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Abstract

We consider optimizing the inputs to a black-box function that produces high-
dimensional outputs such as natural language, images, or robot trajectories. A
human decision maker (DM) has a utility function over these outputs. We may learn
about the DM’s utility by presenting a small set of outputs and asking which one
they prefer. We may learn about the black-box function by evaluating it at adaptively
chosen inputs. Given a limited number of such learning opportunities, our goal is
to find the input to the black box that maximizes the DM’s utility for the output
generated. Previously proposed methods for this and related tasks either do not
scale to high dimensional outputs or are statistically inefficient because they ignore
information in the outputs. Our proposed approach overcomes these challenges
using Bayesian optimization and a novel embedding of high-dimensional outputs
into a low-dimensional latent space customized for this task. This embedding is
designed to both minimize error when reconstructing high-dimensional outputs
and support accurate prediction of human judgments. We demonstrate that this
approach significantly improves over baseline methods.

1 Introduction

Bayesian optimization (BO) is an efficient method for black-box optimization with applications
across machine learning, materials science, engineering, chemistry, and A/B testing. In new grey-
box Bayesian optimization approaches, “opening the black box” by modeling intermediate outputs
arising during objective function evaluation improves objective function prediction and optimization
performance when solving challenging black-box optimization problems [2, 3]. For example, when
designing a new material, its properties may depend on the precursors used to synthesize the material
and parameters describing the synthesis [25, 57, 19]. In physical simulations, including telecom-
munications, optical design, and fluid dynamics, directly modeling a simulator’s spatiotemporal
outputs can dramatically improve performance [38]. In personalized policy optimization for internet
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Figure 1: The framework of HDP-GP used for BOHF. Inputs x are evaluated by the black-box
function f , producing high-dimensional outputs y (e.g., images). The outputs y are embedded into
a lower-dimensional embedding Z , producing a representation E(y) . The human decision maker
evaluates pairs of the intermediate outputs and reveals a preference. These elicited preferences are
used to jointly learn the embedding and a utility function over the latent space Z (posterior for utility
function shown at right). Utility optimization is then performed in the latent space.

applications, overall experience quality can be decomposed into parameters that primarily affect
certain subgroups, and their corresponding outputs [18].

This work aims to open the black box for Bayesian optimization with human feedback (BOHF)—a
new class of problems where a human decision-maker (DM) judges an object’s quality based on its
attributes y ∈ Y ⊆ Rk according to an unknown utility function g(y), and the object’s attributes
y = f(x) depend on the inputs x ∈ X ⊆ Rd used to construct the object through an unknown
and time-consuming-to-evaluate black-box function f : X 7→ Y . In BOHF, we can interrogate
f by evaluating it at x of our choice and we can interrogate g by asking the DM which of two
attribute vectors y, y′ they prefer, giving a signal on whether g(f(x)) > g(f(x′)) or vice versa. The
y,y′ presented can either be equal to f(x) at previously-evaluated x or, if the application allows it,
constructed de novo. We refer to these ways of learning about f and g as “experiments” and “queries”
respectively. Understanding that DM time is valuable and f is slow to evaluate, we wish to efficiently
allocate a limited number of experiments and queries to solve:

x∗ ∈ argmax
x∈X

g(f(x)). (1)

For example, an engineer configuring cell phone towers may choose a tower configuration x and use
a time-consuming simulation to compute the resulting pattern of signal power over space y = f(x).
The engineer judges the quality of this pattern using their latent utility function g(y). To help the
engineer find the cell phone tower configuration with the highest utility, a BOHF algorithm can run
the simulation to model the mapping from tower configurations x to signal power patterns y = f(x),
and can query the engineer’s preferences g(y) by asking which they prefer among pairs of signal
power patterns. Later, we will illustrate our method using this example in Fig 1.

BOHF includes two previously-considered problems as special cases: (1) BO with preference
exploration (BOPE) [36] assumes that f(x) is evaluated only when it will be used within a query
to the DM while BOHF allows evaluating f(x) solely to learn about f . The additional flexibility
offered by BOHF is important when DM time is more limited than evaluation of f . Additionally, as
we explain below, past BOPE methods are limited to low-dimensional y. (2) In preferential Bayesian
optimization (PBO) [26], an algorithm iteratively chooses sets of x to evaluate. For each set, attribute
vectors f(x) are evaluated for each x in the set and the DM is asked which attribute vector they
prefer. While it is computed, the algorithm does not use the information in f(x).

Past success in grey-box Bayesian optimization suggests it should be possible to use observations of
f(x) (e.g., the signal power pattern) to improve our model of the DM’s utility beyond what is possible
using the inputs alone (the tower configurations that generated the signal pattern). This however,
poses a substantial challenge: the intermediate output f(x) is often high-dimensional, especially for
complex objects like images, text, or movies. Such complex objects are common in PBO applications.
As a result, PBO has ignored the intermediate output, effectively treating the composition g ◦ f in
(1) as one black-box function. While BOPE models intermediate outputs, computational limits have
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driven past work to focus on applications where f(x) is low-dimensional: typically 10 dimensions or
fewer. While applying a standard dimensionality-reduction method to f(x) might seem appealing,
the resulting low-dimensional representation will ignore preference feedback and thus risks losing
key information needed to accurately predict g(f(x)). The low-dimensional representation of f
needs to capture the aspects of f that influence g and are most germane to the DM’s choice.

Here, we develop the high-dimensional preferential Gaussian process (HDP-GP) model, which uses
human feedback to jointly learn a low-dimensional representation of f and a utility model g. This
joint learning and a tailored architecture for embedding f ensure that the representation stays aligned
with the DM’s utility, in contrast to simply minimizing reconstruction error of f . This avoids losing
information needed to represent the DM’s utility at the expense of structure that is only needed for
reconstruction. For example, when recording a movie of a robot performing a task, the background
may be needed for accurate reconstruction while fine details of how the robot grasps an object may
be orders of magnitude more important for the DM’s utility.

Fig 1 illustrates HDP-GP for BOHF using data and a real embedding from the Cell Tower problem
(Sec 3). The DM is given a pair of images and identifies the better of the two, according to the
coverage uniformity and interference patterns. In HDP-GP, these image outputs and DM feedback
jointly train an embedding into a latent low-dimensional space. We summarize our contributions as:

1. Motivated by real-world decision making processes, we formulate Bayesian optimization with
human feedback as a grey-box optimization problem with respect to high-dimensional outputs.

2. We propose HDP-GP, a novel model architecture for efficiently modeling latent preferences over
high-dimensional outputs whose loss function is tailored toward representing features of the output
space relevant to the DM’s utility function.

3. We demonstrate empirically that HDP-GP achieves substantially better optimization performance
for PBO and BOPE tasks in high-dimensional settings.

2 Framework for BO with Human Feedback over High-dimensional Outputs
The HDP-GP is a framework for BO with human feedback about high-dimensional objects. It
leverages and aligns high-dimensional outputs with the DM’s utilities and can be applied to both
PBO and BOPE setups. See App A for details on PBO and BOPE and App B for related work.

HDP-GP consists of: (1) an embedding layer that maps high-dimensional outputs Y to a low-
dimensional latent space Z; (2) a latent output model that maps from input space X to Z; (3) a utility
model that maps from the latent space Z to the DM’s utility; (4) human feedback that is used to jointly
train both of those components, end-to-end, which facilitates output dimensionality reduction through
the embedding layer, with supervision from the utility function. Specifically, binary comparisons
{(y′

j ,y
′′
j , r(y

′
j ,y

′′
j ))}mj=1 are considered here, where (y′

j ,y
′′
j ) is the pair presented to the DM and

r(y′
j ,y

′′
j ) ∈ {0, 1} indicates the ouptut that the DM prefers.

Embedding layer At the core of the HDP-GP is a transformation, denoted E : Rk → Rp, from the
output space to a low-dimensional latent output space Z = E(Y ). This transformation serves the
crucial role of distilling effective information for modeling utility. This E is a versatile transformation
encompassing a spectrum of dimensionality reduction methods. The decoder D : Rp → Rk

maps points back to the original high-dimensional space. The reconstruction error is the L2 loss,
∥Y − D(E(Y ))∥22. We leverage autoencoders (AEs) [50] due to their flexibility and extensibility,
making them adept at handling complex structured outputs, such as images, graphs, and sequences.

Latent output and Utility model We utilize a multi-output GP ∼ GP(µz
0,K

z
0 ) on the latent

output space Z . We fit the latent output model on the encoded dataset {(xi, zi)}ni=1, yielding a
posterior mean function µz

n and posterior covariance function Kz
n. For computational tractability,

we model all p latent outputs independently so that the fitting cost is linear in p. The utility model
on the embedding Z is then a GP with a probit likelihood for the DM’s response distribution. We
compute an approximate GP posterior with mean µg

m and covariance function Kg
m using the Laplace

approximation [12]. The primary advantage of HDP-GP lies in its focused learning of the output
subspace relevant to the utility function. For instance, when a DM selects between two robot
trajectories, only a specific segment of the route may influence the decision; thus, modeling the entire
output space would not yield significant utility-related information. Moreover, the scalability of latent

3



outputs makes HDP-GP more adept at handling high-dimensional outputs compared to the potential
scalability issues encountered by the MOGP as the output dimension increases.

Joint End-to-End Training We perform joint end-to-end training for the AE, latent output model,
and utility model. This ensures that the representation of the outputs remains aligned with the target
task: the learning of the decision maker’s utilities with respect to the high-dimensional outputs. The
training procedure alternates between refining the latent output model, and updating the AE and
utility model. Detailed training workflow is outlined in Algorithm 1.

3 Experiments
We evaluate HDP-GP’s performance in both PBO and BOPE settings compared to the state-of-the-art
BOHF methods [4, 36] that do not take advantage of the compositional structure of high-dimensional
attributes y (“Non-compositional BO”).

In PBO settings, we evaluate 80 design points using 16 quasi-random initial points and 32 pairwise
comparisons. Non-compositional BO in PBO settings is performed as described by Section A.2 using
analytic EUBO as the acquisition function [4, 36]. In BOPE settings, we interleave 8 stages of PE
and experimentation, starting with 16 quasi-random points, followed by 16 pairwise comparisons
and one batch of 8 candidates per experimentation stage. Non-compositional BO in BOPE settings
uses qNEIUU for experimentation and analytic EUBO for preference exploration [36, 35]. Moreover,
we ablate against HDP-GP without joint training, where unsupervised dimensionality reduction is
performed and the AE and utility model are trained separately.

Image Generation. Our objective is to generate a rectangle within a 20× 20 blank square panel
and achieve a square of specific size positioned at the center of the panel. The input space is defined
to be [0, 1]4. We let (x1, x2) and (x3, x4) each specify a vertex, constructing a rectangle with these
vertices serving as diagonally opposite corners. Each output is a 400-d binary array representing the
resulting image. The utility function is designed to promote the resemblance of the generated image
to the desired square at the center of the panel.
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Figure 2: Results of three test problems in the PBO setting.

Contextual 10-D Hartmann Functions We consider an input space [0, 1]10 and 100-d output space
building on the 5D Hartmann test function in [18], which computes the average of the Hartmann6
function assuming the sixth dimension follows U[0,1]. We apply the 5D Hartmann function on
inputs 1-5 and 6-10 respectively to construct two basis outputs, then project the basis outputs to 100
dimensions by repeating the first and second basis output 50 times each. The utility function is a
classification model trained on synthetic datasets. In this setup, we craft a scenario where each output
is sparse with respect to the input space, depending solely on 5 parameters.

Cell-Tower Coverage We optimize the transmission power and down-tilt angle for each of 15
cell towers (30-d input space) based on [38]. The simulator generates two 50×50 intensity maps
(k = 5000) representing signal power and interference respectively. The utility function is a equally
weighted quality metric that prefers high total coverage and low total interference.

Results Fig 2 shows the PBO setting. HDP-GP with joint training outperforms all baselines for
image generation. Without joint training, the output subspace captures the variation across all pixels,
while the utility function focuses on a specific region in the center, causing misalignment. In the
contextual 10-D Hartmann functions, the utility function leverages all outputs and is not sparse.
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Figure 3: Results of three test problems in the BOPE setting.

Standard Bayesian preferential optimization, which does not utilize the composite structure, performs
poorly. In the cell-tower problem, the high-dimensional output space poses computational challenges,
highlighting HDP-GP’s superior performance. Fig 3 shows the BOPE setting, where HDP-GP
outperforms both non-compositional and random search across all three cases.

The results demonstrate that HDP-GP with joint training consistently outperforms non-compositional
BO methods. While HDP-GP without joint training can sometimes perform similarly to HDP-GP
with joint training, in tasks such as image generation, joint training of the embedding layer can
specifically guide the representation in the latent space, leading to better optimization results. This
underscores the efficacy of HDP-GP in distilling pertinent information from high-dimensional outputs
for the optimization of utility. Additional test problems and details can be found in the Appendix D.

4 Limitations and conclusion
A great number of real-world problems involve optimization of many competing objectives and
complex structured data, yet it is often difficult for a human decision maker to articulate their
true utility over such outputs. We introduce the HDP-GP model which captures high-dimensional
data underlying decision-maker’s choices. We show that this method improves the performance
of Bayesian optimization with Human Feedback, including preferential Bayesian optimization and
Bayesian optimization with preference exploration.

Our approach unlocks the ability to effectively perform BOHF over high-dimensional outcomes—a
problem with numerous applications in science and engineering. In this work, we show substantial
improvements over BOPE and PBO using a simple one-layer auto-encoder architecture, but there is a
large design space of improvements to the autoencoder (e.g., multiple layers, the use of regularization
and/or denoising autoencoders), and similar more SoTA methods such as diffusion models. Alternative
dimensionality reduction techniques could also be considered, such as encoder-only architectures,
diffusion models, and pre-trained modules. This could enable HDP-GP to be applied to output
spaces of structured objects such as graphs and sequence data in applications such as human-in-the-
loop drug discovery [54] and human feedback on generative AI models such as LLMs and image
generation [46].
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A Background: Bayesian Optimization with Preferential Human Feedback

We describe review our data and assumptions about the data-generating process. We then describe
the settings considered in prior work on PBO and BOPE.

A.1 Data

Denote the observed intermediate outputs at the input points {xi}ni=1 as yi = f(xi) and the dataset
comprising m DM-provided binary comparisons as Pm = {(y′

j ,y
′′
j , r(y

′
j ,y

′′
j ))}mj=1, where (y′

j ,y
′′
j )

is the pair presented to the DM and r(y′
j ,y

′′
j )) ∈ {0, 1} indicates the outcome that the DM prefers.

The preference feedback is assumed to be consistent with a latent utility function g. The outcomes
over which the DM has provided comparisons have been generated by f , i.e., that y′

j = f(xi) for
some i for each j, and similarly for y′′

j .

A.2 Preferential Bayesian Optimization (PBO)

In PBO, we seek to solve problem (1) using a workflow in which an algorithm first chooses a pair of
points (x′

i,x
′′
i ) and then the function f is evaluated to obtain y′

i = f(x′
i) and y′′

i = f(x′′
i ). Finally the

pair (y′
i,y

′′
i ) is presented to the DM, who selects their preferred option r(y′

i,y
′′
i ). The standard PBO

formulation does not consider the values y′
i and y′′

i when selecting pairs of points, the PBO model
is a mapping directly from X to utility. In the work here, we consider a compositional extension to
PBO in which we instead learn a mapping from the range of f to utility. When such an intermediate
model can be constructed, the acquisition function can be optimized by applying the utility model to
the intermediate outcomes like g(f(·)).

A.3 Bayesian Optimization with Preference Exploration (BOPE)

In BOPE, we break the PBO workflow into two constituent components: experimentation and
preference exploration (PE). In experimentation, we choose points xi at which to evaluate f(xi),
obtaining yi. These need not be presented to the DM. In preference exploration, we choose pairs
(y′

j ,y
′′
j ) to present to the DM for feedback. These pairs may either be drawn from the pool of

previously evaluated yi or, if the application supports it, generated de novo. Experiments or preference
exploration can be performed in batches or sequentially. Compared to PBO, BOPE offers the flexibility
to be able to learn about f when the DM is unavailable or their time is much more expensive than the
cost of performing an experiment.

In our demonstration of the usefulness of HDP-GP, we leverage two tools from the BOPE literature.
First is the Expected Utility of the Best Option (EUBO) acquisition function for preference exploration
[4]. This acquisition function values a pair (y′,y′′) according to the expected utility of the better
of the two options, as measured by a random utility function drawn from the posterior over g. The
second is the Noisy Expected Improvement under Utility Uncertainty (qNEIUU) acquisition function
[36] for experimentation, which extends the EIUU acquisition function in Astudillo and Frazier
[3]. Mathematically, qNEIUU(x1:q) = Em,b[{max g(f(x1:q)) − max g(f(Xb))}+]. Here, x1:q

denotes a size-q batch of input vectors, Xb denotes the size-b experimentation data observed so far,
Em,b[·] = E[·|Pm,Db] denotes the conditional expectation given the data from queries in Pm and
experimentation data Db, and {·}+ denotes the positive component of the quantity.

B Related Work

High-Dimensional Bayesian Optimization Black-box optimization in high dimensions may be
formulated as the global optimization problem x∗ ∈ argmaxx∈X f(x), where f : X → R is
over a high-dimensional input domain X . Optimization problems in more than 15-20 continuous
dimensions are challenging for classical BO algorithms [59] and as such, many approaches have
been taken to extend BO to high dimensions including trust region optimization [17], variable
selection [16, 52], and the assumption of low-dimensional additive structure [30, 22]. Our focus
in this paper is on methods that produce a low-dimensional embedding. The foundational work on
embedding-based BO [59] made use of random embeddings. This work was subsequently extended
in [23, 49, 34, 42, 33, 7, 47, 63].
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Recently, there has been much interest in autoencoder (AE) embeddings stemming from [24]. This
work has been extended to consider constraints on the AE latent space [27, 40, 45] as well as label
guidance in learning the latent space [61, 15, 56, 53, 39]. Applications have included chemistry
[32], robotics [1], and optimal kernel construction [37]. These studies focus on optimizing high-
dimensional inputs with known objectives. Optimization takes place within the latent space of design
inputs, with new candidate designs generated by decoding the latent optimizer. In contrast, our
approach involves utilizing autoencoders to a discover latent representation of the output space to
facilitate learning an unknown utility function.

Preferential Bayesian Optimization (PBO) Early work in the field of preference learning (PL)
[21] arose from the realization that in many problems where it is difficult to specify a ground truth
utility function over outcomes, the qualitative judgement of human DMs can be used to produce
relative rankings of outcomes [29]. As such, this work focused on learning utility functions from
datasets of pairwise preferences elicited from human DMs (e.g., [11, 8, 20, 58]). Ideas from the PL
literature were later carried over to GPs [12, 6] and applied to Bayesian optimization [10, 9, 26] where
the black-box objective takes the form of a utility function. Subsequent works have focused on new
acquisition functions [44, 6, 4], batch variants of PBO [51, 43], and structured outcome spaces using
specialized GP kernels [54, 41, 28]. Dueling BO has been explored for high-dimensional inputs using
random linear embeddings [62]. Most PBO algorithms operate directly on the input space X . Work
on PBO seeks to reduce the number of pairwise comparisons made between black-box evaluations,
but does not motivate whether the function evaluations themselves are costly, or whether making
the comparisons is costly. On the other hand, Bayesian optimization with Preference Exploration
(BOPE) [35] assumes that evaluating the function itself is costly, but queries to the decision maker
are inexpensive. The method utilizes compositional PBO [3] to perform Bayesian optimization with
respect to an unknown utility over outcomes generated by the inputs.

Multi-objective Bayesian Optimization In multi-objective BO, there are several (often compet-
ing) objectives f1, . . . , fm and we wish to recover the Pareto frontier of non-dominated objective
configurations. Recent work on multi-objective BO has focused on developing acquisition func-
tions that explicitly target increasing the hypervolume of the known Pareto frontier with respect
to a pre-specified reference point [60, 13, 14], however, these methods become impractical for
high-dimensional outcomes due to the exponentially increasing surface area of the Pareto frontier.

C Details of the HDP-GP Framework

C.1 HDP-GP Algorithm

Algorithm 1 provides the full details of the HDP-GP framework. The training procedure alternates
between refining the latent outcome model, and updating the autoencoder (AE) and utility model.
Given the updated encoded latent space Z , we refit the latent outcome model every 200 epochs.
Given a fitted latent outcome model, predictions for the latent embeddings z are obtained, denoted
as z̃. Subsequently, the loss function of the utility model is computed, involving the marginal
log-likelihood with z̃ as input. Additionally, the reconstruction error ∥Y − D(E(Y ))∥22 of the
autoencoder is computed. The joint loss function, encompassing both the autoencoder and utility
model components, is optimized to update the hyper-parameters of the utility model and autoencoder.
The joint loss ensures that both the data reconstruction and learning of the utility function are
effectively balanced and refined during training.

The choice of hyperparameters B, M , and H largely depends on the problem dimension and
the availability of computational and human resources. As a case in point for human resources,
supplement section C1 of Lin et al. [36] contains a real-world pilot study with findings that human
DMs take an average of around 10 seconds to compare two outcomes of up to 10 dimensions. For
higher-dimensional outcomes, such as those considered in the HDP-GP framework, the comparison
would take longer. While monotonically increasing the values of B, M , H would be beneficial from
the point of view of good model fit and optimization performance, it may place infeasible demands
on the time of human decision-makers.
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Algorithm 1 Utility-Aligned High-dimensional Greybox Bayesian Optimization (HDP-GP)
1: Evaluate initial experiment designs X0 ∈ Rn×d. Observe outcomes Y0 ∈ Rn×k and pairwise

comparisons Pm0 = {(y′
j ,y

′′
j , r(y

′
j ,y

′′
j ))}

m0
j=0.

2: Set u∗
0 = maxy∈Y0 g(y). Set m = m0, m̃ = 0; b = 0, b̃ = 0; η = 0.

3: while η < H do
4: Fit autoencoder (E , D), outcome model f̃ , and utility model g̃ using Algorithm ?? on Xb, Yb,

Pm, (E ,D).
5: while m̃ < M do
6: Select a new pair of observed outcomes (y′

m+1,y
′′
m+1) by maximizing in-sample EUBO.

7: Query the user with (y′
m+1,y

′′
m+1) and collect preference r(y′

m+1,y
′′
m+1).

8: Let Pm+1 = {(y′
m+1,y

′′
m+1, r(y

′
m+1,y

′′
m+1))} ∪ Pm.

9: Refit utility model g̃ on encoded preference data P̃m+1 =
{(E(y′

j), E(y′′
j ), r(y

′
j ,y

′′
j ))}

m+1
j=1 .

10: Set m = m+ 1, m̃ = m̃+ 1.
11: end while
12: while b̃ < B do
13: Generate a batch of q candidates Xcand by optimizing qNEIUU. Observe outcomes Ycand.
14: Let Xb+1 = Xb ∪Xcand, Yb+1 = Yb ∪ Ycand.
15: Refit outcome model f̃ on (Xb+1, E(Yb+1)).
16: Compute best so far u∗

b+1 = maxy∈Yb+1
g(y).

17: Set b = b+ 1, b̃ = b̃+ 1.
18: end while
19: Set η = η + 1. Reset m̃ = 0; b̃ = 0.
20: end while

C.2 Dimensionality Reduction

The autoencoder (AE) component of HDP-GP used to reduce the dimensionality of high-dimensional
outcomes comprises a single linear layer for the encoder and a single linear layer plus sigmoid
activation function for the decoder. The Adam optimizer [31] is used for training with the default
learning rate of 0.01 and 600 epochs for end-to-end training of the AE. Every 200 epochs the latent
outcome model is re-fitted where the latent outcomes are the encoded outcomes in the AE case.

C.3 Preferential Bayesian Optimization

The preferential Bayesian Optimization (PBO) method directly learns the mapping from the input
space X to the utility space by fitting a pairwise GP model [12]. The method also uses in-sample
EUBO to select pairs of observed outcomes (y′ = f(x′),y′′ = f(x′′)) for the DM to compare but
keeps only the pairs (x′,x′′) as the input to the pairwise GP model.

D Details of the Experiments

D.1 Experiment Setup

We examine how HDP-GP performs in two different settings: PBO and BOPE. Recall that in PBO,
we are eliciting human feedback fully interactively between 2 new design points immediately after
evaluating them; while in BOPE, we evaluate a batch of q points, and perform p pairwise comparisons
selected from Db, the data of all observed design points we have collected so far.

Specifically, in PBO experiments, we start with 16 quasi-random initial points, and perform 32
pairwise comparisons between a subsequently selected 64 points, resulting in a total of 80 design
points being evaluated. We keep the design point evaluation budget the same in our BOPE experiments
by doing 8 stages of interleaving PE and experimentation following 16 quasi-random initial points.
Within each PE stage, we conduct 16 pairwise comparisons, while each experimentation stage entails
the generation of one batch comprising 8 candidates.
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The figures show the mean results across replications (25 replications for the contextual adaptive
bitrate simulation (ABR) problem and 50 for all other experiments), and the error bars correspond
to 2 standard errors. All experiments are implemented in BoTorch [5]. Code for replicating the
methods and benchmark experiments in this work is at https://anonymous.4open.science/r/
LSPE-FEDD and will be made public upon acceptance.

For the outcome model for all methods, we use a standard ARD Matérn-5/2 kernel when the
input dimension is less than 10; in cases where the input dimension exceeds 10, we use the SAAS
kernel [16], which identifies important dimensions in the input space through a sparsity-inducing
prior on GP lengthscales. Similarly, for the PBO utility model that directly maps from designs to
utility, we use a standard ARD Matérn-5/2 kernel for low-dimensional inputs and the SAAS kernel
for high-dimensional inputs. We show HDP-GP results with latent space dimension being 16 in all
figures unless otherwise indicated. Finally, we perform sensitivity analyses on varying noise levels
and the choice of embedding dimension. Appendix E.1 provides further analyses of the PE strategy,
acquisition function and the effect of DM error on BOPE performance The results show that HDP-GP
is robust to changes in response noises and latent embedding dimensions in the tested ranges.

D.2 Rectangle Image Generation

Inspired by [56], we generate rectangles in a blank square image and seek to encourage resemblance
to a square of desired size located at the center of the image. We consider images with 20 pixels per
side, such that the outcome is represented by a k = 400-dimensional binary vector. We set the input
space to be [0, 1]4. For any x = (x1, x2, x3, x4), we let (x1, x2) and (x3, x4) each specify a vertex
(rounded down to the nearest pixel) and construct a rectangle with these coordinates as its diagonal
vertices. The outcome function maps from [0, 1]4 to [0, 1]k, producing a k-dimensional flattened
image vector. The outcome model pixel values are allowed to be continuous in the [0, 1] interval,
although the training data consists of binary pixel values 1 (black) and 0 (white). The utility function
encourages resemblance to a square of size 64 located at the center of the image. It is the negative
difference between an outcome vector and the flattened binary vector representing the desired square.

D.3 Contextual Adaptive Bitrate Control

Given bitrate vector b, stall time vector t and bitrate change vector c, the full outcome vector for this
problem is (b, t, c) and the utility for this problem is defined as

g(b,t, c) =

Ib∑
i=1

bi + (stall time coeff) ·
It∑
i=1

ti + (bitrate change coeff) ·
Ic∑
i=1

ci

+ (bitrate smoothness coeff) · ∥∇b∥22 + (stall time smoothness coeff) · ∥∇t∥22
+ (worst bitrate reward coeff) ·min bi + (worse stall time coeff) ·max ti
+ (worst bitrate change coeff) ·max ci.

In our simulations, stall time coeff=-2.8, bitrate change coeff=-0.5, bitrate smoothness coeff=-0.1,
stall time smoothness coeff=-0.1, worst bitrate reward coeff=2.0, worse stall time coeff=-5.0, worst
bitrate change coeff = -0.1.

D.4 Contextual 10-D Hartmann

We set the input space to be [0, 1]10 for this problem. Following [18], we apply the contextual 5D
Hartmann function, which computes the average of the Hartmann6 function assuming the sixth
dimension follows U[0,1], to input dimensions 1-5 and 6-10 respectively to generate two basis
outputs. To expand the two basis functions into a full 100-dimensional output, a 2 × 100 loading
matrix i.e. [[⃗150, 0⃗50]; [⃗050, 1⃗50]] is created. In this case, each outcome would only depend on five
input parameters, either dimensions 1-5 or 6-10. The utility function is modeled as a random forest
classification, trained on synthetic datasets generated using the scikit-learn package. This design
mimics the decision tree-type processes inherent in DM decision-making.
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D.5 Cell-Tower Coverage

The cell tower problem follows the setup described in [38]. In this problem, we tune the transmission
power and down-tilt angle of each of 15 cell towers (30-dimensional input space) based on simulated
outcomes so as to maximize total coverage while minimizing total interference. For each parameter
configuration, the simulator generates 50 × 50 intensity maps of signal power and interference
respectively, resulting in a 5000-dimensional outcome space. The utility function is designed to be
0.5× total power − 0.5× total interference, placing equal weights on both metrics.

D.6 50D Synthetic Problem

In this problem, we generate 25 basis functions by sampling from a GP prior with lengthscales ranging
from 0.2 to 0.5. A block-diagonal matrix is then constructed to project the low-dimensional subspace
to the full outcome space. The utility function is formulated as a weighted sum of these 50 outcomes,
with high weights assigned to the first 5 outcomes, each corresponding to a distinct basis function.

D.7 Langermann

We investigate the synthetic composite function task introduced by [2]. We apply additional trans-
formations to obtain a 75-D outcome space and we use the original 2D Langermann function as the
utility function.

The Langermann function [55] (2D) is modified to have high-dimensional outcomes (75D). For this
problem the outcome function is

f(x) = (h1(x), cos(πh1(x)), exp(−h1(x)/π), h2(x), cos(πh2(x)), exp(−h2(x)/π)),

where h1(x) = (h1,1(x), . . . , h1,J1), h2(x) = (h2,1(x), . . . , h2,J2) with

h1,j(x) =

d∑
i=1

(xi −A1,ij)
2, j = 1, . . . , J1,

h2,j(x) =

d∑
i=1

(xi −A2,ij)
2, j = 1, . . . , J2,

with the cos and exp operations in the outcome function applied component-wise. The outcome will
then have 3J1 +3J2 dimensions. The utility function for this problem is defined so as to depend only
on the first J1 coordinates of the outcome vector:

g(y) =

J1∑
j=1

cj exp(−yj/π) cos(πyj).

In our simulations, d = 2, J1 = 5, J2 = 20, c = (1, 2, 5, 2, 3), A1 =

(
3 5 2 1 7
5 2 1 4 8

)
,

A2 =

(
0 0.5 1 1.5 . . . 9.5
10 9.5 9 8.5 . . . 0.5

)
and X = [0, 10]2.

D.8 Robot

In this task, we focus on training a four-legged robot to walk by optimizing a 3-dimensional policy.
The policy parameters include the swing period, step velocity, and clearance height, and the opti-
mization is conducted using the Spot Mini Mini simulator [48]. The outcome vector is represented
by the trajectory of the robot’s centroid in three dimensions over 50 timestamps (150-dimensional
outcome space). To expedite evaluations, we employ a surrogate trained on a set of simulation data.
The utility function is constructed to reward the robot’s adherence to a predefined trajectory direction.
Simultaneously, weights are imposed for deviations and the smoothness of the trajectory in all three
dimensions.

Since the robot walking simulation in Spot Mini Mini environment [48] takes a long time to run,
we train a decision tree regressor as a surrogate model. We construct a training set of 40,000 data
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points, where the 150-dimensional outcome is generated by recording the position at every time step.
The utility in this example is chosen such that it rewards the robot movements while also taking into
account drift, fluctuations and smoothness. A single robot trajectory is given by x, y and z vectors,
denoting the robot movements along the x, y and z directions, and so the (x, y, z) vector here denotes
the full outcome vector (acknowledging some abuse of notation since x and y denote the input and
outcome vectors in the general problem formulation). Then, the utility is defined as

u(x, y, z) = ∆x+ (y drift coeff) · |∆y|+ (final z award coeff) ·∆z

+ (y fluctuation coeff) · std(y) + (z fluctuation coeff) · std(z)

+ (x smoothness coeff) · ∥∇x∥22 + (y smoothness coeff) · ∥∇y∥22
+ (z smoothness coeff) · ∥∇z∥22.

Here, ∆x = xs − x1, ∆y = ys − y1, ∆z = zs − z1 = zs are the differences between the ending
and the starting x, y and z values, respectively, where s is the total number of steps. ∇x, ∇y and ∇z
are the second order gradients of vectors x, y and z and std(y) and std(z) are the standard deviations
of the y and z, respectively. In our simulations, the parameters are taken to be: y drift coeff=2,
final z reward coeff=20, y fluctuation coeff=1, z fluctuation coeff=25, x smoothness coeff=500, y
smoothness coeff=500, z smoothness coeff=100.

E Additional Experiment Results

E.1 Sensitivity Analyses and Ablation Studies

To assess the performance of HDP-GP for different embedding dimensions and the impact of joint
training, we designed a test problem with a 5D input space and 50D output space. The outcome
space is derived from sample paths of 25 independent GP draws projected into a 50D space. The
utility function is constructed as a weighted combination of these 50 outcomes. Further details
regarding the data generation process are provided in the Appendix D. Figure 4 illustrates the
results of HDP-GP with latent embeddings set at 10 and 20, both with and without joint training.
Notably, employing joint training yields significantly better performance, even when the selected
latent dimension is smaller than the intrinsic dimensionality of the outcomes. In contrast, without
joint training, achieving superior results requires a higher embedding dimension to outperform PBO.
This observation underscores the effectiveness of joint training in aligning dimensionality reduction
with utility.

Figure 4: (Left) Optimization performance for a 5D test problem with 50 outputs and a 25-
dimensional latent structure. Joint training of the HDP-GP becomes more important when the
embedding size is significantly smaller than the true latent dimensionality of the output space.
(Middle, Right) Effect of decision maker noise on BOPE under the HDP-GP model. Optimization
is robust do DM noise since errors in decision making have a relatively small effect on the output
model.
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Figure 5: Results of Langermann and Robot problems.

E.1.1 The Choice of Autoencoder Embedding Dimension

In this section we report a sensitivity analysis on the embedding dimension of the autoencoder
component of the HDP-GP framework as well as an ablation study on the incorporation of a kernel
with a sparse prior for the outcome model.

In Figure 6 and Figure 7 we show the results of a sensitivity analysis on the embedding dimension of
the autoencoder across six problems with the general trend that increasing the embedding dimension
improves optimization performance.
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Figure 6: Sensitivity analysis on the choice of embedding dimension for the Hartmann, Contextual
ABR and Cell Tower problems.
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Figure 7: Sensitivity analysis on the choice of embedding dimension for the Langermann, Robot and
Image Generation problems.

E.1.2 The Choice of Outcome Model Kernel

In Figure 8 we show the results of an ablation study to assess the performance of using the SAAS
kernel [16] (i.e., imposing a sparsity-inducing prior on the input lengthscales) compared to using a
standard ARD Matérn-5/2 kernel for the outcome model. The results indicate that a sparse prior
improves performance across the Hartmann, Contextual ABR and Cell Tower tasks.
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Figure 8: Ablation study on the choice of kernel for the Hartmann, Contextual ABR and Cell Tower
problems.
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