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Abstract

Open-world reinforcement learning challenges agents to develop intelligent behav-
ior in vast exploration spaces. Recent approaches like LS-Imagine have advanced
the field by extending imagination horizons through jumpy state transitions, yet
remain limited by fixed exploration mechanisms and static jump thresholds that
cannot adapt across changing task phases, resulting in inefficient exploration and
lower completion rates. Humans demonstrate remarkable capabilities in open-
world decision-making through a chain-like process of task decomposition, selec-
tive memory utilization, and adaptive uncertainty regulation. Inspired by human
decision-making processes, we present Cognitive Predictive Processing (CPP), a
novel framework that integrates three neurologically-inspired systems: a phase-
adaptive cognitive controller that dynamically decomposes tasks into exploration,
approach, and completion phases with adaptive parameters; a dual-memory inte-
gration system implementing dual-modal memory that balances immediate context
with selective long-term storage; and an uncertainty-modulated prediction regula-
tor that continuously updates environmental predictions to modulate exploration
behavior. Comprehensive experiments in MineDojo demonstrate that these human-
inspired decision-making strategies enhance performance over recent techniques,
with success rates improving by an average of 4.6% across resource collection tasks
while reducing task completion steps by an average of 7.1%. Our approach bridges
cognitive neuroscience and reinforcement learning, excelling in complex scenarios
that require sustained exploration and strategic adaptation while demonstrating
how neural-inspired models can solve key challenges in open-world AI systems.

1 Introduction

Open-world reinforcement learning (RL) challenges agents to develop intelligent behavior in environ-
ments characterized by unbounded exploration spaces, diverse interaction possibilities, and limited
perceptual information [1, 31, 35]. These environments demand flexible decision-making capabil-
ities that can generalize across varied scenarios and objectives while operating under substantial
uncertainty [12]. Contemporary embodied AI systems struggle with efficient exploration, contextual
adaptation, and progressive learning in such complex domains [8], highlighting the need for more
sophisticated cognitive architectures that can emulate human-inspired reasoning and adaptation [26].

Recent advancements in model-based reinforcement learning have made significant progress toward
addressing these challenges [1, 11, 16, 28, 29, 31, 45]. DreamerV3 [16] employs world models to
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Figure 1: Cognitive Predictive Processing architecture for open-world reinforcement learning.
The figure shows our integrated architecture that enhances agent exploration through three key
components. Minecraft imagery and content shown in this figure are the property of Mojang Studios
and Microsoft Corporation, used for academic illustration purposes.

improve sample efficiency through imagination-based planning, achieving impressive results across
diverse domains. Building on this foundation, LS-Imagine [28] introduces jumpy state transitions
guided by affordance maps, extending imagination horizons beyond the short-term constraints of
previous approaches. While these methods have advanced the state of the art, they rely on fixed
exploration mechanisms and static jump thresholds that cannot adapt to changing task phases. This
limitation leads to inefficient exploration patterns and behavioral stagnation, particularly in complex
scenarios requiring sustained exploration and strategic reasoning.

Humans excel in open-world environments through sophisticated cognitive processes, and unlike
the fixed exploration mechanisms of existing algorithms, human behavior can be characterized
by three complementary cognitive strategies that enable adaptive decision-making in a cascading
process[15, 21]. First, when confronting complex tasks, humans naturally decompose problems
into distinct phases [4, 13], transforming global uncertainty into manageable local challenges. This
phase-specific decomposition allows for targeted optimization of exploration parameters tailored to
each environmental context, creating a foundation for efficient problem-solving. Second, operating
within this phase-structured framework, human behavior has been effectively modeled using selective
dual-memory systems [39] that dynamically balance innovation and conservation. In these models,
working memory focuses on immediate environmental features while episodic memory stores struc-
tured experiential. Third, as phases progress, humans have been observed to regulate exploration
through predictive processing [41] that establishes adaptive feedback loops. By continuously com-
paring expected outcomes with actual environmental feedback, this mechanism dynamically adjusts
exploration strategies, increasing precision in familiar contexts while promoting flexibility in novel
situations. These integrated cognitive mechanisms, operating in a sequential yet complementary man-
ner, enable humans to overcome precisely the static exploration strategies and contextual adaptation
challenges that limit current AI approaches in open-world environments.

Inspired by human decision-making processes, we present Cognitive Predictive Processing (CPP), a
framework that enhances open-world reinforcement learning by integrating principles from cognitive
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neuroscience [23]. The phase-adaptive cognitive controller segments problems into exploration,
approach, and completion phases with distinct computational characteristics, monitoring reward
patterns and environmental features to determine phase transitions [42]. The dual-memory integration
system parallels human working and episodic memory systems [10], providing contextual awareness
and selective retention of significant experiences. The uncertainty-modulated prediction regulator
applies hierarchical predictive coding [6], generating environmental predictions and responding to
uncertainty through precision-weighted integration of sensory inputs and internal models. Figure
1 shows the integrated CPP architecture and how its key components interact to enable adaptive
exploration in open-world environments.

Our contributions include: (1) Cognitive Predictive Processing, a novel framework that integrates
human-inspired decision-making mechanisms into open-world reinforcement learning; (2) a phase-
adaptive cognitive controller that draws inspiration from humans’ natural problem decomposition
into distinct phases, enabling adaptive exploration parameters across different task phases; (3) a
dual-memory integration system inspired by human selective memory systems that balance immediate
context with critical historical experiences, providing both short-term working memory and selective
long-term storage; (4) an uncertainty-modulated prediction regulator that leverages principles from
human predictive processing that adaptively responds to environmental uncertainty, adjusting explo-
ration behavior through environmental prediction. Across multiple resource collection tasks, our
framework not only improves success rates by an average of 4.6% but also reduces task completion
steps by an average of 7.1%, demonstrating consistent performance advantages in structured tasks
that require contextual adaptation and strategic planning.

2 Related Work

2.1 Open-World Reinforcement Learning

Open-world reinforcement learning confronts challenges of vast state spaces, sparse rewards, and
long-horizon tasks. Recent advances in model-based approaches have significantly improved capa-
bilities in such environments. DreamerV3 [16] extends earlier world model techniques [17, 18] by
learning predictive representations from limited experiences, though these models typically struggle
with limited temporal horizons [14]. Several approaches address long-horizon planning challenges:
LS-Imagine [28] introduces jumpy imagination for efficient extended planning, while STEVE-1 [31],
MineDreamer [46], and VPT [1] leverage language models or human demonstrations to bootstrap
policies for complex environments like Minecraft. Despite these advances, exploration in open-world
environments remains challenging, with most methods employing fixed exploration mechanisms
that fail to adapt to changing task demands [19, 34]. Traditional exploration strategies including
intrinsic motivation [27, 32] and novelty-seeking [36] show promise but employ static parameters and
heuristics that cannot adapt to different phases of the learning process [33]. This contrasts with human
exploration, which dynamically adjusts strategies based on task progress and environmental feedback.
HyperX [49] introduces uncertainty-guided exploration through novelty bonuses and prediction
discrepancies in meta-reinforcement learning contexts, though these exploration signals diminish
during training and focus on cross-task adaptation rather than continuous within-task modulation.
Recent approaches like SpatialVLA [37] and skill-oriented frameworks [45] implement more struc-
tured exploration but still rely on fixed exploration mechanisms rather than truly adaptive reasoning.
Unlike these approaches, our work introduces a human-inspired framework that dynamically adjusts
exploration strategies based on task progress, directly addressing the gap between static computational
methods and flexible exploration in open-world environments.

2.2 Cognitive Mechanisms in Intelligent Systems

Cognitive-inspired approaches have shown considerable success in various AI domains through
cognitive architectures like ACT-R [38] and SOAR [25] for structured problem-solving, while
memory-augmented systems [7, 30] have improved sample efficiency in reinforcement learning
tasks. Meanwhile, Botvinick et al. [3] highlight that structured cognitive processes remain crucial
for developing capable RL agents. However, these traditional approaches have not been effectively
applied for open-world exploration, where environments present unique challenges including vast
exploration spaces, sparse rewards, and complex interactions. Human cognition excels in such
real-world scenarios through flexible phase decomposition [42], memory integration [5, 24, 39],
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and uncertainty prediction [6], offering valuable inspiration for open-world reinforcement learning.
Our work addresses this research gap by integrating cognitive mechanisms into a unified framework
specifically designed for open-world reinforcement learning, significantly enhancing performance in
complex environments that have previously challenged conventional methods.

Figure 2: Cognitive Predictive Processing framework. The figure shows our integrated architecture
with three key components: Phase-Adaptive Cognitive Controller for phase-based task decomposition,
Dual-Memory Integration System for selective experience utilization, and Uncertainty-Modulated
Prediction Regulator for uncertainty regulation.

3 Method

3.1 Problem formulation

We formulate cognitive predictive processing in open-world reinforcement learning as an enhanced
partially observable Markov decision process (POMDP). Our approach operates on visual observa-
tions ot while generating control signals at, receiving sparse environmental rewards rt, and lacking
access to internal environment states.

Our cognitive framework augments the traditional state-action space with a cognitive state vector
ψt = (mt, ϕt), where mt represents the dual-memory state and ϕt indicates the cognitive phase.
The world model learns on tuples {Dt = (ot, at, rt,Mt, ψt, jt,∆t, Gt)}, where Mt represents the
affordance map, jt indicates the jumping flag, ∆t denotes time steps between transitions, and Gt
represents cumulative discounted rewards.

Our memory system maintains both short-term working memory Wt = {(ot−k, at−k, rt−k)}Kk=1
with capacity K, and long-term episodic memory Et = {(oi, ai, ri, si)}i∈I , where si (detailed in
Appendix A.2) represents the surprise value and I denotes indices of significant experiences. The
surprise value si quantifies experience significance through reward prediction error, observation
prediction error, and cognitive state transitions.

The phase-adaptive cognitive controller decomposes tasks into phases ϕt ∈
{ϕexplore, ϕapproach, ϕcomplete}, each with corresponding exploration parameters η(ϕt) =
(wexplore(ϕt), b

jump(ϕt)) that control exploration weight and jump bias. Phase transitions follow
P (ϕt+1|ϕt, ot, rt,Wt, Et) ∝ fϕ(ot, rt,Wt, Et), where fϕ integrates observations, rewards and
memory information.
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Precision weighting ωt = fω(εt−1:t−N ) modulates the balance between sensory input and
predictions over a window of N previous steps. Policy learning occurs on trajectories
{(ht, zt, at, rt, ψt, jt,∆t, Gt)}, where ht represents the deterministic recurrent state and zt rep-
resents the stochastic state. The mapping (ht, zt) = fenc(ot,Mt) is performed by the world model’s
encoder, transforming observations and affordance maps into internal representations.

3.2 Overview of cognitive predictive processing

In this section, we present the details of Cognitive Predictive Processing, which enhances open-world
reinforcement learning through the following algorithm steps:

1. Phase-adaptive cognitive controller (Sec. 3.3): We continuously monitor task progress
through reward patterns and behavioral sequences, dynamically classifying the current state
into exploration, approach, or completion phases with corresponding parameter configura-
tions.

2. Dual-memory integration system (Sec. 3.4): We implement a two-stream memory system
that combines short-term working memory for immediate context with selective long-term
episodic memory for significant experiences.

3. Uncertainty-modulated prediction regulator (Sec. 3.5): The agent maintains a hierarchi-
cal predictive model generating expectations about environmental states, with prediction
errors driving both learning and adaptive parameter tuning based on uncertainty estimates.

4. Phase-adaptive world modeling (Sec. 3.6): The world model and policy are tested with
phase-specific parameters that adapt to the current cognitive phase, integrating memory
retrievals and predictive signals for context-sensitive decision-making.

5. Data collection: During interaction, we collect enhanced data including cognitive states,
memory activations, and prediction errors alongside traditional observations and rewards,
feeding this information back into the learning process.

6. Iterate Steps 1−5.

The integrated architecture is illustrated in Figure 2, showing how our cognitive mechanisms interact
to enhance agent exploration.

3.3 Phase-adaptive cognitive controller

Inspired by human problem-solving strategies, we implement a cognitive controller that decomposes
complex tasks into meaningful phases. This controller continuously monitors task progress and
adaptively classifies the current state into one of three cognitive phases:

ϕt ∈ {ϕexplore, ϕapproach, ϕcomplete} (1)

Each phase represents a distinct cognitive mode with specialized parameter configurations that
optimize the exploration-exploitation trade-off. For each phase, we define specific exploration
parameters:

η(ϕt) = (wexplore(ϕt), b
jump(ϕt)) (2)

where wexplore(ϕt) controls the exploration weight and bjump(ϕt) determines the jump bias, with
high exploration during the exploration phase, balanced parameters in the approach phase, and low
exploration with conservative jump bias in the completion phase.

The phase classification process integrates multiple information sources:

P (ϕt+1|ϕt, ot, rt,Wt, Et) ∝ fϕ(ot, rt,Wt, Et) (3)

where fϕ is a phase classification function, phase transitions are governed by a progress tracking
mechanism detailed in Appendix A.1.
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3.4 Dual-memory integration system

Our memory architecture simulates human cognitive processes by implementing parallel memory
systems. Working memory provides immediate context while episodic memory stores significant
experiences. These systems interact to guide decision-making:

mt = (Wt, Et) (4)

The working memory Wt maintains a limited capacity buffer of recent experiences:

Wt = {(ot−k, at−k, rt−k)}Kk=1 (5)

where K = 20 represents capacity constraint simulating human working memory limitations. Work-
ing memory provides immediate context for decision-making through a similarity-based attention
mechanism:

αt(k) =
exp(cos(f(ot), f(e.o)))∑K
j=1 exp(cos(f(ot), f(e.o)))

(6)

where cos(f(ot), f(e.o)) measures the cosine similarity between current observation and episodic
memories, f extracts feature representations from observations, and αt(k) represents the attention
weight for experience at time t− k.

The episodic memory Et selectively stores experiences based on their surprise value si:

Et = Et−1 ∪ {(ot, at, rt, Ct)} if st > τt (7)

where st quantifies experience significance through reward prediction error and cognitive state
transitions, and τt (defined in Appendix A.2) is a dynamic threshold that adapts based on recent
experiences.

This dual-modal memory system enables the agent to simultaneously leverage immediate context
through working memory and historical successes through episodic memory, creating a cognitive foun-
dation that supports higher-level reasoning processes. Detailed memory retrieval and consolidation
mechanisms are provided in Appendix A.2.

3.5 Uncertainty-modulated prediction regulator

Our uncertainty-modulated prediction regulator implements a hierarchical model that generates
expectations about future states and establishes adaptive feedback loops, where prediction errors
not only drive learning but also dynamically adjust exploration strategies. The system maintains
predictions at multiple levels:

ôt+1 = fo(ht, zt, at, ϕt)

r̂t+1 = fr(ht, zt, at, ϕt)
(8)

where fo and fr are neural network prediction functions that generate next-observation and next-
reward forecasts respectively. These functions form the core of the world model’s predictive capabil-
ities, enabling anticipatory reasoning across different cognitive phases. Prediction errors between
expectations and observations drive both learning and adaptive behavior:

εot = ||ot − ôt||2
εrt = |rt − r̂t|

(9)

These errors are combined into an uncertainty estimate that modulates exploration parameters:

Ut = ωo · εot + ωr · εrt + ωtrend · εrtrend (10)
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where εrtrend represents the reward trend error (formally defined in Appendix A.3). Higher uncertainty
encourages broader exploration, while lower uncertainty enables more focused behavior. This mecha-
nism adapts jump thresholds based on environmental predictability, fostering effective exploration in
new areas while exploiting familiar regions. The detailed implementation of uncertainty estimation
and parameter adaptation is provided in Appendix A.3.

3.6 Phase-adaptive world modeling

Our integrated cognitive architecture enhances both world model learning and policy optimization by
incorporating phase-specific parameters, memory retrievals, and uncertainty estimates into a unified
framework. The world model architecture extends typical model-based reinforcement learning with
cognitive conditioning:

ẑt ∼ pθ(ẑt|ht, ϕt)
r̂t ∼ pθ(r̂t|ht, zt, ϕt)
ôt ∼ pθ(ôt|ht, zt, ϕt)

(11)

Each component is conditioned on the current cognitive phase ϕt, enabling specialized processing
for different reasoning phases. The jumping mechanism incorporates phase-specific thresholds and
uncertainty estimates to adaptively balance exploration:

jt = I[max(at) > θjumpt (ϕt,Ut)] (12)

where jt is the jumping indicator and θjumpt is the adaptive threshold described in Appendix A.3.

Memory retrievals provide relevant historical context for current decisions:

Rt = {ej}Kr
j=1 where j ∈ argsorte∈Et

(cos(f(ot), f(ϕt))) (13)

For behavior learning, we adapt the actor-critic approach with memory-enhanced and phase-aware
components:

at ∼ πψ(at|ht, zt,Rt, ϕt)

Vt = vψ(ht, zt,Rt, ϕt)
(14)

This integrated approach transforms how the agent processes information and makes decisions across
different task phases, enabling adaptive exploration that becomes increasingly focused as tasks
progress from exploration to completion.

4 Experiments

This section details our comprehensive evaluation of the Cognitive Predictive Processing framework
in open-world reinforcement learning scenarios. Our evaluation focuses on two key objectives: (1)
comparing CPP against state-of-the-art approaches in overall task performance, and (2) analyzing the
contribution of individual cognitive components to agent capabilities.

4.1 Experimental setup

4.1.1 Benchmark and tasks

We evaluate our approach on the challenging MineDojo benchmark [9], which provides a diverse
set of open-world tasks in Minecraft. Following previous work, we focus on five representative
tasks requiring different exploration and interaction strategies: (1) harvest log in plains, (2) harvest
water with bucket, (3) harvest sand, (4) shear sheep, and (5) mine iron ore. For fair comparison,
we maintain the same environmental configurations across all methods, including identical starting
conditions, maximum episode lengths, and reward structures as detailed in Table 1. All experimental
results represent averages from three independent runs to ensure statistical reliability.
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Table 1: Details of evaluation tasks in MineDojo benchmark.

Task Description Initial Tools Initial Environment Max Steps

Harvest log in plains "Cut a tree" None Plains biome 1000
Harvest water "Obtain water" Bucket Near water source 1000
Harvest sand "Obtain sand" None Near beach 1000
Shear sheep "Obtain wool" Shears Sheep within 15 blocks 1000
Mine iron ore "Mine iron ore" Stone pickaxe Underground cave system 2000

Table 2: Success rates (%) across MineDojo tasks (mean ± std over 3 runs). Results for VPT,
STEVE-1, and DreamerV3 are from LS-Imagine [28], while LS-Imagine and CPP results represent
our evaluations.

Model Cut a tree Obtain water Obtain sand Obtain wool Mine iron ore

VPT [1] 6.97 0.61 12.99 1.94 0.00
STEVE-1 [31] 57.00 6.00 37.00 3.00 0.00
DreamerV3 [16] 53.33 55.72 59.88 25.13 16.79
LS-Imagine [28] 88.33±3.21 75.67±3.93 57.33±4.69 56.67±4.43 10.66±1.51
CPP (Ours) 90.00±2.65 80.33±3.79 60.00±4.58 69.33±6.04 12.00±1.83

4.1.2 Baselines and implementation

We compare CPP against state-of-the-art methods in open-world reinforcement learning: DreamerV3
[16], LS-Imagine [28], STEVE-1 [31], and VPT [1]. Our implementation builds upon the LS-
Imagine codebase, integrating our cognitive components while maintaining the core world model
architecture. All models are trained for 1 × 106 environment steps. Detailed implementation specifics
and hyperparameter settings are provided in Appendix B.

4.2 Performance evaluation

4.2.1 Overall task success

Table 2 demonstrates that CPP outperforms baseline methods in the majority of evaluated tasks. In the
harvest log task in plains, CPP achieves a 90.00% success rate compared to 88.33% for LS-Imagine,
representing a 1.9% relative improvement. The performance differential increases in the harvest
water task, where CPP reaches 80.33% success rate compared to LS-Imagine’s 75.67%, constituting a
6.2% relative improvement. For the obtain sand task, CPP delivers a consistent improvement of 4.7%
beyond LS-Imagine. The most significant performance gain appears in the obtain wool task with a
22.3% relative improvement, demonstrating CPP’s efficacy in scenarios involving mobile targets.
Unlike static resources in other tasks, sheep movement introduces additional uncertainty, requiring
continuous adaptation of exploration strategies and contextual awareness to track and approach
dynamic objectives.

In the mine iron ore task, DreamerV3 achieves 16.79% success rate compared to CPP’s 12.00%. This
specific difference stems from DreamerV3’s architecture that particularly excels in enclosed spaces
with limited visibility. Despite this, CPP still outperforms LS-Imagine in this complex scenario,
demonstrating a 12.6% relative improvement. Across all other tasks, CPP consistently outperforms
both DreamerV3 and LS-Imagine, confirming our framework’s effectiveness in most open-world
environments while revealing specific optimization opportunities for future work.

4.2.2 Sample efficiency

Beyond success rates, Table 3 reveals CPP’s efficiency characteristics across different task types.
CPP excels in structured interaction tasks, achieving first success in the harvest log task in just 340.48
steps compared to 363.27 steps for LS-Imagine and 711.22 steps for DreamerV3, a 52.1% reduction
versus the latter. This efficiency extends to water collection (3.6% reduction) and wool gathering
(18.2% reduction), where CPP’s phase-adaptive controller effectively transitions between exploration
modes. DreamerV3’s fixed exploration parameters prove advantageous in homogeneous resource
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Table 3: Average steps to first success across MineDojo tasks (mean ± std over 3 runs). Results
for VPT, STEVE-1, and DreamerV3 are from LS-Imagine [28], while LS-Imagine and CPP results
represent our evaluations.

Model Cut tree Get water Get sand Get wool Mine iron

VPT [1] 963.32 987.65 880.54 987.49 -
STEVE-1 [31] 752.47 989.07 770.40 992.36 -
DreamerV3 [16] 711.22 628.79 548.76 841.14 1789.06
LS-Imagine [28] 363.27±28.45 473.05±35.62 612.27±42.18 558.04±31.27 1874.07±127.35
CPP (Ours) 340.48±22.13 455.81±29.84 567.84±38.76 456.45±39.52 1867.53±115.68

Table 4: Ablation results showing success rates (%) across tasks (mean ± std over 3 runs). "PACC":
Phase-Adaptive Cognitive Controller. "DMIS": Dual-Memory Integration System. "UMPR":
Uncertainty-Modulated Prediction Regulator.

Model Variant Cut a tree Obtain water Obtain sand Obtain wool Mine iron ore

Full CPP 90.00±2.65 80.33±3.79 60.00±4.58 69.33±6.04 12.00±1.83
w/o PACC 84.33±4.16 72.67±5.28 54.33±6.12 52.00±7.35 7.33±3.21
w/o DMIS 86.67±3.51 75.00±4.73 57.67±5.46 61.67±5.89 8.67±3.06
w/o UMPR 87.33±3.28 76.67±4.52 55.00±5.83 63.00±5.24 9.33±2.94

identification tasks like sand collection (548.76 versus 567.84 steps) and iron mining (1789.06
versus 1867.53 steps). Notably, water collection shows different patterns: water bodies possess
distinctive visual features (blue coloration, reflective properties, flowing patterns) that create strong
perceptual signals our dual-memory system effectively encodes and retrieves, whereas sand blocks
have more subtle visual characteristics that can be confused with similar terrain elements, making
DreamerV3’s consistent exploration more effective for such visually ambiguous but static resources.
This complementary performance highlights CPP’s design intention: while DreamerV3 excels in
direct resource identification through consistent exploration, CPP prioritizes adaptive behavior across
changing task phases. This tradeoff delivers superior performance in most realistic scenarios requiring
contextual adaptation, especially in complex tasks with dynamic elements. Different architectural
approaches optimize for different environmental characteristics, explaining the observed performance
patterns. Additional trajectory analysis in Appendix C further illustrates these task-specific efficiency
patterns.

4.3 Ablation studies

To understand the contribution of each cognitive component, we perform ablation studies by sys-
tematically removing individual mechanisms from the full CPP framework. Table 4 presents these
results across all tasks. Removing the cognitive controller produces the largest performance drops,
particularly in complex tasks with 24.99% relative decrease in shear sheep task. The dual-memory
system shows substantial impact on water collection (5.33 percentage points) and shear sheep (7.66
percentage points) tasks, reflecting its importance for contextual adaptation. While our uncertainty
quantification uses weighted linear combinations with fixed parameters rather than full Bayesian
approaches, this design choice balances computational efficiency with biological plausibility, as
neuroscience evidence suggests that uncertainty representations in biological systems often manifest
as relatively simple combinations of prediction errors [48]. The consistent performance contributions
across diverse tasks validate this simplified yet effective approach.

Each ablated variant maintains reasonable performance, demonstrating that individual cognitive
mechanisms provide complementary capabilities. However, the full integration yields optimal results
across all task categories, confirming that human-inspired cognitive mechanisms work synergistically
in open-world reinforcement learning.
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5 Conclusions and limitations

Our experimental results demonstrate that Cognitive Predictive Processing enhances reinforcement
learning in open-world environments through three synergistic components: a phase-adaptive cogni-
tive controller for task decomposition, a dual-memory integration system for experience utilization,
and an uncertainty-modulated prediction regulator for uncertainty regulation. Compared to state-of-
the-art methods, CPP significantly improves success rates (by 6.2% in water collection and 22.3% in
wool collection tasks) while reducing completion steps by up to 6.3%, confirming the effectiveness
of integrating human-inspired cognitive principles into reinforcement learning systems.

Despite these advances, several limitations remain. A notable limitation appears in the mine iron ore
task, where our method did not match DreamerV3’s performance, suggesting that complex navigation
in confined spaces with limited visibility requires specialized mechanisms beyond our current
implementation. Additionally, our three-phase decomposition framework (exploration, approach,
completion) is well-suited for goal-directed tasks with spatial components, but may face challenges in
certain task categories: highly unstructured environments where phase boundaries blur significantly,
extremely long-horizon tasks requiring numerous intermediate subgoals where simple three-phase
decomposition may be insufficient, and highly adversarial settings requiring rapid replanning due to
dynamic obstacles.

Future work could address these limitations through enhanced spatial reasoning components, broader
environment evaluations, and closer integration with neuroscientific models. A particularly promising
direction involves enabling adaptive learning rules where the system could "learn how to learn"
through meta-gradient approaches, allowing learning parameters to evolve based on accumulated task
experience rather than remaining static [47]. Furthermore, extending CPP to complex multi-stage
goals (such as crafting tasks requiring sequential resource collection) would leverage our dual-memory
system’s ability to organize experiences across subtasks, while adaptation to goal-conditioned settings
could be achieved by conditioning phase classification and memory retrieval on goal embeddings.
Extending CPP to real-world applications, particularly in domains such as assistive robotics where
adaptive exploration strategies could benefit navigation and manipulation tasks in human-centered
environments, represents an exciting and impactful future direction for this research.
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• The answer NA means that the paper does not include experiments.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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societal impacts of the work performed?
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harmful applications.
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• The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Paper does not release models or data with misuse risks. Research focuses on
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• The answer NA means that the paper poses no such risks.
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safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: Minecraft content attribution in Figure 1, MineDojo benchmark [9] properly
cited, and all baselines (DreamerV3, LS-Imagine, STEVE-1, VPT) referenced [16]-[1].
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

19

paperswithcode.com/datasets


Answer: [NA]
Justification: No human subjects involved; all experiments conducted in simulation environ-
ments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Research methodology is based on reinforcement learning with cognitive
mechanisms; no LLMs used.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Implementation of Cognitive Mechanisms

A.1 Phase-Adaptive Cognitive Controller

Phase transitions in the cognitive controller are governed by a progress tracking mechanism that
integrates reward trends and memory activations:

Progresst =

∑t
i=t−k ri

k
+max

e∈Et

cos(f(ot), f(e.o)) (15)

where cos(f(ot), f(e.o)) measures the similarity between current observation and episodic memories,
k is the reward averaging window size. When progress exceeds phase-specific thresholds, the system
transitions to the next cognitive phase:

ϕt =


ϕapproach if ϕt−1 = ϕexplore and Progresst > τexplore

ϕcomplete if ϕt−1 = ϕapproach and Progresst > τapproach

ϕt−1 otherwise
(16)

where τexplore = 0.4 and τapproach = 0.7 are threshold values for phase transitions. The system
implements stagnation detection based on consecutive low-reward episodes:

Stagnationt = I

[
t∑

i=t−m
I[ri < ϵ] > λ ·m

]
(17)

where m = 50 is the detection window, ϵ = 0.05 represents the reward significance threshold below
which steps are considered non-productive, and λ = 0.8 is the required proportion of low-reward
steps. Upon detecting stagnation, the system reverts to exploration:

ϕt = ϕexplore if Stagnationt = 1 (18)

This dynamic adaptation ensures recovery from unproductive behavioral patterns by resetting to
exploratory strategies when necessary.

A.2 Dual-memory integration system

The surprise value for episodic memory encoding quantifies the significance of an experience through
three components:

st = |rt − r̂t|+ ||ot − ôt||2 + I[ϕt ̸= ϕt−1] (19)

where r̂t is the predicted reward based on current policy, ôt is the predicted observation, and
I[ϕt ̸= ϕt−1] is an indicator function that equals 1 when a cognitive phase transition occurs.

The surprise threshold τt adapts based on a moving average of recent surprise values:

τt = β · τt−1 + (1− β) · median({st−k}Ks

k=1) (20)

where β = 0.9 is a smoothing factor and Ks = 50 is the window size for computing the median
surprise. This mechanism ensures that as the agent improves, only increasingly significant experiences
are stored.

Episodic memory retrieval operates through similarity-based access:

sim(ot, e.o, ϕt, e.ϕ) = γ · cos(f(ot), f(e.o)) + (1− γ) · I[ϕt = e.ϕ] (21)

where f extracts feature representations from observations, cos computes cosine similarity, and
γ = 0.7 balances the importance of observation similarity versus cognitive phase matching. The
top-K retrieval operation selects the most relevant episodic memories:
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Rt = {ej}Kr
j=1 where j ∈ argsorte∈Et

(sim(ot, e.o, ϕt, e.ϕ)) (22)

with Kr = 5 representing the number of retrieved memories. These retrieved memories provide
relevant historical context that enhances decision-making, particularly during similar situations or
cognitive phases encountered previously.

A.3 Uncertainty-modulated prediction regulator

Our uncertainty-modulated prediction regulator calculates prediction errors across multiple channels
to estimate environmental uncertainty:

εot = ||ot − ôt||2
εrt = |rt − r̂t|

εrtrend =

∣∣∣∣∣ 1

Nr

t∑
i=t−Nr

ri − rthreshold

∣∣∣∣∣
(23)

where Nr = 20 is the reward history window size and rthreshold = 0.05 is the reward significance
threshold. These errors contribute to the overall uncertainty estimate:

Ut = ωo · εot + ωr · εrt + ωtrend · εrtrend (24)

with fixed weights ωo = 0.5, ωr = 0.3, and ωtrend = 0.2.

Uncertainty directly modulates the jump threshold used for extended planning:

θjumpt = θjumpbase (ϕt) + Tt − St (25)

where θjumpbase (ϕt) represents phase-specific base thresholds as detailed in Table 5.

The trend adjustment Tt responds to recent reward patterns:

Tt =


−0.1 if r̄t < 0.05

0.1 if r̄t > 0.2

0.0 otherwise
(26)

where r̄t is the moving average of recent rewards, computed as the arithmetic mean over a sliding
window of the 20 most recent reward signals.

The stagnation adjustment increases linearly with consecutive no-reward steps:

St = min(0.15, 0.01 · ct) (27)

The stagnation counter ct tracks periods without significant rewards:

ct =

{
0 if rt > 0.05

ct−1 + 1 otherwise
(28)

This adaptive threshold mechanism encourages broader exploration during periods of high uncer-
tainty or reward stagnation, while enabling more focused behavior when the environment becomes
predictable.
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Table 5: Key hyperparameters of the Cognitive Predictive Processing framework.

Component Parameter Value

Cognitive Controller

Exploration Phase Threshold (τexplore) 0.4
Approach Phase Threshold (τapproach) 0.7
Exploration Weight (wexploreexplore ) 0.8
Exploration Weight (wexploreapproach ) 0.5
Exploration Weight (wexplorecomplete ) 0.2
Stagnation Detection Window (m) 50
Base Jump Threshold 0.6
Jump Threshold Explore Phase (θjumpbase (ϕexplore)) 0.5
Jump Threshold Approach Phase (θjumpbase (ϕapproach)) 0.6
Jump Threshold Complete phase (θjumpbase (ϕcomplete)) 0.7

Dual-Memory System Working Memory Capacity (K) 20
Surprise Threshold Base (τbase) 0.3

Prediction Regulator
Observation Error Weight (ωo) 0.5
Reward Error Weight (ωr) 0.3
Transition Error Weight (ωtrend) 0.2

B Detailed Experimental Setup

B.1 Environmental Configuration Details

We configured the MineDojo environment with standardized parameters across all evaluation tasks
to ensure fair comparison between methods. All environments shared common settings including
appropriate break speed multipliers (100), consistent reward structures (1 point upon target acquisi-
tion), and task-specific prompts for affordance map generation. Tasks were initialized with relevant
starting conditions as described in Table 1, with identical environmental parameters maintained across
all compared methods. For each task, we utilized dedicated fine-tuned UNet models to generate
task-appropriate affordance maps, with fast reset disabled for consistency. All experimental results
were averaged across three independent runs with same random seeds to ensure statistical reliability.

B.2 Baseline Implementation Details

Our evaluation methodology utilized the LS-Imagine codebase as the implementation foundation for
our CPP framework. For a rigorous comparative evaluation, we directly incorporated the reported
performance metrics for DreamerV3, VPT, and STEVE-1 from the LS-Imagine paper [28], rather
than re-implementing these methods. To ensure fair comparison, we implemented CPP using
identical training procedures, hyperparameters, and model architecture components as described
in the LS-Imagine repository, maintaining consistency in imagination horizon (15 steps), network
dimensions (encoder: cnn-depth 96, mlp-units 1024; decoder: same configuration), optimizer
settings, and training duration (1 × 106 steps). This approach allowed us to isolate the performance
improvements attributable to our cognitive components while maintaining methodological consistency
with established benchmarks, and all experiments were conducted on NVIDIA L40s GPUs.

B.3 Hyperparameter Configuration

Our CPP implementation integrates the cognitive components with carefully selected parameters
detailed in Table 5. These parameter selections were informed by cognitive science principles that
model human problem-solving strategies. For other world model parameters, we used the same
configuration as the LS-Imagine baseline to ensure fair comparison across all evaluated methods,
including network dimensions, optimizer settings, and training duration.
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Figure 3: CPP agent behavior across five MineDojo tasks. Each task progression shows three
cognitive phases: exploration (left), approach (middle), and completion (right). Top rows show agent
observations while middle rows display affordance maps.

C Extended Performance Analysis

C.1 Trajectory Analysis with Affordance Maps

Figure 3 showcases CPP’s adaptive exploration through affordance maps that evolve from diffuse
patterns during exploration to concentrated activation during completion. This progression directly
correlates with the decreasing exploration weight parameters across cognitive phases. The obtain
wool task demonstrates particularly clear transitional patterns. Importantly, when target objects are
initially occluded (such as sheep obscured by forests), the stagnation detection mechanism (Equations
17-18) identifies lack of progress and maintains the exploration phase with diffuse affordance patterns
until visual detection occurs, at which point the maps transition to concentrated activation. These
visualizations provide evidence that CPP’s cognitive mechanisms enhance exploration coherence,
supporting the quantitative performance improvements observed.

C.2 Completion Trajectory Analysis

Figure 4 illustrates CPP failure modes while Figure 5 presents LS-Imagine failure cases. In the
harvest log task (top row), the agent becomes trapped in terrain cavities (highlighted in red), rendering
affordance mapping ineffective. The obtain sand task (middle row) failures occur when environmental
generation creates water bodies without adjacent sand blocks. In the obtain wool task (bottom row),
the agent fails to identify a black sheep (highlighted in red) despite direct visibility, with affordance
map activation indicating perceptual models trained on white sheep failed to generalize to variant
appearances. LS-Imagine exhibits different failure patterns, predominantly exploration timeouts
across all tasks. Most notably in the water collection task (red highlight), LS-Imagine identifies water
sources but exhibits behavioral stagnation, repeatedly executing similar actions without progress.
This highlights a critical advantage of CPP’s stagnation detection mechanism, which dynamically
resets exploration parameters when detecting repetitive behaviors. The comparative analysis reveals
that while CPP enhances exploration efficiency, the failure modes demonstrate remarkable parallels
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Figure 4: CPP failure modes across tasks. Red highlights indicate critical failure points: terrain
cavity in the harvest log task preventing further exploration; water without adjacent sand in the obtain
sand task challenging environmental expectations; and unrecognized black sheep in the obtain wool
task revealing perceptual limitations after training primarily with white sheep.

to human cognitive processing errors. Similar to how human and Transformer processing are affected
by equivalent stimulus properties [20], CPP’s inability to recognize black sheep or becoming trapped
in terrain cavities mirrors human perceptual biases and environmental fixation.

C.3 Reward Pattern Analysis

Figure 6 presents intrinsic reward patterns across our experimental tasks, revealing three key ad-
vantages of CPP. First, CPP achieves initial high-value rewards more rapidly (within first 50 steps),
establishing effective exploration trajectories earlier. Second, during middle phases (steps 400-700)
when both methods encounter "reward deserts," CPP maintains more frequent non-zero signals,
demonstrating the effectiveness of our dual-memory system in guiding exploration during limited
feedback. Finally, in later phases (steps 700-1000), CPP exhibits more continuous, goal-oriented
reward patterns with concentrated high-values between steps 800-900, while LS-Imagine displays
more intermittent peaks. This confirms how our cognitive phase transition effectively shifts from ex-
ploration to completion phases. The MineCLIP score comparison (Figure 6 f) quantitatively validates
these observations, showing CPP’s superior performance with statistically significant improvements
(p < 0.05) in the water collection and sheep shearing tasks, where non-overlapping error bars indicate
reliable performance advantages.

D Hyperparameter Sensitivity Analysis for Cognitive Predictive Processing

We conducted sensitivity analysis on two critical parameters of our CPP framework to validate
design choices and assess robustness. For exploration weight parameters (Figure 7 a), we tested five
configurations controlling phase-progression patterns. Our default implementation (B: 0.8→0.5→0.2)
achieves optimal performance with 90.0% success rate and 340 completion steps. Configurations with
flat parameters (D) or reverse progression (E) show significantly degraded performance, confirming
that phase-based adaptation is essential for effective task completion.
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Figure 5: LS-Imagine failure modes across tasks. Red highlight in sand collection task shows
behavioral stagnation where the agent fails to progress despite locating sand.

Figure 6: Reward pattern comparison between CPP and LS-Imagine. CPP (red) shows earlier
high-value rewards, more consistent signals during exploration phases, and more concentrated reward
patterns in later phases compared to LS-Imagine (blue).
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Figure 7: Hyperparameter sensitivity analysis. (a) Exploration weight parameters across five
configurations, showing success rates and completion steps. Configuration B represents our default
implementation. (b) Surprise threshold base impact on success rate, with vertical line indicating
default value (0.3). All analyses conducted on the harvest log in plains task.

The surprise threshold base parameter governs episodic memory selectivity and exhibits an inverted
U-shaped relationship with performance (Figure 7 b). The default value of 0.3 achieves peak success
rate, while values that are too low (0.1-0.2) or too high (0.5-0.7) both reduce performance through
different mechanisms. These results validate our parameter choices and demonstrate that CPP’s
cognitive mechanisms operate optimally within specific ranges that align with neurologically-inspired
principles.

E Algorithm Pseudocode

This appendix provides the complete pseudocode for the Cognitive Predictive Processing framework
for open-world reinforcement learning.
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Algorithm 1 Cognitive Predictive Processing Framework
1: Initialize world model parameters θ, policy parameters ψ, working memory W0 = ∅, episodic

memory E0 = ∅, cognitive phase ϕ0 = ϕexplore, precision weights ω = (ωo, ωr, ωtrend).
2: Initialize replay buffer B with random experience.
3: while not converged do
4: Sample transitions from B.
5: Update world model parameters θ.
6: for episode do
7: Receive initial observation o0.
8: Initialize states h0, z0.
9: for time step t = 0 · · ·T until termination do

10: Compute Progresst using Eq. (15).
11: Update cognitive phase ϕt according to Eq. (16).
12: Check for stagnation via Eq. (17) and reset phase if needed via Eq. (18).
13: Set exploration parameters η(ϕt) = (wexplore(ϕt), b

jump(ϕt)) from Eq. (2).
14: Update working memory Wt = {(ot−k, at−k, rt−k)}Kk=1 per Eq. (5).
15: Compute surprise value st using Eq. (19).
16: Adapt surprise threshold τt using Eq. (20).
17: if st > τt then
18: Update episodic memory Et = Et−1 ∪ {(ot, at, rt, st)} via Eq. (7).
19: end if
20: Retrieve relevant memories Rt using similarity function in Eq. (21), Eq. (22).
21: Generate predictions ôt+1, r̂t+1 using Eq. (8).
22: Compute prediction errors εot , ε

r
t , ε

r
trend via Eq. (23).

23: Calculate uncertainty Ut = ωo · εot + ωr · εrt + ωtrend · εrtrend from Eq. (24).
24: Adjust jump threshold θjumpt using Eq. (25, 26, 27, 28).
25: Determine jump flag jt = I[max(at) > θjumpt (ϕt,Ut)] via Eq. (12).
26: Select action at ∼ πψ(at|ht, zt,Rt, ϕt) using Eq. (14).
27: Execute action at, observe ot+1, rt+1.
28: Update cognitive state ψt = (mt, ϕt) where mt = (Wt, Et) per Eq. (4).
29: Store transition (ot, at, rt,Mt, ψt, jt,∆t, Gt) in B.
30: if jt = 1 (Jumpy transition detected) then
31: Construct long-term data with jumpy transition information.
32: end if
33: end for
34: Sample transitions batch from B.
35: Update world model by conditioning on cognitive phase ϕt via Eq. (11).
36: Compute phase-specific value function Vt = vψ(ht, zt,Rt, ϕt) via Eq. (14).
37: Update policy with phase-specific entropy regularization.
38: end for
39: end while
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