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Abstract001

In-Context derived Vector (ICV) methods ex-002
tract task-relevant representations from large003
language models (LLMs) and reinject them004
during inference, achieving comparable perfor-005
mance to few-shot In-Context Learning (ICL)006
without repeated demonstration processing.007
However, existing ICV methods remain sensi-008
tive to ICL-specific factors, often use coarse or009
semantically fragmented representations as the010
source of the vector, and rely on heuristic-based011
injection positions, limiting their applicability.012

To address these issues, we propose Dynamic013
Vector (DyVec), which incorporates an Exhaus-014
tive Query Rotation (EQR) strategy to extract015
robust semantically aggregated latent represen-016
tations by mitigating variance introduced by017
ICL. It then applies Dynamic Latent Segmenta-018
tion and Injection to adaptively partition repre-019
sentations based on task complexity and lever-020
ages REINFORCE-based optimization to learn021
optimal injection positions for each segment.022

Experiments results show that DyVec outper-023
forms few-shot ICL, LoRA, and prior ICV base-024
lines. Further analysis highlights the effective-025
ness of dynamically segmenting and injecting026
semantically aggregated latent representations.027
DyVec provides a lightweight and data-efficient028
solution for inference-time task adaptation.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated emergent capabilities in few-shot learning,032

allowing them to perform new tasks by condi-033

tioning on just a few demonstrations in the input034

prompt—without any parameter updates (Brown035

et al., 2020). This paradigm is known as In-Context036

Learning (ICL). Despite its success in low-resource037

settings, it incurs substantial computational over-038

head, as each inference requires repeatedly en-039

coding lengthy prompts with demonstration exam-040

ples. This inefficiency hinders its scalability in041

real-world applications.042
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Figure 1: General pipeline of In-Context derived Vector
(ICV) methods, illustrating how task-specific represen-
tations are extracted from LLMs during few-shot ICL
to construct vectors, which are then injected back into
frozen LLMs for inference-time intervention and task
adaptation. These representations can be either raw ac-
tivations (e.g., attention heads) or more abstract latent
states (e.g., transformer layer outputs).

Recent studies have introduced In-Context de- 043

rived Vector (ICV) methods (Hendel et al., 2023; 044

Todd et al., 2024), which extract internal activations 045

or latent representations of LLM that capture task- 046

specific information during ICL inference. These 047

vectors can then be injected into LLMs at inference 048

time to approximate few-shot performance (Ho- 049

jel et al., 2024), as illustrated in Figure 1. ICV 050

methods have shown promise in various applica- 051

tions—such as promoting honesty (Li et al., 2023), 052

reducing harmful outputs (Liu et al., 2024), and en- 053

abling role-playing (Potertì et al., 2025)—all while 054

maintaining the efficiency of zero-shot inference. 055

While ICV presents a promising alternative to 056

standard few-shot ICL, it still suffers from three 057

key limitations: (1) Existing methods construct vec- 058

tors from sources that are either too coarse (e.g., 059

transformer layer outputs) or too semantically iso- 060
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lated (e.g., raw attention head activations). Both061

strategies fail to fully capture rich task semantics,062

resulting in performance that lags behind few-shot063

ICL. (2) Prior methods improve robustness by av-064

eraging representations from repeated inferences,065

partially mitigating ICL sensitivity. However, this066

strategy offers limited gains and fails to fundamen-067

tally resolve the sensitivity inherent to ICL. (3)068

Finally, selecting the optimal vector injection lo-069

cation often requires extensive validation data and070

exhaustive searches across layers or heads, making071

the process both inefficient and impractical.072

To tackle these challenges, we propose Dy-073

namic Vector (DyVec)—a inference-time interven-074

tion method designed to directly address these three075

limitations:076

(1) To overcome the coarse or semantically iso-077

lated nature of prior representations, DyVec uses078

the semantically aggregated projections in Multi-079

Head Attention (MHA) as the source for vector080

construction, enabling the model to capture richer081

task semantics through inter-head interactions.082

(2) To enhance robustness against ICL sensi-083

tivity, we introduce Exhaustive Query Rotation084

(EQR), which systematically rotates the query posi-085

tion within a fixed set of demonstrations and aggre-086

gates the extracted latent representations, providing087

a more stable representation to construct vector.088

(3) To eliminate reliance on validation data and089

heuristics, we propose Dynamic Latent Segmenta-090

tion and Injection, which adaptively partitions the091

extracted representations based on task complexity092

and resource constraints. We further employ RE-093

INFORCE to learn optimal injection positions for094

each segment in a data-driven manner.095

Finally, the constructed Dynamic Vectors are096

utilized to perform inference-time intervention by097

injecting them back into the LLM for task adapta-098

tion. Empirical results demonstrate that our three099

strategies not only outperform standard few-shot100

ICL under comparable inference costs, but also101

achieve superior results compared to existing ICV102

methods. Table 1 provides a comparison between103

DyVec and existing ICV-based methods.104

Our contributions are summarized as follows:105

• We propose Dynamic Vector (DyVec), a106

novel ICV-based inference-time intervention107

method that injects task-specific vectors into108

frozen LLMs, achieving few-shot perfor-109

mance while retaining the efficiency of zero-110

shot inference.111

• We introduce Exhaustive Query Rotation 112

(EQR) and a dynamic segmentation strategy 113

with REINFORCE-based injection, enabling 114

flexible insertion of task representations to 115

construct vector. 116

• We conduct extensive experiments across mul- 117

tiple tasks, demonstrating the effectiveness 118

and generality of our approach. 119

2 Related Work 120

In-Context Learning (ICL). ICL enables LLMs 121

to perform new tasks without parameter updates 122

by conditioning on a few task-specific examples 123

in the input prompt (Brown et al., 2020), and has 124

been extended to various applications (Wei et al., 125

2023; Wang et al., 2023; Yao et al., 2023). How- 126

ever, ICL faces two major challenges: (1) Ineffi- 127

ciency — each inference involves a full forward 128

pass over lengthy prompts with repeated demonstra- 129

tions, leading to high memory and compute costs, 130

especially in resource-limited settings (Liu et al., 131

2022); (2) Instability — performance is highly sen- 132

sitive to prompt design, including example order 133

and selection (Liu et al., 2021; Rubin et al., 2022). 134

In-Context Vector. Transformers encode the se- 135

mantics of ICL demonstrations within their inter- 136

nal activations (Hendel et al., 2023; Todd et al., 137

2024; Huang et al., 2024). These activations, 138

termed In-Context Vectors (ICV), capture task- 139

specific signals and can be injected at inference 140

time to emulate few-shot behavior in a zero-shot 141

setting—achieving comparable performance while 142

retaining the efficiency of zero-shot inference. 143

ICVs have been applied to guide model behavior 144

across tasks, such as promoting honesty (Li et al., 145

2023), reducing harmful outputs (Liu et al., 2024), 146

or enabling role-playing (Potertì et al., 2025). ICVs 147

have also been explored in vision (Hojel et al., 148

2024) and multimodal models (Huang et al., 2024), 149

demonstrating broad applicability. 150

However, prior ICV-based methods often fail to 151

outperform standard ICL (Todd et al., 2024), or 152

require extra training data (Huang et al., 2024). In 153

contrast, our proposed DyVec improves over few- 154

shot ICL without any additional data. 155

3 Preliminary 156

In ICL, LLMs are prompted with a few input- 157

output demonstrations followed by a query. For- 158
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Dynamism Vector Construction

Method Seg. Inj. Source Computation Granularity Injection Position

TV ✗ ✗ Transformer Layer Output Avg. Layer L Valid.
FV ✗ ✗ Attention Head Activation Avg. Attention Head H CIE + Valid.
DyVec ✓ ✓ Semantically Aggregated Latent EQR + Avg. Dynamic Segment S REINFORCE

Table 1: Comparison of DyVec with existing ICV methods across key aspects of vector construction. TV = Task
Vector (Hendel et al., 2023), FV = Function Vector (Todd et al., 2024), Seg. = Segmentation, Inj. = Injection, Avg.
= Averaging, EQR = Exhaustive Query Rotation, and CIE = Causal Indirect Effect, Valid. = Validation-Guided.

mally, an ICL prompt is defined as:159

P = (x1, y1), . . . , (xK , yK), xquery (1)160

where the model processes P in a single forward161

pass and generates yquery as the prediction.162

Recent work has shown that LLMs encode task-163

specific signals from ICL demonstrations into their164

hidden states (Hendel et al., 2023; Todd et al., 2024;165

Huang et al., 2024). These representations, which166

we refer to as ICVs, can be extracted and reused167

to induce few-shot-like behavior during zero-shot168

inference.169

Most existing ICV methods (Todd et al., 2024;170

Huang et al., 2024) construct vectors from raw at-171

tention head activations. Specifically, for attention172

head j in layer i, the output is given by:173

A(i,j) = Softmax

(
Q(i,j)K

⊤
(i,j)√

dh

)
V(i,j) (2)174

During inference, the extracted ICV A(i,j) is in-175

jected back into the same location in the frozen176

model, scaled by a factor β:177

Â(i,j) = Ainfer
(i,j) + β ·A(i,j), (3)178

This injection shifts the model’s internal activations179

in a task-specific direction, effectively adapting the180

model without demonstrations in the prompt.181

The performance of ICVs is primarily deter-182

mined by two critical aspects: (1) the quality of183

the extracted representation to construct vectors,184

and (2) the informativeness of the positions in the185

model where these vectors are injected.186

Existing approaches typically extract ICVs by187

running ICL with randomly sampled demonstra-188

tions and averaging the resulting representations.189

While this mitigates the model’s sensitivity to fac-190

tors such as demonstration position and composi-191

tion, it does not fully resolve the issue. Moreover,192

prior methods construct vectors directly from raw193

attention head outputs A, overlooking potential194

inter-head interactions that capture richer semantic 195

information. To determine the optimal injection 196

locations for these vectors, existing approaches ei- 197

ther rely on validation performance (Hendel et al., 198

2023), or incur significant computational overhead 199

by exhaustively searching across tasks (Todd et al., 200

2024). To address these issues, we propose Dy- 201

namic Vector (DyVec). 202

4 Dynamic Vector Construction from 203

Latent Representations 204

Figure 2 provides an overview of the complete 205

DyVec pipeline, which consists of three key stages: 206

(1) an Exhaustive Query Rotation strategy for ex- 207

tracting robust, semantically aggregated latent rep- 208

resentations, (2) Dynamic Segmentation and In- 209

jection for constructing vectors, and (3) Inference- 210

Time Intervention via vector injection. 211

4.1 Exhaustive Query Rotation for Robust 212

Latent Extraction 213

To enhance robustness against biases introduced 214

by the order and composition of demonstrations, 215

we propose an Exhaustive Query Rotation (EQR) 216

strategy for reliable and semantically aggregated 217

latent representation extraction. Given a sampled 218

subset of N labeled instances from the training set, 219

we systematically rotate through each instance by 220

treating it once as the query and using the remain- 221

ing N−1 examples as demonstrations. This results 222

in N distinct ICL prompts: 223

Pn = {(xm, ym) | m ̸= n, n ∈ {1, 2, ..., N}}∪{xn} (4) 224

For each prompt Pn, we perform a forward pass 225

through the model. At the last token position of 226

the prompt, we extract latent representations from 227

the semantically aggregated projections within the 228

MHA modules across all transformer layers. The 229

latent representation of layer i is denoted as: 230

A(i) = [A(i,1)∥ · · · ∥A(i,H)]

O(i) = A(i)W
O
(i)

(5) 231
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Figure 2: The overview of our proposed model.

where WO
(i) ∈ Rd×d is the output projection matrix232

at layer i, and o(i,n) denotes the latent representa-233

tion at the last token position for layer i and prompt234

n. We then average the latent representations ex-235

tracted from all N rotated prompts to obtain a ro-236

bust representation, which will serves as the basis237

for vector construction:238

o(i) =
1

N

N∑
n=1

o(i,n) (6)239

The EQR strategy produces a stable and sementic240

aggregated task-specific latent representation by en-241

suring each instance contributes equally. However,242

using the entire o(i) as a monolithic vector is overly243

rigid. To introduce greater task-specific flexibility,244

we propose a dynamic segmentation and injection245

mechanism that enables more fine-grained, task-246

centric control.247

4.2 Dynamic Latent Segmentation and248

Injection249

To extract task-specific information in a more dy-250

namic manner, we re-partition the latent repre-251

sentation o(i) into S segments, where S ∈ {s |252

d mod s = 0} denotes the set of values that evenly253

divide the hidden dimension d of the LLM. We254

obtain a list of latent segments, denoted as:255

µ(i) =
[
µ(i,1), µ(i,2), · · · , µ(i,S)

]
(7)256

Each dynamic latent segment µ(i,j) ∈ Rdµ repre-257

sents a contiguous slice of the latent representation258

o(i), where the dimensionality of each segment is 259

dµ = d/S. 260

When S = H (i.e., the number of attention 261

heads in the model), this segmentation corresponds 262

to a standard split. Increasing S leads to finer- 263

grained segments with smaller dµ, enabling more 264

detailed inspection of attention behavior across 265

more localized subspaces; decreasing S yields 266

coarser segments with larger dµ, potentially re- 267

ducing computational cost and still preserve the 268

key task semantics. Notably, when S = 1, the µ(i) 269

degenerates into a layer-shape representation. This 270

segmentation flexibility allows DyVec to adjust the 271

granularity of vector construction according to the 272

task’s complexity and the available computational 273

resources. 274

By segmenting o(i), we capture how task sig- 275

nals are distributed across layers and subspaces. 276

However, not all positions—indexed by layer i and 277

segment j—contribute equally to task-specific be- 278

havior. To identify the most informative positions 279

in the latent space, we introduce the notion of the 280

Dynamic Vector: a selected set of latent represen- 281

tations that collectively represent the task-specific 282

distribution. Formally, we aim to select an optimal 283

subset Y∗ ⊆ {(i, j)}, and construct the Dynamic 284

Vector as: 285

θ = {µ(i,j) | (i, j) ∈ Y∗} (8) 286

We define an intervention function L, which in- 287

jects the Dynamic Vector θ into the corresponding 288
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Algorithm 1 REINFORCE
Require: Positions L× S, learning rate αp, steps T
1: Initialize pi,j ← 0.5, ∀(i, j)
2: for t = 1 to T do
3: Sample mi,j ∼ Bernoulli(pi,j)
4: θ ← {µi,j | mi,j = 1}
5: R← −CE(L(M, θ),Dtrain)
6: for (i, j) do
7: pi,j ← Clip

(
pi,j + αp · mi,j−pi,j

pi,j(1−pi,j)
·R, ϵ

)
8: end for
9: end for

10: Y∗ ← TopK(pi,j , ⌈
∑

pi,j⌉)
11: return {µi,j : (i, j) ∈ Y∗}

positions during zero-shot inference, thereby modi-289

fying the model’s output distribution. The function290

L operates as a linear intervention strategy, com-291

bining the selected latent segment µ(i,j) with the292

model’s native activations via weighted summation.293

To discover the most effective intervention posi-294

tions, we adopt REINFORCE (Williams, 1992), a295

policy gradient method from reinforcement learn-296

ing. The optimization over the candidate set of posi-297

tions L×S is detailed in Algorithm 1. Specifically,298

we first parameterize a Bernoulli distribution over299

all possible insertion positions, where each element300

corresponds to a latent segment at a given layer. At301

each optimization step, binary masks are sampled302

from this distribution to determine which segments303

are activated for constructing the dynamic vector304

θ. This vector is then injected into the model us-305

ing strategy L, and the model output L(M, θ) is306

evaluated via cross-entropy loss on the training set307

Dtrain. The reward R is defined as the negative of308

this loss. We update the Bernoulli parameters using309

the REINFORCE algorithm to encourage selection310

of positions that improve downstream performance.311

We also apply Clip(x, ϵ) to keep each parameter312

within the interval [ϵ, 1− ϵ].313

Notably, this optimization process does not re-314

quire any additional training data. All queries and315

corresponding labels in Dtrain are drawn directly316

from the original example set, allowing DyVec to317

operate effectively even under extremely limited318

supervision. In the next section, we elaborate on319

how to select the optimal intervention function L320

from a set of candidate strategies.321

4.3 Dynamic Vector Injection for322

Inference-Time Intervention323

During zero-shot inference, for each position324

(i, j) ∈ Y∗, we modify the latent representaion325

O(i,j) by injecting the corresponding DyVec seg-326

ment scaled by a strength factor β: 327

Ô(i,j) = α ·O(i,j) + β · µ(i,j) (9) 328

Here, α ∈ {0, 1} acts as a binary gating mechanism 329

that dynamically controls whether the original out- 330

put is retained, while β modulates the influence of 331

the injected dynamic latent segment. We explore a 332

small set of such intervention strategies and select 333

the one that yields the lowest cross-entropy loss on 334

the training data. 335

Through the above three steps, our method is 336

able to automatically construct and inject DyVec 337

into the model using a limited number of ICL 338

demonstrations, without relying on additional train- 339

ing data or updating any model parameters. This 340

significantly enhances the generalization ability of 341

large language models in the zero-shot setting. 342

5 Experimental Setup 343

We evaluate DyVec on three 7B-scale open-source 344

LLMs: LLaMA-2-7B-Chat (Touvron et al., 2023), 345

Qwen2-7B (Yang et al., 2024), and DeepSeek- 346

LLM-7B-Chat (DeepSeek-AI et al., 2024). 347

Our main experiments focus on six classifi- 348

cation tasks covering sentiment analysis, sar- 349

casm detection, medical relation extraction, and 350

topic/question classification, using datasets such as 351

NHSD (Misra, 2022), Sarcasm (Nikesh66, 2023), 352

SST2 (Socher et al., 2013), ADE (Gurulingappa 353

et al., 2012), AG_News (Zhang et al., 2016), and 354

TREC6 (OxAISH-AL-LLM, 2023).We randomly 355

sample 1,000 instances per task to form the test set 356

for evaluation. 357

In addition, we include six generation tasks 358

adapted from Todd et al. (2024), involving lexical 359

and grammatical transformations (e.g., Antonym, 360

Capitalize, English-French). These tasks are used 361

to assess generalization beyond classification but 362

are not the primary focus of this work. Full results 363

are reported in Appendix 10. 364

To evaluate the effectiveness of our proposed 365

method DyVec, we conduct comparisons in two 366

directions: (1) against standard adaptation base- 367

lines, including both non-trainable like Few-Shot 368

ICL and trainable paradigms like LoRA; and (2) 369

against In-Context Vector (ICV) methods, includ- 370

ing Task Vector (TV), Function Vector (FV), and 371

Multimodal Task Vector (MTV) (Huang et al., 372

2024). 373

Further implementation details are provided in 374

Appendix A (Prompt Construction Details), Ap- 375

pendix B (Data Construction Details), Appendix C 376
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(Baselines), and Appendix I (DyVec intervention377

strategy).378

6 Results and Analysis379

6.1 Main Results380

Comparison with Adaptation Baselines. We381

evaluate DyVec on six diverse tasks, using the ac-382

curacy as the main metric. We report full results in383

Table 2, and summarize the averaged performance384

in Table 3.385

As shown in Table 2, DyVec outperforms both386

few-shot ICL and the LoRA tuning method across387

most settings. This demonstrates DyVec’s ability388

to construct effective task representations from lim-389

ited labeled data, without requiring any parameter390

updates or additional training data. Table 3 further391

quantifies the relative improvements across three392

models. In low-resource settings, DyVec achieves393

8.5% relative improvement over 4-shot ICL and394

39.5% over LoRA; under 8-shot, the gains remain395

substantial at 8.5% and 31.5%, respectively. These396

results confirm DyVec’s strong generalization abil-397

ity in low-resource scenarios.398

Data Size ICL LoRA DyVec

4 51.17 (↑8.5%) 39.78 (↑39.5%) 55.51
8 56.13 (↑8.5%) 46.31 (↑31.5%) 60.93
16 65.04 (↑0.1%) 52.69 (↑23.6%) 65.11

Table 3: Average performance across models and tasks
at varying data sizes. Relative improvements of DyVec
over each baseline are highlighted in red.

Comparison with ICV Methods. We compare399

DyVec with two ICV baselines: Task Vector (TV)400

and Function Vector (FV), under 8-shot settings401

using LLaMA-2-7B-Chat, with the average of ac-402

curacy and F1 score as the primary evaluation met-403

ric. FV uses a Causal Indirect Effect-based signal404

which require inferencing on extensive data to lo-405

cate informative attention head positions to inject406

vector, while TV use validation set to select injec-407

tion position for each task.408

As shown in Table 4, DyVec outperforms all409

injection methods by large margins. Specifically,410

DyVec relatively improves over FV by 33.0% and411

over TV by 169.1% on accuarcy, demonstrating412

the clear advantage of dynamic over other ICV413

methods.414

Task FV TV MTV DyVec

NHSD 54.00 25.21 50.50 49.00
Sarcasm 41.70 26.81 49.20 50.40
SST2 48.90 27.82 89.00 91.50
ADE 42.50 23.51 59.80 67.40
AG_News 61.00 18.34 73.30 79.20
TREC6 24.70 13.11 28.10 25.40

Average 45.47
(↑33.0%)

22.47
(↑169.1%)

58.32
(↑3.7%)

60.48

Table 4: Accuracy (%) comparison between DyVec and
other ICV baselines on six classification tasks. Relative
improvements of DyVec over each baseline are high-
lighted in red.

6.2 Inference Efficiency Analysis 415

To assess efficiency, we measure the total runtime 416

on an A100 GPU for completing six tasks using 417

DyVec and Few-shot ICL, with 1000 test samples 418

per task. Results are shown in Figure 3. 419

Unlike ICL, which incurs increasing over- 420

head due to longer prompts, DyVec employs a 421

lightweight inference-time intervention that re- 422

quires minimal computational cost. Despite its effi- 423

ciency, DyVec not only matches but significantly 424

outperforms ICL in accuracy, demonstrating that ef- 425

fective task adaptation can be achieved without the 426

expense of costly prompt-based conditioning. De- 427

tailed timing statistics are provided in Appendix D. 428

Figure 3: Relative inference time across different mod-
els and methods.

6.3 Ablation Study 429

To better understand the impact of key design com- 430

ponents in DyVec, we conduct ablation studies 431

under 8-shot settings across three tasks (NHSD, 432

ADE, AG_News) and three LLMs (LLaMA, Qwen, 433

DeepSeek). Specifically, we examine the effects 434

of: (1) the source of representations used for vector 435

construction, (2) the EQR strategy to compute ro- 436

bust representations, (3) the granularity of dynamic 437

latent segment dµ, and (4) the robustness of DyVec 438

to changes in latent segment source. 439
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Model Data size Method NHSD Sarcasm SST2 ADE AG_News TREC6 Average

LLaMA

4
ICL 34.80 50.70 90.20 52.60 45.80 21.90 49.33

LoRA 47.10 27.90 43.40 47.00 40.30 16.70 37.07
DyVec 48.50 57.40 55.60 56.90 64.20 26.40 51.50

8
ICL 24.00 64.90 93.10 57.10 71.20 24.10 55.73

LoRA 41.90 59.70 81.00 55.00 46.80 31.30 52.62
DyVec 49.00 50.40 91.50 67.40 79.20 25.40 60.48

16
ICL 48.60 75.60 94.30 60.20 81.20 28.10 64.67

LoRA 58.80 73.50 69.70 56.40 51.20 25.00 55.77
DyVec 59.90 82.90 91.30 68.20 81.80 24.60 68.12

Qwen

4
ICL 29.10 37.80 94.20 52.10 72.20 25.30 51.78

LoRA 50.40 53.80 53.30 60.80 64.70 10.90 48.98
DyVec 51.70 46.80 63.00 59.90 85.00 24.10 55.08

8
ICL 34.50 56.00 94.90 56.80 75.90 26.40 57.42

LoRA 50.90 64.40 53.70 53.00 36.70 6.90 44.27
DyVec 53.90 50.50 92.70 60.10 80.40 25.20 60.47

16
ICL 63.40 79.60 94.20 53.30 87.90 29.30 67.95

LoRA 66.70 72.60 53.70 57.70 51.30 7.80 51.63
DyVec 67.00 50.50 91.00 58.70 68.50 26.20 60.32

DeepSeek

4
ICL 39.60 47.90 92.90 53.10 70.28 10.51 52.38

LoRA 36.50 60.00 32.00 55.10 4.00 12.10 33.28
DyVec 48.90 62.10 80.70 59.30 80.30 28.40 59.95

8
ICL 25.20 67.70 90.50 59.20 72.50 16.30 55.23

LoRA 40.40 42.80 54.90 58.20 34.20 21.70 42.03
DyVec 49.60 50.60 92.50 64.40 78.80 35.20 61.85

16
ICL 57.80 68.00 93.90 67.90 77.56 9.85 62.50

LoRA 55.20 54.30 85.10 62.20 36.30 11.00 50.68
DyVec 64.30 76.00 91.50 67.90 72.70 28.90 66.88

Table 2: Evaluation results of ICL, LoRA, and DyVec across models (LLaMA, Qwen, DeepSeek), dataset sizes
(4/8/16 shots), and six tasks. Bold indicates best performance in each block. The gray column highlights average
performance. Average performance across models and tasks under different data sizes is summarized in Table 3.

Semantically Aggregated Latent Representa-440

tions Enable More Informative Vector Construc-441

tion. To evaluate the impact of representation442

source on vector construction, we compare two443

approaches. Prior methods typically use raw At-444

tention Head Activations (AHA, Eq. 2) extracted445

directly from selected attention heads (Huang et al.,446

2024). In contrast, DyVec adopts a more structured447

Semantically Aggregated Representation (SAR,448

Eq. 5), obtained from the output projections of the449

MHA module after cross-head fusion via a learned450

linear transformation. For fair comparison, the451

SAR in DyVec is segmented into S = H segments452

to match the number of attention heads.453

As shown in Table 5, SAR consistently outper-454

forms AHA across all three models, highlighting455

the superior informativeness and generalization of456

semantically aggregated latent representations as457

the source of vector construction.458

EQR Enhances Representation Robustness459

Across Methods. DyVec incorporates an Exhaus-460

tive Query Rotation (EQR) strategy, which system-461

Model Method NHSD ADE AG_News Avg.

LLaMA DAO 51.60 64.20 77.40 64.40
LO (Ours) 49.00 67.40 79.20 65.20

Qwen DAO 51.70 55.70 78.90 62.10
LO (Ours) 53.90 60.10 80.40 64.80

DeepSeek DAO 47.20 64.80 77.20 63.07
LO (Ours) 49.60 64.40 78.80 64.27

Table 5: Comparison of sources for vector construction.

atically rotates the query position within a fixed 462

demonstration set and averages the resulting repre- 463

sentations to compute a robust task representation 464

for vector construction. To evaluate its effective- 465

ness, we compare EQR against a baseline that con- 466

structs prompts via random shuffling and computes 467

the representation by averaging outputs over N 468

iterations. 469

As shown in Figure 4, EQR consistently achieves 470

the highest average performance across all models. 471

Importantly, EQR is orthogonal to other ICV-based 472

representation strategies and can be seamlessly inte- 473
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Method NHSD Sar. SST2 ADE AG. TREC6 Avg.

TV 25.21 26.81 27.82 23.51 18.34 13.11 22.47
+ EQR 34.65 29.53 32.76 34.09 26.42 14.95 28.74

DyVec′ 46.70 58.70 77.50 58.20 58.90 34.30 55.72
+ EQR 49.00 50.40 91.50 67.40 79.20 25.40 60.48

Table 6: Effectiveness of the EQR strategy on different
ICV methods. DyVec′ denotes DyVec without EQR.

Figure 4: Effectiveness of the EQR strategy in DyVec
across different models. Results are averaged over three
tasks with 8-shot data. Solid lines represent perfor-
mance using different numbers of randomly constructed
prompts (N = 1, 50, 100), while dashed lines indicate
performance using EQR strategy.

grated as a complementary enhancement for robust474

vector construction, as further evidenced in Table 6.475

Finer Latent Segmentation Leads to Better Vec-476

tors. In DyVec, the semantically aggregated la-477

tent representation o(i) is divided into S segments,478

each corresponding to an independently optimized479

subspace. The default setting S = H (number480

of attention heads) serves as a standard granular-481

ity. We compare three variants: (1) Fine-grained:482

S = 2H; (2) Coarse-grained: S = H/2; (3)483

Layer-grained: S = 1. As shown in Table 7, finer484

segmentation (S = 2H) consistently yields the485

best performance. Coarser settings lead to notice-486

able drops, with S = 1 reducing DyVec to a global487

layer-shaped representation similar to the Task Vec-488

tor baseline. This confirms that finer-grained inter-489

vention captures richer task signals, while overly490

coarse representations lack sufficient capacity.491

Robustness of Task Injection under Latent Seg-492

ment Replacement. To further assess the robust-493

ness and generalization ability of DyVec, we con-494

duct a supplementary experiment by decoupling495

the sources of vector construction and interven-496

tion configuration. Specifically, we reconstruct the497

latent segments uDX

(i,j) from a dataset DX , while498

keeping the selected intervention positions Y∗DK499

Model S NHSD ADE AG_News Avg

LLaMA

1 54.60 53.50 71.40 59.83
H/2 54.60 61.10 74.30 63.33
H 49.00 67.40 79.20 65.20
2H 53.10 66.00 78.40 65.83

Qwen

1 50.60 51.20 28.70 43.50
H/2 53.10 59.70 79.90 64.23
H 53.90 60.10 80.40 64.80
2H 57.70 63.40 83.70 68.27

DeepSeek

1 50.60 50.00 68.40 56.33
H/2 55.30 61.10 71.30 62.57
H 49.60 64.40 78.80 64.27
2H 49.40 69.10 77.00 65.17

Table 7: Effect of latent segmentation granularity (S)
on DyVec performance across models and tasks.

and injection function LDK fixed, as determined 500

on a separate dataset DK . Formally, 501

θX←K = {uDX

(i,j) | (i, j) ∈ Y∗DK} (10) 502

In this setting, only the latent segments u(i,j) are 503

updated using new examples from DX , while the 504

injection location and strategy remain fixed. This 505

ensures that the intervention mechanism is con- 506

sistent, isolating the effect of changing the latent 507

source. 508

Despite being derived from entirely different ex- 509

amples, the injected vectors still lead to strong per- 510

formance across multiple tasks—sometimes even 511

surpassing the original configuration. These re- 512

sults highlight DyVec’s robustness to variation in 513

vector sources. Detailed results are provided in 514

Appendix H. 515

7 Conclusion 516

We propose DyVec, a novel ICV method for effi- 517

cient and robust inference-time task adaptation in 518

LLMs. DyVec addresses key limitations of prior 519

approaches through three innovations: (1) extract- 520

ing semantically aggregated latent representations 521

as the source for vector construction, (2) employing 522

EQR to compute robust task representations, and 523

(3) performing dynamic latent segmentation and 524

flexible vector injection via REINFORCE optimiza- 525

tion. Experiments across diverse tasks and model 526

scales show that DyVec consistently outperforms 527

few-shot ICL, LoRA, and previous ICV baselines, 528

while preserving the efficiency of zero-shot infer- 529

ence. Beyond strong performance, DyVec offers 530

a lightweight, generalizable framework for vector- 531

based intervention, deepening our understanding 532

of latent task representations in LLMs. 533
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Limitations534

While DyVec demonstrates promising results on535

classification and lexical generation tasks, it still536

has several limitations. First, the current evaluation537

is primarily focused on classification tasks, with538

a limited number of generation tasks included for539

auxiliary analysis. Further validation on more di-540

verse and complex tasks, such as multi-hop reason-541

ing, dialogue, or instruction following, is needed542

to assess broader applicability. Second, our inter-543

vention strategy is designed manually and remains544

fixed during inference. Although we experiment545

with different positions and segmentations, the cur-546

rent approach does not explore adaptive or learned547

intervention mechanisms, which may further en-548

hance performance or stability.549

Ethics Statement550

Use of AI Assistants We have employed Chat-551

GPT as a writing assistant, primarily for polishing552

the text after the initial composition.553
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A Prompt Construction Details671

For all tasks in our experiments, we adopt a uni-672

fied prompt format based on a question–answering673

template. Each example is framed as a pair of in-674

put–output sentences in the form of:675

Q: [input text] \n A: [label]676

Few-shot ICL prompts are constructed by con-677

catenating k such (Q, A) pairs as demonstra-678

tions, followed by a query in the same format679

but without the answer. A special delimiter to-680

ken <|endoftext|> is prepended to mark the start681

of the prompt. All tasks share the same prompt682

structure, with only the task-specific examples sub-683

stituted.684

Example (SST2, 4-shot):685

<|endoftext|> Q: plenty of warmth to go686
around , with music and laughter and the687
love of family \n A: positive688

Q: comfort \n A: positive689

Q: lacks a strong narrative \n A:690
negative691

Q: attal ’s hang-ups surrounding692
infidelity are so old-fashioned \n A:693
negative694

Q: painful elegy \n A:695

Example (SST2, 0-shot):696

<|endoftext|> Q: painful elegy \n A:697

This template is applied uniformly across all698

classification and generation tasks, enabling a fair699

comparison between few-shot and intervention-700

based methods.701

B Data Construction Details702

For all classification tasks used in our experiments,703

we construct training data with an emphasis on704

diversity, aiming to help in-context learning (ICL)705

better capture task semantics and label structure.706

When selecting k labeled examples, we ensure that707

different label categories are represented as evenly708

as possible.709

For example, the AG_News dataset contains four710

categories: World, Business, Sports, and Science.711

When k = 4, we select one example from each712

class. Below is a subset used under this setting:713

Input: Linux puts another financial714

feather in its cap... Output: Science715

Input: War in Iraq Did Not Make World716

Safer, Annan Says... Output: World717

Input: US Treasuries cut early gains on 718

jobless drop... Output: Business 719

Input: Closing Ceremonies Host city 720

Athens bid a final farewell... Output: 721

Sports 722

We apply the same strategy to other datasets: for 723

instance, in SST2 (a binary sentiment task), we 724

use two positive and two negative sample when 725

k = 4; in TREC6, we attempt to sample across 726

all six question categories. This ensures that each 727

in-context demonstration set provides broad task 728

coverage, which is especially important in the few- 729

shot setting. 730

C Baselines 731

Few-Shot In-Context Learning (ICL) The 732

model is presented with 4/8/16 labeled examples 733

directly within the input prompt, without any mod- 734

ification to its parameters. This non-parametric 735

adaptation method is widely used due to its sim- 736

plicity and general applicability. 737

LoRA Fine-tuning This parameter-efficient fine- 738

tuning approach introduces low-rank adapters into 739

the attention projection layers. By updating only a 740

small number of additional parameters while keep- 741

ing the base model weights frozen, LoRA enables 742

efficient adaptation to specific tasks. Implementa- 743

tion details for LoRA are provided in Appendix E. 744

Task Vector (TV) This method encodes k 745

demonstrations combined with a dummy query and 746

extracts the representation of the last token from 747

an intermediate layer as the ICV. During inference, 748

this vector replaces the corresponding last token 749

representation in the same layer. We evaluate TV 750

at different layers and report the performance of 751

the best-performing layer based on test set results. 752

Function Vector (FV) The ICV is derived by av- 753

eraging the outputs of key attention heads over a 754

small validation subset. This vector is then added 755

to the last token representation at a selected layer 756

during inference, modulating the model’s behavior 757

for the target task. Similar to TV, we evaluate FV 758

across multiple layers and report the test perfor- 759

mance of the best-performing configuration. 760

Multimodal Task Vectors (MTV) MTV com- 761

presses many-shot multimodal ICL examples into 762

compact latent representations by averaging at- 763

tention head activations and injecting them back 764
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into selected model positions, enabling efficient765

inference-time adaptation without increasing con-766

text length.767

Model Method Time ↓ (min)

LLaMA

LoRA 5.16
DyVec 6.12
4-shot 15.75
8-shot 29.90
16-shot 51.73

Qwen

LoRA 4.12
DyVec 4.95
4-shot 16.16
8-shot 25.51
16-shot 43.29

DeepSeek

LoRA 6.50
DyVec 9.40
4-shot 15.15
8-shot 26.41
16-shot 45.51

Table 8: Inference time (in minutes) across different
models and methods.

D Inference Time768

To further understand the practical efficiency of769

DyVec, we compare the inference time of different770

adaptation methods across LLaMA, Qwen, and771

DeepSeek models. All evaluations are conducted772

on the same hardware with a fixed test set size of773

1000 examples per task, ensuring a fair comparison774

of decoding speed. Results are reported in Table 8.775

We observe that:776

Few-shot ICL incurs the highest inference cost,777

and this cost scales roughly linearly with the num-778

ber of in-context examples. For instance, going779

from 4-shot to 16-shot increases decoding time by780

over 3 times for all models. This highlights the781

inefficiency of prompt-based adaptation at scale.782

LoRA offers the fastest inference, since it only783

relies on a fixed set of fine-tuned parameters and in-784

curs no additional prompt-related overhead. DyVec785

achieves a favorable balance: while slightly slower786

than LoRA due to runtime vector injection, it con-787

sistently outperforms ICL in efficiency, especially788

in higher-shot settings.789

These results demonstrate that DyVec retains790

non-parametric generality without the latency791

penalty of few-shot prompting, making it more792

suitable for efficient inference scenarios.793

E LoRA Fine-tuning Details794

To establish a strong parameter-efficient fine-tuning795

(PEFT) baseline, we employ Low-Rank Adaptation796

(LoRA) on top of pretrained LLMs. In this section, 797

we provide the detailed configuration and training 798

setup used in our experiments. 799

We adopt an enhanced LoRA configuration tai- 800

lored for causal language modeling (CLM). Specif- 801

ically, we apply LoRA modules to all attention pro- 802

jections: ‘q_proj‘, ‘k_proj‘, ‘v_proj‘, and ‘o_proj‘, 803

enabling full adaptation within the self-attention 804

mechanism. The rank of the low-rank matrices 805

is denoted by r, and we set the scaling factor to 806

α = 2r. A dropout rate of 0.2 is used within LoRA 807

to improve training stability. We freeze all origi- 808

nal model parameters and fine-tune only the LoRA 809

modules, while explicitly saving the embedding 810

(‘embed_tokens‘) and output head (‘lm_head‘) lay- 811

ers to ensure correct downstream decoding. 812

For data preprocessing, we format task-specific 813

input-output pairs and tokenize them using the 814

model’s tokenizer. Dynamic padding is applied 815

to ensure efficient GPU utilization with a padding 816

multiple of 8. 817

We train the LoRA-augmented model using the 818

HuggingFace ‘Trainer‘ API with the following set- 819

tings: 820

Batching: Per-device batch size of 4, with gra- 821

dient accumulation to simulate larger batch sizes. 822

Optimization: AdamW optimizer with β1 = 0.9, 823

β2 = 0.98, and weight decay of 0.001 for better 824

convergence. The learning rate follows a cosine 825

scheduler with 20% warmup. 826

Precision: Training is performed using bfloat16 827

(if supported) or fallback to fp16. 828

Stabilization: Gradient clipping is applied with a 829

norm threshold of 1.0, and gradient checkpointing 830

is enabled to reduce memory usage. 831

Epochs: The number of training epochs is task- 832

specific, selected via grid search on the develop- 833

ment set. 834

F Effect of Exhaustive Query Rotation 835

strategy 836

In this appendix, we provide a detailed analysis of 837

the Exhaustive Query Rotation (EQR) strategy and 838

its impact on model performance. EQR is designed 839

to enhance the robustness of in-context learning by 840

systematically rotating the query position within 841

the prompt. This approach enables the model to 842

better generalize across different query placements, 843

reducing potential positional biases. 844

As shown in Table 9, EQR consistently improves 845

performance across multiple datasets and model 846
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Model Method NHSD Sarcasm SST2 ADE AG_News TREC6 Avg

llama

EQR 49.00 50.40 91.50 67.40 79.20 25.40 60.48
N = 1 46.70 58.70 77.50 58.20 58.90 34.30 55.72
N = 50 49.10 50.10 57.10 54.40 57.70 24.10 48.75

N = 100 50.60 50.50 55.10 50.00 25.10 24.10 42.57

Qwen

EQR 34.50 56.00 94.90 56.80 75.90 26.40 57.42
N = 1 42.70 43.40 85.70 52.40 26.10 17.70 44.67
N = 50 49.40 50.50 66.30 50.40 36.40 24.10 46.18

N = 100 50.60 50.50 46.30 50.20 25.10 16.50 39.87

deepseek

EQR 25.20 67.70 90.50 59.20 72.50 16.30 55.23
N = 1 45.80 60.20 86.50 63.00 52.10 33.20 56.80
N = 50 48.00 50.50 65.90 47.60 68.40 27.30 51.28

N = 100 42.00 50.50 53.70 50.00 29.90 24.20 41.72

Table 9: Performance comparison of different models using the EQR method and varying the number of prompt
sampling iterations (N ) across six datasets.

Model Data size Method Antonym Capitalize Country-capital English-french Present-past Singular-plural

Llama

4
ICL 67.66 100.00 97.62 78.57 95.24 100.00

LoRA 41.67 56.47 42.86 21.78 60.66 93.02
DyVec 56.55 98.24 97.62 66.36 96.72 100.00

8
ICL 69.05 100.00 97.62 85.71 100.00 100.00

LoRA 40.67 74.71 88.10 31.21 88.52 90.70
DyVec 49.80 100.00 97.62 72.75 100.00 100.00

16
ICL 70.24 100.00 100.00 80.95 100.00 100.00

LoRA 53.17 85.29 88.10 41.54 90.16 97.67
DyVec 63.10 100.00 95.24 78.32 100.00 100.00

Qwen

4
ICL 67.86 100.00 95.24 85.71 97.62 97.62

LoRA 15.87 53.53 35.71 10.84 31.15 34.88
DyVec 53.17 100.00 97.62 76.90 100.00 100.00

8
ICL 69.44 100.00 95.24 85.71 97.62 97.62

LoRA 35.12 54.71 47.62 32.12 54.10 76.74
DyVec 55.36 100.00 95.24 75.38 100.00 100.00

16
ICL 72.42 100.00 95.24 85.71 97.62 97.62

LoRA 52.98 74.71 78.57 50.35 83.61 83.72
DyVec 61.11 100.00 100.00 76.39 100.00 100.00

deepseek

4
ICL 70.04 97.06 90.48 83.33 95.24 97.62

LoRA 22.82 50.59 16.67 33.43 60.66 25.58
DyVec 39.29 79.41 88.10 69.10 96.72 97.67

8
ICL 70.44 100.00 88.10 73.81 97.62 97.62

LoRA 22.62 65.88 35.71 38.20 67.21 65.12
DyVec 53.77 100.00 88.10 72.64 100.00 100.00

16
ICL 69.84 100.00 90.48 76.19 90.48 97.62

LoRA 33.33 92.94 73.81 50.96 83.61 83.72
DyVec 60.32 100.00 92.86 73.66 100.00 97.67

Table 10: Accuracy comparison (%) on six linguistic transformation tasks under different adaptation methods across
three models and varying data sizes. Bold numbers indicate the best results in each setting. DyVec consistently
achieves competitive or superior performance.

architectures compared to Single Prompt and Ran-847

dom Shuffle Averaging. The strategy effectively848

leverages the model’s attention capacity, allowing849

for more comprehensive utilization of contextual850

information.851

We also observe a degradation phenomenon852

when the number of rotated prompts N becomes853

too large (e.g., N ≥ 50). In such cases, the model 854

sometimes collapses to producing a single domi- 855

nant prediction across inputs, losing discriminative 856

power on certain classification tasks. This suggests 857

that while EQR enhances robustness under low- 858

resource settings, excessively large N may dilute 859

task-specific signals and harm decision diversity. 860
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Model DY DX NHSD Sarcasm SST2 ADE AG_News TREC6

Llama

4
4 50.07 45.52 63.43 59.56 56.07 19.94
8 42.10 45.35 90.09 57.43 57.98 19.82
16 42.35 53.29 53.83 41.67 53.52 18.24

8
4 42.36 42.03 60.81 64.04 59.34 16.12
8 49.74 58.22 91.75 67.40 74.46 18.13
16 44.24 42.03 84.49 41.99 68.39 18.26

16
4 58.66 60.74 84.93 59.42 53.38 21.01
8 58.02 76.89 92.22 58.67 72.51 19.13
16 63.17 82.68 89.90 70.31 74.27 20.18

Qwen

4
4 57.50 53.55 68.67 62.32 84.81 16.06
8 43.29 45.20 79.14 58.60 73.90 20.48
16 45.32 45.09 69.71 55.89 80.75 15.65

8
4 45.62 42.03 87.80 60.79 69.64 18.78
8 58.80 58.52 92.83 58.39 79.53 17.55
16 58.35 42.03 77.06 54.70 67.79 17.80

16
4 58.12 58.33 94.26 61.15 65.29 18.14
8 66.54 58.80 87.46 61.67 44.37 18.77
16 69.63 58.93 91.57 60.00 53.24 18.80

deepseek

4
4 41.14 56.28 82.68 55.62 72.24 20.87
8 42.10 63.45 91.98 52.68 66.07 25.89
16 43.14 58.65 88.34 43.36 55.14 19.28

8
4 42.10 42.91 78.02 65.63 58.39 15.29
8 40.65 58.75 92.72 64.92 78.30 27.20
16 46.80 42.03 84.13 41.83 59.04 21.29

16
4 57.77 71.66 87.50 58.57 36.75 14.74
8 58.67 84.86 89.93 61.59 61.60 20.27
16 66.11 78.28 91.94 69.10 65.44 21.88

Table 11: Dynamic Latent Segments extracted from the dataset DX , and the intervention positions learned on
another dataset DY . For the same task, fixed intervention positions generalize well across different activation
vectors.

Model Data size NHSD Sarcasm SST2 ADE AG_News TREC6

LLaMA
4 (1,4) (1,4) (1,1) (0,2) (0,2) (1,2)
8 (1,4) (1,4) (1,1) (0,2) (1,2) (1,1)

16 (0,1) (0,1) (0,4) (0,1) (0,1) (0,1)

Qwen
4 (0,1) (0,4) (1,1) (0,2) (0,4) (0,1)
8 (0,1) (0,1) (1,4) (0,1) (1,4) (1,1)

16 (0,1) (1,4) (1,2) (0,1) (0,4) (0,1)

Deepseek
4 (1,4) (0,1) (1,1) (0,1) (1,4) (1,1)
8 (0,4) (0,4) (1,2) (1,2) (1,4) (0,1)

16 (0,1) (0,1) (0,2) (0,1) (0,1) (0,2)

Table 12: Optimal intervention configurations (α, β) across models and tasks.The number of segmented positions S
equals the number of attention heads H

G Evaluation on Generation Tasks861

To further assess the general applicability of DyVec,862

we evaluate it on six standard generation tasks863

using accuracy as the metric. As shown in Ta-864

ble 10, DyVec delivers competitive performance865

without increasing the prompt length, enabling866

more efficient inference. Although Few-shot ICL867

slightly outperforms DyVec on a few individual868

tasks, the overall results suggest that DyVec retains869

strong generalization ability beyond classification 870

settings. 871

H Task Representation Transferability 872

To further evaluate the robustness of DyVec’s la- 873

tent modulation mechanism, we examine whether a 874

fixed intervention position—learned on a particular 875

dataset size—can generalize across activation vec- 876

tors computed from different dataset sizes, Details 877
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can be found in Equation 10.878

As shown in Table 11, the fixed intervention posi-879

tions remain effective across a wide range of activa-880

tion sources. This suggests that while the extracted881

activations may vary in granularity or representa-882

tional strength, the optimal position for injecting883

modulation remains relatively stable within each884

model. This property enhances the flexibility of885

DyVec in real-world scenarios where activation886

extraction and position learning may occur under887

different data conditions.888

I Inference methods889

Table 12 reports the best-performing intervention890

configurations (α, β) under the setting where the891

number of segmented positions S equals the num-892

ber of attention heads H . Each cell presents the893

configuration that achieved the lowest training loss894

for a specific model, task, and data size. These895

results reflect how the optimal intervention strat-896

egy can vary with both model architecture and the897

amount of training data, emphasizing the need for898

adaptive configuration in real-world applications.899
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