions, and
then apply it to critically assess the LRGB benchmark.!

2. Background

Existing range measures. A handful of existing works
consider the notion of node-to-node interaction more for-
mally. Xu et al. (2018b) introduced the influence score as a
measure of an output node’s sensitivity to an input node as
the sum of absolute values of their Jacobian. This approach
adapts influence functions to graphs, building on the work
of Koh & Liang (2017), who originally applied them to
interpret neural network predictions. Recent work by Liang
et al. (2025) motivates a novel long-range benchmark us-
ing a proposed influence-based measure. Our work derives
a family of measures from first principles, of which their
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influence-based measure is a specific instantiation. In addi-
tion, their work introduces a benchmark, while ours aims at
a deeper theoretical investigation of the long-range issue.

Alon & Yahav (2020) introduced a prototypical range mea-
sure, the problem radius, which, for a task, is defined as
the minimal number of hops necessary to solve it. The
problem radius is generally unknown and is approximated
by tuning the number of layers; larger radii require deeper
MPNNSs. They also introduce the over-squashing problem, a
phenomena that is closely linked to long-range interactions.

Sensitivity analysis by Topping et al. (2021); Di Giovanni
et al. (2023a) formalized over-squashing, showing that
poorly-connected nodes result in small influence scores.
Di Giovanni et al. (2023b) studied pair-wise node inter-
actions by casting model expressivity as a measure of a
model’s capacity to mix node features. Their measure is
based on the Hessian of pair-wise node features, focuses
specifically on mixing rather than range, and is computed
for known tasks; in Section 6.1 we demonstrate how our
measure can be applied to models trained on arbitrary tasks.

Graphs and features. A graph G is a tuple (V, E) of a set
of nodes V and edges E. We denote the number of nodes
by n = |V|, and edges are represented as tuples (u, v) € E.
The graphs considered in this work are undirected, and are
often represented by an adjacency matrix A € {0, 1}"*"
with corresponding degree matrix D := diag(A1l). We
denote the features at node u by x,, € R? and stack all node
features into a matrix X € R™*¢, We denote by N}, (u)
the k-hop neighbors of node u, i.e. the nodes at exactly k
hops as per shortest-path distance (SPD), and by N<j, (u)
the k-hop neighborhood of u: all nodes at k or fewer hops.


https://github.com/BenGutteridge/range-measure
https://github.com/BenGutteridge/range-measure

On Measuring Long-Range Interactions in Graph Neural Networks

GNNs. In many applications, the goal is to perform a predic-
tion task starting from data modeled as a graph G and node
features X € R™*4. For node-level tasks, predictions are
made based on a representation for every node u denoted
Y. € R¢ which can be stacked into a matrix Y € R"*¢,
GNNSs are used to achieve such predictions. Most GNNs,
including widely used MPNNs (Kipf & Welling, 2017; Xu
et al., 2018a; Bresson & Laurent, 2017) and graph Trans-
formers (GTs) update the nodes features sequentially by
computing hidden node features H() € R"*% at each
of L layers, with input H(®) = X and final layer output
Y = H). For graph-level tasks, a further pooling opera-
tion is applied to obtain a single graph-level output y € R€.

3. Formalizing the range of a node-level task

To address the challenge of quantifying long-range inter-
actions in GNNs, we propose a measure of the range of a
task, a GNN, or, more generally, an operator on a graph.
This measure captures how strongly distant nodes interact.
We derive the measure from first principles as the unique
measure that satisfies a set of desired properties.

We first propose a definition of the range of a node-level
task. By a node-level task on a graph, we mean a map
F transforming an input signal X € R™*< into an output
Y = F(X) € R™*¢. The range should be applicable to any
map F, including linear ones i.e. such that F(aX + bX') =
aF(X) + bF(X’) for all a,b € R and X, X' € R"*9,
We restrict our attention to linear maps, denoted L, and
for simplicity we consider the case d = ¢ = 1, where a
linear map corresponds to a matrix L € R"*", and Ly, is
the interaction from v to u. An example of a linear map
is the transformation denoted by 1,,,,. This transformation
copies the value at position v from the input and places it at
position u, setting all other values to zero. Specifically, it
transforms the matrix X into a new matrix Y, where Y is
zero everywhere except at index u, where y,, = X,,.

As atask can be long-range around one node and short-range
around another, the range measure should be defined for
every node. Our goal is thus to find a suitable definition of
the range of a task F at a node u, denoted by p, (F) € R;..

Distance metric. A critical aspect of defining this measure
is establishing a notion of distance between nodes, with
respect to which the range can be defined. While metrics like
Euclidean distance are commonly used for sequences and
grids, graphs are more complex as there are many choices
of metric. Common options include SPD (the length of the
shortest path between two nodes in hops), commute-time
distance (based on the expected time for a random walk to
travel between nodes), and diffusion distances (capturing
connectivity in terms of information flow). While SPD is
intuitive, recent work suggest that commute-time distance

is better suited to studying how information propagates in
MPNNSs (Di Giovanni et al., 2023a; Black et al., 2023). For
full generality of the measure, we simply assume that we
are given a metric dg : V X V — R on the graph, with
respect to which we measure the range denoted p,,.

For our experiments we focus on SPD and resistance dis-
tance, denoted by p?fd and pI** respectively.

3.1. Derivation of node-level range

We first state the desirable properties of the range measure,
P.» Which quantifies the range of interactions received by a
node u under a linear task L.

Property 1 (Locality) The range at node u should
only depend on interactions received by node u. i.e.
Pu (Lyy) = 0if w # w.

Motivation: Ensures that the range measure does not
depend on irrelevant parts of the graph.

Property 2 (Unit interaction) If the output of node
u depends solely on the input of another node v at
distance dg(u,v) = r, then the range should equal 7.
ie. pu(lyy) = dg(u,v)

Motivation: Provides a baseline for what constitutes the
range of a single interaction.

Property 3 (Additivity) The range of disjoint interac-
tions® should be the sum of their individual ranges. If
L! and L? are disjoint, then p, (L' + L?) = p, (L) +
pu(L?).

Motivation: Ensures that the range appropriately aggre-
gates independent contributions to the output.

Property 4 (Homogeneity) Scaling the interaction
strength should proportionally scale the range, i.e.,
Va € R, p,(aL) = |alp, (L).

Motivation: Guarantees that the measure meaningfully
reflects the strength of interaction.

“We say that two linear maps L', L2 consist of disjoint
interactions, or are disjoint, if |L.,| >0 = L2, =0
and |Liw\ >0 = L., = 0, in other words, they do not
capture interactions between the same pairs of nodes.

Remarkably, from these we can uniquely derive p,,:

Theorem 3.1. Given a graph G, metric dg, and node u,
there is a unique range p,, defined on one-dimensional
linear tasks that satisfies Properties 1-4, and, given a
linear task Y = L (X), it corresponds to the following:

pu(L) = 3 [Luslda(u, v).

veV
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Table 1. Normalized range measures based on the Jacobian and Hessian, for node-level and graph-level tasks, and at node, graph, and
dataset granularities. For node-level tasks, p denotes ranges derived from the Jacobian (the first-order Taylor series term), which we use as
it provides a set of pairwise interactions. For graph-level tasks, the Jacobian does not provide pairwise interaction terms, so we instead use
range measures derived from the Hessian (the second-order Taylor term), and denote them by 7.

Jacobian-based (p)

Hessian-based (1)

Granularity Node Graph Dataset Node Graph Dataset
Node-level tasks ~ p, (Eq.2) pg:= 2 YowevhPu  Pgi= Zivzl fa, N/A N/A N/A
Graph-level tasks As above; using pre-pooling node features® Nu (Bq.4)  fg = % Yoweyvu  Tig = % ZZI\; 176,

Proof. The linear tasks form a vector space which is
spanned by the maps 1,,. Any linear map L can there-
fore be decomposed into a sum L = >, . L;;1;5. By Prop-
erty 3, since each 1;; are disjoint, we must have p,, (L) =
>_i; Pu(Lij1;;). By Property 1 the range at u depends only
on the terms with i = u, i.e. p,(L) = > v Py (LuwLuw).
By Property 4, we deduce that p,, (L) = > |Luo|p, (Luy).
By Property 2, we get p,, (L) = > |Lyy|dg(u, v). O

Normalized range. One consequence of the above proper-
ties of p,, is that many short-range interactions can increase
the range. For example, m disjoint interactions at distance 1
results in a range of m, when we might prefer the range to
reflect the average (or in this case, unanimous) range, which
in this case would be 1. As a remedy, we consider a normal-
ized range, p,,, by replacing Properties 3 & 4 by:

Property 5 If L! and L? are disjoint, then Vo # 0, 3,
pu(oLt + BL2) = Sz pu (1Y) + 81570 (L2).

From which we also derive a uniqueness result:

Theorem 3.2. Given a graph G, metric dg, and node u,
there is a unique range p,,, defined on one-dimensional
linear tasks, that satisfies Properties 1, 2 & 5, and
given a linear task Y = L (X) it corresponds to the
following:

1
ﬁu (L) = |Luv|dG (u7 U) .
Zv |LUU| UZG\:/
Proof. As in the above proof, we decompose L =
> LijLij. By Properties 3 & 1 & 5 we get p, (L) =

ﬁ > vev Luvlpy (Luw), and by Property 2 we con-
vev [Huv
clude p, (L) = m > vev | Luwlde(u, v). [

Range of a GNN. In order to apply the above range to
GNNss it suffices to extend this measure to any differentiable
map F(X) = Y. This is done by applying the above to the
Jacobian, namely the best linear approximation of F'.

?For graph-level tasks, the Jacobian-based method is introduced
as a computationally more efficient alternative. See Section 6.2.1
for details.

J(F(X
pu (F) = Z % dg(u, v), and e
veV v
. u (F)
pu (F) = —" . ®
ey 9(1;(2))11

In particular, when restricted to linear maps, the measures
defined in Equations 1 & 2 are the unique measures from
Theorems 3.1 & 3.2.

Since a GNN with weights © parameterizes a differentiable
map Fg(X) =Y, we can straightforwardly use this defi-
nition to compute the range of any GNN. Furthermore, we
can generalize the measure to the case of multiple input and
output channels in an equivalent form as an expectation with
respect to the influence distribution I,,:

pu (F) :=Eynr, [de(u, v)], 3)

Ny Do ‘ Zﬁ?
N u = Zw,a, B8 ‘ g%{i
input channels respectively. This formulation extends natu-
rally to higher dimensions, since the influence distribution
is not restricted to dimension 1. Using this viewpoint, we
can interpret p,, as measuring the average distance over all
interactions, or as the average displacement after following
a random walk defined by the influence distribution. Addi-
tionally, the probabilistic viewpoint permits fast stochastic
approximations of the normalized range. For these reasons,
we favor the normalized range in our experiments.

where [,(v) = , normalizing constant

, and « and (3 index the output and

Range granularities. We define a hierarchy of range granu-
larities to capture task-specific statistics at different levels.
The node-level node range p,, is defined for every node u.
Averaging over all nodes in a graph G yields the node-level
graph range pc. Similarly, averaging over all graphs in
a dataset G gives the node-level dataset range pg. This
hierarchy allows the range measures to be computed on
both transductive and inductive tasks. We use the graph
and dataset granularity for our figures and experiments in
Sections 5 and 6. See Table 1 for details and a summary.
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4. Range of a graph-level task

For node-level functions, the Jacobian — corresponding to
the first-order term in the Taylor expansion — provides a set
of interactions between all nodes, making it suitable to cap-
ture pairwise node sensitivity. However, for a graph-level
function y (X)) € R¢, the Jacobian is a vector, only captur-
ing the sensitivity of the output with respect to individual
nodes. This makes it unsuitable for assessing pairwise inter-
actions. To capture such interactions, we use the Hessian,
which appears in the second-order term of the Taylor expan-
sion. This is in line with the mixing measure from Giovanni
et al. (2024), in which the Hessian is used to study infor-
mation propagation in GNNs. For completeness, we write
down the Taylor expansion of a task in the 1-dimensional
case, where A € R is a small perturbation applied to X:

=y(X)+ LIS

X+ A
y(X+A4) X
ﬁrstorder
AA ~(AL)?
+Zaxu Xy +Z 8x2 Au)
second order
+o(llaf?)
——

higher order

We can then define the graph-level range in the one-
dimensional case as the analogous quantity:

0%y
N (¥) = 9% Ox.. dg(u, v),
V U vV
and its normalized version:
) 1, (y)
M (¥) = T “)
Z’UEV 0%, 0%y

As in the node-level case, we extend this to higher dimen-
sions for both input and output channels and represent the
measure as an expectation:

ﬁu (y) = EUNJu [dG (U, ’U)L

. . . . 1 82y7
where J,, is the distribution J,,(v) = ~ > .87 | oxaon?
. . . 2 2l
with normalizing constant Ny, = -, | 5 786 ¥ 7 |- and
s O, X G Oxy

«, 3, are the dimensions of the inputs and the output. The

24y ..
term 86 Y corresponds to the mixing between channel o
X3 XY

of x,, and channel § of x, to compute channel ~ of y(X),
so this quantity measures the total mixing between the two
nodes. Similarly to the node-level measure, the normal-
ized range generalizes to higher dimensions, enabling fast
stochastic approximations of 7,,.

Range granularities. As in the node-level case, we define
a hierarchy of range granularities for graph-level tasks. The
graph-level node range 1),, is defined per node u. Averaging
over nodes in a graph G yields the graph-level graph range
7. and averaging over graphs in a dataset G gives the graph-
level dataset range 1g. See Table 1 for details.

5. Task Range Examples

In this section we illustrate the proposed range measures,
computing them for different tasks and topologies for node-
and graph-level tasks, both empirically and analytically.

5.1. Design of synthetic tasks

We design synthetic examples under a general framework
of pairwise tasks on graphs. The framework consists of the
combination of a distance function D : V x V — R and an
interaction function T : R4 x R — R®. A node-level task is
obtained as F (X),, = @, oy D(u,v) - Z(xy, X, ), where
&P denotes an aggregation. The interaction function is a
general pairwise function and the distance function scales
the magnitude of the pairwise interactions. Graph level tasks
can then be obtained as y (X) = @,,cy D, ey P(u,v)~

Z (X4, Xy ), Where () is another aggregation. This provides
a general framework to design tasks on graphs, which we
use to design tasks of varying range.

5.2. Empirical examples

In order to investigate the impact of graph topology and
task definition on the range measure, we consider several
distributions of graph topologies and three linear tasks.

Impact of topology. To study the impact of the topology

of a graph on the range, we consider node-level regres-

sion tasks that predict A*X for some k where A* is k-th

power of the symmetric normalized adjacency with self

loops, and graph-level regression tasks which consists of

the squared difference interaction and the same distance.
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Figure 2. Topology of graph impacts range. Ranges of node-level
tasks predicting A*X (left) and graph-level tasks using a squared
difference interaction function and the same distance function,
where D(u,v)™> = (A*),,, averaged over nodes (right) for
varying k on graph distributions. While task choice affects range,
high range requires topologies with sufficiently large diameter.
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Figure 2 shows the task range for varying values of k£ on
different distributions of graphs, namely on 1-dimensional
grid graphs (i.e. line graphs), on dense (p = 0.3) and
sparse (p = 0.1) Erd6s-Renyi graphs (ER) with 100 nodes,
and on dense (Pinra = 0.75, piner = 0.25) and sparse
(Pintra = 0.3, Pinter = 0.1) stochastic block models (SBM)
with 100 nodes. We notice that, overall, the ranges of the
tasks increase with k, but the topology affects the rate at
which the range grows. Indeed, sparse topologies (e.g. grids)
that permit large diameters result in larger ranges than those
induced by their denser counterparts (ER, SBM).

Impact of task. We now fix the topology to be a grid-graph
and compute the range of the three following tasks:

k-Power: Predicting the function F (X) = A¥X where
AF is the k-th power of the symmetric normalized
adjacency matrix without self-loops.

k-Rectangle: Predicting the function F(X), =
1 .
[Nek(u)] ZUENgk(u) Xy, the mean of inputs

over all nodes within & hops.

k-Dirac: Predicting the function F (X), =
TNo(a)] 2oveNi () Xvs the mean of inputs over

all nodes that are exactly k hops away.

We plot the ranges for different k for all three tasks in
Figure 3. As expected, all tasks become more long-range
with increasing k, with a clear order in the ranges for each
fixed k: k-Dirac > k-Rectangle > k-Power. This can be
understood by visualizing the shape of the influence distribu-
tion of the three tasks (see Figure 3): the mass concentrated
furthest away for the Dirac task, spread uniformly for the
rectangle task, and concentrated locally for the power task.

81 —+— k-Dirac
61 k—Rectangle k-Dirac
pAspd —8— k—Power k-Rectangle
G k—Power
2 4
o—0O0=0=@—0=0—70

(a) Per-task ranges (b) Influence distributions

Figure 3. Task impacts range. (a) illustrates, for each of the 3
synthetic tasks, SPD range on a grid graph for varying k. Owing
to the shape of each influence distribution, we observe a linear
increase for k-Dirac and k-Rectangle, and a sublinear increase for
k-Power. (b) illustrates, on a line graph, the influence distribution
for the central node for each task when k = 2. For k-Power the
influence decays with distance, while for k-Dirac influence is zero
everywhere except at the k-hop.

5.3. Analytic node-level examples

We now consider example tasks whose range can be com-
puted analytically.

Example 1. Consider a task that is computable by a node-
level function. That is, there exists a f : R — R€ such
that F is simply applying f node-wise F(X), = f(X,).
In this case, no matter the distance metric chosen, p,,(F') =
p.(F) = 0, independently of u and X. This shows that in
the extreme case of a purely local task, the range is 0.

Example 2. Consider the node-level task which averages
the squared difference of node features within the k-hop
neighborhood, where the node features are sampled i.i.d.
from a standard Gaussian distribution:

1
F¢X)y = ——— u— Xy)2.
B0 =l N;u)(x %)

This is a 1-dimensional task whose Jacobian is given by:
8Fk(X)u B m (Xv — Xu) ifv e Ngk (u)
0y 0 otherwise,

and whose normalized range with respect to SPD is:

[)spd Fk

|xy — Xy T
Ny ;ve%: |/\/<k (u)] o
where N, = Zve.f\kk (u) |N<k(u)‘ |Xu Xu| is the nor-

malizing constant. Since the features are i.i. d Gaussian,
|xy — Xo| 18 half Gaussian with expectation \F’ so the ex-
pected N, is f and the expected normalized range is:

k
Ex [ (F¥)] = IN<: o3 Z N, ()| 7.

In particular, we have Ex [P (F¥+1)] > Ex[p0 (F¥)],
with strict inequality if M1 (u) is non-empty, showing
that the range increases with k.

5.4. Analytic graph-level examples

Example 1. Consider a task that is computable without
mixing between nodes, namely, there exists a node-wise
f : R¢ — R function such that the task y is simply a sum
over all nodes: y(X) = >, f(xy). In this case, no matter
the metric chosen, 7, (y) = 7j¢ (y) = 0.

Example 2. Consider the graph-level task which sums the
squared difference of features on nodes within the k-hop
neighborhood followed by averaging over the graph:

DD ENCH

u€V vEN < (u)

—x1,)2.
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82y 4|N.
The second derivatives are 3 = M nd:
32y _ 7% ifUENgk (u)
0%, 0%y 0 otherwise.
.. . 8|N.
Hence the normalizing constant is N,, = %, result-

ing in the following normalized range:

ZW

showing that the range increases with k as the task incorpo-
rates interaction between more distant nodes.

ﬁzpd (yk) 2 |N<k

6. Experiments

In many real-world scenarios, the underlying task is un-
known, making it essential to characterize task properties
empirically. In this section, we present empirical results in
this direction on both synthetic and real-world experiments.
First, we demonstrate that the range of a trained model that
solves a task approximates the range of the underlying task.
We then leverage this observation to analyze the LRGB
benchmark by the range of models trained on its tasks.

While this approximation holds in synthetic settings where
the task is solved nearly perfectly, real-world models do
not achieve zero error, and thus do not provide a unique or
exact estimate of task range. Nevertheless, we find that the
correlation between model range and performance across
architectures offers a useful heuristic: tasks where better-
performing models tend to exhibit longer range are plausibly
long-range in nature, while those where performance satu-
rates at low range are likely dominated by local interactions.

6.1. Do GNNs approximate the true range of a task?

This section investigates whether the range of a well-trained
GNN can approximate the range of the underlying task.
When using a GNN, we implicitly assume that the target
function is parameterizable and thus admits a true range.
This raises a central question: under what conditions does
the range of a GNN align with that of the task? We argue that
when the validation error approaches zero — i.e., when the
model generalizes well — the range of the GNN converges
to the task range. We demonstrate this empirically in a
controlled synthetic setting, across both node- and graph-
level tasks. These results support using the range of a trained
GNN as a practical proxy for the range of a real-world task.

Figure 4 illustrates linear GCNs with residual connections
of varying depths predicting A®X ona ID grid graph —
a 5-hop task with pg* = 1.33. Models are trained on 500
samples with i.i.d. standard Gaussian node features. We
track the evolution of the range of a model during training
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Figure 4. Node-level range can be approximated with a good
model. (Left) Average node-level dataset range evolutions for
different GCN depths on a line graph for the 5-power task. Shaded
area corresponds to min/max over 4 seeds. (Right) Range and
MSE at epoch 20 against number of GCN layers.
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Figure 5. Average dataset range evolutions for different GCN
depths on a line graph, using the 5-Power distance function and
squared difference interaction function from Section 5.4. Shaded
area corresponds to min and max over 4 seeds. (Left) Graph-level
range can be approximated with a good model. (Right) Pre-
pooling node-level range correlates with graph-level range.

and plot final MSE vs. depth. Deeper models approach
the true task range and achieve lower MSE, while shal-
low models under-perform due to limited receptive fields
and under-reaching. These results demonstrate that, under
ideal conditions, model range converges toward the true task
range as training progresses and depth increases.

We repeat this on a graph-level task as shown in Figure 5.
We use the same distance function as for the node-level but
replace the interaction function with the squared difference
followed by averaging over the nodes, as in Section 5.4.
This makes the task non-linear and guarantees a non-trivial
Hessian. We also use GeLU activation to make the models
non-linear. Similarly to the node-level case, the graph-level
range 7)g° of deeper models tends towards the true task range.
Figure 5 also shows the mean node-level range of the pre-
pooling node embeddings, p¢"; we can see that p¢* follows
a similar trend to 7)g°, suggesting a correlation between the
two measures. This justifies using p* over 7)g* in our LRGB
experiments in Section 6.2, and allows a greater focus more
on pairwise interactions induced by message-passing.
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6.2. Validating real-world benchmarks

The goal of this section is to evaluate (i) whether GNNs
trained on existing long-range benchmarks do indeed learn
long-range functions, and (ii) whether the underlying bench-
mark tasks themselves are long-range.

As previously mentioned, we acknowledge that the unsolved
nature of real-world tasks means that range of a model
alone cannot definitively give us the range of the underlying
task; furthermore, models might exhibit bias towards par-
ticular ranges depending on their design. To address this,
we analyze the correlation of performance and range for
a spectrum of architectures, to determine if a model is a
good approximator, and whether long-range interactions are
beneficial to the downstream task.

Furthermore, we include additional experiments on CORA, a
known short-range task, and on heterophilic tasks (Platonov
et al., 2023) in Appendix C. These experiments support
the intuition that the correlation between performance and
model range is a suitable heuristic to assess the range of a
task, and show that GTs are able to learn to be short-range.

6.2.1. EXPERIMENTAL SETUP

Models. We consider four models, GCN (Kipf & Welling,
2017), GINE (Xu et al., 2018a; Hu et al., 2020), GatedGCN
(Bresson & Laurent, 2017) and GPS (Rampasek et al., 2022),
from Tonshoff et al. (2023), which reports more accurate
baseline LRGB performance than Dwivedi et al. (2022),
a hyperparameter search and correct normalization having
been performed for each task. We also use a pure graph
transformer without message-passing (GT; Vaswani et al.
(2017)) and a GCN with a virtual node (GCN+VN) to ensure
a set of models with broad range tendencies.

Tasks. From LRGB, we consider VOCSUPERPIXELS, a
node-level classification task, and PEPTIDES-FUNC and
PEPTIDES-STRUCT, graph-level classification and regres-
sion tasks respectively. The models are trained using the
hyperparameters from Tonshoff et al. (2023). We track pg*
and ﬁsgpd throughout training using the Jacobian of node out-
put features with respect to input features. Figures 6 & 7
show evolution of model range over training for a subset
of the validation split; 500 graphs for VOCSUPERPIXELS,
200 each for PEPTIDES. We use subsets as we found that
this approximates the full dataset ranges well, while being
significantly less compute-intensive. We report only vali-
dation results as range estimates were found to be highly
consistent across splits.

Jacobian sampling. To reduce the computational cost of
range computation, we use an estimate of the range (see
Equation 3) obtained from a sub-sampling of the Jacobian.
This is essential due to the large size and feature dimen-
sionality of the LRGB tasks, and we observe that it does

not compromise accuracy. Sub-sampling is performed over
output nodes as well as input and output feature channels,
according to by pre-defined probability hyperparameters
(details in Appendix D.4).

Distance metric. We focus on ﬁg’d as (i) SPD is more in-

terpretable than resistance distance, and (ii) results were
generally similar to those for pg°. In particular, PEPTIDES
graphs have similar topologies to line graphs, for which
SPD and resistance are equivalent. Figures for resistance
range can nevertheless be found in Appendix C.2. VOCSU-
PERPIXELS, PEPTIDES-FUNC and PEPTIDES-STRUCT are
evaluated on F1 score, average precision (AP) and mean
absolute error (MAE) respectively.

Graph-level tasks. For the graph-level PEPTIDES tasks, we
compute the node-level, Jacobian-based range (see Table 1)
using node representations obtained after the final message-
passing layer, but before global pooling and final MLP. This
is partly due to the high computational cost of estimating the
Hessian for large graphs with high feature dimensionality.
More importantly, since the post-message-passing compo-
nents are standard architectural elements applied uniformly
across models, we focus on the long-range interactions in-
duced specifically by the GNN layers.

6.2.2. RESULTS
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Figure 6. p for MPNN and GT models during training, evalu-
g Pg g g

ated on a 500-graph subset of the validation split for VOCSUPER-
PIXELS. We cut off after 100 epochs as ranges have converged.
The fact that ﬁgd settles at ~2-3 for MPNNs and at ~10 for GPS,
and that range positively correlates with performance, suggests
that VOCSUPERPIXELS is, to some degree, long-range. Standard
deviation is over 4 model/sampling seeds. Log scale on y-axis.

VOCSUPERPIXELS. Figure 6 shows that all models in-
crease in range during training, primarily within the first
few epochs. MPNNs reach a final range of ~2-3 hops,
while GPS and GT reach around ~10. This is consistent
with the notion that MPNNS learn local information first and
incorporate more distant information as training progresses.
Additionally, range correlates positively with performance
across models, and relative ranges are in line with our un-
derstanding of each model.

GINE and GatedGCN, being more expressive than the
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Figure 7. ﬁgd for MPNN and GT models during training, evalu-

ated on a 200-graph subset of the validation splits for PEPTIDES-
FUNC and PEPTIDES-STRUCT. We cut off after 100 epochs as
ranges have converged. The negative correlation between perfor-
mance and range may suggest that the PEPTIDES tasks are not as
long-range as previously assumed. Standard deviation is over 4
model/sampling seeds. Log scale on y-axis.

purely convolutional GCN, improve resistance to the over-
smoothing and over-squashing phenomena that hamper long-
range interactions, and therefore attain higher ranges — but
they are ultimately still MPNNS, so the difference is slight.
GCN+VN improves significantly on the performance of a
pure GCN and induces a larger range, as the VN mitigates
under-reaching by creating a 2-hop connection between
all nodes. GPS, the best-performing model, uses global
attention — which permits a large range and mitigates over-
squashing — alongside a local GatedGCN component.

The observed positive correlation between model range and
performance suggests that VOCSUPERPIXELS is inherently
a long-range task, in that successfully solving it requires
incorporating information from distant nodes. The poor
performance of MPNNSs on this task can therefore be at-
tributed to their limited ability to capture long-range depen-
dencies, likely due to under-reaching, over-smoothing, and
over-squashing.

PEPTIDES. In contrast to VOCSUPERPIXELS, PEPTIDES-
FUNC and PEPTIDES-STRUCT exhibit the opposite trend:
GT and GPS perform the worst while the three MPNNs all
perform similarly well. Notably, the MPNNs maintain a
~spd . . .
range p; of ~1 hop after epoch 1, with no increase during

training; for PEPTIDES-STRUCT the range of GINE even
decreases. This suggests that the PEPTIDES fasks are in-
herently local. Although GPS and GT exhibit larger ranges
— and to a lesser extent, GatedGCN on PEPTIDES-FUNC —
these do not translate into improved performance. Similarly,
GCN+VN has higher range than the MPNNs but yields
minimal or no performance gains. These findings indicate
that while some models are capable of modeling long-range
interactions, such capacity is unnecessary for solving the
PEPTIDES tasks effectively.

For PEPTIDES-STRUCT this finding is less surprising;
Tonshoff et al. (2023) report that GCN remains state-of-
the-art, even when compared against an array of more ex-
pressive models. For PEPTIDES-FUNC, however, several
later works report improved performance compared to the
models considered here. Notably, these approaches often
incorporate some form of long-range information flow, such
as dynamically rewired multi-hop (Gutteridge et al., 2023)
or global attention with added inductive bias (Ma et al.,
2023). However, both of these examples emphasize the im-
portance of short-range interactions in their architectures by
integrating strong local inductive bias. Indeed, this seems
to be a requirement for long-range models to perform well
on PEPTIDES-FUNC. Given that our findings suggest that
PEPTIDES-FUNC may not be especially long-range, these
models’ performance is, perhaps, more attributable to how
information is propagated than to their range capabilities.

7. Discussion

This work formalizes long-range interactions for graph tasks,
introduces a family of principled and quantitative range mea-
sures, and applies them to synthetic and real-world tasks.
We believe that these measures will serve as tools that af-
ford both a greater understanding of the long-range prob-
lem in graph machine learning, and as an additional vali-
dation method for future proposed architectures and bench-
mark tasks. More broadly, our findings highlight the need
for GNN evaluation to move beyond performance metrics,
incorporating interpretable measures—such as range—for
more transparent and principled assessment. Finally, our
proposed range measures are not limited to GNNs or graph
learning tasks and can be applied to any geometric domain
equipped with a notion of distance.

Future work will further investigate our Hessian-based range
measures 7 for evaluating real-world benchmarks alongside,
and in comparison with, the node-level range. Future work
will also focus on investigating specific architectural compo-
nents such as fully connected layers, graph rewiring, resid-
ual connections, and positional or structural encoding, and
their impact on the range of a model. This will include both
empirical and theoretical analysis to assess how common
GNN building blocks influence range in a principled way.
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A. Detailed discussion of related work

In this section we review existing attempts at long-range benchmarks, both synthetic and real-world, as well as methods that
attempt to solve the long-range problem, and how they validate their claims.

A.1. Long-range benchmarks

Dwivedi et al. (2022) argue that the standard suite of GNN benchmarks are inappropriate for evaluating long-range
interactions as they are overwhelmingly local, consisting of graphs with a small number of nodes and narrow diameter.
They then introduce the Long Range Graph Benchmark (LRGB), a suite of tasks whose long-rangedness is established,
variably, by (i) large graph size/diameter, (ii) the necessity of graph-level mixing, and (iii) arguments based on an intuitive
understanding of the underlying task — e.g. classifying long peptide chains with globally-dependent properties. They also
show a performance gap between ‘short-range’ standard MPNNs and GTs utilizing global attention, though Tonshoff et al.
(2023) have since shown that this gap is significantly narrowed by simple hyperparameter tuning, calling into question the
extent to which the LRGB tasks are truly long-range. Despite this, LRGB remains the de-facto validator of long-range
performance.

Synthetic tasks are also frequently used. Examples include RingTransfer (Bodnar et al., 2021), where a source node must
infer a distant target node’s label on a ring graph, a color connectivity task where a graph with binary-labelled nodes must
be classified as having one ‘island’ of clustered labels or two (RampaSek & Wolf, 2021), and tasks approximating searches
on trees (Lukovnikov et al., 2020; Lukovnikov & Fischer, 2021) such as NeighborsMatch (Alon & Yahav, 2020), and
GLoRa (Zhou et al., 2025), which introduces synthetic tasks that require identifying specific long paths in graphs. Several of
these tasks bear similarities to tasks from the popular Long Range Arena (Tay et al., 2021) benchmark from the sequence
literature; they frequently use very simple topologies (lines, rings, trees), are simple tasks with limited or no node features,
and usually depend only on long-range interactions, such that a simple rewiring converts them into short-range tasks.
Few synthetic tasks acknowledge that graph-structured data and tasks are, by design, locally biased: a task may involve
long-range interactions, but will likely be primarily based on local ones. In this paper, we design synthetic experiments that
better reflect this fact, requiring long-range interactions without neglecting short ones.

A.2. Empirical solutions to the long-range problem

Many methods have been proposed for addressing the long-range problem, often with the correlated goal of reducing
over-squashing. Simple methods such as adding virtual or latent nodes (Gilmer et al., 2017; Southern et al., 2024; Hariri
& Vandergheynst, 2024) or fully adjacent layers (Alon & Yahav, 2020) remove any meaningful distance between nodes
by making them all connected within one or two hops, and are often quite effective. Graph rewiring approaches work in a
similar fashion, improving the connectedness of nodes with additional edges, typically reducing the graph diameter, either
as a pre-processing step (Topping et al., 2021; Gasteiger et al., 2019; Deac et al., 2022; Arnaiz-Rodriguez et al., 2022;
Black et al., 2023; Karhadkar et al., 2022; Barbero et al., 2023) or acting on the computational graph within the model
architecture (Abu-El-Haija et al., 2019; Abboud et al., 2022; Gutteridge et al., 2023; Bamberger et al., 2025; Finkelshtein
et al., 2024). Rewiring has been shown to mitigate over-squashing, at the risk of diluting the benefit of the inductive bias
afforded by graph topology. Global attention, such as that used by GTs (Vaswani et al., 2017; Wu et al., 2021; RampaSek
et al., 2022), also throws away topology in favor of allowing nodes to interact directly, regardless of distance. Reflecting the
inherently local nature of most graph tasks, the best-performing GT architectures tend to be those that combine local with
global/long-range components (Ma et al., 2023; He et al., 2023). Increasingly, the relationship between vanishing gradients
and the long-range problem is being studied, with inspiration taken from sequence literature: residual connections (Xu et al.,
2018b; Gutteridge et al., 2023), gating (Lukovnikov et al., 2020) and state-space models (Choi et al., 2024; Wang et al.,
2024; Arroyo et al., 2025), treating the spatial dimension of graphs as analogous to the temporal dimension of sequences.

All of these methods have been argued to improve performance for long-range interactions based on empirical performance
on benchmarks. Our work provides an additional and more principled validator by a means of formally measuring the range
of a model trained on a given task.
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B. LRGB dataset statistics

In this section we discuss some dataset statistics of interest for VOCSUPERPIXELS and PEPTIDES, which can be found in
Table 2. These statistics are taken from Dwivedi et al. (2022), but it should be noted that there exist disconnected graphs in
the PEPTIDES datasets, which may affect their accuracy.

Table 2. Comparison of VOCSUPERPIXELS and PEPTIDES datasets across various metrics. We report the average validation range over 4
seeds at the final epoch. The graph statistics are reported according to Dwivedi et al. (2022).

Metric VOCSUPERPIXELS  PEPTIDES-FUNC
GCN ¢ 2.32 £ 0.098 1.04 £ 0.030
GPS 9.15 + 0.525 19.08 4 8.879
Avg. SPD 10.74 £ 0.51 20.89 +9.79
Avg. diameter  27.62 £ 2.13 56.99 & 28.72
Avg. degree 5.65 2.04

We note that the range of a GPS induces an SPD range approximately close to the average SPD over the graphs in the
corresponding datasets. One can conjecture that this is the result of the attention scores being relatively uniform and
struggle to capture more complex and local structures within the graph. In the case of VOCSUPERPIXELS, GPS is the
best-performing model, hence uniform attention may be desired for the downstream task. PEPTIDES-FUNC is the opposite;
the poor performance of GPS and the similarity between SPD and ﬁ;d suggests that the attention mechanism is learning a
global averaging rather than complex pairwise interactions. This suggests that the model is simply not well-aligned to the
task, and that local structures, which attention is unable to capture, are more important for the downstream task. Further
investigation of the influence distributions of these models is required to shed light into the types of structures captured by a
model when trained on a specific task.

C. Additional experimental results

In this Section we include additional experiments and ablations excluded from the main text, on synthetic datasets, on
LRGB, CORA and the heterophilic datasets AMAZON-RATINGS and ROMAN-EMPIRE.

C.1. Additional synthetic experiments

Node-level range. In Section 6.1 we look at how well a linear GNN with varying depths can approximate the range of a
synthetic task with known true range. We extend this analysis to include a non-linear GNN activation (GeLU) and a GNN
with a virtual node. The architecture used for the results in Figure 4 is a GCN (Kipf & Welling, 2017) with no activation
plus skip connections. The hidden dimension of the GCN layers is 64. We use Lo loss and a learning rate of 0.001.

Graph-level range. We repeat these ablations for the graph-level range in Figure 5 by adding a mean pooling laye in
addition to the virtual node. We only include the virtual node ablation here since the original experiment in Figure 5 already
has a GeLU activation at every layer to guarantee its ability to capture non-linear interactions. We report the results in
Figure 9.

C.2. Additional LRGB experiments

In this section we include additional figures for resistance distance range experiments for LRGB, which were excluded
from the main text due to the similarity of the figures between ﬁsgpd and pg°. This similarity is especially pronounced for

PEPTIDES, as the graphs are very similar to line graphs, for which SPD and resistance distance are equivalent.

C.3. CORA: a known short-range task

We primarily evaluate range for models trained on LRGB, as it is the de-facto long-range benchmark, but it is desirable to
also analyze our range measure on a reference short-range task. We use CORA, and train a graph Transformer and a GCN to
compare the range extremities for GNNs. Results are shown in Figure 12. We also show in Figure 13 that, for this task, the
GT is capable of learning a similar range to a GCN. This refutes a possible interpretation of our experiments in Section 6.2:
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Figure 8. Node-level range ablations on synthetic k-Power task, further validating the range measure on synthetic tasks. Figure 8a shows
that including a non-linearity has little effect on range, and Figure 4, whereas adding a virtual node Figure 8b induces more longer ranges
at initialization, but this decreases during training as the model successfully learns the task.
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Figure 9. Average graph-level range of a GCN+VN for different depths on a line graph for the k-Power task for kK = 5. Shaded area
corresponds to min/max over 4 seeds. Adding a virtual node produces a similar result to the node-level case; the range is initially higher
but trends lower, towards the true range.

that GTs are always long-range and are therefore unsuitable for providing information about the underlying range of the
task. For these experiments both models use a hidden dimension of 64 and 2 layers, following the hyperparameterizations
from Kipf & Welling (2017).

C.4. AMAZON-RATINGS and ROMAN-EMPIRE: heterophilic tasks

We now investigate if there is a relationship between the long-range interaction problem and heterophilic tasks (Arnaiz-
Rodriguez & Errica, 2025). We use our range measure to evaluate models trained on the heterophilic datasets AMAZON-
RATINGS and ROMAN-EMPIRE (Platonov et al., 2023). Due to the size of these graphs, 24492 and 22662 nodes for
AMAZON-RATINGS and ROMAN-EMPIRE respectively, dense GTs are computationally infeasible. Hence, we test using a
local MPNN (GCN), local attention (GT; the same architecture referred to as a GT by Platonov et al. (2023)), and an MPNN
with a virtual node (GCN+VN).

Figures 14 & 15 show that only the MPNN+VN is long-range (due to the drastic increase in receptive field) but yields zero
performance benefit over a standard GCN; far more important is how information is propagated. The local GT, i.e. an
MPNN using Transformer-style attention, performs better for both tasks, while range is near-identical to that of a GCN. This
suggests that heterophily is not necessarily related to range, at least for these tasks.
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Figure 10. pg’ for MPNN and GT models during training, evaluated on a 500-graph subset of the validation split for VOCSUPERPIXELS.
We cut off after 100 epochs as ranges have converged. The relative range evolutions between models and correlation with performance
are very similar to the SPD case, reinforcing our earlier argument about the validity of VOCSUPERPIXELS as a long-range benchmark.
However, we note that all ranges are contracted to below 1, even for the GPS and GT. This is due to the topology of VOCSUPERPIXELS
graphs (see Table 2), which have a high average degree (see Table 2), meaning that resistance distance grows sub-linearly against
SPD. Additionally, the range of GT matches that of GINE and GCN+VN at epoch 1, which contrasts with the SPD range where GT is
considerably higher. This confirms the importance of the choice of distance metric. Standard deviation is over 4 model/sampling seeds.
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Figure 11. pg’ for MPNN and GT models during training, evaluated on a 200-graph subset of the validation splits for PEPTIDES-FUNC
and PEPTIDES-STRUCT. We cut off after 100 epochs as ranges have converged. The negative correlation between performance and range
may suggest that the PEPTIDES tasks are not as long-range as previously assumed. Standard deviation is over 4 model/sampling seeds. We
use log scaling on the y-axis.

D. Additional experimental details

In this section we discuss some additional experimental details excluded from the main text.

D.1. Differentiability of models for PEPTIDES experiments

Node features for PEPTIDES are integer-valued as they represent atomic features. The At omEncoder module (from
GraphGym) used to encode these discrete values uses a torch . nn.Embedding module directly. This process prohibits
differentiating the model output with respect to the input features, which is necessary for the Jacobian calculation required
to compute the range. Hence, we replace the AtomEncoder with a DifferentiableAtomEncoder which pre-
processes the PEPTIDES node features into one-hot floating point vectors. This produces a differentiable input and encoder
equivalent to the existing At omEncoder and allows us to compute the Jacobian for our range measures.

D.2. Inefficiency of one-hot encoding for PEPTIDES

The standard At omEncoder from GraphGym used for PEPTIDES that one-hot encodes integer node features is extremely
inefficient: it converts 9 integer-valued node features into a 174-dimensional one-hot vector, but over 80% of these are zero
for all graphs in the PEPTIDES dataset. Only 31 one-hot features are required in practice.

As our range measure involves computing the Jacobian between input and output features, and the complex-
ity of this computation scales with the input feature dimension, we reduce the one-hot encoding to 31 for our
DifferentiableAtomEncoder. This means our model architectures are slightly different than those reported by
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Figure 12. Range experiments on CORA for a GCN and GT. ﬁsé’d of the GCN stays at ~1 hop and outperforms the GT, as we would expect

from a known short-range task. We can see that in the initial epochs, the GT is able to learn to be more short-range after a high-range
initialization; see Figure 13.
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Figure 13. Range against loss during training for the test split of CORA. Each point is labelled with its epoch. We cut off after 25 epochs
because both models achieved their highest validation accuracy at epoch 25; after this, the GT overfits, as the spiking range from epoch 25
to 50 in Figure 12 shows. We can see that, though the GT learns a high range in the very early epochs, it then learns a low range, around 1
hop, before it overfits and its accuracy drops.

Dwivedi et al. (2022); Tonshoff et al. (2023), as the encoding requires fewer parameters, but we found this to have minimal
impact on model performance.

We report the updated parameter counts in Table 4.

D.3. Isolated nodes in PEPTIDES

We discovered that the PEPTIDES dataset contains graphs which are disconnected and may have isolated nodes. To the best
of our knowledge, this is not reported anywhere in the literature. Though these graphs make up only ~1% of the dataset, we
still consider it an issue. Firstly, the existence of disconnected nodes means the reported results of average graph diameter
are technically erroneous; this value would be infinite. Secondly, many methods propose computing metrics on graphs which
assume connectivity such as distance metrics of SPD and effective resistance. Moreover, graph Transformer architectures
will induce an edge between components of the graph which could never interact in an MPNN, regardless of depth.

To address this, when computing our range measures on these graphs with graph Transformer architectures, we initialize
distance values to zero and fill the distances by computing them on the respective connected components.

D.4. Jacobian sampling for range measure estimation

As mentioned in the main text, we sub-sample the Jacobian matrix in order to provide computational speed-ups and avoid
out-of-memory issues when computing range measures for real-world experiments. We achieve this by randomly sampling
input/output nodes and input/output channels with given probabilities. The unselected node/channels are masked, producing
a sparsified Jacobian which results in computational advantage in both time and memory while producing an accurate
approximation of the range. This is evident in our experiments, where we report multiple seeds across which the resulting
range estimates have extremely low variance. We list sampling parameters used in our experiments in Table 3.

Sampling hyperparameters. In Section 3 we present the normalized range as an expectation over the influence distribution.
When computing the node-level range for a graph, p, this becomes an expectation over input/output nodes and input/output
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Figure 14. Range measures for the AMAZON-RATINGS dataset. There is a clear performance gain from using an attention-based MPNN
over convolution. GCN+VN induces slightly more long-range interactions but offers no performance gain, suggesting that AMAZON-

RATINGS may not be long-range.
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Figure 15. Range measures for the ROMAN-EMPIRE dataset. There is a clear performance gain from using an attention-based MPNN over
convolution. GCN+VN induces long-range interactions but offers no performance gain, suggesting that ROMAN-EMPIRE may not be
long-range.

channels. Using a sub-sampling of these allows us to approximate this expectation.

node-in . node-out

Ny , pehannel-in g,channel-out “then we reduce the Jacobian size by a factor of

If we assign the probabilities to be p

node-in node-out % pchannel—m X pchannel—out_

D X p
We construct a binary mask for each component m € {0, 1}" such that each entry is independently sampled from a Bernoulli

distribution with probability p, i.c., E [ 3" m;] = p.
We apply the GNN model to the masked input to compute the full output, which is subsequently reduced using the output
mask. This selective computation results in a reduced Jacobian and computational graph, offering protection against

out-of-memory errors and yielding significant efficiency gains.

Additionally, we found that graphs with n > ~256 can exceed the memory constraints of an A10 NVIDIA GPU (24GB).
Hence, we set an upper bound of max nodes = 256. We also set a lower bound of min nodes = 16, to ensure we don’t
under-sample smaller graphs.

D.5. Computational Resources

Preprocessing, training and range calculations were done on in-house CPUs and GPUs. All experiments were feasible and
primarily performed on NVIDIA A10s. Some experiments were performed on NVIDIA H100s.
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Table 3. Sampling probability hyperparameters used for range experiments. We use a probability of 1.0 for input nodes for all experiments
as we found that it introduced bias to the range and did not reduce compute requirements.

Dataset Input Nodes Output Nodes Input Channels Output Channels
VOCSUPERPIXELS 1.0 0.5 0.5 0.5
PEPTIDES-FUNC 1.0 0.5 0.5 0.5
PEPTIDES-STRUCT 1.0 0.5 0.5 0.5
AMAZON-RATINGS 1.0 0.01 1.0 0.8
ROMAN-EMPIRE 1.0 0.01 1.0 1.0
CORA 1.0 0.2 0.2 1.0
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Table 4. Hyperparameters for LRGB experiments in Section 6.2.2. The #Param. row in a) and (b) lists the original parameter count from
Tonshoff et al. (2023) in parentheses alongside our decreased parameter account due to efficient one-hot encodings (see Appendix D).

(a) Hyperparameters for PEPTIDES-FUNC experiments

GCN GINE GatedGCN GPS GCN+VN GT
Ir 0.001 0.001 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1 0.1 0.1
#layers 6 8 10 6 6 6
hidden dim. 235 160 95 76 235 76
head depth 3 3 3 2 3 2
PE/SE RWSE RWSE RWSE LapPE RSWE LapPE
batch size 200 200 200 200 200 200
#epochs 250 250 250 250 250 250
norm - - - BatchNorm - BatchNorm
MPNN - - - GatedGCN GCN -
#Param. 456k (486k) 472k (491k) 483k (493k) 470k (479k) 456k 464k
(b) Hyperparameters for PEPTIDES-STRUCT experiments
GCN GINE GatedGCN GPS GCN+VN GT
Ir 0.001 0.001 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1 0.1 0.1
#layers 6 10 8 8 6 8
hidden dim. 235 145 100 64 235 64
head depth 3 3 3 2 3 2
PE/SE LapPE LapPE LapPE LapPE LapPE LapPE
batch size 200 200 200 200 200 200
#epochs 250 250 250 250 250 250
norm - - - BatchNorm - BatchNorm
MPNN - - - GatedGCN GCN -
#Param. 457k (488k) 473k (492k) 433k (445k) 445k (452k) 457k 472k
(c) Hyperparameters for VOCSUPERPIXELS experiments
GCN GINE GatedGCN GPS GCN+VN GT

Ir 0.001  0.001 0.001 0.001 0.001 0.001

dropout 0.0 0.2 0.2 0.3 0.0 0.1

#layers 10 10 10 8 10 8

hidden dim. 200 145 95 68 200 84

head depth 3 3 3 2 3 2

PE/SE RWSE none none LapPE RWSE LapPE

batch size 50 50 50 50 50 50

#epochs 200 200 200 200 200 200

norm - - - BatchNorm - BatchNorm

MPNN - - - GatedGCN GCN -

#Param. 490k 450k 473k 501k 490k 471k
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