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ABSTRACT

Understanding transition pathways between meta-stable states in molecular systems
is crucial to advance material design and drug discovery. However, unbiased
molecular dynamics (MD) simulations are computationally infeasible due to the
high energy barriers separating these states. Although recent machine learning
techniques offer potential solutions, they are often limited to simple systems or
rely on collective variables (CVs) derived from costly domain expertise. In this
paper, we introduce a novel approach that trains diffusion path samplers (DPS) for
transition path sampling (TPS) without the need for CVs. We recast the problem
as an amortized sampling of the path measure of transition paths, minimizing the
log-variance divergence between the path measure induced by DPS and that of
transition paths. Leveraging the log-variance divergence, we propose learnable
control variates for reducing the variance of gradient estimators and off-policy
training objective with replay buffers and simulated annealing to improve sample
efficiency and diversity. We also propose a scale-based equivariant parameterization
of the bias forces to ensure scalability for high-dimensional tasks. We evaluate
our approach, coined TPS-DPS, on a synthetic double-well potential and three
peptides: Alanine Dipeptide, Polyproline Helix, and Chignolin. Results show that
our approach produces more realistic and diverse transition pathways compared to
existing baselines. We also provide links to our project page and code.

1 INTRODUCTION

In material design and drug discovery, it is crucial to understand the mechanisms and kinetics of
transitions between meta-stable states of molecular systems, such as protein folding and chemical
reactions (Mulholland, 2005; Piana et al., 2012; Ahn et al., 2019; Spotte-Smith et al., 2022). Their
comprehensive study requires sampling transition paths (Elber, 2016; Lee et al., 2017), which
provides insight into mechanisms and energy landscapes. However, naively sampling transition paths
by unbiased molecular dynamics (MD) simulations is often computationally costly due to high energy
barriers, which cause an exponential decay in probability to make a transition (Pechukas, 1981).

To address this problem, researchers have developed enhanced sampling approaches such as steered
MD (SMD; Schlitter et al., 1994; Izrailev et al., 1999), umbrella sampling (Torrie & Valleau, 1977;
Kistner, 2011), meta-dynamics (Ensing et al., 2006; Branduardi et al., 2012; Bussi & Branduardi,
2015), on-the-fly probability-enhanced sampling (OPES; Invernizzi & Parrinello, 2020), and adaptive
biasing force (ABF; Comer et al., 2015) methods. These methods rely on bias forces to facilitate
transitions across high energy barriers. They are mainly designed based on collective variables (CVs),
which are functions of atomic coordinates that capture the slow modes of the transition. Although
effective for some systems, the reliance on expensive domain knowledge limits the applicability of
the methods to systems where CVs are less understood.

Recently, machine learning has emerged as a promising paradigm for CV-free transition path sampling
(TPS) (Das et al., 2021; Lelievre et al., 2023; Holdijk et al., 2024). The key idea is to parameterize the
bias force using a neural network and train it to sample transition paths directly with the corresponding
biased MD simulation. In particular, Lelievre et al. (2023) considered reinforcement learning to
sample paths escaping meta-stable states. Das et al. (2021); Hua et al. (2024); Holdijk et al. (2024)
considered TPS problem as minimizing the reverse Kullback-Leibler (KL) divergence between the
path measures induced by the neural network and the target path measure. However, minimizing


https://anonymous.4open.science/w/tps-dps-0941/
https://anonymous.4open.science/r/tps-dps-0941/

Under review as a conference paper at ICLR 2025

the reverse KL divergence suffers from mode collapse, capturing only a subset of modes of the
target distribution (Vargas et al., 2023; Richter & Berner, 2024). Furthermore, Das et al. (2021);
Lelievre et al. (2023); Hua et al. (2024) limited their evaluation to low-dimensional synthetic systems.
Designing machine learning algorithms for CV-free TPS for real molecules remains an open problem.

Contribution. In this work, we propose the diffusion path sampler (DPS) to solve the transition
path sampling problem.! Our approach, coined TPS-DPS, (1) trains the bias force by minimizing
a recently proposed log-variance divergence (Niisken & Richter, 2021) between the path measure
induced by the biased MD and the target path measure, and (2) uses scale-based parameterization
of the bias force to handle high-dimensional tasks, e.g., Chignolin folding. Specifically, to leverage
desirable properties of the log-variance divergence, such as robustness of gradient estimator and
degree of freedom in reference path measure, we propose to learn control variates for reducing the
variance of gradient estimators and use off-policy training scheme with replay buffer and simulated
annealing to improve sample efficiency and diversity and prevent the mode collapse.

We also introduce a new S E(3) equivariant scale-based parameterization for the bias force to sample
meaningful paths more frequently in training. Our key idea is to predict the atom-wise positive
scaling factor of displacement from current molecular states to the target meta-stable state, which
guarantees the bias force to decrease the distance between them for every MD step. We also use the
Kabsch algorithm (Kabsch, 1976) to align the current molecular states with the target meta-stable
state, guaranteeing S F(3) equivariance of bias force for better generalization across the states.

We extensively evaluate our method on the synthetic double-well potential and three peptides: Alanine
Dipeptide, Polyproline Helix, and Chignolin. We compare TPS-DPS with prior ML approach (PIPS;
Holdijk et al., 2024), as well as classical non-ML methods, e.g., two-way shooting and steered MD
(SMD; Schlitter et al., 1994; Izrailev et al., 1999). Our experiments demonstrate that TPS-DPS
consistently generates realistic and diverse transition paths, similar to the ground truth ensemble.
In addition, we do ablation studies of the proposed components to verify the effectiveness of our
approach. In Appendix C, we further show the promise of our method on three fast folding proteins:
Trpcage, BBA, and BBL (Lindorff-Larsen et al., 2011).

2 RELATED WORK

Transition path sampling (TPS) without ML. Metadynamics (Branduardi et al., 2012), on-the-fly
probability-enhanced sampling (OPES; Invernizzi & Parrinello, 2020), adaptive biasing force (ABF;
Comer et al., 2015), and steered molecular dynamics (SMD; Schlitter et al., 1994; Izrailev et al.,
1999) were introduced to explore molecular conformations that are difficult to access by unbiased
molecular dynamics (MD) within limited simulation times (Hénin et al., 2022). However, they mostly
rely on collective variables (CVs) for high-dimensional problems and are inapplicable to systems
with unknown CVs. To sample transition paths without CVs, Dellago et al. (1998) proposed shooting
methods that use the Markov chain Monte Carlo (MCMC) procedure on path space. In this work, we
compare our method with SMD and variable-length two-way shooting as non-ML baselines.

Data driven ML approaches. Recently, generative models have been trained to sample new transition
paths given a dataset of transition paths. Petersen et al. (2023); Triplett & Lu (2023) and Lelievre
et al. (2023) applied diffusion probabilistic models (Ho et al., 2020) and variational auto-encoders
(Kingma & Welling, 2013) for transition path sampling, respectively. However, these methods are
limited to small systems. Klein et al. (2024); Schreiner et al. (2024); Jing et al. (2024) proposed
to accelerate MD by generating time-coarsened dynamics, but the time-coarsed dynamics cannot
capture the fine-grained details of the transition, e.g., the transition states. Duan et al. (2023); Kim
et al. (2024) use neural networks to generate transition states of a given chemical reaction, but cannot
generate transition paths.

Data free ML approaches. Without a previously collected dataset, Das et al. (2021); Lelievre
et al. (2023); Sipka et al. (2023); Hua et al. (2024); Holdijk et al. (2024) trained the bias forces
to directly sample transition paths using the biased MD. Lelievre et al. (2023) used reinforcement
learning to train the bias forces but focused on escaping an initial meta-stable state rather than
targeting a given meta-stable state. Sipka et al. (2023) used differentiable biased MD simulation to

"We coin our method diffusion path sampler since it samples paths using diffusion SDE, similar to diffusion
samplers (Zhang & Chen, 2022; Vargas et al., 2023) that use diffusion SDEs for sampling the final state.
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train bias potential and introduce partial back-propagation and graph mini-batching techniques to
resolve computational issues in differentiable simulation. Das et al. (2021); Hua et al. (2024); Holdijk
et al. (2024) considered the TPS problem as minimizing the reverse KL divergence between path
distribution from biased MD and transition path distribution. Das et al. (2021); Hua et al. (2024)
limited their evaluation to low-dimensional synthetic systems. In this work, we mainly compare our
method with (PIPS; Holdijk et al., 2024). Recently, Du et al. (2024) considered the TPS problem as
minimizing Doob’s Lagrangian objective with boundary constraints. They parameterized marginal
distribution as (mixture) Gaussian path distribution to satisfy the boundary constraints without relying
on simulation in training time and sampled transition paths with the bias force derived from the
Fokker-Planck equation in inference time.

3  TRANSITION PATH SAMPLING WITH DIFFUSION PATH SAMPLERS

In this section, we introduce our method, coined transition path sampling with diffusion path
sampler (TPS-DPS). Our main idea is to formulate the transition path sampling (TPS) problem as a
minimization of log-variance divergence (Niisken & Richter, 2021) between two path measures: the
path measure induced by DPS and that of transition paths. Our main methodological contribution
is twofold: (1) a new off-policy training algorithm that minimizes the log-variance divergence with
the learnable control variate, replay buffer, and simulated annealing (2) a SF(3) equivariant scale-
based parameterization of the bias force that provides inductive bias for dense training signals in
high-dimensional problems.

3.1 PROBLEM SETUP

Our goal is to sample transition paths from one

meta-stable state to another meta-stable state given a g
molecule system. We provide an example of the prob- '}f&
lem for Alanine Dipeptide in Figure 1. We view this

as a task to sample paths from an unbiased molecular o
dynamics (MD) in Equation (1) conditioned on its

starting and ending points of initial and target meta- % - :
stable states, respectively. To solve this task, we train '
the bias force parameterized by a neural network to
amortize the sampling procedure.

State A State B

Figure 1: Problem setup. Potential energy
landscape of Alanine Dipeptide, where the
sampled path from state A to state B is high-
lighted in dotted lines. We visualize
snapshots in the transition path highlighted
in white circles and the transition state high-

Molecular dynamics. We consider a MD simulation
on time interval [0, T, i.e., the motion of a molecular
state X; = (R, V;) € RSV at time ¢t where N is
the number of atoms, R; € R3V is the atom-wise
positions and V; € R3¥ is the atom-wise velocities.
In particular, we adopt Langevin dynamics (Bussi & . ; .
Paginello, 2007) dofined a5 the fol}llowing SDE: lighted in the white star.

dX, = u(X,)dt+ SdW;, u(X,) = (Vt’ _@ - M) BT dee (C’ W) W

where U, m, v, kg, A, and W, denote the potential energy function, the atom-wise masses, the friction
term, the Boltzmann constant, the absolute temperature, and the Brownian motion, respectively, and
¢ € RN is a vector of positive infinitesimal values. MD in Equation (1) induces the path measure,
denoted by PPy, which refers to the positive measure defined on measurable subsets of the path
space C([0, T]; RSY) consisting of continuous functions X : [0,7] — RV. The path (probability)
measure Py induced by MD assigns high probability to a set of the probable paths when solving MD.

Transition path sampling. One of the challenges in sampling transition paths through unbiased MD
simulations is the meta-stability: a state remains trapped for a long time in the initial meta-stable
state A C R3N before transitioning into a distinct meta-stable state 5 C R3N . To capture the rare
event where transition from A to B occurs, we constrain paths X = (X;)o<;<7 sampled from
unbiased MD to satisfy Ry € A, Ry € B for a fixed time 7. Since the meta-stable state .A and B
are not well-specified for many molecular systems, we simplify this task by (1) fixing a local minima
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R 4, Ry of the potential energy function in the meta-stable states .4, 53 and (2) sampling a transition
path X that starts from the state Ry = R 4 and ends at the vicinity of Rp.

To be specific, we aim to sample from the target path measure QQ, which is obtained by reweighting
the path measure Py with the (normalized) indicator function. The indicator function assigns zero
weight to paths that do not reach the vicinity of the target position Rp. Formally, the reweighting
function is called the Radon—-Nikodym derivative defined as follows:

dQ 1B(X) 1 lprTRB_RT” <4,
— (X)) = 15(X) = 7 =FEp [15(X
d]P’O( ) z 5(X) 0 otherwise, v [18(X)], @)

where - denotes group action associated with the SFE(3) space and pr - Rg is the aligned target
position by the optimal roto-translation pr € SF(3) to minimize its Euclidean distance to Rr, i.e.,
pr = argmin,cgp )l Rr — p - Rgl|. Such a transformation can be obtained from the Kabsch
algorithm in O(N) complexity (Kabsch, 1976).

Note that one may consider naive rejection sampling to sample transition paths, based on running
unbiased MD to sample a path X from the path measure Py and accepting if the path X arrives
at the neighborhood of the position Rz with the radius §. However, this method does not scale
to high-dimensional or low-temperature problems, since the sampled path by unbiased MD rarely
reaches the target states due to the high energy barriers, i.e., the rejection ratio is too high.

3.2 LOG-VARIANCE MINIMIZATION

In this section, we propose our algorithm to amortize transition path sampling. Our key idea is to
train a neural network to induce a path measure that matches the target path measure Q, using the
log-variance divergence (Niisken & Richter, 2021) between the path measures. We propose a new
training scheme to minimize the log-variance divergence based on learning the control variate of its
gradient and a replay buffer to improve sample efficiency and diversity.

Amortizing transition path sampling with log-variance divergence. To match the target path
measure (Q, we consider a biased MD defined by a policy v (or bias force b) as the following SDE:

dX; = (u(Xy) + Zo(Xy))dt + ZdW;, o(X,) =37 (0, b(f)) . 3)

We also let P,, denote the path measure induced by the SDE. To amortize transition path sampling,
we match the path measure P, of a parameterized policy vy with the target path measure Q by
minimizing the log-variance divergence:

d d d 2
Dy (P, |Q) = Vp [log dIP’Q } =Ep [<log dIPQ —Ep [log dIP’Q }) ] ) 4

where P is an arbitrary reference path measure with Ep[log(dQ/dP,,)] < co. To express the log-
variance divergence in detail, we let P = P for some policy v and apply the Girsanov’s theorem to
Equation (4), deriving the following formulation:

Dlﬂj\f; (va ||Q) = EP{; [(F’097f) - EP{; [Fve,fl])z] ’ (5)

1 /T T ) T
FapslX) =5 [ TooX0lPdt = [ (o0 9)(X0)dt = [ wa(X0) - dW; +log1s(X). ©)

0 0 0
The first three terms in Equation (6) correspond to the deviation of the biased MD from the unbiased
MD integrated over the path sampled from [P;. The last term reweights the unbiased MD to the target
path measure Q. As a result, minimizing Equation (5) could be thought as minimizing the variation
between IP,,, and Q. We provide the full derivation in Appendix A.1. Compared to KL divergence,

the log-variance divergence provides a robust gradient estimator and avoids differentiating through
the SDE solver. (Richter et al., 2020; Niisken & Richter, 2021).

Minimizing with learnable control variate. To minimize the log-variance divergence, we consider
the following loss function that replaces the estimation of Ep,, [F,,ve] by learning a parameter w:

‘c(ovw) = E]Pve [(F’Ue,’vg - w)Q] I (7)

4
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Algorithm 1 Training

1: Initialize an empty replay buffer D, an policy vy, a scalar parameter w, the number of rollout 7
and training per rollout J, and an annealing schedule Ay, = A1 > -+ > A\ = Aeng-
2: fort=1,...,1do

3:  Generate M paths { :cgfz) M_ from the biased MD simulations with vy at temperature ;.
4 Update the replay buffer D « D U {mg'z) ML
5 forj=1,...,Jdo
6: Sample K data {m(()k%}{(zl from D.
. . 1 K po(@oy)1s(x())
7: Update 0 and w with the gradient of = > ;" | <log W - w) .

8: end for
9: end for

where w is a control variate that controls the variance of the gradient estimator of VL (6, w)
without changing the gradient. Note that we set ¥ = vy in Equation (6), which implies that
the gradient of Equation (7) coincides with the KL divergence (Richter et al., 2020; Niisken &
Richter, 2021). When optimized, the control variate w estimates the expectation Ep,, [Fp,ve) since
argmin,, £(6,w) = Ep, [Fu,v,]. Thus, jointly optimizing (¢, w) with the gradient step can be
interpreted as jointly minimizing log-variance divergence and estimating Ep,, [Fog,ve) USING w.

Off-policy training with replay buffer and simulated annealing. To leverage the degree of freedom
in reference path measure for the log-variance divergence, we allow discrepancy between reference
path measure and current path measure, called off-policy training, which is widely used in discrete-
time reinforcement learning (Mnih et al., 2013; Bengio et al., 2021). For the sample efficiency, we
reuse the samples with a replay buffer D which stores path samples from the path measure P,

associated with previous policies v5. Our modified loss function £P with D is defined as follows:
,CD(Q,’LU) = E(vg,X)ND[(F’UeyUg’(X) - ’U})2] ®)

Using the replay buffer also prevents mode collapse, using diverse paths from different path measures.
Similar to other off-policy training algorithms (Malkin et al., 2022; Kim et al., 2023), we use simulated
annealing to collect diverse paths that cross high energy barriers.

Discretization. To implement the algorithm, we discretize Equation (8). Given a discretization step
size At, we consider the discretized paths x¢.;, = (g, ®1,...,xr) of X from MD simulations
where L = T/At and &, = X (¢At). In discrete cases, the discretized paths xg.7, from previous
policies vz and their (gradient-detached) policy values (vg(xo), ..., vg(x L)) are used to approximate
the value F,, »,,(X) in Equation (6) as follows:

L—-1 L—-1 L—1

. 1

gy (@o:n) = 5 Y llvo(@o)|[PAt =D (vg - v)(@e) At — Y vg(ae) - €¢ +log Ls(wo.r)  (9)
£=0 =0 {=0

where the noise €, = X1 (xp1 1 — ¢ — (u(xy) + Svg(xe)) At) is the discretized Brownian motions
of the Langevin dynamics with policy vg. For implementation, we further derive a simple discretized
loss of Equation (8) from Equation (9) as follows:

2
Eogrnp [(log Po(@o)15(T0.L) —w) ] ; (10)

Do (To:1)

where the buffer D stores paths x¢.;, sampled from the previous policies, and py and p,,, denote
discrete time transition probability induced by Equations (1) and (3), respectively. We provide a
formal derivation of the discretized loss in Appendix A.2. Note that the same objective was derived
in the name of relative trajectory balance by Venkatraman et al. (2024).

We describe our training algorithm in Algorithm 1. Overall, our off-policy training algorithm iterates
through four steps: (1) sampling paths from the biased MD simulation with current policy vy at high

temperature, (2) storing sampled paths in the replay buffer D, (3) sampling a batch of the paths from
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the replay buffer, and (4) training current policy vg by minimizing the loss in Equation (10). After
minimization, biased MD simulation can directly sample transition paths by amortizing inference in
the target path measure.

3.3 PARAMETERIZATION FOR HIGH DIMENSIONAL TASKS

In this section, we introduce new parameterizations of the bias force and the indicator function
for high-dimensional tasks. Our parameterization is designed around alleviating the problem of
sparse training signal, where the model struggle to collect meaningful paths that end near the target
meta-stable state in training. This problem is especially severe in large molecules.

Bias force parameterization. To frequently sample the meaningful paths, we aim to parameterize
the bias force which guarantees to reduce the distance between the current molecular state and the
target meta-stable state for every MD step. This is achieved by predicting the atom-wise positive
scaling factor of the direction to the aligned target meta-stable state rather than predicting force or
potential directly. Moreover, we design the bias force to satisfy roto-translational equivariance to the
current molecular state input X, aligning with the symmetry of the transition path sampling problem
for better generalization.

To be specific, we use a roto-translation p; € SF(3) to align Rp with R;, as we do for indicator
function in Equation (2). To achieve SFE/(3) equivariant, we parameterize the bias force as follows:

b(X,) = diag(se(p; ' - X)) (p: - Rs — Ry), (11)

where sy () € RiN is a neural network constrained to have positive output elements and predicts
atom-wise scaling factors. We note that the bias force (divided by atom-wise masses) is positively
correlated with the direction to target state, i.e., (b(X;)/m) " (p; - Rg — R;) > 0.

To formalize the benefit of positive correlation between the bias force and the direction to the target
state, one can prove that there always exists a small enough step size At that decrease the distance
between the current state R; and the aligned target state pj_, , - Rp, i.e.,

10irae - Rs — Riyaill < llpe - Rs — Ryl (12)

where R}, \, = R; + b(X;)At/m is the position updated by the bias force with step size At and
Py ar = ATGMIN e g p3) [ Ry A, — p - Rpl|l. We formalize this statement and provide the proof of
Equation (12) in Appendix A.3.

In the experiments, we also consider other equivariant parameterizations that are less constrained:
(1) directly predicting the equivariant bias force by p; - by(p; * - X;) € R3N and (2) predicting the
invariant bias potential bg(p; * - X;) € R and taking gradient of it Vbg(p; ' - X;). We observe these
two parameterizations to be useful for low-dimensional tasks but struggle to produce meaningful
paths in large molecules during training. As shown in Figure 2, bias forces with the positive scaling
parameterization are positively correlated with the direction to the target position (white circle)
regardless of network parameters, unlike force parameterizations.

Indicator function parameterization. We propose
to relax the indicator function 15 as a radial ba-
sis function (RBF) kernel 15(X) = k(Rr,p ' -
Rp; 0?) which measures the similarity between two
positions where ¢ > 0 controls the degree of relax-
ation. The range of RBF kernel % is bounded by
the interval (0, 1] so that log 15(X) is well-defined
and 1;3(X) represents the binary indicator function
smoothly. To capture a high training signal from
subtrajectories of sampled paths, we propose to take
maximum over RBF kernel values of all intermediate _. . e L. .
states by itlrglax( X) = maxyeqo 71 K(Re, Ry o2). To Figure 2: Vlsuall?atlon of the bias force
extract the subtrajectory with a high training signal, fields .from unt‘r ained neural netw‘forlfs of
we can truncate the paths at the time that maximizes two ('ilfferent bl&,‘s force pafameterlzatlons.
RBF kernel values, allowing variable path lengths. (@) d}rgctly predlct.n.lg the b.1as force and (b.)
Notably, the relaxed indicator function is SE(3) in- Predicting the positive scaling factors of di-
variant to Ry because of the Kabsch algorithm. rection to the target position (white circle).

< 4 4t

X

(a) Direct prediction (b) Positive scaling
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Table 1: Benchmark scores on the double-well system and three real-world molecular systems:
Alanine Dipeptide, Polyproline Helix, and Chignolin. All metrics are averaged over 1024 paths for the
double-well system, and 64 paths for real-world molecular systems. ETS is computed for paths that
hit the target meta-stable state, and the best results are highlighted in bold. TPS-DPS predicting the
bias force, potential, and atom-wise scaling are denoted by (F), (P), and (S), respectively. UMD ()
denotes unbiased MD with temperature A and SMD (k) denotes steered MD with the force constant
k. Unless otherwise specified, paths are generated by MD simulation at 1200K for double-well and
300K for real-world molecules. * denotes results reported by Du et al. (2024).

RMSD (/) THP (1) ETS (1) RMSD (|) THP (1) ETS (1)
Method A % kJmol ! Method A % kJmol !
Double-well Alanine Dipeptide
UMD (1200K) 2.214+0.10 0.00 - UMD (300K) 1.59 +0.15 0.00 -
UMD (2400K) 2.114+0.38 3.03 1.69 + 0.31 UMD (3600K) 1.19 +£0.32 6.25 812.47 + 148.80
UMD (3600K) 1.85 4+ 0.68 12.60 2.12 + 041 Doob’s Lagrangian® - - 69.26 + 0.21
UMD (4800K) 1.54 +0.81 21.58 2.77 + 0.69 Two-way shooting 0.38 +0.24  100.00 527.66 4+ 450.51
Two-way shooting ~ 0.26 +0.05  100.00 1.41 +£0.16 SMD (20) 0.56 +0.27  54.69 78.40 + 12.76
SMD (0.5) 098 +090 52.15 1.54 +0.21 PIPS (F) 0.66 +0.15  43.75 28.17 £+ 10.86
SMD (1) 0.14 £0.08  99.80 1.85+0.16 PIPS (P) 1.66 £ 0.03 0.00 -
TPS-DPS (F, Ours) 0.01 +0.02  99.90 1.38 £ 0.16 TPS-DPS (F, Ours)  0.16 + 0.06  92.19 19.82 + 15.88
TPS-DPS (P, Ours) 0.01 +0.03  99.71 1.36 £ 0.15 TPS-DPS (P, Ours)  0.16 +0.10  87.50 18.37 + 10.86
TPS-DPS (S, Ours) 0.01 +0.03  99.80 1.73 £0.20 TPS-DPS (S, Ours)  0.25+0.20  76.00 2279 £+ 13.57
Polyproline Helix Chignolin
UMD (300K) 222 40.11 0.00 - UMD (300K) 7.98 + 0.41 0.00 -
UMD (1200K) 1.38 £ 0.45 10.94 1010.28 + 38.44 UMD (1200K) 7.23 +£0.93 1.56 388.17
SMD (5k) 1.68 £0.17  54.69 350.58 £ 14.36 SMD (10k) 1.26 £ 0.31 6.25 -527.95 £ 93.58
SMD (10k) 1.26 £0.06  100.00 355.62 + 14.83 SMD (15k) 1.17 + 0.31 23.44 -237.15 £ 122.29
PIPS (F) 2.64 £ 0.15 0.00 - PIPS (F) 4.66 +0.17 0.00 -
PIPS (P) 1.85+0.13  93.75 574.66 + 20.49 PIPS (P) 4.67 £0.32 0.00

TPS-DPS (F, Ours) 1.53 £0.12  98.44 418.17 £ 45.54 TPS-DPS (F, Ours)  4.41 +0.49 0.00
TPS-DPS (P, Ours) 1.35£0.12  100.00  345.00 4= 32.58 TPS-DPS (P, Ours)  3.87 +0.42 0.00 -
TPS-DPS (S, Ours) 1.17 £ 0.02  100.00  342.00 £+ 20.28 TPS-DPS (S, Ours)  1.17 +£0.66  59.38  -780.18 + 216.93

4 EXPERIMENT

In this section, we compare our method, called TPS-DPS, with both classical and ML approaches,
assessing the accuracy and diversity of sampled transition paths. We begin with a synthetic double-
well system at 1200K, followed by three real-world molecular systems with various numbers of
amino acids: Alanine Dipeptide, Polyproline Helix, and Chignolin. Additionally, we conduct ablation
studies to validate the effectiveness of each component in our method. All real-world molecular
systems are simulated using the OpenMM library (Eastman et al., 2023). Details on OpenMM
simulation and model configurations are provided in Appendices B.1 and B.2, respectively. In
Appendix C, we further evaluate our method on three fast folding proteins: Trpcage, BBA, and BBL
(Lindorff-Larsen et al., 2011). In Appendix D, we analyze the time complexity of TPS-DPS and
evaluate the number of energy evaluations and runtime in training and inference time.

Evaluation Metrics. We consider three metrics to evaluate models: RMSD, THP, and ETS. The
root mean square distance (RMSD) measures the ability to produce final positions of paths close
to the target position Rp, with the final positions aligned to the target. The target hit percentage
(THP) measures the ability to produce final positions of paths that successfully arrive at the target
meta-stable state 3. Finally, the energy of the transition state (ETS) measures the ability to identify
probable transition states. For further details, refer to Appendix B.3.

Baselines. We compare TPS-DPS with both non-ML and ML baselines. For non-ML baselines, we
consider unbiased MD (UMD) with various temperatures, variable length two-way shooting with
uniform shooting point selection, and steered MD (SMD; Schlitter et al., 1994; Izrailev et al., 1999)
with various force constants k and collective variables (CVs). For ML baselines, we consider a
CV-free transition path sampling method, path integral path sampling (PIPS; Holdijk et al., 2024)
which also trains a bias force by minimizing the KL divergence between path measures induced by
the biased MD and the target path measure. For simplicity, we denote parameterizations for predicting
force, potential, and atom-wise scaling factors as (F), (P) and (S), respectively.



Under review as a conference paper at ICLR 2025

= Ground Truth SMD (0.5) 1 TPS-DPS (P)

U —+ bg [ UMD (2400K) T SMD (1)

1.00 1.25 1.50 1.75 2.00 2.25 2.50 -2 -1 o 1
Energy (kJ/mol) y

(a) Double-well energy landscapes (b) Distributions of the energy and y
Figure 3: Visualization of potential energy landscapes and distributions of the double-well
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X

Ground Truth

Shooting SMD (1) TPS-DPS (F)

Shooting TPS-DPS (P)

TIC 2
TIC 2

TIC1 TIC1

UMD SMD (10k) SMD (15k) PIPS (P) TPS-DPS (P)  TPS-DPS (S)

TIC1

Figure 4: 16 sampled transition paths of three systems. White circles indicate meta-stable states
and white stars indicate saddle points. Double-well on potential energy landscape (top). Alanine
Dipeptide on Ramachandran plot (middle). Chignolin on top two TICA components (bottom).

4.1 DOUBLE-WELL SYSTEM

We begin by evaluating our method on a two-dimensional synthetic system, i.e., a double-well
potential at 1200K. This system has two global minima representing the meta-stable states, and two
reaction pathways via saddle points. We sample transition paths from the left state R 4 to the right
meta-stable states B = {R | || R — Rg|| < 0.5}. We collect ground truth path ensembles by rejection
sampling which proposes paths sampled from the unbiased MD simulations and accepts if the final
states are in the target meta-stable states /3. We provide more details on the system in Appendix B.4.

In Table 1, Figure 3, and Figure 4, TPS-DPS outperforms baselines regardless of the bias force design,
generates transition paths more similar to the ground truth than baselines. In Figure 3, the neural
bias potential accelerates the transition by increasing the potential energy near the initial meta-stable
state while decreasing the potential energy near the two energy barriers. Moreover, the distribution of
energy and y coordinate of the transition states from TPS-DPS is closest to the ground truth compared
with other baselines, successfully capturing two reaction channels. In Figure 4, UMD at 1200K fails
to escape the initial state and SMD struggles to pass the saddle points.
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Figure 5: Qualitative evaluation on transition path sampled from TPS-DPS. (a) Potential energies
and collective variables (CVs) of Alanine dipeptide, Polyporline Helix, and Chignolin from top to
bottom. For CVs, we plot the distance of the backbone dihedral angles between the current state and
the target state for Alanine Dipeptide, the handedness of the backbone for Polyproline Helix, and the
hydrogen bond distance for Chignolin. (b) Visualization of hydrogen bond formation in Chignolin.
We highlighted each hydrogen bond in green and yellow.

4.2 ALANINE DIPEPTIDE CONFORMATION CHANGE

We first consider Alanine Dipeptide for a real-world molecule consisting of two alanine residues,
sampling transition paths from the C'5 (upper left) to the C7ax (lower right) as seen in Figure 4. The
target meta-stable states are defined as B = {R | [|§(R) —&(Rg)| < 0.75}, where £(R) = (¢, %) is
a well-known collective variable which consists of two backbone dihedral angles. Alanine Dipeptide
has two reaction channels between the C'5 and C'7ax state passing through the saddle points.

In Table 1 and Figure 4, our method shows superior performance regardless of the bias force design
and successfully generates diverse transition paths that pass two reaction channels. UMD at 300K
fails to escape the initial state, SMD with the two backbone torsion CV generates transition paths
with less probable transition states, and two-way shooting struggles to find plausible transition states.
PIPS generates transition paths of only one reaction channel, suffering from mode collapse.

4.3 POLYPROLINE HELIX ISOMERIZATION

Next, we consider a more complex molecule Polyproline Helix than Alanine Dipeptide which
consists of three proline residues. We sample transition paths from the left-handed state (PPII) in
the cis-configuration to the right-handed state (PPI) in the trans-configuration. We define the target
meta-stable state based on handedness H as B = {R | H(R) > 0}. For the formal definition of
the handedness, refer to Appendix B.4. In Table 1, TPS-DPS consistently outperforms baselines
regardless of bias force parameterization.

4.4 CHIGNOLIN FOLDING

Finally, we consider a challenging molecule, Chignolin, an artificial protein consisting of 10 amino
acids (Honda et al., 2004), which folds into a -hairpin structure by hydrogen bonds. We sample
transition paths from the unfolded state (right) to the folded state (left) as seen in Figure 4. We define
the target meta-stable state B = {R | ||{(R) — {(Rg)|| < 0.75} where £ consists of the top two
components of time-lagged independent component analysis (TICA; Pérez-Hernandez et al., 2013).
We further describe TICA in Appendix B.4.

In Table 1 and Figure 4, Only TPS-DPS (S) successfully samples transition paths that pass probable
transition states. While SMD hits the target meta-stable, its transition paths pass less probable
transition states. UMD, PIPS, TPS-DPS (F), and TPS-DPS (P) fail to hit the target meta-stable state.
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Figure 6: Ablation studies on the components of TPS-DPS in the Alanine Dipeptide. (a)
Benchmark scores on Alanine Dipeptide. (b) Loss and RMSD curves averaged over 8 different seeds.

In Figure 5, we validate the sampled paths using the potential energy and donor-acceptance distance of
the two key hydrogen bonds. The sampled path forms two key hydrogen bonds, ASP30D-THR60G
and ASP3N-THRS8O, reducing the donor-acceptance distance below the threshold 3.5A.

4.5 ABLATION STUDY

Effectiveness of algorithmic components. We conduct ablation studies to verify the effectiveness of
the five proposed components: log-variance loss, learnable control variate, replay buffer, simulated
annealing, maximum over RBF values for various path lengths, and SE(3) equivariance. To be
specific, we (1) replace our loss with the KL divergence, (2) replace the learnable control variate with
the local control variate used in Niisken & Richter (2021), (3) remove the replay buffer and use data
only from the current policy, (4) use only one temperature A, (5) remove maximum operation over
RBF kernel values using only the final state, (6) remove the Kabsch algorithm.

As seen in Figure 6, all the proposed components improve performance. Our loss is smaller than
the KL divergence by more than two orders of magnitude and significantly improves performance.
Learning the control variate slightly improves performance, showing that utilizing data from previous
policies is effective. The replay buffer significantly improves training efficiency, and shows that the
large performance gap between our loss and KL divergence comes from the replay buffer. Simulated
annealing for biased MD simulation is critical to finding transition paths. RMSD does not decrease
without simulated annealing while loss decreases significantly. For the relaxed indicator function,
maximum operation accelerates convergence and improves performance with frequent training signals
from the subtrajectories. Leveraging the symmetry of the bias force with Kabsch algorithm improves
performance. We further compare with reverse KL divergence in Appendix E.

5 CONCLUSION

In this work, we introduced a novel CV-free diffusion path sampler, called TPS-DPS, to amortize
cost of sampling transition paths, using log-variance divergence with the learnable control variate
and off-policy training with the replay buffer and simulated annealing. We also propose new SE(3)
equivariant scale-based parameterization of bias force and relaxed indicator function for frequent
training signals. Evaluations on synthetic double-well and real-molecule systems such as Alanine
Dipeptide, Polyproline Helix, and Chignolin demonstrate superior accuracy and diversity of our
model compared to both classical and ML approaches.

Limitation. While our experiments show promise, they are limited to relatively small (up to 50
amino acids) and fast-folding proteins. The application of our method remains challenging for
real-world proteins with up to 500 amino acids since the MD simulations required for training our
model take significantly longer. For example, our algorithm can be trained for BBL protein with
47 amino acids under 170 GPU hours on a single A5000 GPU. However, training our algorithm on
Glutamine Synthetase (Yamashita et al., 1989) with 469 amino acids would take at least 1700 GPU
hours. Furthermore, our method does not generalize across unseen pairs of meta-stable states or
different molecular systems. These points to an interesting venue for future research, which would be
more appealing for practical applications in drug discovery or material design.

10
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A METHOD DETAILS

A.1 LOG VARIANCE FORMULATION

In this section, we derive Equation (5) from Equation (4) to get the explicit expression for log-variance
divergence in terms of SDE in Equation (1) and Equation (3). We refer to Niisken & Richter (2021,
Appendix A.1) for the derivation in more general settings.

Our goal is to derive that
dQ dQ 1\?
1 —Ep, |1
( Og d]P)’UG Fo |: Og dP’UB :| >

To this end, we focus on calculating log % (X) when X ~ P3. Following (Niisken & Richter,
vg

Ep,

=Ep, [(Foo,5 — Epy [Fo.))°] , (13)

2021, Lemma A.1), we apply Girsanov’s Theorem to calculate the Radon-Nikodym derivative dPg

ap,
as follows: ’
dPy, L el T I 2
(X) =exp (vg X7 )(Xy) - d Xy — (57w vg)(Xy)dt — = lve (X )] *dt | .
dPy 0 0 2 /o
(14

Since the state X; follows the SDE dX; = (u(X:) + Y0(X}))dt + ©dW;. We plug it into
Equation (14) and utilize the definition of the target path measure Q in Equation (2) to compute
log % as follows:
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Since log Z is the constant, it is canceled out in the log-variance divergence as follows:
dQ aQ 1\* 2
Ep, |1 —Ep, (1 =Ep, |(Fo,.5 — Ep, [Fo, 5 , 21
Ps (og P, e {og dIP,,J) Py [(Fop, P [Fop,5))°] (21)

A.2 CONNECTION TO EXISTING LOSS FUNCTIONS ON DISCRETE-TIME DOMAIN

In this section, we connect our discretized loss of Equation (8) to the loss function, called relative
trajectory balance (Venkatraman et al., 2024, RTB). Like our methods, RTB also amortized inference
in target path distribution by training forward distribution on discrete-time domains such as vision,
language, and control tasks. When discretized, our loss function is equivalent to the RTB objective.

Our goal is to show that for every paths x.;, sampled from the path measure P,

2
(ﬁv 7(1:0'L) _ U})2 _ (lOg pO(wO:L)lB(CBO:L)> (22)
vore R Zgpo, (To:1) ’
where w = logZy is a learnable scalar parameter, and path distribution p,(x¢.;) =

]_[ZLz_Ol DPo(Ti1|x;) is Markovian, and its transition kernel p,, (@;41|x;) are derived from Euler-
Maruyama discretization of the SDE in Equation (3) as follows:

xir1 = x; + u(x) At + Sv(x) At + Xey, (23)

15



Under review as a conference paper at ICLR 2025

where €, ~ N (0, At). To this end, we can calculate as follows:
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by subtracting w and squaring both sides, we have

2
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We can view po(xo.1,)15(x0.1,) as the unnormalized target distribution discretized from the target
path measure Q, and Zj as the estimator for normalizing constant Z = [ po(xo.)18(%0.1)dx0. 1,
and p., (xo.1) as forward probability distribution to amortize inference in the target distribution.
Based on these results, we provide our training algorithm in Algorithm 1.

A.3 PROOF OF SCALE-BASED PARAMETERIZATION

In this section, we prove that our scale-based parameterization of bias force strictly decreases the
distance to the (aligned) target position for small step sizes, improving the ability to find informative
paths in large molecules.

Proposition 1. Consider the molecular state Ry at the t-th time step and the next state R n, = R+
b(X;)At/m updated by step size At and the bias force b(X,;) = diag(so(p; * - X;))(pi- Rz — Ry).
Then there always exists a small enough At that strictly decreases the distance towards the target
state Rg:

Pty ar - B = Ryl < llpr - Re — Ry, (33)
where pi, n, = argmin,c sp3)llp- R — Ry 4|l and we assume that there does not exist a rotation
that exactly aligns the current molecular state to the target state, i.e., ||p: - Rg — Ry|| > 0.

Proof. The proof consists of two steps. We first show the (strictly) positive correlation between the
bias force and the direction from the ¢-th state R, to the target state Rz. Next, we show that the
positive correlation gaurantees a strict decrease in distance between the states, i.e., ||p: - Rz — Ry,
given that the distance was not already zero.

Step 1: First, we show that the bias force (divided by atom-wise masses) is positively correlated with
the direction to the target position, i.e., (b(X;)/m) " (p; - R — R;) > 0. This follows from:

(b(X,)/m) (p,- Rz — R,) = (p - R — Rt)Tdiag(SQ(pt_ - X,))

(pt- R — Ry)  (34)

m
3N
Si 2
—Z( ‘>(pt'RBRt)i>07 (35)
o1 N
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where s; > 0 is the i-th element of se(p;1 - X¢) and (p; - Rg — Ry), is the i-th element of the
direction to the target position.

Step 2: Next, we show that the positive correlation ensures distance reduction for a small enough
step size. Consider the squared distance between the target position p; - Ry and updated position R’
by bias force

lpe - Rs — R;—i—At”Q

= |lpe - R — (R + b(X) At/m)||? (36)
= ||(p¢ - Rz — Ry) — b(X;)At/m)|? (37
= llpe - R — Ry||” = 2At(b(X,)/m) " (pr - R — Ry) + (A1)*|[b(X,)/m|*.  (38)

Due to step 1, i.e., (b(X;)/m) " (p; - Rg — R:) > 0, there exists a step size At satisfying:
2(b(X:)/m)" (p - R — Ry)

0< At < (39)
[b(X:)/m|?
With this choice of At, multiplying At||b(X;)/m||? leads to the following inequaliity:
(A1)?[[b(X:)/ml* < 2At(b(X¢)/m) " (o - Rs — Ry). (40)

By subtracting the right-hand side from both sides and adding ||p; - R — R;||? to both sides, we

have the following inequality:
lpe - R — Ry adll® < lloe - Rs — R, (41)
Taking the square root of both sides, we have the following inequality:
1P ae B = Rigadll < llpe - Re = Ryl < llpe - R — R, (42)

where the first inequality follows from the definition of Prrar = argming,csp3)llp - BRe — Ry all-
This completes the proof.
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B EXPERIMENT DETAILS

B.1 OPENMM CONFIGURATIONS

For real-world molecules, we use the VVVR integrator (Sivak et al., 2014) with the step size At = 1fs
and the friction term v = 1 ps~!. In the TPS-DPS training algorithm, we start simulations at a
temperature g, = 600K, and end at a temperature A\, = 300K for Alanine Dipeptide, Polyproline
Helix, and Chingolin and Aepq = 400K for Trpcage, BBA, and BBL. Other OpenMM configurations
are shown in Table 2.

Table 2: OpenMM configurations for real-world molecular systems.

Molecule \ Simulation time (7°) Force field Solvent

Alanine Dipeptide 1000 amber99sbildn (Lindorff-Larsen et al., 2010) vaccum

Polyproline Helix 10000 amber/protein.ff14SBonlysc (Maieretal., 2015) implicit/gbn2
Chignolin 5000 amber/protein.ff14SBonlysc implicit/gbn2
Trpcage 5000 amber/protein.ffl14SBonlysc implicit/gbn2
BBA 5000 amber/protein.ff14SBonlysc implicit/gbn2
BBL 5000 amber/protein.ff14SBonlysc implicit/gbn2

B.2 MODEL CONFIGURATIONS

We use a 3-layer MLP for the double-well system, and a 6-layer MLP for real-world molecules with
ReLU activation functions for neural bias force, potential, and scale. To constrain the output of the
neural bias scale parameterization to a positive value, we apply Softplus (Zheng et al., 2015) to the
MLP output. As an input to the neural network, we concatenate the current position (R;); of the
i-th atom with its distance to the target position d; = ||(Rp); — (R¢):||2- For real-world molecules,
we apply the Kabsch algorithm (Kabsch, 1976) for heavy atoms to align Rp with R;. We update
the parameters of the neural network with a learning rate of 0.0001, while the scalar parameter w
is updated with a learning rate of 0.001. We clip the gradient norm with 1 to prevent loss from
exploding. we train J = 1000 times per rollout. We report other model configurations in Table 3.
For PIPS, we use the model configurations reported by Holdijk et al. (2024). For CVs of SMD, we
use backbone dihedral angles (¢, ) for Alanine Dipeptide and RMSD for Polyproline Helix and
Chignolin.

Table 3: Model configurations of TPS-DPS.

System \ #of rollouts (/) # of samples (M) Batchsize (K) Buffersize Relaxation (o)
Double-well 20 512 512 10000 3
Alanine Dipeptide 1000 16 16 1000 0.1
Polyproline Helix 100 16 4 200 0.2
Chignolin 100 16 4 200 0.5
Trpcage 100 16 4 100 0.5

BBA 100 16 4 100 0.5

BBL 100 16 2 100 0.5

B.3 EVALUATION METRICS

Root mean square distance (RMSD). We use the Kabsch algorithm (Kabsch, 1976) for heavy
atoms to align the final position with the target position Rz, using the optimal (proper) rotation and
translation to superimpose two heavy atom positions. We calculate RMSD between heavy atoms of
the final position and the target position Rz.

Target hit percentage (THP). THP measures the success rate of paths arriving at the target meta-
stable state 3 in a binary manner. Formally, given the final positions { R®)}M, of M paths, THP is
defined as follows:

i: RY ¢ B}|

_H
THP = i (43)

18



Under review as a conference paper at ICLR 2025

Energy of transition state (ETS). ETS measures the ability of the method to find probable transition
states when crossing the energy barrier. ETS refers to the maximum potential energy among states in
a transition path. Formally, given a transition path x.;, of length L that reaches the target meta-stable
state i.e., Ry, € B, ETS is defined as follows:

ETS(zo..) = Zgg}é] U(Ry) 44)

B.4 SYSTEM DETAILS

Double-well potential and dynamics. Double-well system follows the overdamped Langevin
dynamics defined as follows:

_ kA
AR, = VU(Rt)dtﬂ/ B qwy, . (45)
m m

For simplicity, we let R = (z,y) € R, m = I,y = 1,A = 0.01,7 = 10, and A\ = 1200K. To
evaluate the ability to find diverse transition paths, we consider the following double-well potential
(Hua et al., 2024):

Uz, y) = é (41— —y*)? +2@° =22+ [z +y)° - 1P+ [z —y)? - 1> —2) . (46)

This potential has global minima and two saddle points, having two meta-stable states and two
reaction channels.

Handedness. For four points A, B, C, D, we define a handedness (Moradi et al., 2009) as follows:

_ EP-(CD x AB)
Hanen = B EB) a8 “n

Here, E and F' are the midpoints of the vectors E and @, respectively. With the backbone
atoms X1, Xo, ..., Xy of a Polyproline Helix, we can define the handedness for N atoms as H =
vaz_ls Hx,x; 1X;:2X,,4- In Our experiments, we take the alpha carbon X7, the carbonyl carbon X5
of the first proline residue, the alpha carbon X3 of the second residue and alpha carbon X of third
residues to compute the handedness.

Time-lagged independent components (TICA). To extract the collective variable (CV) for fast
folding proteins, we consider components of time-lagged independent component analysis (TICA;
Pérez-Hernandez et al., 2013). We run 1us unbiased MD simulations with 2fs step size and record
states per 2ps to collect MD trajectories, using the OpenMM library with the same configuration as in
Appendix B.1. For the top two TICA components, we use PYEMMA library (Scherer et al., 2015)
with a time lag 7 = 500ps for Chignolin and 7 = 200 for Trpcage, BBA, and BBL.

Reproducibility. We describe experiment details in Appendix B, including detailed simulation
configuration and hyper-parameters. In the anonymous link, we provide the code for TPS-DPS.
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C EXPERIMENTS ON FAST FOLDING PROTEINS

In this section, we evaluate our method, called TPS-DPS, on three fast-folding proteins (Lindorff-
Larsen et al., 2011): Trpcage, BBA, and BBL at 400K.

Trpcage, BBA, and BBL are more challenging proteins than Chignolin since they have 20, 28, and 47
amino acids, respectively. As in previous experiments, we adopt three metrics: RMSD, THP, and
ETS. We compare our methods with unbiased MD (UMD) steered MD (SMD). We define the target
meta-stable state B = {R | [|{(R) — £(Rg)|| < 0.75} where £ consists of the top two components
of time-lagged independent component analysis.

As shown in Table 4 and Figure 7, UMD and TPS-DPS (F) fail to sample transition paths. TPS-DPS
(P) only succeeds in sampling transition paths of Trpcage and outperforms baselines in finding
plausible transition states. TPS-DPS (S) outperforms baselines in RMSD and THP and finds more
plausible transition states than SMD.

Table 4: Benchmark scores on fast folding proteins, all metrics are averaged over 64 paths. ETS is
computed for paths that hit the target meta-stable state, and the best results are highlighted in bold.
TPS-DPS predicting the bias force, potential, and atom-wise scaling are denoted by (F), (P), and (S),
respectively. UMD () denotes unbiased MD with temperature A and SMD (k) denotes steered MD
with the force constant k. Unless otherwise specified, paths are generated by MD simulation at 400K.

RMSD (J) THP (1) ETS ())
Molecule system Method i % JJmol !
UMD 7.94 £ 0.65 0.00 -
UMD (1200K) 827+ 1.13 0.00 -
SMD (10K) 1.68 +0.23 3.12 -312.54 + 20.67
Trpcage SMD (20K) 1.20 £ 0.20 42.19 -226.40 + 85.59
TPS-DPS (F, Ours)  6.35 £ 0.31 0.00 -
TPS-DPS (P, Ours)  3.15 + 0.52 12.50 -512.97 + 56.89
TPS-DPS (S, Ours)  0.76 + 0.12 81.25 -317.61 + 140.89
UMD 10.03 £ 0.39 0.00 -
UMD (1200K) 10.81 £ 1.05 0.00 -
SMD (10K) 2.89 +0.32 0.00 -
BBA SMD (20K) 1.66 £+ 0.30 26.56 -3104.95 £ 97.57
TPS-DPS (F, Ours)  9.48 +0.18 0.00 -
TPS-DPS (P, Ours)  3.89 + 0.35 0.00 -
TPS-DPS (S, Ours)  1.21 + 0.09 84.38  -3801.68 + 139.38
UMD 18.48 + 0.63 0.00 -
UMD (1200K) 18.90 + 1.16 0.00 -
SMD (10K) 3.67 +0.22 0.00 -
BBL SMD (20K) 297 +0.33 7.81 -1738.57 + 386.81
TPS-DPS (F, Ours) 10.15 4+ 0.54 0.00 -
TPS-DPS (P, Ours)  6.45 + 0.26 0.00 -
TPS-DPS (S, Ours)  1.60 + 0.19 43.75  -3616.32 + 213.66
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TIC1 TIC1 TIC1 TIC1 TIC1

ic 2
TIC 2
TiC 2
TiC 2
ez

TIC1 TIC1 : TIC1 TIC1 TIC1 TIC1

(2) UMD (b) SMD (10k)  (c) SMD (20k) (d) TPS-DPS (F) (e) TPS-DPS (P) (f) TPS-DPS (S)

Figure 7: 64 sampled paths from each method for Trpcage, BBA, and BBL (from top to bottom
rows) projected to the top two TICA components. White circles indicate meta-stable states.
Transition paths are from the unfolded to the folded state for each protein. SMD (k) denotes steered
MD with the force constant k. All paths are generated by MD simulation at 400K. (F), (P), and (S)
refer to predicting the bias force, the bias potential, and atom-wise positive scaling, respectively.
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D COMPUTATIONAL COST

In this section, we analyze the time complexity of TPS-DPS and provide the number of energy
evaluations and runtime in training and inference time for real molecules.

The training and inference time complexity of TPS-DPS is O(NMLJ) and O(N M L), respectively,
where N is the number of atoms, M is the number of samples, L is the number of MD steps, and J
is the number of rollouts. To be specific, training consists of biased MD simulations with O(NM L)
time complexity. Given the number of samples M, the total complexity of one biased MD step of
TPS-DPS is O(N).

To justify it, we note that the biased MD step consists of three stages: (1) calculating bias force, (2)
calculating OpenMM force field, and (3) integrating the biased MD. Given the number of layers, and
hidden units, MLP for bias force requires O(N') and the Kabsch algorithm for equivariance requires
O(N). Calculating force field with cut-off and integrating MD with VVVR integrator (Sivak et al.,
2014) also requires O(N).

To measure computational cost, we consider the number of energy evaluations and runtime per rollout
in training and inference time. As shown in Table 5, the inference cost of TPS-DPS is proportional to
UMD and SMD which have time complexity O(N M L). TPS-DPS requires less energy evaluations
than PIPS in training since TPS-DPS finds transition paths faster than PIPS by utilizing the replay
buffer and simulated annealing.
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Table 5: Cost comparison across molecular systems. EET and EEI refer to the total number of
energy evaluations in training and inference, respectively. RT and RI denote runtime (second) per
rollout in training and inference on a single RTX A5000 GPU. MD simulations are conducted with
T = 1ps for Alanine Dipeptide, 1" = 5ps for other systems, and At = 1fs.

Molecule Method EET(]) EEI(}) RT() RI()
UMD - 64K - 29.49
SMD - 64K - 47.45
PIPS (F) 240M 64K 4422  71.05
Alanine Dipeptide ~ PIPS (P) 240M 64K 5054  75.67

TPS-DPS (F, Ours) 16M 64K 24.93 70.50
TPS-DPS (P, Ours) 16M 64K 27.25 78.83
TPS-DPS (S, Ours) 16M 64K 25.11 73.04

UMD - 320K - 224.23
SMD - 320K - 283.45
PIPS (F) 40M 320K 553.82  565.58
Chignolin PIPS (P) 40M 320K 632.89 622.87

TPS-DPS (F, Ours) 8M 320K 209.29  562.90
TPS-DPS (P, Ours) &M 320K 22436  623.63
TPS-DPS (S, Ours) 8M 320K 215.18 581.26

UMD - 320K - 258.29
SMD - 320K - 323.52
Trp-Cage TPS-DPS (F, Ours) 8M 320K 289.10 65522

TPS-DPS (P, Ours) &M 320K 301.76  699.44
TPS-DPS (S, Ours) &M 320K 293,51 673.00

UMD - 320K - 395.12
SMD - 320K - 542.35
BBA TPS-DPS (F, Ours) 8M 320K 42223  1042.81

TPS-DPS (P, Ours) &M 320K  430.24 1091.97
TPS-DPS (S, Ours) 8M 320K  426.48 1068.68

UMD - 320K - 673.55
SMD - 320K - 853.77
BBL TPS-DPS (F, Ours) 8M 320K 56095 1520.05

TPS-DPS (P, Ours) &M 320K 572777 1607.62
TPS-DPS (S, Ours) &M 320K 563.45 1553.89

23



Under review as a conference paper at ICLR 2025

E COMPARISION WITH REVERSE KL DIVERGENCE

Table 6: Benchmark scores of reverse KL divergence and TPS-DPS on Alanine Dipeptide system.
Metrics are averaged over 64 paths, and ETS is computed for paths that hit the target meta-stable state.
The best results are highlighted in bold. TPS-DPS consistently outperforms reverse KL divergence
on all metrics regardless of predicting bias force or potential.

RMSD (/) THP (1) ETS (1)
A % kJmol !

Reverse KL (F) 043 £0.34 53.12  27.88 £14.38
Reverse KL (P) 0.58 £0.34 4843  21.61 £11.76
TPS-DPS (F, Ours) 0.16 £ 0.06  92.19 19.82 £ 15.88
TPS-DPS (P, Ours) 0.16 = 0.10  87.50  18.37 £ 10.86

Method

(a) Reverse KL (F) (b) Reverse KL (P) (¢) TPS-DPS (F) (d) TPS-DPS (P)

Figure 8: 16 sampled paths from each method on the Ramachandran plot of Alanine Dipeptide.
White circles indicate meta-stable states and white stars indicate saddle points. We sample transition
paths from the meta-stable state C'5 (upper left) to C'7ax (lower right). Paths are generated by MD
simulation at 300K. The reverse KL divergence struggles to find diverse reaction channels, suffering
from mode collapse issues while the log-variance divergence of our method can capture two reaction
channels and reach the target states better.
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F PRE-TRAINING WITH GROUND TRUTH TRANSITION PATHS

In this section, we investigate the effectiveness of the pre-training model with a small amount of
ground truth transition paths in the double-well system.

We pre-train the model with 1024 ground truth transition paths during 1000 epochs, using the same
loss function described in Equation (10). We compare with the pre-trained model. As shown in
Figure 9 and Table 7, TPS-DPS (F) with pre-training starts with lower loss but does not improve
the final performance quantitatively and qualitatively since our approach nearly achieves maximum
performance.

—— TPS-DPS (F)
== TPS-DPS (F) w/ pre-train
»n 107
1%
Q
—
10-5
0 1 8 12 16
- - Number of Rollouts
(a) Not pretrained (b) Pretrained (c) Loss curves over rollouts.

Figure 9: Visualizations of sampled transition paths (left) and loss curves over rollouts (right).

Table 7: Performance of pre-training with ground truth transition paths.

RMSD () THP (1) ETS (1)
A % kJmol !

TPS-DPS (F) 0.01 £0.02  99.90 1.38 £ 0.16
TPS-DPS (F) w/ pre-training  0.01 £0.02  100.00 1.37 £0.15

Method
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