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Abstract
This paper describes JHARNA-MT, a sys-
tem designed for the MMLoSo 2025 Shared
Task. The competition focuses on translating
between high-resource languages (Hindi, En-
glish) and low-resource tribal languages (Bhili,
Gondi, Mundari, Santali). Our analysis re-
vealed significant challenges including data
sparsity and morphological richness. To ad-
dress these, we propose a hybrid pipeline in-
tegrating Non-Parametric Retrieval, Statistical
Machine Translation (SMT), and Neural Ma-
chine Translation (NMT) fine-tuned with Low-
Rank Adaptation (LoRA). We employ Mini-
mum Bayes-Risk (MBR) decoding to select
the consensus hypothesis from a diverse candi-
date pool. Our system achieved a final score of
186.37, securing 2nd place on the leaderboard.

1 Introduction

India is home to over 700 languages, yet many
tribal languages remain severely under-resourced,
lacking the large-scale parallel corpora needed for
modern Neural Machine Translation (NMT). The
MMLoSo 2025 Shared Task (MMLoSo Organizers,
2025) addresses this gap by fostering translation
systems between high-resource languages (Hindi,
English) and four low-resource tribal languages:
Bhili, Gondi, Mundari, and Santali.

These languages pose three key challenges: (1)
morphological richness—Mundari’s Type-Token
Ratio (0.222) is double that of Hindi (0.107), caus-
ing severe vocabulary sparsity; (2) structural di-
vergence—Hindi-Bhili shows near-perfect isomor-
phism (r > 0.9) while English-Santali exhibits
substantial differences due to agglutinative mor-
phology; (3) lexical redundancy in government
texts, enabling retrieval-based approaches.

Prior approaches to low-resource translation
have largely relied on multilingual transfer learn-

ing (Costa-jussà et al., 2022) and synthetic data
generation (Sennrich et al., 2016). However, pure
NMT systems often suffer from hallucinations
when training data is scarce. Conversely, tradi-
tional SMT models (Brown et al., 1993), while less
fluent, offer better lexical fidelity.

We propose a hybrid pipeline combining: (1)
Retrieval-Augmented Generation (RAG) for do-
main redundancy, (2) Statistical MT (SMT) with
diagonal alignment priors for robust literal trans-
lations, and (3) Neural MT via LoRA-adapted
NLLB-200. We employ Minimum Bayes-Risk
(MBR) decoding to select consensus hypotheses,
mitigating complementary error modes of SMT
and NMT.
Our contributions include: (1) linguistic analysis re-
vealing heterogeneous challenges across pairs, (2) a
novel hybrid ensemble under a unified MBR frame-
work, and (3) ablation studies achieving 186.37 on
the private leaderboard (2nd place).

2 Dataset Analysis and Linguistic
Implications

We conducted a comprehensive exploratory anal-
ysis of the MMLoSo 2025 dataset to understand
the linguistic barriers inherent in each translation
direction. Table 1 summarizes key statistics that
guided our modeling decisions.

2.1 Syntactic Isomorphism vs. Divergence

Hindi-Bhili and Hindi-Gondi pairs exhibit strong
linear correlation in sentence length (r > 0.9) with
length ratios near 1.0, indicating high syntactic
isomorphism. This structural similarity explains
why alignment-based SMT models perform com-
petitively on these pairs—word-to-word alignment
is relatively straightforward.



Pair TTR Len Vocab Ratio

Hindi 0.095 21.3 40.4K –
Bhili 0.155 21.6 67.0K 1.03

Hindi 0.086 14.4 24.6K –
Gondi 0.162 13.8 44.8K 0.99

Hindi 0.107 16.3 35.1K –
Mundari 0.222 14.2 63.2K 0.91

English 0.118 16.5 39.1K –
Santali 0.116 19.3 44.8K 1.18

Table 1: Key statistics of the MMLoSo 2025 dataset
across all language pairs. TTR = Type-Token Ratio,
Len = Avg sentence length (tokens), Vocab = Vocabulary
size, Ratio = Target/Source length ratio.

Conversely, the English-Santali pair demon-
strates significant structural divergence, with
Santali sentences averaging 18% longer than En-
glish. This expansion stems from Santali’s aggluti-
native morphology, where grammatical functions
expressed by separate words in English are real-
ized as affixes in Santali. We adjusted the length
penalty parameter (α = 1.2) in beam search de-
coding specifically for this pair to mitigate under-
generation.

2.2 Morphological Richness and Data
Sparsity

Mundari exhibits extreme morphological richness
(TTR = 0.222), more than double that of source
Hindi (0.107). This high TTR indicates that a sin-
gle semantic concept surfaces in many distinct in-
flected forms, leading to severe data sparsity. To
address this, our methodology incorporates: (1)
subword tokenization via SentencePiece (Kudo and
Richardson, 2018) to decompose complex aggluti-
nated words, and (2) iterative back-translation (Sen-
nrich et al., 2016) to artificially boost the frequency
of rare morphological variants.

3 Proposed Methodology

To address the challenges of data sparsity and struc-
tural divergence, we propose a hybrid translation
pipeline that integrates Non-Parametric Retrieval,
Statistical Machine Translation (SMT), and Neu-
ral Machine Translation (NMT) under a Minimum
Bayes-Risk (MBR) decision framework.

3.1 Retrieval-Augmented Generation (RAG)

Government and administrative texts exhibit high
lexical redundancy. We exploit this via a two-tier
retrieval module:

Exact Match. For a test source sentence x, if
x ∈ Dtrain, we directly retrieve its gold translation
y∗ from the training corpus. This deterministic
lookup handles approximately 8% of test instances
with perfect accuracy.

Fuzzy Match. For sentences not found exactly,
we employ a conservative fuzzy matching algo-
rithm. Let norm(x) denote the normalized to-
kenized representation (lowercased, punctuation-
separated). We retrieve y′ if ∃(x′, y′) ∈ Dtrain

such that:

norm(x) = norm(x′) ∧ ||x| − |x′|| ≤ 1 (1)

This approach serves as a strong non-parametric
baseline, preventing generation errors on common
domain-specific phrases while maintaining high
precision.

3.2 The Hybrid Generator
For unseen sentences, we employ an ensemble of
two distinct paradigms to maximize coverage and
fidelity.

Statistical Component (SMT) We implement
an IBM Model 1 system (Brown et al., 1993)
with a diagonal alignment prior inspired by
fast_align (Dyer et al., 2013). The alignment prob-
ability is biased toward diagonal positions:

p(aj = i|f , e) ∝ t(fj |ei)·

exp

(
−λdiag ·

∣∣∣∣ j|f | − i

|e|

∣∣∣∣) (2)

where λdiag = 4.0 controls the strength of the
diagonal bias. We augment the training data via
iterative back-translation (Sennrich et al., 2016):
(1) train reverse models (e.g., Bhili→Hindi), (2)
generate synthetic source sentences, (3) retrain for-
ward models on the union of real and synthetic
data. This reduces sparsity for morphologically
rich languages.

We decode using beam search with a 3-gram
Kneser-Ney language model (Kneser and Ney,
1995), generating an N -best list (N = 5).
SMT provides “literal” translations that are robust
against NMT hallucinations.

Neural Component (NLLB-LoRA) We fine-
tune NLLB-200-Distilled-600M (Costa-jussà et al.,
2022) using Low-Rank Adaptation (LoRA) (Hu
et al., 2022) with rank r = 16, α = 32, targeting
all attention and feed-forward projections. Training
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Figure 1: Architecture of our Hybrid Retrieval-Augmented Ensemble. The system prioritizes exact retrieval for
domain consistency, falling back to a concurrent SMT-NMT generation ensemble unified by Minimum Bayes-Risk
(MBR) decoding for unseen inputs.

details: 1 epoch, AdamW optimizer (Loshchilov
and Hutter, 2019) (lr = 2e−4), batch size 32 (gra-
dient accumulation), 8-bit quantization (Dettmers
et al., 2022). We generate 10-best lists via beam
search (Freitag and Al-Onaizan, 2017) with length
penalty α = 1.2 for English-Santali (see Ap-
pendix B for full configuration).

Minimum Bayes-Risk (MBR) Reranking. To
select the highest quality translation from our candi-
date pool H = HSMT ∪HNLLB , we apply MBR
decoding (Kumar and Byrne, 2004; Eikema and
Aziz, 2020), which selects the hypothesis maximiz-
ing expected utility against all others. Following
the competition metric, we define utility as 0.6×
BLEU (Papineni et al., 2002) +0.4×chrF (Popović,
2015). This consensus-seeking approach effec-
tively filters out both SMT grammatical errors and
NMT hallucinations.

4 Results and Analysis

Main Results. Table 2 compares baselines and
our final hybrid system on the MMLoSo 2025
leaderboard (evaluation metric: 0.6×BLEU+0.4×
chrF).

Ablation Study. Table 3 quantifies each compo-
nent’s contribution.

Qualitative Analysis. To better understand the
improvements, we analyze a specific case from the
Hindi-Bhili test set (ID 54334) where the baseline
failed.

Case Study: Overcoming SMT Hallu-
cinations

Input (Hindi): unhone kaha ki 2014 ke baad...
(Gloss: He said that after 2014...)

Baseline (SMT): ki ki ki 2014. baad...
× Error: Severe stuttering and repetition at start.

Hybrid System: tinaye kedu ki 2014 ne baad...
✓ Correction: Fluent generation of "He said that".

Analysis. Key insights: (1) Complementary
error modes—SMT provides literal translations
but with grammatical errors; NMT produces flu-
ent output but hallucinates (public 302.08 vs pri-
vate 166.47 confirms overfitting). (2) MBR mit-
igates errors—consensus selection adds +8.06
points over NMT-only. (3) RAG excels in redun-
dant domains—contributes +11.84 points; exact
matches handle 8% of test data with perfect accu-
racy. (4) Post-processing is critical—script-aware
digit normalization adds +2.45 points for Indic lan-
guages.

5 Conclusion

We presented a hybrid translation system for the
MMLoSo 2025 Shared Task, achieving 2nd place
on the leaderboard with a score of 186.37. Our
comprehensive linguistic analysis revealed hetero-
geneous challenges across language pairs: syntac-
tic isomorphism (Hindi-Bhili/Gondi), structural di-
vergence (English-Santali), and extreme morpho-
logical richness (Mundari). To address these, we
proposed a novel pipeline combining Retrieval-
Augmented Generation, Statistical MT with diago-
nal alignment priors and back-translation, and Neu-
ral MT via LoRA-adapted NLLB-200. Minimum
Bayes-Risk decoding effectively synthesizes con-
sensus translations from diverse hypotheses, miti-



Method Public Score Private Score

Baselines
Dice Coefficient (Lexical) 158.84 140.32
IBM Model 1 (SMT) 182.53 148.68

Intermediate Systems
SMT + Back-Translation + MBR 193.26 153.91
NLLB-LoRA (Neural Only) 302.08 166.47
NLLB-LoRA + SMT + MBR 306.56 174.53

Final Hybrid System 311.61 186.37

Table 2: Comparison of system performance. The Final Hybrid System includes RAG, Ensemble, and Post-
processing.

System Configuration Score

NLLB-LoRA only 166.47
+ SMT ensemble 170.21
+ MBR reranking 174.53
+ RAG (Exact Match) 180.14
+ RAG (Fuzzy Match) 183.92
+ Post-processing (Digit mapping) 186.37

Table 3: Ablation study showing incremental contribu-
tions.

gating complementary error modes.
Our ablation studies demonstrate that each com-

ponent contributes substantially: MBR improves
over NMT-only by +8 points, RAG adds +12
points, and post-processing contributes +2.5 points.
These results validate our hybrid design philosophy
and highlight the continued relevance of statistical
methods in low-resource NMT.

Future Work. Promising directions include:
(1) exploring iterative pseudo-labeling with
confidence-based filtering, (2) integrating subword-
level MBR to better handle morphological varia-
tion, (3) developing language-pair-specific adapters
to address structural heterogeneity, and (4) inves-
tigating cross-lingual transfer from related high-
resource languages (e.g., Marathi for Gondi).

Limitations

While our system achieves competitive perfor-
mance, several limitations warrant discussion:

Domain Specificity. Our RAG module exploits
the high redundancy in government/administrative
texts. Performance may degrade on out-of-domain
data (e.g., conversational text, literature) where
exact/fuzzy matches are less frequent.

Computational Cost. The hybrid pipeline re-
quires running both SMT and NMT inference,

increasing latency by approximately 2.5× com-
pared to NMT-only. This may limit deployment in
resource-constrained scenarios.

Error Propagation. The MBR reranking relies
on BLEU and chrF as utility functions. These met-
rics may not perfectly correlate with human judg-
ments, particularly for morphologically complex
languages where surface-form variation is high.

Language Coverage. Our analysis focuses on
four specific tribal languages. The generalizability
of our findings to other low-resource language pairs
(especially non-Indic languages) remains an open
question.

Ethical Considerations. Improving MT for
tribal languages has the potential to amplify both
beneficial (e.g., access to government services) and
harmful (e.g., loss of linguistic diversity) societal
impacts. Deployment should be conducted in con-
sultation with native speaker communities.

Acknowledgments

We would like to express our sincere gratitude to
the organizers of the MMLoSo 2025 Shared Task
for their tremendous efforts in curating the low-
resource datasets and hosting this competition. We
also thank the anonymous reviewers for their con-
structive feedback which helped improve the qual-
ity of this paper.

References
Peter F. Brown, Stephen A. Della Pietra, Vincent J.

Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe

https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003


Kalbassi, Janice Lam, Daniel Licht, Jean Mail-
lard, Anna Sun, Skyler Wang, Guillaume Wen-
zek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, John
Hoffman, and 19 others. 2022. No language left be-
hind: Scaling human-centered machine translation.
arXiv preprint arXiv:2207.04672.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems (NeurIPS).

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM Model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 644–
648, Atlanta, Georgia. Association for Computational
Linguistics.

Bryan Eikema and Wilker Aziz. 2020. Is MAP decod-
ing all you need? the inadequacy of the mode in neu-
ral machine translation. In Proceedings of the 28th
International Conference on Computational Linguis-
tics (COLING), pages 4506–4520, Barcelona, Spain
(Online). International Committee on Computational
Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation (NMT), pages 56–60, Vancouver,
Canada. Association for Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation
of large language models. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR).

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
volume 1, pages 181–184. IEEE.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 66–71, Brussels, Belgium. Association for
Computational Linguistics.

Shankar Kumar and William Byrne. 2004. Minimum
Bayes-risk decoding for statistical machine transla-
tion. In Proceedings of the Human Language Tech-
nology Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL), pages 169–176, Boston, Massachusetts. As-
sociation for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

MMLoSo Organizers. 2025. MMLoSo 2025 shared
task: Multimodal models for low-resource con-
texts and social impact. https://www.kaggle.com/
competitions/mmloso2025. To appear.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 311–318, Philadel-
phia, Pennsylvania. Association for Computational
Linguistics.
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• Fuzzy Match: We search for training
sentences with a normalized edit distance
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3. Hybrid Generation (if RAG fails):

• SMT Branch: The input is processed
by our IBM Model 1 system (enhanced
with diagonal prior and back-translation).
We generate the top-5 hypotheses using
beam search.
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• NMT Branch: The input is processed
by the NLLB-200-Distilled-600M model
(fine-tuned with LoRA). We generate the
top-10 hypotheses using beam search
with a temperature of 1.0.

4. Minimum Bayes-Risk (MBR) Reranking:

• We pool the hypotheses from both
branches (N = 15).

• We compute the utility score for each
hypothesis against all others using the
metric: U(h) = 0.6 × BLEU(h, h′) +
0.4× chrF(h, h′).

• The hypothesis with the highest average
utility is selected.

5. Post-Processing:

• Digit Mapping: For Indic target lan-
guages (Hindi, Bhili, Gondi, Mundari),
we map Latin digits (0-9) to Devanagari
digits.

• Entity Preservation: We verify that all
URLs and email addresses present in the
source are preserved in the target. If
missing, they are appended.

B Hyperparameters and Configuration

We provide the detailed hyperparameters used for
our best-performing models.

Parameter Value
NLLB-200 (LoRA)

Base Model nllb-200-distilled-600M
LoRA Rank (r) 16
LoRA Alpha (α) 32
LoRA Dropout 0.05
Target Modules [q_proj, v_proj, k_proj,

out_proj, fc1, fc2]
Learning Rate 2× 10−4

Batch Size 16
Epochs 3
Quantization 8-bit (Int8)

SMT (IBM Model 1)
EM Iterations 6
Diagonal Prior (λdiag) 4.0
Smoothing Kneser-Ney (3-gram)
Back-Translation Rounds 3

MBR Decoding
Candidate Pool Size 15 (5 SMT + 10 NMT)
Utility Function 0.6 · BLEU + 0.4 · chrF

Table 4: Hyperparameters for NMT, SMT, and MBR
components.

C Detailed Experiment History

Table 5 lists the complete history of our experi-
ments, showing the evolution from simple base-
lines to the final hybrid system.

D Linguistic Analysis Details

We performed a detailed analysis of the dataset
characteristics to inform our model choices. Key
observations from our analysis:

• Isomorphism: Hindi-Bhili and Hindi-Gondi
are highly isomorphic (length correlation r ≥
0.95), with nearly identical sentence length
ratios (≈ 1.00), justifying the use of SMT for
these pairs.

• Morphological Richness: Mundari exhibits
the highest Type-Token Ratio (TTR = 0.22),
more than double that of Hindi, indicating
extreme morphological complexity and data
sparsity. This necessitated the use of Back-
Translation for vocabulary expansion.

• Structural Divergence: English-Santali
shows the lowest length correlation (r = 0.89)
and a high length ratio (≈ 1.18), reflecting
Santali’s agglutinative morphology, suggest-
ing that NMT is more suitable than SMT for
this pair.

Visualizations of these characteristics are pro-
vided in Figure 2.



(a) Length Correlation (b) Length Distribution

(c) Length Ratios (d) Zipf’s Law Analysis

Figure 2: Exploratory Data Analysis. (a) Hexbin plots showing strong isomorphism for Hindi-Bhili/Gondi. (b) KDE
plots showing distribution overlap. (c) Violin plots of target/source length ratios. (d) Zipf’s law plots confirming
natural language properties.

ID Method Description Public Private
Phase 1: Statistical Baselines

ML0 Dice Coefficient (Word-by-word, No LM) 158.84 140.32
ML5 IBM Model 1 + Word LM 182.53 148.68
ML1 IBM1 (Diag Prior) + KN LM + Char LM 175.83 143.91
Exp 3 IBM1 (Diag) + Back-Translation + MBR 193.26 153.91

Phase 2: Neural Methods (NLLB)
LLM0 NLLB LoRA + Dice Fallback (Early Hybrid) 171.64 161.10
LLM2 NLLB LoRA (Standard Fine-tuning) 302.08 166.47
LLM5 NLLB LoRA + SMT + MBR (Best Single NMT) 306.56 174.53

Phase 3: Final Hybrid System
Final RAG + NLLB-LoRA + SMT + MBR + Post-Proc 311.61 186.37

Table 5: Complete experiment history showing the progression of Public and Private leaderboard scores.
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